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Foreword to the 2011 Edition

In the context of a worldwide economic crisis, what better indication could there be

than the publication of this textbook on reactor physics?

Renunciation of the policy of adding further capacity to electrical production

facilities in Europe, the immense energy requirements of countries such as China,

India, and Brazil, and the growing international awareness that energy is a rare and

expensive commodity are so many factors militating in favor of the proper use of

the means of electricity production.

Furthermore, the avowed official desire to combat climate change and reduce

energy costs means that renewable energy and nuclear production are priorities.

Nuclear energy is once again making vigorous strides forwards, as attested in

France in particular by the commissioning of the EPR in 2012, 80 years after

discovery of the neutron by James Chadwick in 1932. The brief history of civil

nuclear power shows that it is not possible to harness this energy in the long run

without flawless safety levels, in all places and at all times.

Experts distinguish three safety functions: confinement of radioactive products,

reliable removal of decay heat, and complete control over reactivity. To ensure that

these conditions are met, the branches of neutron physics, fluid mechanics, thermal

physics, materials physics, and chemistry have an essential role to play. Neutron

physics is the science that describes and explains the behavior of neutrons in matter

and the reactions they induce. In order to guarantee complete control of reactivity, a

solid knowledge of neutron physics is indispensable in order to be able to define the

proper measures to be taken, beginning with the reactor design stage and then

throughout decades of operation.

Achieving complete understanding of the complex physical phenomena that

occur in a nuclear installation and displayed to the operation engineers via monitors

and computers in the control rooms is of cardinal importance for the optimal

operation of power reactors (440 in service in 2009, a number that will doubtless

rise two- or threefold by 2030 or 2040), of experimental reactors for deepening our

level of understanding, and of laboratories and facilities for fuel cycle studies that

are set to increase worldwide.
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This textbook addresses all aspects of neutron physics: experts, engineers, and

students will find between its covers a host of scientific references that will enable

them to acquire, maintain, and improve their skills.

It is my hope that it will be used by the large community of engineers working in

the service of peaceful use of nuclear energy, a lasting energy form, for the greater

good of mankind.

World Association of Nuclear Operators (WANO)

Paris, France

Laurent Stricker

Chairman of Wano
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Foreword to the 2017 Edition

The supply of clean, affordable, and reliable energy is a global challenge. The

projected increase in populations, particularly in Africa and Asia, means that by

2035 global energy needs are predicted to increase by 50% over 2015 levels. The

increasing evidence of man-made climate change has given greater prominence for

low carbon technologies such as renewables, nuclear, and carbon capture and

storage which should be developed and deployed widely. The Paris Agreement

on climate change (2016) has shown governments’ resolve to reduce the world’s
greenhouse gas emissions by accelerating the deployment of such technologies.

Against this background, nuclear energy is a critically important part of the

global energy mix. Today, nuclear power accounts for over 10% of the world’s
electricity generation; over 440 reactors are operating around the world, delivering

clean electricity to the grid. In 2017, there are more reactors being built than at any

time during the previous 25 years. Sixty reactors are currently under construction in

fourteen countries, including more than one third of these in China and others in

countries which are new to nuclear, such as the United Arab Emirates.

However in 2011, the Tōhoku earthquake and tsunami led to the nuclear accident

at the Fukushima Daiichi plant which has, alongside previous nuclear accidents,

emphasized the importance of nuclear safety and three crucial safety functions:

confinement of radioactive products, reliable removal of decay heat, and complete

control over reactivity.

To ensure that these functions are delivered effectively, the branches of neutron

physics, fluid dynamics, reactor physics, materials science, mechanical engineer-

ing, and chemistry/corrosion each have an essential role to play. Each of these

technical fields is important in its own right as are the synergies between them.

However, peculiar to nuclear science and engineering is the understanding of

neutrons in materials and the reactions they induce. In order to ensure the control

of the reactivity in operating reactor cores, a full understanding of neutron physics

is required. Achieving a full understanding of the complex physical mechanisms

that occur in a nuclear power reactor ensures both good design and safe operations.
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This textbook addresses all aspects of neutron physics creating a body of

scientific knowledge and supporting references that will be invaluable to those

learning about and responsible for nuclear reactor systems.

I commend this textbook to students, engineers, experts, and reactor operators as

a means to learn and maintain an up-to-date knowledge of such an important field of

nuclear science.

National Nuclear Laboratory

London, UK

Andrew H. Sherry

Chief Scientist of NLL
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Introduction

Reactor physics is a young branch of science. It is widely held to have been born on

December 2, 1942, in Chicago, with the news that “the Italian navigator has just
landed in the New World”, a coded sentence informing all authorized persons that

the Italian, Enrico Fermi, had succeeded in his prodigious feat of diverging a

uranium and graphite pile. However, very soon after this incredible feat of which

the general public was largely unaware, this young science struck terror into the

world with the explosion of two US atomic bombs over the Japanese cities of

Hiroshima and Nagasaki, on August 6 and 9, 1945. The Land of the Rising Sun was

brought to its knees by nuclear fire. Humanity was led wincing into the atomic age,
filled with a mixture of fear and fascination. Since then, public interest has never

waned thanks to tireless efforts of popularization.

The atomic age ushered in by scientists held out hope of unlimited energy,

possibly free (according to the publications of the time), and to the end of war.

Subsequent events unfortunately showed this dream to be an unrealizable utopia.

The short supply on Earth of fissile material is already of great concern, and as for

warfare. . . clearly when one war stops, another breaks out elsewhere on the planet.

Reactor physics flourished in the 1950s and 1960s. The construction of large power

reactors in the 1970s and 1980s led to intensive development of this technology,

yielding sustainable technologies such as reactors running on natural uranium

cooled with carbon gas and moderated by graphite, and pressurized water reactors,

which form the backbone of the French reactor fleet. At the same time, the

underlying physics became more stable: nuclear data were increasingly abundant

and filled large databases, and the notation specific to the field of neutron physics

became established. The knowledge of physicists was sustained through large-scale

calculation codes, while generations of numerical physicists improved these codes

thanks to breakthroughs in ever more elaborate and complex numerical methods.
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Popularization of the atomic age reached its peak in the 1950s (here we see a special edition of the

French science magazine, “Science et Vie” [Science and Life] published in 1958, the Marguet

collection, courtesy Science et Vie)

In 1979, the accident at the Three Mile Island 2 reactor in the USA shook the

scientific community; the reactor core was totally destroyed, despite such an

accident being deemed impossible on account of all the precautionary measures

taken. As a result of the almost complete lack of release of radioactive matter into

the environment, awareness among the general public of the inherent dangers of the

accident did not peak, but it created massive unease among scientists. Murphy’s
Law had been confirmed once more. However, in 1986, the Chernobyl accident in

Ukraine, in which most of the core was expelled into the environment, contami-

nating significant areas and with far-reaching effects throughout Europe, created a

terrible shock.

Civil nuclear energy programs were now perceived in the public mind as a huge

threat to humanity, and hostility towards the nuclear technocrats gathered pace. In

France, the combined action of the media and of the ecological parties, coupled

with public defiance, led to decommissioning of the SuperPhénix fast-neutron

reactor. The nuclear age stooped from splendor to misery, as the question of

disposal of long-lasting nuclear waste materials scared the public, and scientists

toiled without success to find a viable alternative to deep burial.

By the end of the 1990s, as students showed disaffection with the so-called hard

sciences, the popularity of nuclear engineering had sunk to a new low, with the
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Master’s in Reactor Physics almost being phased out in the mid-1990s owing to the

lack of students and the poor prospects for renewal of the reactor fleet. However, in

the 2000s, scientists showed beyond doubt that global warming was due to human

activities and to the release of greenhouse gases into the atmosphere. Indeed, the oil

crisis accompanying the wane of that particular fuel (total depletion within 40 years

was being touted in 2008!) heralded a revival of the fortunes of nuclear energy; the

latter does not produce greenhouse gases and it is assumed that the requisite natural

resources will last ten times longer than oil, and plutonium could well prove to be

the wildcard to replace uranium 235, which may run out before the advent of fusion.

After a period of dwindling in human resources and loss of expertise over the

years (in 2008, the French situation in terms of expertise in fast neutron reactors

which had to be set up from scratch after the retirement of the SuperPhénix
generation, is characteristic, and even perhaps a caricature of this state of affairs),

know-how regarding reactor physics lay buried in the extensive computational

codes. For this reason, it seemed to me timely to write this textbook amid the

resurgence of interest in nuclear engineering to ensure renewal of the international

reactor fleet, along with increasing energy demand.

This textbook is thus addressed to students in higher studies, engineering

students in nuclear energy and engineering, and engineers and research scientists

at large who wish to review the founding notions of their professions. It is the

culmination of 15 years of lectures given at the “Ecole Nationale Supérieure

d’Ingénieurs” in Bourges (France), where I was able to observe (with great plea-

sure) the renewed interest of students in this particular field. I wanted this textbook

to be both educational in terms of its content and convivial through its illustrations,

and I hope that it will provide answers for beginners and knowledgeable readers

alike. The textbook first sets out the minimum knowledge in nuclear physics

required for an understanding of more advanced concepts. The subject itself has

become a separate branch of science. It then examines neutron physics, which

describes the intrinsic behavior of neutrons in matter, and then reactor physics,

which is the art of making a pile critical in order to produce heat. The thermal

hydraulics of the coolant material and the thermal physics of the nuclear fuel that

are often associated with reactor physics will be explored in a separate textbook

entitled “Physique des accidents dans les réacteurs nucléaires” [Physics of acci-

dents in nuclear reactors]; these very important subject areas are too vast to be

presented in the present volume. Indeed, as part of the generation that grew up with

water reactors and because of my experience in this area, I have focused chiefly on

Pressurized Water Reactors, which have flourished during my career at Électricité

De France. Throughout the various chapters, I have done my utmost to review the

history of this young science that is currently enjoying a revival.
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De France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1369

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1403

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431

xxxii Contents for Volume 2



Part I

Neutronics



Chapter 1

Fundamentals of Nuclear Physics

Reactor physics is a combination of nuclear physics and neutronics, both of which

are essential for a comprehensive understanding of the phenomena involved. This

chapter presents the rudiments of nuclear physics necessary for a reactor physicist.

(Fernandez 2006; Heisenberg 1953)

1.1 Chemical Elements

All of the everyday physical matter around us is made up of atoms (from the Greek

atomos meaning “that which cannot be cut”, “indivisible”), the characteristic

particles present in all chemical elements. The chemical elements are defined by

their chemical properties, which depend on the number of protons, Z, called the

atomic number. In fact, the chemical properties of a given element depend on its

electron structure, and thus on the number of electrons it contains. Since atoms are

neutral, the number of electrons within the electron structure of a given atom is

equal to the number of protons it contains. The elements are characterized by their

symbol (denoted X). In 1868, the Russian chemist Dimitri Mendeleev formulated

his famous periodic table of elements, which was predictive and continues to evolve

even today. A chemical element is represented by a capital letter (e.g. iodine ¼ I),
or a capital letter followed by a small letter (e.g. copper ¼ Cu):

92U element 92 ¼ chemical element uranium with 92 protons

2He element 2 ¼ chemical element helium with 2 protons

An element is said to be natural if it occurs naturally. It is said to be synthetic if it
is man-made. Examples of natural elements are lead (Pb), sodium (Na), potassium
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(K ), uranium (U ) and tungsten (W ). Synthetic elements include plutonium (Pu),
discovered in 1940 by a team led by Glenn Seaborg,1 neptunium (Np), discovered in
1940 by McMillan and Abelson (Mathieu 1991, p. 234) as well as technetium

(Z¼ 43) and promethium (Z¼ 61), which are lighter in mass than uranium. Using

particle accelerators, element 118, or ununoctium, was synthesized in 1999, but its

identification remains to be finalized since the last decay product in its radioactive

chain is an unknown isotope! The latest elements to be discovered are generally

named after a known physicist. IUPAC (International Union of Pure and Applied

Chemistry) confers the official name on the new elements after dealing with the

usual “squabbles” concerning precedence among the various laboratories applying

for a name. Seaborgium, the name given to element 106 since 1994 in honor of

Glenn Seaborg, discoverer of plutonium, was initially refused by IUPAC on the

grounds that it was unusual to name an element after a living scientist, but in 1997,

the IUPAC finally decided to accord this privilege to Seaborg, then aged 85. Other

examples include rutherfordium (element 104, symbol Rf ) named in honor of

Ernest Rutherford, who discovered the nucleus; bohrium (element 107, symbol

Bh), in honor of Niels Bohr; meitnerium (element 109, symbolMt) in honor of Lise
Meitner, unjustly overlooked for a Nobel prize. It was the German Julius Lothar

Meyer2 (1830–1895) and the Russian Dimitri Mendeleev (1834–1907) who, inde-

pendently between 1868 and 1869, suggested a table for the classification of the

chemical elements by weight and chemical properties. Mendeleev’s table, or the
Periodic Table of Elements, contained the 64 elements that were known at that time

(Rosmorduc 1987, p. 257), arranged in lines and columns according to their mass

and chemical properties (from lightest to heaviest). This table (Fig. 1.1) was

predictive, and certain cells that had initially been left empty were filled subse-

quently with gallium, germanium and technetium, three “new” elements that were

discovered thanks to the chemical properties inferred from their positions in the

Mendeleev’s periodic table. This predictive aspect explains the success of this

classification (Photos 1.1 and 1.2).

1Glenn Theodore Seaborg (1912–1999) was an American chemist. After completing his PhD at

Berkeley in 1937, he co-discovered the element plutonium and nine other elements in 1940 (with

McMillan, Kennedy and Wahl), and identified more than 100 new radioactive isotopes. He was in

charge of the plutonium chemistry department in the Manhattan Project during WWII that led to

the creation of the second atomic bomb, which was dropped on Nagasaki on August the ninth,

1945. In 1946, he became head of the chemistry department at the Lawrence Radiation Laboratory.

He was awarded the Nobel Prize in chemistry in 1951 and published more than 200 international

papers, receiving countless scientific distinctions. He was listed in the Guinness Book of Records
as the person with the longest entry in the Who’s Who in America.
2In 1864, Meyer published his textbook: Die modernen Theorien der Chemie [Modern Theories of

Chemistry], which contained a draft of his classification in order of atomic weight, but it was only

in 1870, 1 year after Mendeleev, that he published a table highlighting the periodic relationship

between weight and atomic properties. Rightly or wrongly, History has linked only the name of

Mendeleev with the periodic table.
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The noble gases, discovered later, were placed in the last column afterwards,

resulting in the table in the form known today. Without entering into a detailed

chemical description of all the elements, the following should be noted:

• The hydrogen atom is the main constituent of the universe, not to be confused

with hydrogen gas, H2, which consists of two hydrogen atoms.

• The rare (or noble) gases (He, Ne, Ar, Xe, Kr, Rn) are located in the last column

to the right. These gases are very stable from a nuclear standpoint, they are not

chemically reactive, and are very difficult to liquefy.

• The alkali metals, (Li, Na, K) are located in the first column. These are highly

electropositive metals. They have a low density and are soft metals that are

chemically highly reactive. They are known as powerful reducers.

• The lanthanides (Ce, Pr) are generally strong neutron absorbers. This family

includes rare earth metals, chemical elements that are found in only minute

Photo 1.1 The founding

fathers of the periodic table:

Dmitri Ivanovich

Mendeleev (1834–1907)

(Edgar Fahs Smith

collection, University of

Pennsylvania)

Photo 1.2 The founding

fathers of the periodic table:

Julius Lothar Meyer

(1830–1895) (from

Wikipedia)
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quantities on Earth, such as samarium, gadolinium and erbium, which have

strong neutron-absorbing isotopes.

• The halogens, or “salt-formers”, (F, Cl, Br, I) are highly electronegative and are
found in the penultimate column. Generally very corrosive, they are powerful

oxidants.

• The transuranic or transuranium elements form a family of chemical elements

beyond uranium and are sometimes referred to somewhat confusingly as heavy
nuclei: the term heavy nuclei is taken by some as the name for chemical

elements beyond lead and this broader definition encompasses the transuranic

elements.

The relative abundance of elements in the universe, which decreases as their

mass increases, is explained by nucleosynthesis (as first approximation), i.e. the
production of heavy nuclei by fusion in the cores of stars (Annual Review of

Nuclear Science, Vol. 2, 1953, p. 1).

1.2 Molecules

(Mahan et al. 1970; Joven-Alvarez 2015)

In 1661, the Anglo-Irish chemist and physicist, Robert Boyle, son of the Duke

of Cork, published The Sceptical Chymist, which broke with the tradition of

magic and alchemy in the chemistry of old times. Boyle was convinced that

elements such as gold cannot be created by man, as the alchemists held, but only

by Nature. He believed that all matter is composed of basic elements that

combine to form substances, and that air is composed of molecules that “float”
in a vacuum “like flies”. The elements do indeed combine in nature to form

molecules. For example, hydrogen gas contains H2 molecules each consisting of

two hydrogen atoms.

Antoine de Lavoisier3 (1743–1794), universally known for his law of conserva-
tion of matter, published during the French Revolution, described how elements

combine. However, this was J.D. Richter who gave the basis of the law of multiple

3Antoine de Lavoisier (1743–1794) is an internationally recognized giant of French chemistry. He

became a member of the French Academy of Science in 1768. In his study of combustion,

Lavoisier demonstrated the roles of oxygen and nitrogen. He synthesized water and developed

the well-known law of conservation of matter. His book Traité élémentaire de Chimie [Elements

of Chemistry], written in 1789, is considered the first book of modern chemistry. His role as a tax

collector under the French monarchy resulted in him being guillotined during the French Revo-

lution after a peremptory judgment, during which the judge famously refused his request for a stay

of execution that would enable him to finish a scientific project on which he was working, with the

words “The Revolution has no need for scientists!”. Below is a famous painting from David of

Lavoisier and his wife in 1788.
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proportions (Wurtz 1904, p. 7). In 1794, J.L. Proust4 supported the idea that a

compound can only be created by a fixed combination of elements: the ammonia

molecule, NH3, contains one atom of nitrogen, N, and three atoms of hydrogen, H.
The law of definite proportions or Proust’s law establishes that if an element

A combines with another element B, the ratio of masses A/B is constant. This

(Metropolitan Museum of Art)
4Joseph Louis Proust (1754–1826) was a French chemist; he was named Chief of the Salpêtrière

Hospital pharmacy (Paris) in 1775 and joined the Academy of Sciences in 1816. He successfully

synthesized sugar from grapes and defined the law of definite proportions published in 1794, which

makes him one of the precursors of atomic theory.

8 1 Fundamentals of Nuclear Physics



remains true if A combines with another element C orD, in which case A/C and A/D

will be fixed, but with different constant values (Mahan et al. 1970, p. 6).

Richter established that if element B combines with C or D, then it is the same

quantities of C or of D that combined with A which will also combine with B. This
is the law of multiple compositions. In 1811, the Italian physicist Amedeo Avogadro

(1776–1856) accurately defined the term molecule and its relationship to atoms

(Mahan et al. 1970, p. 9). The English chemist and physicist John Dalton

(1766–1844, Fig. 1.2) resuscitated the ancient theory of Democritus according to

which matter is made up of indivisible atoms (Wurtz 1904, p. 2). He understood that

the characteristics of the atom helped to explain why only a fixed combination of

oxygen and hydrogen leads to the synthesis of water: one volume of oxygen added

to two volumes of gaseous hydrogen forms water, which is a compound, or a

combination of atoms in the form of a molecule. John Dalton, like Proust, distin-

guished between chemical compounds and mixtures of substances and established a

classification based on atomic weight.

1.3 Isotopes

Between 1910 and 1912, studies by Frederick Soddy,5 Rutherford’s pupil at the

McGill Institute in Montréal, followed by the experimental proof furnished by

Joseph John Thomson (1856–1940) and his assistant F.W. Aston (1877–1946),

revealed atoms of different masses having identical chemical properties. In 1913,

the term isotope was used for the first time by Frederick Soddy in an article in

Nature: a single chemical element may thus occur in the form of several different

Joseph Louis Proust. The French National Library
5Sir Frederick Soddy (1877–1956) was an English physicist who studied at Oxford. From 1900, he

worked as Rutherford’s assistant at the McGill Institute in Canada. Throughout this extremely

fertile period, he investigated radioactive decay and established the concept of the isotope. He

returned to England and taught at Oxford; he was awarded the Nobel Prize for chemistry in 1921.

1.3 Isotopes 9



isotopes having different atomic masses, but occupying the same cell in the periodic

table (Photo 1.3).

This overturned the theory of English physicist William Prout (1785–1850)

according to which the atomic mass of any element is a whole multiple of that of

Fig. 1.2 John Dalton, a

child prodigy who became a

school director at the age of

19, collected more than

200,000 weather

measurements during his

lifetime, making him one of

the forerunners of the

modern science of

meteorology (The Robinson

library)

Photo 1.3 Frederick Soddy

(1877–1956), photo taken

around 1902, public domain
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hydrogen (Fernandez 2006, p. 187), but which could not account for the atomic

mass of chlorine (35.5). Indeed, natural chlorine comprises isotopes of different

masses. It now became possible to explain the chemical enigma of the inverted

position in the periodic table of tellurium (mass 127.6) and iodine (mass 126.9). In

terms of order of atomic weights, they could not be placed in the proper columns

within the table on the basis of their chemical properties. J.J. Thomson6 provided

experimental proof of the existence of isotopes in 1912. On inspecting the tracks in

the form of parabolas resulting from the impact of neon ions (gaseous residue of

liquid air) deviated in an electric field, Soddy noted a lighter track which he

attributed to ionized neon 22 and which differed from the track for neon 20.

Table 1.1 gives relative isotopic abundances of Argon and Potassium.

Aston confirmed this result in 1919 using his mass spectrometer, which clearly

indicated the existence of two types of neon atom in natural neon gas (atomic

weight: 20.2): 20
10Ne (approximately 90%) and 22

10Ne (approximately 10%). Later, a

third nucleus, 2310Ne, was discovered in the form of traces. These different atoms are

known as isotopes. The term isotopic abundance is used to designate the proportion
of different isotopes of a single natural element. For most chemical bodies, abun-

dance on earth is globally constant. However, for certain chemical elements that

continue to be formed (e.g. lead, which constitutes the final phase of disintegration

of uranium), local abundance depends (weakly) on enrichment of the substrate in

radioactive nuclei. Thus, the atomic weight of natural lead ranges from 206.01 for

lead from Norwegian cleveite, to 207.9 for lead from thorite (also from Norway).

One hypothesis advanced to explain local changes in isotopic abundance is the

possibility of elements being carried to Earth in meteorites of a different age to our

planet. Isotopes of the same element X are thus distinguished by different atomic

weights A. An isotope is fully defined by a notation having the following form: AZX.
There are 280 naturally occurring stable isotopes and some 50 natural radioactive

isotopes. Note that an isotope may be both natural and radioactive.

Table 1.1 Relative isotopic abundance of argon and potassium

Element Atomic number

Numbers of weight and abundance

Mean atomic weight36 37 38 39 40 41

Argon (A) 18 0.3 0.06 99.6 39.9

Potassium (K) 19 93.4 0.01 6.6 39.1

Based on strict order of weight, the places of argon and potassium in the periodic table should be

inverted

6Joseph John Thomson (1856–1940) is an English physicist who spent his entire scientific career in

Cambridge. A graduate of Trinity College, he succeeded Lord Rayleigh in the chair of Experi-

mental Physics at the famous Cavendish laboratory. He was awarded the Nobel Prize for physics in

1914 for his work on the electron and later on the electrical conductivity of gases. He was

succeeded by his pupil, Rutherford, in 1919. His son, George Paget Thomson (1892–1975), also

won the Nobel Prize for physics in 1937 for his co-discovery of electron diffraction, demonstrating

wave-particle duality, and he thus joined the ranks of those illustrious parent-children couples each

awarded a Nobel Prize (Niels and Aage Bohr, Marie and Irène Curie).

1.3 Isotopes 11



1.4 Atoms

(Guillien 1963; Halliday 1957; Evans 1955; Filippi 1965; Steigler 1966)

In 1911, Ernest Rutherford7 carried out a landmark experiment involving the

diffraction of α particles using a piece of gold foil (Fig. 1.3). He noted some

Zinc sulfide screen on 

which impacts appear

Alpha source in a

drilled lead box   

Gold foil

Fig. 1.3 Deflection of α particles using gold foil (1911)

7Ernest Rutherford (1871–1937) was an exceptionally gifted physicist from New Zealand. His talents

being recognized at an early age, he left for England to complete his scientific studies at the highly

renowned Cavendish Laboratory in Cambridge, under the direction of J.J. Thomson, and he special-

ized in experimental physics. In 1898, he was offered the chair of physics at the McGill capital

Institute in Montréal (Canada), where he developed experimental methods designed to study ioniza-

tion and radioactivity. He identified the nature of αradiation. In 1907, he returned to Manchester,

where he became the father of nuclear physics with this discovery in 1911 of the atomic nucleus. He

was awarded the Nobel Prize in 1908 and directed the Cavendish Laboratory from 1919. He was

relatively uninterested in theoretical physics and had a jovial and completely unpretentious character,

coining such phrases as “All science is either physics or stamp collecting”.

Ernest Rutherford in 1908, Public domain
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deflection of the α particles (around one particle in 8000 was deflected from the

straight path). These “ricochets” were due to repulsion of the positive charges on

the α-particles by a positive charge within the atomic nuclei (Rival 1996, p. 123).

Rutherford’s atomic firing range involved the use of a source of radium

226 placed inside a drilled lead box serving as a “canon” that fired only α particles

emitted in the direction of the hole at the gold foil (the other α particles were

stopped by the lead). The α particles passed through a piece of gold foil placed in

front of a luminescent screen enabling the impact of any deflected α particles to be

viewed. Rutherford showed by calculation that such deflection can only be

explained if the entire positive charge was concentrated in a very small area at

the center of the atom: the so-called nucleus. The atom thus comprises a very dense

nucleus (1017 kg/m3) containing Z protons having a positive charge (+1.6 10�19

Coulomb) and N neutrons without charge (N¼A� Z ), as well as an electron cloud

of Z electrons having a negative charge (�1.6 10�19 Coulomb), and negligible but

not zero mass, spinning around the nucleus at extremely high speed. The radius of

the atom, including the electron cloud, is of the order of 10�8 cm. The radius of the

nucleus is around r0 .A
1/3 Fermi, a recent subunit within the metric system8 (symbol

F, 10�15 metre ¼ 1 fm) with r0� 1.3� 1.5 fm, or around 10�12 cm to give some

idea. In their normal state. Standard atoms are electrically neutral as the number of

electrons is equal to the number of protons. Where the electrostatic equilibrium is

broken by a smaller or greater number of electrons, we speak of ions. In the same

way that isotopes are atoms having the same atomic number Z (e.g. 2010Ne and
22
10Ne),

isobars are atoms with the same atomic weight A (e.g. 15
8O and 15

7N ). Isomers
designate two isotopes having the same values for A and Z, but having a different

state of excitation (e.g. 24295Am and the metastable 242m
95Am).

8In the metric system, it is interesting to consult (Système métrique décimal 1930) for the history

and (Jedrzejewski 2002) for the multitude of units. For conversions to the British Thermal Unit
system, see (Wildi 1972). The 7 base units of the metric system are the meter (m), the kilogramme

(kg), the second (s), the ampere (A), the Kelvin (K), the candela (cd) and the mole (mol). All other

units may be deduced from these. Subunits and supra-units are defined using the following

prefixes: yocto (y� 10�24), zepto (z� 10�21), atto (y� 10�18), femto ( f� 10�15), pico ( p� 10�12),

nano (n� 10�9), micro (μ� 10�6), milli (m� 10�3), centi (c� 10�2), deci (d� 10�1), deca

(da� 10+1), hecto (h � 10þ�e ), kilo (k� 10+3), mega (M� 10+6), giga (G� 10+9), tera (T� 10+12),

peta (P� 10+15), exa (E� 10+18), zetta (Z� 10+21) and yotta (Y� 10+24). It should be said that the

metric system (and cheese!) are seminal contribution of France to mankind.
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1.5 Avogadro’s Number

An Italian postage stamp of Amedeo Avogadro bears his traditional image (The Marguet collection)

In 1811, Amedeo Avogadro di Quaregna (1776–1856), a physics professor at the

University of Turin (Italy), formulated the hypothesis that equal volumes of differ-

ent gases contain the same number of molecules at equivalent temperature and

pressure (known as the Avogadro’s law). According to Avogadro, H2O is a mole-
cule (literally, a “small mass”), i.e. the smallest possible particle of water. He

distinguished such particles clearly from atoms, the ultimate indivisible particle.

If 1 cm3 of hydrogen contains as many atoms as 1 cm3 of oxygen, and since 1 cm3 of

oxygen weighs 16 times more than 1 cm3 of hydrogen, an oxygen atom must be

16 times heavier than a hydrogen atom. Avogadro’s hypothesis was subsequently
verified. Avogadro’s number characterizing the quantity of atoms per mole is

represented by N (Photo 1.4).

In 1814, André-Marie Ampère, famous for his pioneering work in the field of

electrodynamics, noted that the volumes developed by the respective molecular

masses of various ideal gases were the same, namely 22.4 liters, under normal

temperature and pressure conditions. In 1875, the physicist Johannes Diderik Van

der Walls proposed the first value of Avogadro’s constant, with fairly respectable

accuracy for the time:

1023 mol�1 < N < 1024 mol�1

Many measuring methods have since been proposed: measurement of the

Brownian motion of particles immersed in water (Jean Perrin), blackbody radiation,

diffusion of light by gases, x-ray diffraction, the volume of helium produced by

alpha radioactivity, etc. All of these experiments confirm the value of N as lying

close to 6 1023 mol�1. One especially precise and relatively simple measurement

consists in directly measuring the distance of reticular planes (containing the

positions of atoms) in a crystal of NaCl by means of x-ray diffraction. When

x-rays travelling through a vacuum strike a substance, they are deflected from

their normal path at the interface between the vacuum and the substance. For this

type of wavelength, materials have a refractive index slightly below 1. Beyond a

threshold angle, the rays are totally reflected. This threshold angle is always around

90�, enabling x-ray reflection to be observed at a grazing incidence. The parameter
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a of the lattice of the cubic crystal of NaCl has been determined by the study of

Bragg spectra as a ¼ 5.6402 Å. Each lattice in the crystal comprises 8 elementary

cubes. The lattice contains 8 chlorine atoms at the 8 summits of the lattice,

6 chlorine atoms at the centers of the 6 sides of the lattice, 1 sodium atom at the

center of the lattice and 12 sodium atoms at the center of the 12 edges of the lattice.

But each atom is part of 8 cubes in contact with either a side or an edge. On average,

one single complete atom may be associated per elementary cube having an edge of

a/2 ¼ 2.8201 Å. The molar mass (molecule-gram) of NaCl, i.e. 58.443 g/mol,
contains 2N atoms, half of which are sodium and the other half chlorine. The

Photo 1.4 First page of Avogadro’s paper, “Essai d’une manière de déterminer les masses
relatives des molécules élémentaires des corps, et les proportions selon lesquelles elles entrent
dans ces combinaisons” [Test of a method of determining the relative masses of elementary

particles of bodies, and their proportions within these combinations], Journal de Physique et de

Chimie, Tome LXXIII, pp 58–76, July 1811 (The Marguet collection)
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density of rock salt is 2.1632 g/cm3 at 20 �C. The volume occupied by one mole of

rock salt is given by:

V ¼ 2 N
a

2

� �3

¼ M

ρ

The numerical application of this formula can be used to obtain a value of

6.0229922 1023 mol�1 � 0.001 which is consistent with the more accurate value

known today (Fig. 1.4).

In 1971, the General Conference on Weights and Measures defined a new base

unit for matter: the mole (symbol mol in the International System9). One mole of

carbon 12 contains N atoms of carbon, i.e. 6.022 1023 atoms. Since one mole of

carbon 12 weighs 12 grams, a carbon atom weighs12=N . i.e. around 2 10�23 grams.

The value of Avogadro’s number is today known with great precision:

N ¼ 6:0221367 1023 mol�1 � 5:9 10�5%

The well-known French physicist and experimenter Jean Perrin,10 a great parti-

san of atomistic theory, endeavored to calculate Avogadro’s number with the

Fig. 1.4 Deflection of x-rays by a cube of NaCl crystal

9The mole is the amount of substance of a system which contains as many elementary entities as

there are atoms in 0.012 kilogram of carbon-12. When the mole is used, the elementary entities

must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups

of such particles. The extremely interesting history of the mole is discussed in the doctoral thesis of

Christiane Chabas-Buès: Histoire du concept de mole (1869–1969), �a la croisée des disciplines
physique and chimie, [History of the concept of the mole (1869–1969); at the threshold of physics

and chemistry] published by ANRT, ISBN 978-2-7295-4586-4 (1999). The term mol was intro-
duced in 1893 by Wilhelm Ostwald as an abbreviation of the German word molekul to designate

the unit of molecule-gram, which was then translated as mole in English. The mole is the most

recent SI base unit.
10Jean Baptiste Perrin (1870–1942) sat the French Agrégation examination in 1894 after studying

at the “Ecole Normale Supérieure”. In June 1897, he defended his doctoral thesis ‘Cathode rays
and R€ontgen rays’ just as French science was coming to the fore in this domain. He provided the
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greatest possible precision (Bloch 1958, p. 99). By 1913, he had already obtained no

less than 13 values using entirely different procedures, and the consistency of the

results definitively removed all doubts about the reality of the existence of mole-

cules, despite the fact that they could not be viewed by any existing apparatus at the

time (Photo 1.5).

Among the experimental methods used by Jean Perrin, we may single out two

procedures developed in 1909. The first involves immersing an emulsion of per-

fectly spherical grains of known size in a liquid. Perrin prepared this emulsion using

gutta percha, a type of latex for which he was able to control the coagulation and

produce spherules of known size. Perrin then demonstrated that these spherules,

which continued to be visible suspended in water, followed trajectories describing

broken lines. The changes in trajectory resulted from collision between the spher-

ules and water molecules subject to Brownian motion. By precise measurement, he

showed that the distribution of the spherules obeyed a Laplace law axially, namely

that when the heights of an emulsion in a container follow an arithmetical law, the

number of spherules in suspension conversely follows a geometric progression. At

equilibrium, the action of gravity (from which must be subtracted Archimedes’
buoyant force) is compensated for by osmotic pressure, i.e. the action of diffusion

induced by Brownian motion. Perrin used the Boltzmann relationship (which we

will examine later) of distribution of the population of spherules n(T, h) at a given
temperature, as a function of total energy to express the phenomenon in the

following mathematical formula:

Photo 1.5 Jean Perrin

(1870–1942) One of the

founding fathers of atomic

theory, (Public domain)

first experimental proof of the corpuscular nature of electrons and his work would later influence

J.J. Thomson. In 1908, he determined Avogadro’s number with great precision and was awarded

the Nobel Prize in physics in 1926 for his work on the atom. He was very close to Paul Langevin

and Marie Curie, with whom we share political affinities, and was one of the founders of the

CNRS. His son, Francis Perrin, was a founder of the French CEA (Centre d’Etudes Atomiques),
directing this organization from 1951 to 1970.
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n T; h2ð Þ
n T; h1ð Þ ¼

e�
3
2
kTþmgh2

kT

e�
3
2
kTþmgh1

kT

¼ e�
mg h2�h1ð Þ

kT

The term 3kT/2 , where k is Boltzmann’s constant, corresponds to the kinetic

energy of the spherule (kT/2 for each of the 3 degrees of freedom in a 3-D space),

while the termmgh describes the potential energy of the spherule as a function of its
altitude). He used the law of axial distribution of the number of spherules in an

isothermal container:

n T; hð Þ ¼ n0e
� mgh

kT

This law is identical to the exponential law of decreasing pressure in a column of

gas at uniform temperature. By measuring Boltzmann’s constant in this way, Perrin
was able to measure Avogadro’s number having established the constant for ideal

gases at R¼ 8.31 J.mol�1.K�1, which was easy to obtain using macroscopic

measurements based on the law of ideal gases:

N ¼ R

k
� 6:8510þ23 mol�1

Jean Perrin’s second approach was equally interesting. He used Einstein studies

on Brownian motion proving that the diffusion coefficient is related to mean

quadratic displacement by the following relationship:

r2
� � ¼ 2dDt

where r is the distance of displacement along a straight line between two collisions,

d is the dimensional of the problem (i.e. 3 in 3D geometry), D is the diffusion

coefficient and t is time. The diffusion coefficient is given by:

D ¼ RT

N 6π aη

where a is the radius of the spherules and η is the viscosity of the liquid. Thus, with
great patience, Jean Perrin measured on graph paper the successive displacements

of spherule in order to calculate 〈r2〉 as a function of time. Once more, this

method gave him a value of around 6 10+23 mol�1.

Note that a precise determination of Avogadro’s number may be obtained by

means of x-ray diffraction in a crystal lattice (Born 1971, p. 29).
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1.6 Mass-Energy Equivalence

The early twentieth century was buzzing with ideas about the possibility of inertia

associated with energy. Already in 1881, JJ Thomson attributed to a conductor an

additional mass of Δm¼ 3E/(4c2) where E is the energy of the electrostatic field. In

1900, on observing that the ratio of Poynting energy flux to the electromagnetic

impulsion was 1/c2, Henri Poincaré suggested that electromagnetic energy must

have an apparent mass such that E¼mc2. From this, he concluded that a Hertzian

(radio) emitter giving out energy in wave form must undergo a recoil effect similar

to that of cannon on firing a cannon ball (Arzeliès 1966, p. 68). In 1904, Friedrich

Hasen€ohrl11 showed that if we consider the movement of a box with reflective walls

containing no matter but containing electromagnetic radiation having a total energy

of E, because of the pressure of radiation, the latter will behave as if it had a mass of

3E/(4c2) (Born 1971, p. 60; Arzeliès 1966, p. 69), but his calculation turned out to

be erroneous. Probably the most famous formula in physics, namely the mass-

energy equivalence formula, was finally demonstrated and re-situated in a highly

general context by Albert Einstein (1879–1955) in his theory of Special Relativity,

published in 1905 in the German journal ‘Annalen der Physik’ (Hoffmann 1975;

Génie de la science n�11 2002). The formula states that all types of energy possess

11Friedrich Hasen€ohrl (1874–1915) was an Austrian physicist who in 1905 produced the equation

E¼ 3mc2/4 based on the work of Thomson, but which was corrected in 1914 by E. Cunningham.

He was killed in the First World War. The Nazi regime later attempted to manipulate his work in

order to put an Aryan gloss on Einstein’s formula.

Friedrich Hasen€orhl (Photo Österreichische-Zentralbibliothek für Physik, Public domain)
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inertia, and thus equivalent mass, that may be calculated by dividing the energy by

the square of the speed of light in a vacuum:

Einstein’s formula 1905ð Þ: E ¼ mc2 ð1:1Þ
c ¼ 2:99792458108m:s�1 � 310�7%

According to this formula, 1 kg of matter corresponds to an energy of

8.983482 1016 Joules, with the Joule being the official unit of energy (Photo 1.6).

The story goes that the principle of inertia of energy was discovered indepen-

dently at the same time by Paul Langevin (1872–1946) and Albert Einstein,

according to Marcel Tournier, who was first Langevin’s pupil and then his assistant
(Langevin 1971): “Developing the consequences of the theory on dynamics, he
discovered the fundamental relationship of the inertia of energy. He showed his
calculations to his friend, Jean Perrin, who was unable to credit the extraordinary
novelty of the result. This made Langevin hesitate; he delayed publishing his
findings, which were published only several months later by Albert Einstein”.
Paul Langevin was not a man motivated by fame, and he never attempted to

prove that he was the first to light upon an idea that he had not published.

However, he worked tirelessly to emphasize the work of Einstein in France

(Borella 1998). Paul Langevin subsequently specialized in the theory of electro-

magnetic dynamics and was elected to the Academy of Sciences in 1934. Given the

extremely low mass of atoms, it was relatively difficult to use SI units (International
System units12 of meter-kilogram-second or MKS) or CGS (centimeter-gram-sec-

ond). It was therefore decided to define a unit of atomic mass that was simpler to

use. Up to 1960, the reference unit used was 1/16 of the atomic weight of a true

atom of oxygen-16 containing 16 nucleons (168O) (Jouguet 1964, p. 210). This mass

unit was thus equivalent to 1.65983 10�27 kg. However, in chemistry, the historical

unit used was 1/16 of the mean mass of natural oxygen (the unit generally used by

chemists). In fact, natural oxygen contains several isotopes of oxygen (168O,
17
8O and

18
8O), and the units used by chemist thus differed from those used by physicists.

After 1960, it was decided to unify the systems by taking as the reference 1/12 of

the mass of the atom 12
6C (a neutral way of solving the problem!), one mole of which

by definition weighs 12 grams. The unified mass unit, u, often referred to as the

atomic mass unit (amu) in everyday language (strictly speaking, the amu was based

on the old definition relating to oxygen), is equivalent to 1.6605402 10�27 kg. Using

Einstein’s formula, mass (normally given in kg) may be expressed as units of

energy divided by the square of the speed of light in a vacuum, i.e. in MeV/c2.

Using this approach, it is possible to rapidly calculate energy balance by using the

masses expressed in this way since given mass is always multiplied by c2. 1 kg

corresponds to 5.609861 1029 MeV/c2, and the unified atomic mass unit is thus:

12For more information on units in general and on the Universal System in particular, as well as

related historical aspects, see (Jedrzejewski 2002).
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1 u � 1:660540210�27kg� 5:910�5% ¼ 931:54 MeV=c2

The atomic mass of an atom, conventionally denoted by A, is the whole number

closest to the mass of the atom expressed in unit u, while the atomic weight is a real

Photo 1.6 The famous volume 17 of the ‘Annalen der Physik’ in which Einstein’s original article
on relativity was published (The Marguet collection)
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number that may be counted in fractions of u. As a first approach, it is reasonable to

take the whole number A as the atomic mass for simplified engineering calculations.

For the hydrogen atom 1
1H, the atomic mass number A is 1 and its atomic weight is

1.00797 u or 938.924 MeV/c2.

1.7 Neutrons

(Alexandrov 1992)

Neutrons were officially discovered by James Chadwick (1891–1974) in 1932,

although their existence had already been postulated in 1920 by Ernest Rutherford

(see also Photo 1.7). After many years of research, Chadwick correctly interpreted

an experiment by Irène and Frédéric Joliot-Curie that involved firing a beam of α
particles at beryllium nuclei (Photo 1.8) (Renault 1948, p. 129; Kahan 1963, p. 59):

Photo 1.7 Advertisement of 28 July 1925 on the cover of issue No 127 of “L’Antenne TSF”. This
French popular science journal (“The bestselling publication on radio technology”!) presented
news in the field of radio broadcasting, then at the height of its popularity. There was much talk

therein about rationalization of the airwaves by state intervention. However, this advertisement for

Neutron synthetic crystals for galena crystal radios, produced by the British company Neutron Ltd

in London and distributed in France by Créo, shows that the term “neutron” was already in use at

this time and represented by images of radiating material. Although the neutron had not yet been

discovered, its name already sparked imaginations! (The Marguet collection)
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In 1932, Jean-Louis Destouches13 wrote the first book on neutron transport in the

French language (Destouches 1932), which provided an extremely clear and par-

ticularly perspicacious summary of existing knowledge concerning this new parti-

cle (Photo 1.9).

It demonstrates that neutrons cannot be represented as “close” proton-electron

pairs, and already postulates the idea of a neutron comprising a positively charged

central part surrounded by a negative “atmosphere” of varying density according to

the radius, with the entire unit being of spherical symmetry and externally neutral.

The penetration of matter by neutrons is discussed in the book using linear

attenuation coefficients inversely proportional to the speed of the neutrons, as are

Photo 1.8 James Chadwick was knighted in 1945 by the King of England. On the right is a stamp

of the Maldives in his honor (Public domain and the Marguet collection)

13Jean-Louis Destouches (1909–1980). After studying at the Faculty of Science in Paris, he

obtained a degree in 1930 where he followed the courses given by Louis de Broglie. In 1933, he

defended his doctoral thesis on super-quantification theories and then specialized in quantum

mechanics. He entered the CNRS in 1936 as a research manager and worked on a general theory of

particles. In 1938, he became a Doctor of Letters thanks to his thesis on “the general form of
physics theories”. In 1941, he completed a work on particles published by Gauthier-Villars, and

3 volumes on The fundamental principles of theoretical physics were published by Hermann in

1942. He taught both at the Faculty of Letters and Faculty of Science in Paris. In 1951, he

expressed his reticence concerning the new orientations of L. de Broglie’s theories. At the end

of the 1970s, he proposed a solution to the Einstein-Podolsky-Rosen paradox concerning the

functional theory of particles (according to an article by M. Bitbol: Jean-Louis Destouches, thé
ories de la prévision et individualité, Philosophia Scientiae, 5 (1), pp. 1–30, 2001).
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the effective macroscopic sections, which we shall define in Chap. 2. The most

recent data indicate that the mass of the neutron is 1.0086654 u ¼ 1.6749286 10�27

kg, i.e. 939.56564 MeV/c2 at rest (Alexandrov 1992, p. 31). The neutron is a

nucleon carrying no electric charge, making it the particle of choice as a projectile

for bombardment of nuclei (it has no Coulomb barrier resulting from electrostatic

forces to be overcome prior to collision with the nucleus). More precisely, although

globally neutral, neutrons have a magnetic moment μ¼ � (1.935� 0.02) μNwhere
μN¼ eh/(2mpc)¼ 5.051 10�27 J.T�1 (Alexandrov 1992, p. 63), proving that there

is an internal distribution of charge. It may therefore interact with unpaired elec-

trons (i.e. electrons not forming part of an electron pair) within electron clouds.

Neutrons have a radius of around 1.3 fm. Free neutrons emit β� radiation and

decay in accordance with the following equation:

1

0
n ! 1

1
pþ 0

�1
e� þ 783 keV

with a half-life of 10.37� 0.06 minutes (Alexandrov 1992, p. 58).
The De Broglie (1892–1987) wavelength of the neutron is of the order of size of

the interatomic distance, accounting for the interference effects, as with electrons

(Born 1971, p. 66), that occur when neutron waves are diffracted in crystals.

Moreover, this is an extremely useful method of investigation of matter that is

utilized in certain cases. Neutrons have a kinetic moment characterized by spin
equivalent to that of the proton or the electron. Their associated spin is ½ in h units
(Alexandrov 1992, p. 33).

Jean-Louis Destouches in 1950 (The Marguet collection, photograph unknown)
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1.8 Electrons

(Boutry 1962, p. 197)

In a famous experiment conducted in 1891, the English chemist and physicist

William Crookes (1832–1919) discovered the effects of electricity by introducing

Photo 1.9 The first book on neutron transport in the French language by Jean-Louis Destouches

(1932, The Marguet collection)
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an anode connected to the positive terminal of a battery and a cathode in a vacuum

tube (Crookes tube). When the cathode is connected to the negative terminal of the

battery, a greenish light appears at the bottom of the tube as a result of electrons

striking the base of the tube. The German physicist Eugen Goldstein (1850–1930)

had the idea of placing a Maltese cross in the path of the electrons and noticed that

the shadow of the cross was cast on the bottom of the tube. It was by rotating a

wind-milling shaped cross rapidly that Crookes demonstrated the particle nature of

electron flux.

Crookes tubes quickly came to be used in the format shown in Fig. 1.5 to

produce electrons by x-ray collisions on an anti-cathode, which we shall study

below. The concave shape of the cathode allows the electrons to be concentrated at

a point on the anti-cathode, heating the latter considerably. This system was

improved by Coolidge (Fig. 1.6) with production of electrons via a thermo-ionic

effect by heating a tungsten filament by Joule effect and controlling the current used

to heat the cathode by means of a rheostat. The heat in the anti-cathode target

resulting from the kinetic energy of the electrons is evacuated by means of an array

of external cooling fins.

The term ‘electron’ was first coined by the Anglo-Irish physicist George Stoney

(1826–1911) in 1894, but it was officially introduced in 1897 by Joseph John

Fig. 1.5 Crookes tube

Fig. 1.6 Coolidge tube
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Thomson (1856–1940), director of the famous Cavendish Laboratory (Photo 1.10)

(Filippi 1965, p. 183).

Electrons are negatively charged particles. A basic measurement of the charge,

the absolute value of which is denoted by “e”, was made by H.A. Wilson in 1903,

but it was measured with great precision in the very famous oil drop experiment

conducted in 1909 by Millikan (1868–1953), who was awarded the Nobel Prize in

1923 (Filippi 1965, p. 174; Mahan et al. 1970, p. 400). It also figured as a key

element in Thomson’s “plum pudding” model of the atom consisting of a uniform

“sea” of positive charge containing negatively charged electrons. This initial model

was found to be erroneous following the discovery of protons at the center of the

nucleus, due to Rutherford. The charge carried by electrons, which was measured

by Robert A. Millikan using charged drops of oil released vertically through an

electrostatic field, is: �e¼ � 1.60217733� 10�19� 0.0003% Coulomb. This

charge is negative by convention following a historic error concerning the direction

of displacement of electrons in a current within a conductor. The energy acquired

by acceleration of an electron subjected to a potential difference of 1 Volt is the

definition of the electron-Volt. 1 eV� 1.60217733 10�19 J, a unit of energy that

does not belong to the international system but which is simpler to use in nuclear

physics (Mayo 1998, p. 21). The mass of an electron, classed as a member of the

family of light particles, the leptons, is 9.10903897� 10�31 kg, i.e. 0.00054858 u or
0.511 MeV at rest. Its spin is ½ in h units. Electrons are represented by the

following notation: 0
�1e

�
. Note that the electron is a particle with around 2000

times less mass than the neutron and that its mass is often neglected in engineering

calculations. It must be remembered that in principle, electrons are not smaller in

size than neutrons, despite what one might be led to believe by their mass and by the

standard representation of electron shells in textbooks. Although no experiments

have ever determined the precise size of an electron, it is generally attributed a

radius of 2.82 10�15 m (Filippi 1965, p. 190). We speak of the classical radius of
the electron, which corresponds to the effective circular section measured in

classical electromagnetic theory by making an electron vibrate by means of incident

radiation. Electrons have a kinetic moment of rotation around their axis

Photo 1.10 Joseph John

Thomson was a brilliant

physicist renowned in his

time. His numerous

pioneering studies on the

nature of electricity earned

him the Nobel Prize for

physics in 1906 (steel

engraving of 1896, from

Wikipedia, Public domain)
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characterized by spin (Born 1971, p. 141; Peaslee and Mueller 1955, p. 257).

Electrons also have a magnetic moment, which plays a key role in quantum physics.

Classical electron theory is described in detail in (Becker 1938).

1.9 Protons

In 1910, the German physicist Johannes (Hans) W. Geiger (1882–1945) and the

New Zealand physicist Ernest Marsden (1889–1970), both students of Rutherford,

interpreted the results of experiments involving the scattering of α particles (z¼ 2)

using thin targets (thin sheets of gold foil, Z¼ 79, (Dodd 1984, p. 5) and deduced

the following: “The number of positively charged elementary particles is approx-
imately equal to half the mass number, A, of the atom”. Analysis of the angle of

deflection showed that the charge to be concentrated in the nucleus (by calculating

the minimum approach distance zZe2/(4π ε0 Eα) which is of the order of 40 fm for

zα¼ 2 and Zgold¼ 79, in other words far less than the size of an atom) and not

distributed throughout a sphere of the size of the atom, as postulated in Thomson’s
model. Analysis of the angle of deflection enabled determination of the charge

within the nucleus. The charge on the proton is in fact +e ¼ +1.6021773 10�19

Coulomb. Its mass is 1.6726231 10�27 kg, i.e. 1.0072765 u or 938.273 MeV at rest

(lighter than the neutron). The proton is a nucleon having spin of ½ in h units. The

protons within the nucleus repel one another through Coulomb (electromagnetic)

interaction, but the nucleus remains bound together by the strong interaction or

strong force (which is around 1000 times stronger than electromagnetic interac-

tion!) (Valentin 1982a, b, p. 41). Further, this force acts indifferently on all hadron

particles, and thus between all nucleons, whether charged (protons) or neutral

(neutrons), although this force has an extremely short range (of around 1.5 fm).

The proton is designated 1
1p, but since it also constitutes the nucleus of the hydrogen

atom, it is occasionally written as 11H
þ
. The mass of the proton is practically equal to

that of the neutron and this simplification is frequently used in industrial calcula-

tions. According to our current state of knowledge, protons appear stable in the free

state as far as we know. The proton has a kinetic moment of spin equal to that of the

electron. However, its magnetic moment is around 600 times less than that of the

electron.

1.10 The Electron Cloud

(Bauer 1922; Birtwistle 1926; Campbell 1924; Jouguet 1964, p. 24; Bessis 1978,

p. 5; Filippi 1965, p. 245; Mahan et al. 1970, p. 409; Van de Vorst 1992, p. 23)

In 1913, Niels Bohr (1885–1962) (Lurçat 2001) proposed a coherent model that

accounted for the various spectral lines measured experimentally, resulting in the

enormous success of this model, also known as the Bohr-Sommerfeldmodel (Génie
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de la science n�34 2008). Bohr’s theories were widely disseminated in France by

Léon Brillouin (1889–1969), who in 1922 produced an astonishingly modern book

on this question (Figs. 1.7 and 1.8) (Photo 1.11) (Brillouin 1922).

Bohr himself describes his atomic theory using the quantum postulate in (Bohr

1932). The electrons gravitate around the nucleus containing protons and neutrons.

This model is universally held as the reference model today, although the view of

stable deterministic orbits is somewhat misleading and a statistical approach is

necessary to appreciate the reality of the electron shells. In his theory, Bohr sets out

two key postulates:

– Electrons describe a circular orbit around the nucleus of the atom and conserve

their energy. Consequently, they do not behave as predicted by classical

mechanics and electrodynamics, namely that they should radiate (by emitting

electromagnetic radiation) while moving around the nucleus, thereby losing

energy, and falling towards the nucleus like a satellite falling back to Earth.

Infographie Marguet

Fig. 1.7 Thomson’s atomic

model (1907)

Infographie Marguet

Fig. 1.8 The Rutherford-

Perrin atomic model (1911):

negative electrons orbit

around a positive nucleus
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As long as an electron moves around the same orbit, it conserves its energy and

the orbital is said to be “stationary”.

– The transition from one orbit (of quantified energy E1) to another (of energy E2)

results in the emission (or absorption) of one photon of energy: hν¼ |E1�E2|

The forces applied to the electron must cancel each other out in order for the

orbit to remain stable. The electron is subjected to centrifugal force and to the

Coulombic force of attraction exerted by Z protons in the nucleus:

mv2

r
� 1

4πε0

Ze2

r2
¼ 0

Bohr next introduced a quantification hypothesis taking the stable circular orbit

to be a whole multiple of the De Broglie wavelength associated with the electron:

2π r ¼ nλ ¼ n
h

mv

The quantity h/(2π), written as h (pronounced “h bar”), constitutes the “quantum
of action” introduced by Max Planck (1858–1947) in 1901 in his electromagnetic

wave theory (Génie de la science, No 27 2006), in which the Planck constant h is

incorporated in the international MKS system14:

h � 6:6260755 � 10�34 � 6� 10�5% J:s

The introduction of h confers particle properties on waves also applicable to

photons of frequency ν, energy E¼ hν, speed in vacuum c and relativistic mass

m¼E/c2. Bohr’s hypothesis thus supposes that the electron cloud is made up of a

Photo 1.11 Niels Bohr, celebrated in a Danish stamp (left), and Léon Brillouin, a French pioneer
of quantum physics (The Marguet collection and public domain)

14In the CGS system, h¼ 6.6260755 � 10�27 erg . s where 1 erg¼ 10�7 J¼ 1 g . cm2/s2

(Berthelot 1956, p. 4).
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number of electron shells, K, L, M, N, and so on. Within these shells, the trajectories

and energy of electrons may be quantified. The orbits are considered to be practi-

cally circular with a radius r. The condition for quantification is that the stable orbit
of an electron may only be a whole multiple (n) of λ. The number n is the first

quantum number. This may be depicted visually as a string vibrating at wavelength

λ (which is thus the distance between two vibratory nodes), and which we may

convert into a round loop or lasso having a circumference of 2 π r. In order for the

link to be stable, this length must be a whole multiple of the wavelength,

i.e. 2π r¼ nλ (the end of the lasso closing the loop must be a node). The condition

for quantification thus requires that the kinetic moment be expressed as the whole

product of the quantum of action h: mv r¼ n h where n is the principal quantum
number and is a whole number equal to or greater than 1. The two equations:

2π r ¼ nλ ¼ n
h

mv
and

mv2

r
¼ 1

4πε0

Ze2

r2

give the radius of the stable orbits:

r ¼ n2

Z

h2 4πε0
4π2 me2

¼ n2

Z

h2 ε0
π me2

and the speeds : v ¼ Ze2

2nhε0
:

In numerical terms, the calculation may be made for the hydrogen atom 1
1H as

follows:

Z ¼ 1, me� ¼ 9:109534� 10�31kg, h ¼ 6:6260755� 10�34 J:s,

Vacuum permittivity:

ε0 ¼ 1

μ0 c2
¼ 8:8542 � 10�12F:m�1,

Vacuum permeability:

μ0 ¼ 4π10�7H:m�1

giving the value of the nearest radius r1 ¼ 5:293� 10�11 m ¼ 0:53 A
o

where

n¼ 1 and v¼ 2 200 km/s, i.e. 6.5� 1015 revolutions per second. This absolutely

colossal figure gives an idea of the notion of the electron cloud. The electron

configuration is represented in certain drawings as blurred orbits in which the

electron itself is not depicted. The energy of the electron in its trajectory comprises

the sum of its kinetic energy:

Ec ¼ 1

2
mv2 ¼ 1

4πε0

Ze2

2r

and its potential energy, i.e. the energy required to separate the electron entirely

from the nucleus:
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Epot ¼
ð1
r

f a rð Þ dr ¼ �
ð1
r

1

4πε0

Ze2

r2
dr ¼ � 1

4πε0

Ze2

r

Thus, the total energy of the electron in its trajectory corresponding to the

principal quantum number n for an atom of atomic number Z is given by:

Etotal ¼ Ec þ Epot ¼ Ze2

8πε0r
� 1

4πε0

Ze2

r
¼ � Ze2

8πε0r
¼ �Z2

n2
me4

8h2ε02

This same result may also be obtained by writing out the equation of Erwin

Schr€odinger (1887–1961) (Peaslee and Mueller 1955, p. 225), H[ψ]¼Eψ associ-

ated with the potential energy which is here reduced to the Coulombic energy of

attraction. In this case, the Hamiltonian operator applies (Julg 1970, p. 23):

H½ � ¼ � h2

8π2m
Δ� Ze2

r

� �
½ �

The most negative energy corresponding to the electron most strongly bound to

the central nucleus is given for n¼ 1 by the following:

E1 ¼ � Z2me4

8h2ε02

The other stationary orbits are characterized by the energy levels En¼E1/n
2. The

numerical value for hydrogen is E1¼ 13.6 eV. Quasi-stationary orbits have the

following energy (Duquesne et al. 1960, p. 12):

En ¼ E1

n2
¼ � Z2me4

8n2h2ε02
where E1 ¼ � 13:6 eV

This energy corresponds to that of the photon emitted when a resting electron is

bound to a proton to form a hydrogen atom (Berthelot 1956, p. 6; Hume-Rothery

1959, p. 72). The wavelength of the radiation emitted during transition between one

orbit, n1, and another, n2 (n2< n1), is given by (Fig. 1.9):

hν ¼ h
c

λ
¼ ΔE ¼ E1 � E2 ¼ Z2me4

8n22h
2ε02

� Z2me4

8n12h
2ε02

Bohr’s theory was confirmed in practice by the experiments of James Franck

(1882–1964) and Gustav Hertz (1887–1975),15 conducted as of 1911 and published

15Gustav Hertz was the nephew of Heinrich Hertz, author of authoritative studies on the photo-

electric effect. At the end of the war, Gustav Hertz was captured, like many other German

scientists, within the political sphere of the Soviet Union, where he was working on isotope
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in 1914 (Born 1971, p. 100; Filippi 1965, p. 234; Rival 1996, p. 132). Both men

were awarded the Nobel Prize for physics in 1925 for the discovery of the laws

governing collision between electrons and atoms. In a tube filled with mercury

vapor, electrons are accelerated using a variable electrical field. When the applied

voltage is increased to 4.9 Volts, inelastic collisions occur and the electrons lose

practically all of their kinetic energy (Fig. 1.10).

This value of 4.9 V is explained by the spectrum of mercury according to Bohr’s
theory, and generalization of this method enables precise measurements to be made

of the different series of spectral lines of hydrogen giving the series of J.J. Balmer

(1825–1898) (around λ ¼ 5000 A
o
in the visible range, (Jouguet 1964, p. 23)) and

Fig. 1.9 Bohr’s model of the hydrogen atom (1913)

separation. At the end of his life, he was a professor in Leipzig in East Germany. James Franck,

who was Jewish, was prescient enough to quit his position in Gottingen and emigrate to the United

States immediately following the pogroms of 1933. He took part in the Manhattan project.
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T. Lyman (1874–1954) ( λ � 1000 A
o
) in the ultraviolet, and of F. Paschen

(1865–1947) and F.S. Brackett (1896–1988) in the infrared. An electron having

positive energy is no longer restricted to orbiting around the nucleus and is referred

to as a free electron, the ordered movement of which creates an electrical current.

For positive energies, there is no more quantification, and here we are back in the

territory of classical electromagnetic theory. The energy of the non-relativistic

electron is given by its kinetic energy:

E ¼ 1

2
mv2

The wavelength of de-excitation emissions by the photon is given by the

formula:

1

λ
¼ Z2me4

8h3cε02
1

n22
� 1

n12

� �

As applied to hydrogen, the empirical formula (1888) of Johannes Rydberg

(1854–1919) and Walther Ritz (1878–1909) is as follows:

the Rydberg-Ritz formula:
1

λ
¼ me4

8h3cε02
1

n22
� 1

n12

� �
ð1:2Þ

n = 1

n = 2

n = 3

n = 4 M

N

L

K

Lyman series (ultraviolet)

n = 5

O

Balmer

series

(visible)

Paschen series

(infrared)

Brackett series

(infrared)

Infographie Marguet

Fig. 1.10 Series of spectral lines emitted by the hydrogen atom
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where RH � me4

8h3cε20
¼ 1:09737315� 107 m�1 is the Rydberg constant, occasion-

ally written as R1.

hcRH ¼ 13:606 eV ¼ 1 Ry:

More accurately, it must be remembered that the photon is generated with an

impulse of Eγ/c. Thus, conservation of the total impulse before emission (at which

point it is nil since the atom is immobile within the referential associated with it)

and after emission, indicates that the emitting atom is also subjected to a recoil

impulse nominally equivalent to that of the photon. In fact, the energy carried away

by the photon is very slightly weaker than that predicted by Bohr’s theory. It should
nevertheless be noted that quantification of the energy levels (phonons) within a

crystal allows for the emission of a photon without recoil of the emitting nucleus

(the M€ossbauer (1929–2011) effect (Photo 1.12), discovered in 1957 by analysis of
γ emission at 129 keV by iridium 191, for which the recoil energy of the free atom is

0.05 eV). The recoil energy is thus transferred to the entire crystal lattice rather than

to the target atom and results in Doppler broadening (Seidel 1967, p. 1). Indeed,

following an impulse of Eγ/c, an emitting nucleus possesses a certain degree of

quantum recovery while the state of the lattice remains unchanged.

The inverse phenomenon (recoil-free collision with a photon) is also possible

(Born 1971, p. 247; Cohen-Tannoudji et al. 1988, p. 494). The practical use of this

effect is the production of perfectly monochromatic photons for physics and

chemistry experiments requiring great precision (M€ossbauer spectroscopy using γ
fluorescence by nuclear resonance). When the spectral lines for hydrogen are

observed with an extremely precise spectrometer, a macroscopic line is seen to

comprise several very close adjacent lines. Arnold Sommerfeld (1868–1961)

developed Bohr’s theoretical calculus, proposing elliptical rather than circular

orbits for electrons (Duquesne et al. 1960, p. 13; Jouguet 1964, p. 34; White

Photo 1.12 Rudolph

Ludwig Mossbauer,

awarded the Nobel Prize for

Physics in 1961 for the

discovery of the effect that

bears his name (Public

domain)
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1934, p. 42). The total energy is given by E¼ � Ze2/(2a) where a is the semi-major

axis of the ellipse (Bayet 1960, p. 75). The energy is thus given by the following

formula using a second quantum number, l, known as the orbital quantum number:

En, l ¼ � 2π2Z2me4

n2 h2
1þ α2Z2

n2
n

lþ 1
� 3

4

� �� �

where α �½ � ¼ e2

2ε0hc
¼ 1

137:04
is the fine-structure constant

In particular, Sommerfeld’s theory provides an explanation of the effect discov-

ered in 1896 by Pieter Zeeman (Jouguet 1964, p. 70; Filippi 1965, p. 176; White

1934, p. 149), in which spectral lines split up into a variable number of components

under the effect of a magnetic field (Renault 1948, p. 77; Herzberg 1991, p. 103;

Condon and Shortley 1959, p. 378). The normal Zeeman effect describes the

splitting of a spectral line of frequency ν0 into three separate components under

the effect of a magnetic field B: the non-displaced line and two lines of frequency

ν¼ ν0� eB/(4πm). Sommerfeld also used the laws of relativity, which hold that the

mass of an electron increases with its speed, and this effect must not be neglected

for certain electron shells. All of these improvements allowed an explanation to be

given for this phenomenon of extremely close spectral lines which together form a

single mean line. Since then, physicists refer to the Bohr-Sommerfeld model.

However, the Bohr model deviates from the experimental measurements as the

value of Z increases and recourse to wave mechanics becomes necessary. More

precisely, the energy state of an atom (i.e. of its electrons) is entirely determined by

a wave function, the solution to the Schr€odinger equation, which involves the use of
four quantum numbers (Born 1971, p. 115):

n the principal quantum number, which has values of 1, 2, 3, etc., and defines

the electron shells K, L, M, and so on; this number is associated with the total

energy of the electron. Each shell may contain up to 2 n2 electrons.
l the orbital or azimuthal quantum number, also occasionally referred to as the

quantum number of angular moment, which has integer values of 0, 1, etc.,

n� 1 and defines for shell n the respective sub-shells s, p, d, f, and thus the

eccentricity of the orbital. A pair of values (n, l) defines an electron shell.

Orbiting electrons create intra-atomic currents that give rise to a magnetic

moment (Jouguet 1964, p. 40). If an electron has an angular moment, it has

kinetic energy of angular movement, which is naturally limited by the overall

quantity of energy, as quantified by n. l is thus logically limited by n (Mahan

et al. 1970, p. 423).
m themagnetic quantum number:m¼�l,�(l�1) . . .,�1, 0, 1, . . ., l�1, l. A set

of values (n, l, m) defines a quantum state. m defines the spatial orientation of

the orbital of the electron, i.e. the projection on a given axis of the moment of

the quantity of movement of the electron, which may be mh for the different

values of m. These quantifiable values may only be detected under the effect

of an external magnetic field. m may only take 2l + 1 values (Fig. 1.11). It is
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the electrons moving within the atom that create intra-atomic currents which

give rise to a magnetic moment. Since this moment originates in the angular

moment, it is naturally limited by the value of l.
s the spin quantum number: the hypothesis of the electron spinning around its

own axis and behaving like a small magnet was put forward in 1925 by

G. Uhlenbeck (1900–1988) and S. Goudsmit (1902–1978) (Bayet 1960,

p. 789; Filippi 1965, p. 253). This spin or intrinsic moment of the electron
may only take one of two values:+½ or �½ in h units. It characterizes a

kinetic moment specific to the particle which may be said to be “spinning

about itself”.16 The famous experiment conducted in 1922 by O. Stern

(1888–1969) and W. Gerlach (1889–1979) showed (Cagnac and Pebay-

Peyroula 1995, p. 235; Herzberg 1991, p. 193; Jouguet 1964, p. 68; Filippi

1965, p. 255) that the projection of the spin of an electron in the direction of

an external magnetic field could have only two values (parallel or anti-

parallel) (Born 1971, p. 169), (Duquesne et al. 1960, p. 13). The spin of an

electron is thus either h/2 or �h/2.

In 1924 (De Maria 2002, pp. 38–39), Enrico Fermi published an article in the

famous Italian physics journal Nuovo Cimento on statistical mechanics entitled

“Considerations on the quantification of systems containing identical elements”.17

Indeed, Fermi had been working since 1923 on quantifying the states of molecules

of an ideal gas which move around without friction while exchanging energy on

each collision with other molecules. Furthermore, in December 1923, he published

an article in the Rendiconti dell’Accademia Nazionale dei Lincei, entitled “On
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Fig. 1.11 Depiction of the quantification of orbital moment in a magnetic field

16Although it has the merit of being simple, this image may nevertheless be misleading. Spin

should be seen rather as an additional “spatial dimension” in the quantification phases (Julg 1970).
17Enrico Fermi: Considerazioni sulla quantizzazione dei sistemi che contengono degli elementi
identici [Considerations on the quantization of systems containing identical elements], Nuovo

Cimento 1 (1924), 145–152, FP 1:124-29.
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Stern’s Theory of the Absolute Constancy of the Entropy of a Perfect Monoatomic
Gas”,18 in which he demonstrated that there is no need for the zero-point molecular

energy hypothesis proposed by Otto Stern (1888–1969) in order to establish the

entropy of a monoatomic ideal gas as calculated by the German physicists Otto

Sackur (1880–1914) and, independently, Hugo Tetrode (1895–1931). In the second

article published in 1924, Fermi concerned himself with the inability of the Bohr-

Sommerfeld model to describe the spectral lines of atoms heavier than hydrogen.

Citing Fermi, De Maria explained that: “Such failure is genuinely attributed to the
fact that these more complex systems do not allow the separation of variables19. . .
In this study, I intend to show that this failure seems rather to be due to the
inadequate conditions under which Sommerfeld calculated the statistical orbitals
of systems possessing identical elements”. In the example of the helium atom, the

two electrons orbiting around a nucleus cannot be distinguished on the sole basis of

their quantum numbers. Fermi thus modified the conditions for quantification of

ideal gases containing identical molecules, namely that each of the elementary cells

into which the volume of gas is discretized may contain only one molecule. Fermi

deduced by an unjustified reasoning that Sommerfeld’s conditions of quantification
were not applicable to an atom containing identical subatomic elements (in this

case, electrons). It was the Austrian physician Wolfgang Pauli who, in January

1925, discovered what is known today as the Pauli exclusion principle. On reading

Pauli’s article, Fermi realized that he could complete his theory of an ideal gas

obeying the so-called Fermi-Dirac statistics, since in 1926 Paul Dirac would attain

the same results as Fermi using a different approach.

The exclusion principle of Wolfgang Pauli (1900–1958) postulated in 1924

states that no two electrons can have the same set of quantum numbers (Born

1971, p. 162; Herzberg 1991, p. 121; Foderaro 1971, p. 241). Only one electron is

permitted for each state. Although not the result of any tried and tested theory, this

principle accurately describes the way in which the electron shells are constructed

(Photo 1.13).

The magnetic moments ~l and ~s are composed in vectorial fashion (Herzberg

1991, p. 187) so that two results may be obtained: either j ¼ lþ 1=2 or j ¼ l� 1=2. For

each value of l, there is thus a corresponding derived internal quantum number

known as j. The quantum levels of an atom are filled with electrons successively in

accordance with a few simple rules, clarified by experience: each orbital has a

corresponding energy level (an energy previously calculated very precisely), and

the electrons are always added in such a way that this energy remains as low as

possible, but according to the Pauli exclusion principle, no two electrons in the

same atom may have the same four quantum numbers. Finally, Hund’s rules apply
(Julg 1970, p. 31; Mazenko 2000, p. 361) and these are two-fold: first, within the

same energy level, all locations in one orbital must contain an electron before filling

18Enrico Fermi:Sopra la teoria di Stern della constante assoluta dell’entropia di un gas perffeto
monoatomico, Rend. Lincei 32 (2), 1923, 395–398, FP:1-114-17.
19Describing the position of the electron in its trajectory around the nucleus.

38 1 Fundamentals of Nuclear Physics



is completed by the formation of pairs having opposite spin; second, in the most

stable state, electrons occupy the highest possible number of orbitals of the same

type: for instance, carbon has two 2p orbitals while nitrogen has three. In oxygen,

which contains four 2p electrons, one orbital is doubly occupied and two are singly
occupied. Regarding photon emission, the only transitions between two quantum

states allowed are those for which:

lfinal � linitial ¼ �1, sfinal � sinitial ¼ 0, jfinal � jinitial ¼ �1

one level may thus contain a maximum of 2
Pl¼n�1

l¼0

2lþ 1ð Þ ¼ 2n2 electrons. Each

level is associated with n2 orbitals, i.e. 2n2 Schr€odinger wave functions, taking spin
into account (Table 1.2).

K (n ¼ 1) 2 electrons 2 s (l ¼ 0)

L (n ¼ 2) 8 electrons 2 s (l ¼ 0)

6 p (l ¼ 1) where m ¼ �1, 0, +1

M (n ¼ 3) 18 electrons 2 s (l ¼ 0)

6 p (l ¼ 1)

10 d (l ¼ 2) where m ¼ �2, �1, 0, 1, 2

(continued)

Photo 1.13 Wolfgang Ernst Pauli (1900–1958). A child prodigy in mathematics, he was the

stepson of the renowned physician Ernst Mach, after whom he was given his middle name.

Following his studies at the University of Munich, where he was taught by Arnold Sommerfeld,

at the request of his master, he drew up at the age of 21 years a synthesis of special relativity for the

five-volume Encyclopaedia of Mathematics in German. He obtained his doctorate in 1921 for his

thesis dealing with the hydrogen atom in which he demonstrated the limitations of Bohr’s
quantification rule. He taught in Zurich but left in 1935 to teach in the United States, where he

spent the war years. He returned to Switzerland after the war and was involved in the creation of

the CERN. He was awarded the Nobel Prize in physics in 1945 for his discovery of the exclusion

principle that bears his name (Public domain)
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N (n ¼ 4) 32 electrons 2 s (l ¼ 0)

6 p (l ¼ 1)

10 d (l ¼ 2)

14 f (l ¼ 3) where m ¼ �3, �2, �1, 0, 1, 2, 3

Let us take as an example chlorine, which has 17 electrons (Z ¼ 17). The first

electrons fit in the K shell, which has the lowest energy and accepts a maximum of

2 electrons. We label them 1 s2, indicating that there are 2 electrons in sub-shells

(l ¼ 0) of the K shell (n ¼ 1). The following electrons fit into the L shell (n ¼ 2);

first, 2 electrons in sub-shells (l ¼ 0), then 6 electrons in sub-shell p (l ¼ 1),

[m ¼ �1, 0, +1]. These are followed by the last 7 electrons (2s, 5p). Bohr’s
planetary electron model should not allow us to overlook the fact that the atom is

essentially empty. If the nucleus of a hydrogen atom were represented as a quarter

coin, at scale, its electron would be orbiting at about 1 km from the coin! The

standard representation of the electron cloud which, for obvious reasons of space, is

drawn next to the nucleus, tends to mask this reality. The origin of the spontaneous

emission that results in an electron passing from a far orbit to a closer orbit is in fact

vacuum fluctuation. Such fluctuation is due to so-called zero-point energy in the

quantum vacuum state. The quantum vacuum state is the final phase that subsists

after a material vacuum has been created in an empty box (i.e. removal of the

slightest atom of matter from the space using a perfect vacuum pump). At this level

of a classical vacuum, thermal radiation subsists due to the temperature of the walls

of the box. If the walls of the container are cooled to 0 kelvin, irreducible

non-thermal electromagnetic radiation subsists at the zero point, the effects of

which have been demonstrated by Willis Lamb (1913–2006) and by Hendrik

Casimir (1909–2000).

1.11 The Atomic Nucleus

(Barret and Jackson 1977; Evans 1955; Held 1991; Mayo 1998; Savushkin and Toki

2004; Trocheris 1959; Nuclear Structure 1960)

Experimentally, the rest mass of the nucleus is lower than the rest mass of its

constituents when they are free, namely protons (Z ) and neutrons (A–Z):

Table 1.2 Distribution of

orbitals in electron shells
n s p d f . . .

1 2 ⋮
2 2 6 ⋮
3 2 6 10 ⋮
4 2 6 10 14 ⋮
⋮ . . . . . . . . . . . . ⋮
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MA
ZX

< Zm1
1
p þ A� Zð Þm1

0
n þ Zm 0

�1
e�

Enrico Fermi (1901–1954) proposed an empirical formula for the mass of iso-

topes (Soodak 1955) that collates well with the experimental values:

MA
ZX � 1:01464Aþ 0:014A

3
2 � 0:041905 CA þ Z � CAð Þ2

CA

" #
þ λ

0:036

A
3
4

where:
λ ¼ þ1 when A is even, Z isodd

λ ¼ �1 when A is even, Z is even

λ ¼ 0 when A is even, irrespective of Z

8<
: and

CA ¼ A

1:98067þ 0:0149624 A
3
2

This mass defect (defined in positive form) is given by (Jouguet 1964, p. 214):

Δm ¼ Zm1
1
p þ A� Zð Þm1

0
n þ Zm 0

�1
e� �MA

ZX

The mass defect may be expressed as energy (using the Einstein formula) and

corresponds to the binding energy released on formation of the nucleus from

protons and neutrons. The binding energy may thus be calculated from the mass

defect. Taking 1 u ¼ 931.54 MeV/c2, we obtain the following relationship

(Table 1.3):

Ebinding MeV½ � ¼ 931:54 MeV=u½ � Δm u½ �

The curve of Aston (Fig. 1.12), who, beginning in 1920, had measured with great

precision the different mass defects (Born 1971, p. 69), plots the variation in

binding energy per nucleon Ebinding/A in MeV/nucleon as a function of the number

of nucleons A.
This curve presents irregularities particularly visible at low mass numbers

corresponding to highly stable isotopes such as 4
2He with high binding energy per

nucleon. These “magic” numbers of nucleons are explained by the closed shell

model of the nucleus, as we shall see below. Fission involves displacing the right-

Table 1.3 Binding energy of three selected isotopes

Atomic

mass (u)

Mass of

neutrons

(u)

Mass of

protons

(u)

Mass of

electrons

(u)

Mass

defect

(u)

Binding energy per

nucleon

(MeV/nucleon)

235
92U 235.044 144.009 92.672 0.050 1.914 7.592

132
51Sb 131.885 81.729 51.371 0.028 1.216 8.581

101
41Nb 100.911 60.520 41.298 0.022 0.930 8.575
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hand section of Aston’s curve (for a heavy fissile isotope like uranium 235) towards

the center, and thus increasing the binding energy per nucleon (Photo 1.14).

Fusion consists of displacing the left-hand part of Aston’s curve, again towards

the center. The increase in binding energy corresponds to the provision of available

energy. The binding energy is the mean energy lost by each nucleon in the

formation of the nucleus in question. If, on the contrary, we wish to tear away a

nucleon from the nucleus, we must supply a mean quantity of energy equal to the

binding energy per nucleon. In practice, the binding energy of a given nucleon is not

strictly equal to the mean binding energy per nucleon, but depends on the nucleon

shell in which the nucleus is found.

Photo 1.14 Francis William Aston (1877–1945), official photo for the Nobel Prize for Chemistry

in 1922 (Public domain)
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Fig. 1.12 Aston’s curve: binding energy per nucleon as a function of mass number A
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The binding energy per nucleon is one of the criteria for stability of a nucleus.

Beyond a certain high mass number, all nuclei become fissile. Francis William

Aston, who was Joseph John Thomson’s assistant around 1910, invented the mass

spectrometer (he was awarded the Nobel Prize for chemistry in 1922): the impact

on a photographic plate of ions deflected in an electromagnetic field leaves tracks

that may be calculated by means of parabolic ballistic analysis. This method allows

precise measurement of the mass of ions and of atoms.

The precision of Aston’s mass spectrometer enabled him to carry out experi-

ments to determine the mass defect (also known as packing fraction) resulting in the
intra-atomic binding energy plotted on the curve. Not all combinations of Z protons

and A–Z neutrons are intrinsically stable. Only some 280 nuclei are stable, with the

other naturally occurring nuclei disappearing over time in accordance with an

immutable law independent of external conditions: such nuclei are said to be

radioactive and to disintegrate. This disintegration is frequently accompanied by

the emission of photons of energy having zero mass. Very “heavy” nuclei are

unstable. Today, super-heavy nuclei may be created artificially in an accelerator,

and the magic numbers theory predicts an island of stability at around Z¼ 114,

which we are gradually approaching. At this weight level, the stability of a

substance simply indicates an exceptionally long life in comparison with its neigh-

bors of similar Z values. Experiments show that the density of nuclear matter made

up of nucleons (protons and neutrons) is relatively constant:

A
4
3
πR3

� constant hence R ¼ R0 A1=3 where R0 ¼ 1:28� 0:05 fm

It has been experimentally demonstrated that the constant R0 is higher for light

nuclei (ffi1.3) than for heavy nuclei (ffi1.3). Closer analysis of the nucleus shows

that the nuclear density is not entirely constant within a sphere of radius R but

follows the empirical law of so-called Fermi distribution (Barret and Jackson 1977,

p. 8; Foderaro 1971, p. 216; Nuclear structure 1960, p. 25; Valentin 1982a, b, p. 25),
which takes the following form (Fig. 1.13):

ρ rð Þ � ρ0
1þ e

r�R
0:228 e

where e is the“skin” thickness � 2fm

This form is used in the optic model of elastic diffusion in the context of the

Woods-Saxon refraction potential, established in 1954, which takes the form

�V0ρ rð Þ ¼ �V0= 1þ e
r�R
e

� �
, and for which Schr€odinger’s equation can be solved

(Foderaro 1971, p. 369). The cohesion of the nucleus, which is concentrated in a

pseudo-sphere of radius R, is ensured by nuclear forces which compensate for the

Coulomb (electrostatic) repulsive force between charged protons + e (charges with
opposite signs attract, while charges with similar signs repel one another).The

strong interaction, which explains the strong bond between nucleons within the

nucleus (i.e. why positively charged protons do not repel one another), is associated
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with the existence of the meson, a heavy particle predicted in 1935 by Japanese

physicist Hideki Yukawa20 (1907–1981) (Dodd 1984, p. 46; Mathieu 1991, p. 231),

and discovered in 1936 (meson μ� by Carl D. Anderson (1905–1991) and Seth

H. Neddermeyer (1907–1988)), then in 1946 (meson π� by Cecil F. Powell

(1903–1969)). The strong interaction is an extremely powerful force (10+39 times

greater than gravity, 100–1000 times stronger than electromagnetic forces!), but is

exerted over a very short distance of several fm. The quantum of action of this

strong force, the π meson or pion, has a mass of 137 MeV/c2. The nucleons of a

single nucleus continually exchange mesons depending on their configuration. The

proton-neutron interaction having as its mediating particle a meson π+ is expressed
as:

Interaction p� n: 11pþ 1
0n ! 1

On
0 þ πþ þ 1

0n ! 1
On

0 þ 1
1p

0

The weak interaction, which acts on both hadrons and leptons, is 105 times

weaker than the strong interaction (GA Vol. 1 1967, p. 49; Valentin 1982a, b, p. 89),

and operates over a distance of less than 10�18 m (Dodd 1984, p. 34). It allows

explanation of β radioactivity, and Enrico Fermi, in his theoretical masterpiece for

which he won the Nobel Prize for physics in 1938, posited in late 1933 a complete

theory of β� disintegration (Dodd 1984, p. 66). This theory is based upon Pauli’s
proposition of a light neutral entity (in Italian, “neutrino” ¼ small neutron, as

opposed to “neutrone”, i.e. James Chadwick’s neutron), and accounts for why

electrons from β� disintegration have a continuous emission spectrum, while the

initial and final states of the electron are completely quantified. Indeed, energy is

carried away by the neutrino at the same time as electron emission. The mediating

particle of weak interaction is the boson. On analysis of the stability of nuclei,

greater stability is seen for nuclei comprising 8, 20, 50, 82 or 126 neutrons or

0ρ

09.0 ρ

01.0 ρ

05.0 ρ
R

e
r

Fig. 1.13 Nuclear density as a function of radius

20Hideki Yukawa: Interaction of elementary particles, Proceedings of the Physical and Mathe-

matical Society of Japan No 17, pp. 48–57 (1935)
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protons. Oxygen 16 (with 8 neutrons and 8 protons), calcium 40 (with 20 neutrons

and 20 protons), zirconium 90 (with 40 protons and 50 neutrons), cerium 140 (with

82 neutrons and 58 protons) and lead 208 (with 126 neutrons and 82 protons) are

experimentally highly stable. This stability is immediately reminiscent of the high

degree of chemical stability of those elements containing a filled outer electron

shell (the rare gases), which gave rise to the idea of a shell model of nucleons (Born
1971, p. 279). It was Eugen P. Wigner (1902–1995) who described these isotopes as

magic, and this remains the standard term. James H. Bartlett (1904–2000), Kurt

Guggenheimer and Walter Elsasser (1904–1991) immediately proposed a model of

individual particles in closed shells containing 2 (2l + 1) neutrons or protons per

shell (l: quantum number of the angular moment or orbital). However, this model

only explained the magic numbers up to 16
8O (i.e. until the first p orbital has been

filled).

It was in fact studies by Maria Goeppert-Mayer21 (1906–1972) from 1948

onwards that proved the existence of shells for nucleons of the same type (protons

or neutrons) of 50, 82 and 126 (Lilley 2001, p. 45). The term “magic numbers” was

21Maria Goeppert-Mayer (1906–1972) entered the University of G€ottingen at the age of 17 years.

David Hilbert, who lived next door to the Goeppert family, one day gave a talk on atomic physics

which she attended. She was part of the circle of students under Max Born. In 1930, she completed

her doctorate on the theoretical treatment of multiphoton processes. She married chemist Joe

Mayer, whom she had met at G€ottingen, and went with him to the USA. During the middle of an

economic slump, she was unable to find a university post. In Baltimore, she welcomed Jewish

physicists from Germany, who had begun to leave the country in 1933. Until 1941, she worked in

an unpaid position in Columbia. In 1942 she was offered a position working for “Substitute Alloy
Materials”, whose secret aim was to develop processes for the enrichment of uranium 235 as part

of the Manhattan Project. Teller invited her to take part in the “Opacity project” on the behavior of

materials at very high temperatures within the context of the hydrogen bomb. She joined Fermi’s
team in Chicago, where she was given a post at the Argonne National Laboratory. She developed

the calculations program for a breeder reactor on John Von Neumann’s original ENIAC computer.

Working with Teller on the origin of the elements, she discovered the magic numbers that led her

to the theory for which she would be awarded the Nobel Prize in 1963. (Based on an article by

Jonathan Tennebaum published in Fusion No. 51).

(The Marguet collection)
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introduced. By invoking intense spin-orbit22 coupling forces (“j-j coupling”) based
on an idea of Enrico Fermi (“might there be a spin-orbit coupling index?”), she
discovered the magic numbers. Hans Jensen (1907–1973) developed a parallel

theory, and he and Maria Mayer jointly shared the Nobel Prize for physics in

1963 (with the other share going to Eugen Wigner for his work on the interactions

between nucleons). However, Maria Mayer’s theory does not explain everything

since extremely heavy isotopes like chemical bodies (such as lithium 11!) appear to

have been discovered, and these could have the forms of “water molecules”, which
cannot be accounted for in the shell model.

According to electromagnetic field theory, a charged particle of atomic number

z experiences a Coulomb barrier (Fig. 1.14) of height Zze2/R as the particle

approaches a nucleus of charge Z. The nucleus sits in the potential well comprising

nucleons characterized by four quantum numbers, as for electrons:

• the principal quantum number n (>0)

• the orbital quantum number l 
 n�1

• the magnetic quantum number m 
 l�1

• the spin quantum number s

The Wolfgang Pauli exclusion principle applies again as for electrons: two

nucleons of the same type (11p or 1
0n) cannot have identical quadruplets (n, l,

m, s). The energetic well contains quantum levels in which protons and neutrons are

held, starting with the lowest energy levels, according to Pauli’s principle, thus

dictating the maximum number of nucleons that provide strong stability

(Table 1.4):

The phenomenon in question is identical to the filling of electron shells seen

earlier as for the rare gases, which are extremely chemically stable. Figure 1.15

depicts the potential well of nuclear forces in the form of a rectangle. This well is

r
Z ze2

U =

R
Z ze2

r

U potential energy

R = R0 A1/3

Height of 

Coulomb barrier 

Fig. 1.14 The electrostatic potential energy barrier within the nucleus

22Regarding spin-orbit coupling in general, useful information is given in (Condon and Shortley

1959, p. 257).
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inherently deep (strong forces) and narrow (very small range of action), in contrast

with the electromagnetic potential well (Coulomb barrier to the right with an

infinite range of action).

In the ground state, i.e. at the lowest total energy level, if shells are represented

as energy levels, the nucleons occupy the lowest shells. If excitation energy is

applied to the nucleus, it is distributed between the various nucleons which are

rearranged within the various shells above the ground state to create an excited

nucleus. If energy is concentrated in a nucleon (which is of very low probability

compared with distribution between all nucleons), it may reach a virtual level

sufficient to overcome the barrier, in which case it will be emitted (Littler and

Raffle 1957, p. 19). The associated states have insufficient energy to enable

de-excitation. However, the virtual states, even below the barrier, allow the emis-

sion of a nuclear particle by means of a tunnel effect or tunneling. This effect

depends on the wave function of the particle within the nuclear force field, which

Excited 

levels

Virtual 

levels

Bound 

levels

Fundamental 

level

per nucleon

Binding energy

R

U

≈ 7 MeV

Fig. 1.15 Nuclear shell model

Table 1.4 Magic numbers of

filled nucleon shells
Total

1st shell 2 2

2nd shell 6 8

3rd shell 12 20

4th shell 30 50

5th shell 32 82

6th shell 44 126
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determines whether the particle can be ejected from the nucleus or not. The shell

model accounts for γ radioactivity and stable nuclei at magic numbers. However,

though it explains nuclear stability well, it provides a poor explanation of the

dynamic behavior of heavy nuclei. In the liquid-drop model proposed in 1939 by

Niels Bohr and John Wheeler (1911–2008), the nucleus is likened to a drop of

incompressible material, whose density does not depend on the size of the nucleus.

Within this drop, nucleons can move around in the same way as molecules inside a

sphere. This model provides an explanation for the fission of heavy nuclei: on being

struck by a neutron, the heavy nucleus is deformed like a drop of water on receiving

a shock, before being split in two and achieving a stable form in relation to the

principle of minimization of total energy (in this case two spheres). The liquid-drop

model led to a theoretical expression of mass defect. The semi-empirical model

posited by Carl F. VonWeizsäcker (1912–2007) suggested in 1935 that mass defect

corresponding to the binding energy Ebinding be expressed as follows:

Weiz€a cker’s Formula 1935ð Þ: Δm ¼ EBinding

c2

¼ aVA� aSA
2=
3 � aa

A� 2Zð Þ2
A

� ac
Z Z � 1ð Þ

A
1=
3

þ δap
1

A
3=
4

ð1:3Þ

The various terms have an analogous meaning in fluid mechanics (Glasstone and

Edlund 1972, p. 12; Kahan 1963, p. 86; Lilley 2001, p. 38; Mayo 1998, p. 55):

+aVA is an energy of volume aV� 14 MeV. It is an attractive energy propor-

tional to the numbers of nucleons characterizing the fact that each nucleon is

attracted by its neighboring nucleons.

�aSA
2=3 is a term corresponding to a surface energy (A

1=3 is proportional to the

radius of the atomic nucleus), as� 13 MeV. Indeed, nucleons near the nuclear

surface are less strongly bound than those located “deep down”. The energy of

attraction is thus overestimated by a quantity proportional to the area as a result of a

surface tension effect.

�aa
A�2Zð Þ2

A is a term expressing symmetry energy and reflects the fact that the

excess of neutrons decreases the total nuclear energy, aa� 19.5 MeV. This term

refers to supernumerary neutrons in relation to protons, particularly in heavy nuclei.

This excess is essential for a certain stability, so that the forces of nucleon attraction

(strong interaction) are able to counteract the Coulombic force of repulsion that

would be too strong in the event of supernumerary protons. Nevertheless, an

excessively high number of neutrons reduces the binding energy.

�ac
Z Z�1ð Þ
A
1=3

designates the Coulombic force of repulsion of protons, ac� 0.585

MeV.

þδap 1

A
3=4
is a term that allows us to take into account the relative stability of even-

even isotopes where: δ¼ 1 for even Z and N and ap� 33 MeV, δ¼ � 1 for uneven

Z and N, δ¼ 0 for uneven A (even Z and uneven N or uneven Z and even N ).
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Weizsäcker’s formula yields a characteristic parabolic curve on tracing the

binding energy for isobaric isotopes. The most stable nuclei are those presenting

maximum binding energy, which can be calculated mathematically by derivation in

relation to Z (A constant). It should be noted that there is no single set of values for

coefficient a corresponding to all isotopes, and that the proposed values are in fact

experimental compromises. Attempts were obviously made subsequently to unify

these models by virtue of a so-called collective model (studies by Aage Bohr and

B. R. Mottelson (Bohr and Broglia 1977; Mathieu 1991, p. 240), in which a central

part of the nucleus is represented as a drop of liquid with the outer regions

containing nucleons having their own excitation energy, somewhat like peripheral

electrons. When the spherical nucleus is deformed, the grouping together of the

orbits of nucleons in separate shells seems to disappear, allowing more uniform

distribution. V. M. Strutinsky demonstrated the re-emergence of shells for non-nil

but pseudo-periodic deformations. This results in pseudo-magic of certain nuclei

that are naturally deformed in their rest state. In 1966, Strutinsky introduced a

number of corrections into the liquid-drop model to take into account the shell

structure. In this model, the fission barrier has two extremes (double-humped

barrier) allowing a shape isomer state (Fig. 1.16).

A number of quantum states are found in the potential well of the ground state

and in the shape isomer state. An isomer may emit a photon and undergo

de-excitation to the ground state, but it may also fission if the incident neutron

can provide the required excitation energy. This non-symmetric double hump

accounts in particular for the asymmetric fragmentation of heavy nuclei seen in

fission yield curves. Strutinsky’s theory continues to be pertinent until scission of

the nucleus. Indeed, while around 80% of the energy is distributed between the

fission fragments, the remainder is found in the form of deformation and excitation

Potential energy of nucleus

Ground state

Shape isomer state

Fusion barrier 

predicted by liquid-

drop model

Deformation of nucleus

Strutinsky correction

Fig. 1.16 Strutinsky’s fission barrier model
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energy, making certain fission products highly unstable with almost instantaneous

emission of neutrons and photons. In rare cases of so-called cold fission, the

fragments recover 100% of the fission energy. For an improved understanding of

the nucleus and fission thereof, we must look to the so-called microscopic theories

describing the movement of each nucleon in quantum interaction with its neighbors.

The Hartree-Fock mean field theory (Douglas R. Hartree [1897–1958] and Vladi-

mir A. Fock [1896–1974]) to determine the wave function and the energy of a

quantum many-body system in a stationary state, and the Hartree-Fock-

Bogolyubov method (N.N. Bogolyubov [1909–1992]), which takes into account

nucleon pairing, require enormous computer power since the determination of wave

functions for N nucleons is notoriously demanding in terms of calculation times.23

1.12 Nuclear Spin

Spin refers to the rotational movement of a particle (resp. nucleus) around itself.

Along with spin, the angular moment of spin must be considered. Similarly, from

orbital movement (for an electron for instance), an orbital angular moment may be

determined. The total angular moment is the sum of the spin angular moment and

the orbital angular moment. The nuclear angular moment is measured in units of

h¼ h/2π, as for the angular moment of electrons, protons and neutrons (which is in

fact h/2 for these three particles). Neutron spin is said to be 1=2. In general for nuclei,

the angular moment is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þp

h where I is the quantum number of the nuclear

angular moment, also referred to as nuclear spin. This spin is a whole number (0, 1,

2, etc.) for isotopes with an even mass number, but maybe a half number (1=2, 3=2, 5=2,. . .
up to 11=2) in other cases. At their fundamental level, even-even isotopes always have

zero spin (0), while uneven-uneven isotopes have whole spin, and others have half-

whole spin. Quite logically, the nuclear angular moment of a nucleus is a combi-

nation of the angular moment of its components. The angular spin moment of a

nucleus is a vector and is designated by ~si , with an orbital angular moment being

denoted as ~Ii . The rules for combination are as follows:

– in the event of weak coupling, or Saunders-Russell coupling (Frederick

A. Saunders[1875–1963] and Henry N. Russell[1877–1957]) (Herzberg 1991,

p. 128; Condon and Shortley 1959, p. 187), the spin and orbital angular moments

are added together and the nuclear spin angular moment is given by the sum
~S ¼ P

i2nucleus
~si , while the nuclear orbital angle moment is ~I ¼ P

i2nucleus
~Ii . This

coupling results from the fact that interactions between the moments for a single

particle are weak compared to interactions with other particles.

23For an accessible overview of HFB theories, see the article by M. Girod, J.P. Delaroche and

J.F. Berger: Approches microscopiques en physique nucléaire [Microscopic approaches in nuclear

physics], CHOCS journal No 4 from CEA/DAM (1992).
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– Where the interaction between the spin angular moment and the orbital angular

moment for a given particle is strong, the composition of the vectors is given by:
~ji ¼ ~si þ ~Ii for each particle, and as the resulting total angular moment for the

nucleus,~I ¼ P
i2nucleus

~ji .

1.13 Radioactivity

(Chelet 2006; Evans 1955; Guillien 1963; Halliday 1957; Munoz-Paez 2014;

Pflaum 1992; Semat 1955)

It was the French physicist Claude Felix Abel Niepce24 (dubbed “de Saint

Victor”), the germane cousin of famous photographer Joseph Nicéphore Niepce,

who first demonstrated in the summer of 1857 and in the following years, the

remote printing of photographic plates following their exposure by means of

cardboard coated with a deposit of uranium salts. This print remained intact for a

long time with the plate protected against light, but Niepce felt that it was necessary

first to isolate the cardboard coated with uranium salt. He thought that a new

unknown activity of light was involved that supposedly activated uranium, making

it give up its radiation that was subsequently invisible, even in darkness. The

chemist Michel-Eugène Chevreul, Dyes Manager at theManufacture des Gobelins,
who had had numerous exchanges with Niepce, understood the value of this

discovery, and even used the term “activity” to describe the phenomenon.

24Claude Felix Abel Niepce, dubbed “Abel Niepce de Saint Victor” (1805–1870), was a French

military man passionately interested in photography and chemistry and who carried out a great

deal of research on the development of photographic plates and color fixation. He invented the

so-called “heliochrome” process using chloride salts as color fixatives. However, photographs

treated in this way did not preserve their colors, which turned grey on exposure to light. In 1841, he

carried out experiments on cochineal to dye army clothing red. He then used various compounds to

fix images on glass, steel and on paper using a process based on albumin, and which presented

excellent resolution. From 1845, he attended the chemistry lessons given by Michel-Eugène

Chevreul at the Natural History Museum in Paris, where Antoine then Edmond, and finally

Henri Becquerel taught. His experiments led him to use uranium salts, after noting that the latter

left an impression on photographic plates. He erroneously deduced from this a new action of light,

which supposedly produced chemical “excitation” of uranium (1858 –“Quatrième mémoire. Sur
une action de la lumière restée inconnue jusqu’ici” [Fourth dissertation. On a hitherto unknown

action of light.], in Comptes rendus hebdomadaires des séances de l’Académie des sciences, vol.
47, pp. 1002–1006). Niepce published numerous dissertations and treatises on color binding, and

was thus a major figure in the history of photography. Inevitable quarrels over who initially

discovered radioactivity occurred between Niepce and Becquerel at the end of the twentieth

century. After analyzing his studies, it seems fair to say that Niepce was the first observer,

which is an incredible exploit when we consider the experimental means at his disposal at that

time. However, the honor of finally explaining radioactivity clearly belongs to Henri Becquerel,

who after numerous attempts, finally found the right path.

On Niepce, see Paul Fournier, Josette Fournier: Hasard ou mémoire dans la découverte de la
radioactivité ? [Chance or memory in the discovery of radioactivity?], Revue d’Histoire des

Sciences, Année 1999 Volume 52, No. 1 pp. 51–80.
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However, Niepce remained a pioneer, and clearly a very important one, with regard

to the discovery of radioactivity, although he did not understand the atomic nature

of this phenomenon, since he continued to think that the action of light was

necessary to provoke the invisible radiation. It is such tenuous details that separate

the observer from the discoverer.

The discovery of radioactivity at the end of the nineteenth century gave an

unprecedented boost to science in the fields of nuclear physics and particle physics.

The secrets of the atom would be revealed within 50 years, and a mere 10 years after

the discovery of the neutron, a reactor working on the principle of nuclear fission

would already become a reality. Radioactivity was one field in which the French

Physics establishment could feel particularly proud of itself. The end of the

nineteenth century held out enormous hope, when in December 1895, the German

physicist Wilhelm Conrad Roentgen (1845–1923) discovered X-rays (the X in the

name, although initially temporary, referred to the unknown nature of the rays, but

because of its public success, the name was retained!) (Lowys 1925, p. 9), and in

1897, he produced the celebrated radiograph of his wife’s right hand, which

travelled around the world (Fig. 1.17).

The Nobel Prize for physics he was awarded in 1901 (the first such prize) for his

discovery heralded the era of physicists investigating the structure of matter. The

medical applications of this non-invasive method of investigation were immedi-

ately evident in traumatology. During the First World War, Marie Curie and her

daughter Irène set up ambulances equipped with radiography devices enabling

surgeons to diagnose problems and conduct operations extremely close to the

battlefield (Loriot 1991, p. 157). The discovery of X-rays by Roentgen in late

1895, which was brought before the Académie des Sciences in a presentation by

Henri Poincaré (1854–1912), led Henri Becquerel (1852–1908) to ponder on the

Claude Felix Abel Niepce (Public domain)
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origin of the phosphorescence created in the vacuum tube under the effect of

X-rays. Becquerel came from a family of celebrated researchers: his father,

Edmond (1820–1891), had already studied the luminescence emitted by uranium

compounds and the photovoltaic effect, and his grandfather, Antoine (1788–1878),

had studied electrochemistry, climatology and physiology and had been a member

of the “Académie des Sciences” (Photo 1.15).

Henri Becquerel investigated whether certain phosphorescent crystals might not

be emitting X-rays. To this end, he placed phosphorescent salts exposed to natural

light on a photographic plate. While handling a uranium salt, he discovered in

February 1896 that a mark had been left on the plate without the salt being exposed

to sunlight.25 He presented his results to the “Académie des Sciences” on February

24 1896 (Nahmias 1953, p. 12), and on reading his findings, it is clear that he still

believed that sunlight had an effect on radiation.

However, in the text of his communication of March 2, 1896, it is very clear that

he excluded the action of light in his procedure. His use of a gold foil electroscope

enabled him to quantify the radioactivity because of its ability to discharge bodies

Fig. 1.17 The experimental equipment used by Roentgen to create an X-ray of his wife’s hand in
1895—A Crookes tube is suspended above the hand, which is resting on a photographic plate

25Henri Becquerel: Sur les radiations émises par phosphorescence [On radiation emitted by

phosphorescence], Comptes rendus de l’Académie des Sciences, No. 46, p. 10, February 24, 1896.
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initially carrying electrical charge. He determined that it was in fact uranium that

was the emitter within the salt. He then set out the 5 laws of radioactivity. His sole

mistake was to imagine that “uranic” rays could be reflected like light (which is not

completely false if we take into account diffusion). Henri Becquerel established the

key properties of radioactivity, namely: independence of the chemical form of the

emitting uranium (solid, liquid, salts, etc.), independence of pressure, temperature,

etc. (Photo 1.16).

Photo 1.15 Edmond Becquerel’s dissertation on the analysis of light emitted by phosphorescent

uranium compounds, Volume XL of the “Mémoires de l’Académie des Sciences”, Firmin Didot,

Paris, 1872, 40 pages. This text foretells the future discoveries of Henri Becquerel, although

Edmond was unaware of anything but visible radiation! Edmond Becquerel also discovered the

photovoltaic effect in 1839 but could not explain the cause (The Marguet collection)
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Radioactivity was considered a new property of matter independent of any

outside conditions. He was awarded the Nobel Prize in 1903 together with Pierre

and Marie Curie. This discovery opened up an extremely fertile period for French

science: in 1898, Pierre (1859–1906) and Marie Curie (1867–1934) isolated polo-

nium from pitchblende, followed by radium26,27,28(Dupuy 1962). Pierre and his

brother Jacques were already known after their discovery of the piezoelectric effect

in 1880 (Barbo 2005, p. 11). Pierre was a specialist in metrology and developed a

“balance” enabling extremely precise measurement of radioactivity based on the

propensity of the latter to discharge electrified bodies.

Marie Curie experimentally determined the atomic weight of 226
88Ra as being

225 � 1 (it is in fact 226),29 which was an astonishing feat for the time, given the

very small amount of pure substance at her disposal. Very quickly, the Curies

provided industry with a technique for the separation of radium without taking out a

patent, and many foreign laboratories (including Rutherford’s laboratory) were

kindly supplied with radium by the Curies (Photo 1.17).

She also measured its half-life: 1600 years � 7 years. The excellent French

theater play “Les Palmes de Mr Schutz” gives a clear impression of the miserable

Photo 1.16 Henri

Becquerel (1852–1908)

Discoverer of natural

radioactivity, Nobel Prize

for physics in 1903 together

with Pierre and Marie Curie

(Nobel Prize photo, Public

domain)

26Marie Sklodowska-Curie: Rayons émis par les composés de l’uranium and du thorium [Radia-

tion emitted by uranium and thorium compounds], Comptes-rendus de l’Académie de Sciences,

No. 126, p. 1101, April 12, 1898
27Pierre and Marie Curie: Sur une substance nouvelle radioactive contenue dans la pechblende
[On a new radioactive substance present in pitchblende], Comptes-rendus de l’Académie de

Sciences, No 127, p. 175, July 18, 1898
28Pierre and Marie Curie: Sur une nouvelle substance fortement radioactive contenue dans la
pechblende [On a new highly radioactive substance present in pitchblende], Comptes-rendus de

l’Académie de Sciences, No 127, p. 1215, December 26, 1898
29Marie Sklodowska-Curie: Sur le poids atomique du métal dans le chlorure de baryum radifère
[On the atomic weight of the metal in radiferous barium chloride], Comptes-rendus de l’Académie

de Sciences, No 129, p. 760, November 13, 1899
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working conditions of Pierre and Marie Curie, who labored tirelessly to understand

the source of radioactivity from pitchblende. According to the play, the housemaid

has the idea that the infinitely small residues from the separation efforts might

contain the radioactivity found in the entire mineral. Unfortunately, Pierre Curie

died in a senseless accident, being crushed under the wheels a horse-drawn cart in a

Paris street in 1906, leaving Marie to continue the research on radioactivity. Thanks

the increasing availability of radium (Marie Curie generously supplied radium to a

number of laboratories for study purposes), physicists throughout the world were

able to study radioactivity. Ernest Rutherford (1871–1937) devoted all his energy to

this end, identifying several types of radiation, which he simply termed α, β and γ
radiations (Photo 1.18).

Rutherford and his assistant Frederick Soddy (1877–1956) observed changes in

the chemical properties of the emitter of α and β rays, namely transmutation. Not all

natural isotopes are radioactive. Rutherford is credited with being the first to

speculate on what today appears obvious: the heaviest isotopes are the most

unstable. It was Rutherford who identified the α particle as a nucleus of helium

4. Between 1908 and 1910 while in Manchester, Rutherford and his pupil Hans

Geiger measured to within 10% the values currently accepted today for the radio-

active half-lives of 226Ra, 232Th, 238U and 235U (Birks 1961). He was the first to use

measurement of the quantity of helium trapped in radioactive minerals such as

pitchblende to estimate, in 1905, the age of formation of these minerals. These

measurements, which showed certain minerals to be over 700 million years old,

revolutionized ideas about the age of the Earth, creating a (false) controversy with

Lord Kelvin, whose calculations for pure radiation from a sphere in a vacuum

suggested that the Earth had existed for around 100 million years and would

Photo 1.17 An uncommon photograph (although its rather bad quality) of Marie Curie in her

laboratory at the “Faculté des Sciences”, Paris, circa 1910 (from “La science et la Vie, January

1914, Public domain)
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continue to exist for a similar period.30 This method of determining the chronolog-

ical age of minerals was further developed in 1907 by Bertram B. Boltwood

(1870–1927), who noted that lead results from the disintegration of uranium, and

Photo 1.18 Pierre and Marie Curie as viewed by the theatre (courtesy of l’Avant-Scène Théâtre)

30Lord Kelvin’s calculations ignored the source of energy due to radioactivity, prompting Ruth-

erford to reply tactfully towards the venerable elder scientist. A tabloid from the time made a

playful reference to the subject of the scientific discussion in the title “Doomsday Postponed!”
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that as a result, the ratio of lead to radium in rocks was increasing over time. The

phenomenon is correlated with age. In 1913, Rutherford observed that solar energy

could not be accounted for by only the radioactivity of heavy nuclei. He calculated

that if the sun were a sphere of pure uranium, it would in fact emit no more than a

quarter of the energy actually emitted by radiation. He explained this by postulating

that the sun must fully utilize all of the energy contained within the light atoms, thus

predicting fusion. By the deflection of α particles, Rutherford also determined that

the electrical charge on an atom is concentrated within the nucleus, whose mass

number appears greater than the charge number. In 1920, Rutherford thus postu-

lated the extra distance of an electrically neutral particle: the neutron. In 1930,

Walter Bothe (1891–1957) and H. Becker,31 then Frédéric Joliot (1900–1958) and

his wife Irène Curie (1897–1956), noted that the bombardment with α rays of light

nuclei such as beryllium, produced highly penetrating radiation.32 Until then,

highly energetic γ rays had been considered—wrongly as it turns out. It was finally

James Chadwick who in 1932 correctly interpreted the experiment33 and won the

Nobel Prize in 1935:

αþ 9
4Be ! 12

6Cþ 1
0nþ 5 MeV α: helium nucleus 4

2He2þ
	 


:

Highly penetrative radiation thus comprised neutrons. In 1934, Frédéric and

Irène Joliot-Curie discovered artificial radiation34 on bombarding an aluminum

sheet with α particles:

4
2Heþ 27

13Al ! 30
15Pþ 1

0n

The phosphorus atom 30
15P does not exist naturally and it is thus an artificial

nucleus that disintegrates by radioactivity:

30
15P ! 30

14Si þ 0
1e

þ
T ¼ 1:7 min

They received the Nobel Prize for physics in 1935 for the discovery of artificial

radioactivity. Since then, some 1000 artificial isotopes have been created! Radio-

activity is a spontaneous phenomenon of a statistical nature for which binomial

distribution may be demonstrated (Uhrig 1970, p. 27) since it is possible to

calculate the probability that M atoms produced by N initial atoms disintegrate in

time t according to the following formula:

31W. Bothe and H. Becker: K€unstliche Erregung von Kern -γ-Strahlen, Zeitschrift für Physik,
n�66, pp. 289–306 (1930)
32Irène Curie and Frédéric Joliot: Emission de protons de grande vitesse par les substances
hydrogénées sous l’influence des rayons γtrès pénétrants [Emission of high-speed protons by

hydrogenated substances under the influence of highly penetrating γrays], Comptes-rendus de

l’Académie des Sciences, No 94, p. 273 (1932)
33James Chadwick: Possible existence of a neutron, Nature No 129, p. 312 (1932)
34Irène Curie and Frédéric Joliot: Un nouveau type de radioactivité [A new type of radioactivity],

Comptes-rendus de l’Académie des Sciences, No 198, p. 254 (1934)
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p Mð Þ ¼ N!

N �Mð Þ!M!
pM 1� pð ÞN�M

where p is the probability that the first of M atoms disintegrates at time t. 1� p is

thus the probability that an atom will not have disintegrated at time t. In this

expression, we recognize the binomial coefficient CM
N ¼ N

M

� �
� N!

N �Mð Þ!M!
which is reasonably understandable as we are seeking to determine the number of

possibilities of selecting the first atom to disintegrate among the N possible atoms,

followed by the second among the N� 1 possible atoms, and so on, until all of the

M atoms available for disintegration have been used up. Radioactivity is completely

independent of external conditions (e.g. pressure, time) and is subject to

Becquerel’s law:

Becquerel’s law for radioactive decay:
dN

dt
¼ �λN ð1:4Þ

where: N is the number of nuclei of the radioactive isotope (may also be by volume

units); λ is the radioactive decay constant of the radioisotope (unit: s�1); t is time [s].

If there are N0 atoms present at time t0, integration of the above expression gives:

N ¼ N0 e�λ t�t0ð Þ

Taking t0¼ 0 as the time origin, we have: N¼N0 e�λt.

By the definition of p: p � 1� N tð Þ
N0

¼ 1� e�λt the mean number of disintegra-

tions occurring over time t is given by (Uhrig 1970, p. 28):

μ ¼
XN0

M¼0

Mp Mð Þ ¼
XN0

M¼0

M
N0!

N0 �Mð Þ!M!
pM 1� pð ÞN0�M

¼ N0p pþ 1� pð Þð ÞN0�1 ¼ N0p

In the event of an extremely high initial number of atoms N0 and where the

sample M is very small in relation to N0, the formula for p(M ) may be simplified

where p¼ 1� e�λt� λt, using Stirling’s formula to approach the factorial:

Stirling’s formula: n! �
ffiffiffiffiffiffiffiffi
2π n

p
e�n nn ð1:5Þ

Under these hypotheses: p Mð Þ ¼ μM

M!
e�μ

which is in fact a Poisson distribution. Turning now to M of an extremely high

value, and using:

In
μ

M

� �
¼ In 1þ μ�M

M

� �
� μ�M

M
� μ�Mð Þ2

2M2

Gaussian distribution is obtained:
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p Mð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2π μ

p e�
μ�Mð Þ2
2μ

The term half-life or half-life period denotes the time required for half of the

radioactive atoms initially present to decay.

N Tð Þ ¼ N0

2

The half-life of a particular isotope is given by:

Half-life of radioactive decay: T � In 2

λ
� 0:693

λ
ð1:6Þ

After 10 half-lives, the remaining amount of radioactivity is generally consid-

ered negligible as:

N 10Tð Þ ¼ N0

210
¼ N0

1024

The “stability” of a given nucleus is in fact dependent upon the precision of our

measuring instruments. If the half-life is too long, decay becomes so slight that it

may be masked by background noise and the nucleus is seen as stable. Similarly,

below 10�20 s, the nuclei are too unstable to be able to be studied today. These

nuclei are investigated chiefly thanks to their daughter nuclei. The term mean
lifetime θ refers to the time after which the number of radioactive atoms is reduced

by Euler’s number, e.

N θð Þ ¼ N0

e

θ ¼
Ð1
0

tN tð ÞdtÐ1
0

N tð Þdt ¼
Ð1
0

tN0e
�λ tdtÐ1

0
N0e�λ tdt

¼ 1

λ

The activity A(t) of a radioactive nucleus is defined as the number of decays or

disintegrations per second, in other words, radioactivity is given by:

Activity of a radioactive isotope: A tð Þ � λN tð Þ ð1:7Þ

Since 1975, the official unit of radioactivity has been the Becquerel (Bq) � 1

disintegration.s�1. Where the concentration of an isotope is given in volume units, the

volume activity is expressed in Bq/cm3. For convenience, for the levels of radioac-

tivity normally found, we use a more suitable unit far higher than the Bq: the Curie.

1 Ci¼ 3.70 1010 Bq. This is the activity of 1 gram of radium 226 (beware: radium not

curium!). For example, onemetric ton of natural uranium contains 1 Ci of 234U, 1 Ci of
238U and 0.5 Ci of 235U. The half-life of radium 226 is 1600.04 � 7.0014 years.

Methods of measuring of radioactive half-lives have become so accurate that they are
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used today in defining reference units such as seconds and even meters. The standard

meter, the universal reference for the measuring unit, which is piously kept at the

Museum of Weights and Measures in Sèvres (France), just outside Paris, was initially

made out of platinum-iridium alloy (accurate to within a 100th of a micron!).

However, even this rare alloy is sensitive to both thermal expansion and pressure.

From 1962 to 1983, the new definition of the meter was in fact based upon a form of

decay readily accessible to researchers, namely that of krypton 86.

1 meter � 1 650 763:73� λ2P10�>5D5 of
86
36Kr

Since 1983, progress in measuring the speed of light in a vacuum

(299,792,458 m/s) means that the value of the meter may be defined in terms of

the latter, with 1 meter being the distance travelled by light in a vacuum in

1/299,792,458 seconds.

1.13.1 Alpha Decay

(Lilley 2001, p. 84)

Alpha decay was the first type of radioactivity to be discovered since the alpha

particle is emitted by most radioactive heavy isotopes (uranium, radium, radon,

etc.). It was Ernest Rutherford who identified the α particle as a helium nucleus

thanks to the skill of his glassblower, who created a glass tube with thin double

walls. A vacuum was created between the two walls and α particles fired from a

source located inside the first tube caused helium gas to appear in the space between

the walls which was initially “filled” with vacuum. The first effective sources of α
particles were created from radium purified by the technique of Pierre and Marie

Curie (Photo 1.19). Alpha radiation is produced by the ejection of a helium nucleus:

Alpha decay: AZX ! A�4
Z�2Y þ 4

2Heþ2e ð1:8Þ

The emission of an α particle can be depicted schematically in an energy

diagram, as in Fig. 1.18. It should be noted that emission does not necessarily result

in the production of a nucleus in its ground state and that γ photons are frequently
emitted. It was Salomon Rosenblum35 (1896–1960) who in 1929 first demonstrated

35Salomon Rosenblum (1896–1960) Salomon Rosenblum begins his secondary education in

Germany before leaving for Sweden where he begins a thesis on the ancient and modern oriental

languages. A fortuitous meeting, in a café of Copenhagen with an assistant of Niels Bohr brings him

to move into the sciences in Berlin by fascination for the new atomic science, then into Marie Curie

Paris’s laboratory in 1923. After a thesis (1928) on the attenuation of α -beams through matter he

resumes the study of the α-ray spectrum of the Thorium C (the current bismuth 212), then RadiumC

(bismuth 214) by magnetic methods of his invention. The putting into service of the large

electromagnet of the Academy of Science built supervised by Aimé Cotton and the use for the
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the fine structure of α radiation from Thorium C (the name used at the time for

bismuth 212), consisting of 4 rays,36 using magnetic methods (Rosenblum 1932;

Rosenblum 1969, p. 7) (Figs. 1.19, 1.20, 1.21 and 1.22).

Until then, it had been thought that the α emission by a radio-isotope was

monokinetic. Rosenblum thus discovered that the associated γ radiation obeyed

the same laws as the rearrangement of electron shells, in other words that the energy

of the photons emitted corresponded to the difference in energy in the emissions of

α particles, demonstrating that quantum theory also applies to the energy levels of

the nucleus. For example, the decay of 228
90Th is as follows:

first time in spectroscopy alpha of the method of focus in 180�, allowed him in 1929 to obtain an

unequalled dividing power and to observe 4 different lines in the spectrum of the bismuth 214.

Follows itself the discovery of the fine structure of the α spectrum, which lines are not unique as it
was believed previously (the lines being very close possibly confused in a unique macro-line). He

published his original works in the reference textbook (Rosenblum 1932). Of Jewish origin and

naturalized French in 1929 thanks to the help of Marie Curie, Salomon Rosenblum spent 3 years of

exile in the United States (1941–1944) during the German occupation of France. He eventually

became friend with Albert Einstein. After the Liberation, he returned back in France as Director of a

new laboratory CNRS(NATIONAL CENTER FOR SCIENTIFIC RESEARCH), at first to Belle-

vue where took place the first experiments on the neutrons post-war years in France, then in Orsay.

Salomon Rosenblum

Experiments on neutrons in some cave in Bellevue laboratories

–Public domain
36Salomon Rosenblum: Structure fine du spectre magnétique des rayons alpha du thorium [Fine

structure of the magnetic spectrum of alpha rays from thorium], Comptes-rendus de l’Académie

des Sciences, No 188, pp. 1401–1403 (1929)
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Photo 1.19 Chemical preparation of radium at the beginning of the twentieth century in the

factory of Nogent-sur-Marne, France. Radium is dissolved with some bromide of barium, the

barium having chemical properties similar to the radium, then the bromide of radium is separated

from the bromide of barium by the method of the split crystallizations (adapted from “La Science
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Photo 1.19 (continued) et la Vie” of January, 1914, Public domain). One can expect radiopro-

tection problems by handling concentrated solutions of radium with no gloves !, The factory of

Nogent was built by Emile Armet de l’ Isle (1853–1928) and it was the first one to the world as

soon as 1904 to produce radium salts by using the process of the Curie with whom he works

closely. Armet de l’Isle also initiated the prestigious scientific journal “The Radium”

A

B

D

C

Q

P

E

Radium

Fig. 1.18 The piezo-electric balance invented by Pierre Curie. The idea is to counter-balance the

electricity produced by a standard weight stretching a piece of quartz (circa 1904)

Fig. 1.19 The capacitor discharge technique: radioactive material is put on the trays made of brass

of the capacitor, trays are isolated with amber from the rest of the apparatus. The supporting tray is

previously charged from a battery and the operator measures the time of discharge (circa 1910,

Public domain)
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Fig. 1.20 The gold foil

electroscope: the idea is to

measure the speed of the

discharge of a previously

charged gold foil

(by looking at the

movement of the foil in

front of a reticular). The

operator must have a pair of

sharp eyes and a precise

chronometer! (circa 1910,

Public domain)
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Fig. 1.21 Radioactive

decay of an isotope of initial

concentration N0
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Fig. 1.22 Energy diagram

of α decay
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228
90Th ! 224

88Ra þ 4
2Heþ2e þ Eα

224
88Ra
Metal

! 220
86Rn

Gaseous

þ 4
2He

þ2e þ Eα

8<
:

The term Eα denotes all decay energy, whether in the form of recoil kinetic

energy of the isotope formed, kinetic energy from the α particle itself, or energy

from the photon(s) emitted. Figure 1.23 gives a decay diagram showing several

modes of disintegration of 226
88Ra.

A considerable percentage of disintegration results in an excited level of 222
86Rn

and in the emission of a de-excitation photon. Where there are several photons

corresponding to several different modes, we obtain an emission spectrum quantified

by the excitation states of the daughter nucleus. Alpha radiation involves “heavy

nuclei” (Z� 82, actinides and rare earth elements) with the exception of one or two

fission products such as 144Nd, which emits a particle at 1.9 MeV with a half-life of

5 1015 years. According to the laws of classical mechanics, no α particles of less than

20 MeV should be able to cross the Coulomb barrier (Fig. 1.24).

However, the α energy emitted by α radioactivity is of the order of 4–5 MeV.

The explanation for this apparent contradiction is that the wave function Ψ of α

Fig. 1.23 Decay scheme of 226
88Ra

Fig. 1.24 Wave function of an α particle in the Coulombic field of a nucleus

66 1 Fundamentals of Nuclear Physics



particles of 4 MeV has non-zero values outside the potential well, enabling the

expulsion of the α particle. This occurs through the tunnel effect (Fig. 1.25).
Max Born (1882–1970), Nobel prizewinner in 1954, showed that the probability

of the presence of a particle was proportional to the square of the wave function. If

the wave function of the particle is not zero outside the potential well of the heavy

nucleus, it can overcome the barrier: this is known as the tunnel effect or tunneling.

The emission spectrum of α particles is inherently discontinuous (ray spectrum).

Alpha particles take with them an energy that maybe calculated if the initial and

final energy levels of the nucleus are known. If the resulting level is above the

ground state, de-excitation occurs via γ radiation. In some cases, the spectrum may

be reduced to a single ray, as with uranium 235, which emits only α particles at

4.5 MeV. Alpha particles are charged and heavy (3729 MeV/c2� 4 uma), and are

therefore quickly stopped and absorbed in situ, or they may be stopped by a thin

aluminum sheet. Even air is sufficient to stop α radiation within a few tens of

centimeters. In uranium oxide, emission of an α particle results in the displacement

of around 150 atoms, although the recoil of the emitting nucleus (of the kinetic

energy of 100 keV) results in displacement of around 1500 atoms, due to its far

greater mass.

It is possible to determine from the energy balance whether or not disintegration

can occur.

MX c
2 ¼ MY c

2 þMα c
2 þ Eα

c

kinetic

energy

þ EY
recoil

recoil

energy

Qα ¼ MX � MY þMαð Þ½ �c2

8>>>><
>>>>:

which is possible where MX�MY�Mα. In terms of binding energy, this results in:

Fig. 1.25 Trajectory of α particles in dry air
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EBinding X � EBinding Y 
 EBinding α ¼ 28:33 MeV

With long emission periods, the energy of alpha particles is low, and vice versa.

This is the Geiger-Nuttal law.

1.13.2 β� Decay

(Konopinski 1966; Lilley 2001, p. 74)

β� decay is an isobaric transformation in which the number of nucleons is

conserved. A nuclear neutron is transformed into a proton through the emission

of an electron and an antineutrino.

1
0n ! 1

1p þ 0
�1e

� þ ν

In its free state, a neutron is itself β� radioactive, with a half-life of 12.8 minutes

and 783 keV of liberated energy. Inside the nucleus, however, the neutron “loses”

this property and the radioactivity of the isotope is no longer dependent upon that of

the neutron, but it has its own half-life.

β�decay: AZX ! Zþ1
AY þ 0

�1e
� þ Eβ� ð1:9Þ

A point of interest to reactor physicists is the existence of a very rare form of

decay known as double beta decay, which poses the twin problem of the emission

and mass of neutrinos; it is also of historical value since it enabled the discovery of

non-conservation of parity (Klapdor-Kleingrothaus 2001):

A
ZX ! Zþ2

AY þ 0
�1e

� þ 0
�1e

�

An important example of β� decay in reactor physics is that of 241
94Pu , a fissile

isotope, which produces the isotope 241
95Am , an important neutron absorber. This

phenomenon, known as americium build-up, poisons plutonium, requiring the

loading of corresponding fissile quantities into the reactor due to the inevitable

ageing that occurs between the reprocessing phase and the manufacturing phase of

mixed oxide fuel comprising UO2 and PuO2 (MOX).

241
94Pu ! 241

95Amþ 0
�1e

� þ Eβ� Half-life T ¼ 14:4 years: JEF2ð Þ

It should be noted that the decay of 4019K, which is present in the human body (its

massic abundance in natural potassium, is 40
19K=Ktotal ¼ 0:01%):
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40
19K ! 40

20Caþ 0
�1e

�
T ¼ 1:2 109 years:

The decay of tritium, a hydrogen isotope containing 3 nucleons, which poses

radioprotection problems in PWRs due to its extreme propensity for migration, is:

3
1H

Tritium

! 3
2He

Helium 3 highly absorbant

þ 0
�1e

�

Beta decay is the most common form of radioactivity; in particular, the majority

of fission products emit β� radiation. It is thus the primary cause of residual power

in nuclear reactors following shutdown (or scram). If we evaluate the total

decay energy Q of the decay A
ZX ! Zþ1

AY þ 0
�1e

� þ Eβ� by mass defect

MX �MY � me�ð Þc2, Q is consistently equal to the maximum energy of the emitted

electrons, while experimentally, a spectrum continuous in energy up to Emax is

emitted.

The question of what happens to the difference Emax�E puzzled physicists for a

long time, to the extent that some even doubted the principle of conservation of

energy. It was Enrico Fermi who first proposed a theory of β decay based on the

existence of the neutrino37 (“little neutron” in Italian), which is known today as the

electron antineutrino ν (Fig. 1.26).
This particle, which is neutral and apparently of zero mass (despite numerous

experiments, it has still proved impossible to determine whether the mass is in fact

pure zero), carries away on average around 2/3 of the energy of the process.

Because of its inherent characteristics, this particle is extremely difficult to detect

(no-mass particles poorly interact), since out of every 1010 neutrinos or more

reaching and passing through the planet Earth from space, only one will be captured

(by the process: ν þ 1
1p ! 1

0n þ 0
1e

þ
). For a neutrino not subject to electromag-

netic force and of infinitesimal or even zero mass, matter is practically transparent.

Enrico Fermi’s work on β decay won him the Nobel Prize in 1938. The total energy

of β� decay, Qβ� , is given by the following mass equation:

M Xð Þ c2

with Z electrons
since electrically neutral

¼ M Yð Þ c2

with Z electrons

þme�c
2 þ EY

recoil
� 0

þmνc
2

� 0
þEe�

kin þ Eν
kin|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Emax

þEγ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Qβ�

Mass M(Y) contains only Z electrons since it is the disintegration of the neutron

that produces the new electron emitted: 10n ! 1
1p þ 0

�1e
� þ ν, and atomic mass Y is

by definition the mass of the neutral atom containing Z + 1 electrons, so that:

37Enrico Fermi: Tentativo di una teoria dei raggi β [Attempt at a Theory of β Rays], Nuovo
cimento, No 11, pp. 1–19 (1934)
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M Yð Þ c2

Z electrons

¼ M Yð Þ c2

with Zþ1 electrons|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Atomic Mass Y;Að Þ c2

�me�c
2

Hence: Qβ� ¼ Matomic Z;Að Þ �Matomic

	
Z þ 1;A


� 
c2

This energy cannot be completely recovered since the kinetic energy of the

neutrinos is lost (as neutrinos interact very little with matter). An interesting case of

β� decay is that of 14
6C (carbon-14) and its applications in carbon dating (Annual

review of nuclear science Vol. 2 1953, p. 63). Isotope 14
6C is formed following the

capture by 14
7N of secondary neutrons due to bombardment by cosmic rays (Annual

review of nuclear science Vol. 2 1953, p. 335), (Valentin 1982a, b, p. 78; Progress

in nuclear physics Vol 8 1960a, b, p. 1):

Production of 14
6C:

1
0n þ 14

7N ! 14
6C þ 1

1H þ 0:62 MeV ð1:10Þ

Isotope 14
6C is thus present in natural carbon, but consists of β� radiation with a

half-life of 5730 � 40 years (JEF2).

14
6C ! 14

7N þ 0
�1e

�

If bombardment is constant, the quantity of 14
6C in carbon dioxide is also

constant. Living creatures, which continually exchange with the CO2 atmosphere

through breathing, also have a constant level that diminishes after their death

(cessation of breathing), and it is this phenomenon that forms the basis of 14
6C

dating. It should be noted that this method may be used to investigate only a very

short time period (between today and some 100,000 years in the past), which is far

less than the age of our planet. It was Willard F. Libby (1908–1980), the Nobel

Prize winner for chemistry in 1960, who developed carbon dating at the end of the

1940s with the assumption that the 14
6C=

12
6C ratio remains constant in the atmo-

sphere over time. It should also be noted that only living organisms actually

participating in the carbon cycle may be dated (wood, bone, plant and animal

tissue, etc.). Minerals and metals cannot in any event be dated using this technique

(regarding specific problems with dating, see (Radioactive dating 1967)). In prac-

tice, in comparison with other dating methods (geological strata, dendrochronology

consisting of counting the number of rings in trees, extraction of ice samples from

deep below the Arctic surface), it has been shown that concentrations of 14
6C have

1.782 MeV
Si28

14

Al28

13

- 2.865 MeVβ

γ

Fig. 1.26 Example of a β�

decay scheme: the β� decay

of 28
13Al produces

28
14Si
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not always been constant over the centuries. This is due primarily to the fact that the

Earth’s magnetic field has varied throughout the course of history (the stronger the

magnetic field, the less the ability of charged particles to reach the high atmosphere

and produce 14
6C ). Important progress has been made in 14

6C dating using the

Tandetron, a mass spectrometer coupled with a tandem accelerator. In particular,

AMS (Accelerator Mass Spectrometry) allows direct reading of the ratio of 146C=
12
6C

without having to wait a long time for the threshold for counting of 14
6C disintegra-

tions to be reached when seeking to measure very old materials. The sample size

necessary for measurement by Tandetron is around 1 mg. It has thus been possible

to date the prehistoric paintings in the Cosquer Cave near Cassis in the south of

France to around 20,000 years, without harming the originals in any. We thus have

extremely precise historical data on the abundance of 146C in the atmosphere, reliable

to a time 9000 years ago, thanks to comparative studies using dendrochronology.

For earlier times, lake sediments presenting seasonal alternation enable compari-

son, although more widely dispersed, until 25,000 years ago.

1.13.3 β+ Radioactivity

(Konopinski 1966)

On transformation into a neutron, a nuclear proton emits a positron, e+ (positive

electron, (Valentin 1982a, b, p. 78)), and a neutrino (Fig. 1.27):

1
1p ! 1

0n þ 0
1e

þ þ ν

Applied to the nucleus, this expression may be written as follows:

βþdecay: AZX ! Z�1
AY þ 0

1e
þ þ Eβþ ð1:11Þ

The total decay energy, Qβþ , is given by the mass equation:

β+
0.542 MeV

γ
1.277 MeV

Ne22

10

Na22

11
Fig. 1.27 Example of a β+

decay scheme
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M Xð Þc2
with Z electrons

¼ M Yð Þc2
with Z electrons

þmeþc
2 þ EY

recoil þ Eeþ
kin þ Eν

kin|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Emax

þEγ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q
βþ

since a positron occurs through decay of a proton: 11p ! 1
0n þ 0

1e
þ þ ν as follows:

M Yð Þc2
with Z electrons

¼ M Yð Þc2
with Z�1 electrons|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Matomic Z�1;Að Þ

þme�c
2

and the mass of the electron is identical to that of the positron, we see that:

Qβþ ¼ Matomic Z;Að Þ �Matomic

	
Z � 1;A


� 2 me

� 
c2

1.13.4 Electron Capture

A peripheral electron bound to an atom (often an electron in the K shell) will

combine with a proton located in the nucleus to give a neutron:

0
�1e

�	 

A
ZX

þ A
ZX ! Z�1

AY þ Xray

This phenomenon is explained by the capture of an electron by a nuclear proton

(Fig. 1.28):

0
�1e

� þ 1
1p ! 1

0n

The resulting electron rearrangement leads to X-ray emission characteristic of

element Y. The mass number is conserved. Electron capture produces the same

isotope as β+ decay, albeit through an entirely different process.

0
�1e

�	 

7
4B
e þ 7

4Be ! 7
3Liþ EX

Li7

3

X
EC0 (88 %)

EC1 (12 %)

Be7

4

0.478 MeV

Fig. 1.28 Decay scheme of

electron capture of 7
4Be
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1.13.5 γ Radioactivity

Photon emission, discovered in 1900 by Paul U. Villard,38 is the most common way

in which an atomic nucleus loses its energy (compared with other types of radio-

activity which are possible for metastable nuclei) (Fig. 1.29).

Although the probability of transition from the first excited nuclear state to the

ground state is relatively small, this corresponds to a period sufficiently long to be

measurable. The term nuclear photon is used to describe such photons emitted by a

nucleus to distinguish them from photons emitted by rearrangement of an electron

shell, which are referred to as X-rays or visible light. In this case, an excited isotope
is said to be metastable, and the excited and fundamental isotopes are isomers. The
γ radiation of nuclear de-excitation is thus a form of electromagnetic radiation

identical to visible radiation but occurring at a lower wavelength. The decay

equation is as follows:

γ decay: AZX
∗ ! A

ZX þ Eγ ð1:12Þ

For example, the γ decay of the isotope 242m
95Am, an isomer of

242
95Am, is as follows:

38Paul Ulrich Villard (1860–1934) was a French chemist who worked in the chemistry Department

of the Ecole Normale in the “rue d’Ulm” in Paris. In 1900 he discovered within radium radiation a

form of radiation unaffected by magnetic fields: γradiation. He entered the “Académie des

Sciences” in 1908.

(Public domain)
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242m
95Am ! 242

95Am þ Eγ

The indexm denotes metastable, in other words a specific excited state. For more

excited states the indices n, o, etc. are used. It is not impossible for certain excited

states to have longer half-lives than the ground state. Where there may be any

doubt, the terms short life and long life are used to distinguish between two such

isotopes, as for example with the isotopes 236
93Nplong and 236

93Npshort. Care should be

taken to avoid confusing this nuclear de-excitation due to photons with the emission

of a photon due to quantum leap, which is not a form of radioactivity.

1.13.6 Internal Conversion

(Kaplan 1956, p. 298)

A nucleus in an excited state generally releases energy through the emission of a

photon in the event of γ radioactivity; however, this energy may also be transferred

to a bound electron that is ejected and generally emits an X-ray photon due to

rearrangement of the electron shell, with the transfer of kinetic energy E0�EL

where E0 is the available excitation energy and EL is the binding energy of the

electron thus ejected.

The term conversion electron is used for the ejected electron. Up to 8 different

conversion rays can be seen (Fig. 1.30).

This phenomenon leads to electrons having highly specific energies, while β�

emission produces a continuous spectrum. These discrete rays are superimposed in

the continuous spectrum when β� radioactivity leaves the isotope in an excited state

enabling internal conversion (Lilley 2001, p. 71). As an example, consider meta-

stable 56
137*Bawith a half-life of 2.55 minutes. The isotope resulting from the internal

conversion is fundamental but ionized barium (Fig. 1.31):

56
137*Ba ! 137

56Ba
þ þ 0

�1e
�

Internal conversion is only really important for low-energy transitions in heavy

nuclei. If a nucleus has an excitation energy greater than 1.022 MeV that it is unable

to release:

– by means of internal conversion, since it is forbidden by a quantum selection

rule,

– or by emission of a photon through γ decay.

hvXA
Z

*XA
Z

Fig. 1.29 γ decay scheme
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An electron-positron pair may be formed (Filippi 1965, p. 224), which will carry
away the residual energy as kinetic energy (Berthelot 1956, p. 117). Here, the term

internal materialization is used to denote a phenomenon comparable with the

creation of an electron-positron pair when a photon passes through an electromag-

netic field.

1.13.7 (β�,n) Decay or Neutron Decay

(β�,n) decay, which occurs with radioactive fission products with a particularly

high excess of neutrons, combines simultaneous emission of an electron (β�) and a
neutron. The neutrons thus produced are known as delayed neutrons, since they are
not emitted instantaneously after fission but according to the radioactive half-life of

(β�,n) decay specific to the fission product.

β�; nð Þ decay: AZX ! A�1
Zþ1Y þ 0

�1e
� þ 1

0nþ Eβ� ð1:13Þ

Fig. 1.30 Decay scheme of 56
137*Ba

a b

Fig. 1.31 Internal conversion. (a) Energy transferred to an ejected electron. (b) Rearrangement of

the electron shell and emission of an X photon
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(β�, n) decay is also known as neutron decay, a relatively imprecise term that

can cause confusion, particularly since the neutron is itself radioactive in the free

state, a good reason to avoid the use of such term.

1.13.8 Spontaneous Fission

(Mayo 1998, p. 215)

This occurs with very heavy nuclei such as 252
98Cf (californium). The heavy

nucleus naturally splits into two lighter parts due to tunneling (passage over the

fission barrier) while also emitting neutrons (ν ¼ 3:782 in the case of 252
98Cf ). In

general, even-even nuclei have a strong tendency towards spontaneous fission:

230
90T h, 232

90Th,
232
92U, 234

92U, 236
92U, 238

92U, 236
94Pu,

238
94Pu,

240
94Pu,

242
94Pu,

242
96Cm,

244
96Cm,

246
96Cm,

248
96Cm

as do several odd-even pairs: 235
92U, 239

94Pu,
241
95Am

Spontaneous fission consists of disintegration regulated by a half-life like all

forms of decay. It is often confused with induced fission brought about by neutron

flux, although this reaction ceases in the absence of flux. Statistical studies have

shown that the branching ratio of spontaneous fission decay of heavy isotopes with

an even atomic number Z, and defined by:

λfs � Br λtotal

is empirically correlated by Y. Ronen’s ratios39 as a function of the parameter

2Z�N:

log10(Br) = 1,6247�0,0545Z� 1,03612�0,0687(Z�N)� 114,66�4,8

1.14 Radioactive Decay Branches

Radioactive decay chains are frequently depicted as series of boxes symbolizing

isotopes. Logically, the tendency is to place the atomic mass number A along the

x-axis and the atomic number Z along the y-axis (Fig. 1.32).

In our text, we shall use systematic shifting by one place for mass numbers

between two rows of Z, which will enable us to show more developed decay chains

on a single page. Indeed the physical predominance of neutron captures results in a

39Yigal Ronen: The systematic behaviour of the spontaneous fission branching ratios of even-Z
isotopes, Nuclear Science and Engineering, 160, 144–147 (2008). Ronen teaches at the

Ben-Gurion University (Israel), where he specializes in the physics of minor actinides. Several

of his reference books have been published by CRC.
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tendency to “shift to the right”, which simply means that the right-hand side of the

page is rapidly reached. α radioactivity poses the same problem, but this time with

movement towards the left. We will thus depict the isobaric decay chain for 140
54Xe

(Fig. 1.33). Some isotopes in fact have several competing modes of decay, meaning

that disintegration of the isotope in question does not always have the same effect.

In this case a statistical branching is defined that enables the modes of production to

be quantified. The sum of these branching ratios is 1.X
possible

decay

paths

branching ratios ¼ 1

This phenomenon is clearly illustrated by the example of 64
29Cu, which follows

β�, β+ and electron capture (EC) decay modes. The Becquerel equation of 6429Cu is
as follows:

or

Fig. 1.32 Graphic

representation of decays
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d 64
29Cu
	 

dt

¼ �λ64
29Cu

64
29Cu
	 


That of 64
30Zn shows Brβ� branching, which indicates the proportion of β� decay

in the decay of 64
29Cu (Fig. 1.34):

d 64
30Zn
	 

dt

¼ þBrβ� λ64
29Cu

64
29Cu
	 


Meanwhile, the equation for 64
28Ni is:

d 64
28Ni
	 

dt

¼ þBrβþ λ64
29Cu

64
29Cu
	 
þ BrEC λ64

29Cu
64
29Cu
	 


The study of successive decay paths is a generalization of the problem for three

isotopes (Bessis 1978, p. 39; Reine 1960, p. 73): radioactive isotope N1 with a decay

constant of λ1, decays to N2, itself radioactive, which itself decays with a decay

constant of λ2 to a stable isotope, N3(Mayo 1998, p. 182).

Fig. 1.33 Decay chain of 140
54Xe
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N1 !λ1 N2 !λ2 N3 stable:

Let us examine the activity ai(t) of these different isotopes under several

hypotheses. The concentration of N1 is given by:

dN1

dt
¼ �λ1N1 ¼ �a1 tð Þ ) N1 tð Þ ¼ N0

1 e�λ1t

That of N2, according to the hypothesis of N0
2 ¼ 0, is given by:

dN2

dt
¼ λ1N1 � λ2N2 ¼ a1 tð Þ � a2 tð Þ

N2 tð Þ ¼ λ1N
0
1

e�λ1t � e�λ2t

λ2 � λ1

� �
8>><
>>:

The activity a1(t) may be readily obtained from the previous expression:

N2 tð Þ ¼ λ1 N0
i e�λ1t|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
a1 tð Þ

1� e� λ2�λ1ð Þ t	 

λ2 � λ1

¼ a1 tð Þ 1� e� λ2�λ1ð Þ t	 

λ2 � λ1

Activity a2(t) is thus given by: a2 tð Þ ¼ λ2a1 tð Þ 1� e� λ2�λ1ð Þ t	 

λ2 � λ1

The concentration N2(t) is maximal where dN2(t)/dt¼ 0, i.e. where the two

activities are equal, since dN2(t)/dt¼ a1(t)� a2(t), and thus where

λ2
1� e� λ2�λ1ð Þ tm
	 


λ2 � λ1
¼ 1, which leads to (Fig. 1.35):

Fig. 1.34 Decay chain of
64
29Cu which has several

competing modes of decay
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tm ¼ Inλ2 � Inλ1
λ2 � λ1

Several scenarios may be imagined according to different values of λ1 and λ2. If
λ1> λ2, the activities ratio may be simplified to:

a2 tð Þ
a1 tð Þ ¼

λ2N2 tð Þ
a1

¼ λ2
λ1 � λ2

e λ1�λ2ð Þ t � 1
� �

which increases and tends towards infinity as time tends towards infinity. Where it

is limited i.e. λ1> > λ2, e λ1�λ2ð Þ t � eλ1t and λ2/(λ1� λ2)� λ2/λ1, activity a2(t)
tends towards: a2 tð Þ � λ2 N0

1 e�λ2t.

Activity a2(t) quickly becomes independent of a1(t). Isotope N1 rapidly gives

way to its daughter isotope, and it may almost be said that N2 is the head of an initial

concentration chain N0
1. This is known as chain reduction, and is the case with

decay of 131
52Te:

131
52Te !

T1¼ 1:25 days

131
53I !

T2¼8 days

131
54X

However, where λ1< λ2, the activities ratio:

a2 tð Þ
a1 tð Þ ¼

λ2
λ2 � λ1

1� e� λ2�λ1ð Þ t
� �

increases as t2 [0, λ2/(λ2� λ1)], and we speak of transient equilibrium.
In the extreme case in which λ1< < λ2, the activities ratio tends towards

λ2/(λ2� λ1):

Fig. 1.35 Activity of a

parent isotope and of its

radioactive daughter
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a2 tð Þ
a1 tð Þ ¼

λ2
λ2 � λ1

1� e� λ2�λ1ð Þ t
� �

� λ2
λ2 � λ1

which will be very slightly greater than 1. Here, we talk of secular equilibrium. As
soon as an atom of N2 appears, it decays immediately, and its activity is thus

practically equivalent to that of its parent.

The decay chain of 226
88Ra provides a perfect illustration of secular equilibrium:

the activity of 222
86Rn is practically equivalent to that of 226

88Ra.

226
88Ra ! 222

86Rn ! 218
84Po

1600 years 3:8 days

The special case of two isotopes N1 and N2 having the same half-lives, and thus

the same decay constant, λ, is highly unlikely in reality. The generic solution given

above cannot be applied in this case (division by (λ2� λ1) is no longer possible).

The solution for N2(t) may be obtained using the constant variation method

(Figs. 1.36, 1.37 and 1.38):

N2 tð Þ ¼ C tð Þ e�λt

hence :
dN2 tð Þ
dt

¼ dC tð Þ
dt

e�λt � C tð Þ λ e�λt

and :
dN2 tð Þ
dt

¼ �λN2 þ λN1 ¼ �λ C tð Þ e�λt þ λ N0
1 e�λt

giving:
dC tð Þ
dt

¼ λN0
1

By integration, we obtain:C tð Þ ¼ λ N0
1 tþ B. Constant Bmay be found by N2(t)¼

B¼ 0 hence:

Fig. 1.36 Rapid decay of

the head of a chain
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N1 tð Þ ¼ N0
1 e�λt

N2 tð Þ ¼ λ N0
1 t e�λt

a2 tð Þ
a1 tð Þ ¼

λ λ N0
1 t e�λt

λ N0
1 e�λt

¼ λt

1.15 Heavy Nucleus Chains

(Hyde et al. 1964; Joliot-Curie 1946)

All of the actinide decay chains may be grouped into four distinct chains

(Fig. 1.39):

– The 235U/239Pu chain, which decays to stable lead-207 via successive α and β
decay, which are greatly accelerated after thorium-227.

– The 233U/241Pu chain, which decays to stable thallium-205 via successive α and

β decay, which are greatly accelerated after thorium-229. Bismuth-209, which

occurs at the end of the chain, was considered stable until 2003 (at which point it

Fig. 1.37 Daughter decays

more rapidly than the parent

Fig. 1.38 Rapid decay of

the daughter
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was the only naturally-occurring stable isotope of bismuth), when a French team

detected its α radioactivity40 and successfully determined its extremely long

half-life (T¼ 1.9�0.2 1019 years). By comparison, the estimated age of the

universe is 13.7 billion years based on the Hubble constant, H0¼ 75 km/s/

Mpar sec.

– The 238U/242Pu chain, which decays to stable lead-206 via successive α and β
decay, which are greatly accelerated after radon-222, despite the fact that

relatively long-lived lead-210 occurs between the rapid isotopes.

– The 236U/240Pu chain, which decays to stable lead-208 via successive α and β
decay, which are greatly accelerated after thorium-228.

This chain comprises in particular the sub-chain 239
92U ! 239

93Np ! 239
94Pu,

which is the main mode of formation in reactors and plays an important role in the

residual power present for a short period following reactor shutdown (Fig. 1.40).

This chain comprises in particular the sub-chain 241
94Pu ! 241

95Am, which

diminishes the quality of stocked plutonium (Figs. 1.41, 1.42 and 1.43).

Fig. 1.39 Parent and

daughter having the same

half-life

40P. De Marcillac, N. Coron, G. Dambler, J. Leblanc, J.P. Moalic: Experimental detection of
α-particles from the radioactive decay of natural bismuth, Nature, Vol. 422.
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Chapter 2

Interaction Between Neutrons and Matter

Studying the behavior of neutrons in a reactor enables us to understand how fission

phenomena occur and how they may be controlled in a power reactor. The science

of neutrons, or neutron physics, is greatly indebted to Enrico Fermi, who contrib-

uted extensively to the mathematics in this field thanks to his initial mathematical

training. The relatively slow speed of neutrons in reactors nevertheless means that

no relativistic effects need to be taken into account, which greatly simplifies

calculations. However, this speed is not always sufficiently rapid to allow the

intrinsic speed of target atoms to be overlooked due to the temperature. In this

context, the notion of reference frameworks (laboratory or center of mass) is thus

capital.

2.1 Neutron Scattering

(Egelstaff 1965; Egelstaff and Poole 1969)

Neutron scattering1 in the core of a nuclear reactor is of central importance to an

understanding of reactor physics. The word scattering is frequently found in

different sciences, particularly in thermics and in chemistry, and refers to the

same physical phenomenon, namely the collision between two atoms or, in our

case, the collision between a neutron and an atomic nucleus. We can first of all carry

out a didactic analysis of the collision between neutrons and matter by comparing it

with the collision between two “balls” of different (or equivalent) size. Those who

play pool thus have a very practical grasp of the notion of scattering. Scattering is

said to be elastic when kinetic energy is preserved, in other words, the objects

involved in the collision retain their fundamental state. Scattering is termed inelas-
tic if at least one of the objects involved undergoes excitation, with removal of

1The index s generally refers to data items relating to scattering.
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energy from the kinetic energy balance (in concrete terms, there is no longer

conservation of kinetic energy before and after the collision). The elastic scattering

of spin nucleons by nuclei comes under the general theory of quantum physics of

Wolfenstein and Ashkin2, which is too complex to be adequately dealt with here

(see Progress in Nuclear Physics Vol 8 1960b, p49), and the mathematical aspects

of which are dealt with in Lax and Phillips (1967). For the present purposes, we

shall simply analyze elastic scattering by means of calculation using the Newtonian

formulation of speeds before and after the collision of impenetrable particles. The

notion of frameworks is of fundamental importance in this setting. It is important to

clearly distinguish the laboratory framework, which is of capital interest to the

observer, who is generally associated with the laboratory, and in which reactor

physics calculations are carried out, from the center-of-mass framework, which
enables certain physical calculations to be simplified.

2.1.1 Elastic Scattering on a Fixed Target

(Delcroix 1959, p1; Mayo 1998, p95; Meghreblian and Holmes 1960, p69)

We will therefore study elastic scattering as a phenomenon identical to the

collision between two pool balls in Newtonian mechanics, with the difference

being that in general, neutrons have a far lower mass than their target, except

where the target is a hydrogen nucleus comprising a proton of much the same mass

as that of a neutron. We will begin (we shall see the second phase of this reasoning

in Chap. 7) by assuming that speed of a neutron projectile is extremely high

compared to the thermal agitation of the nucleus taken as a fixed target. The

hypothesis of inelastic scattering is based on the notion that the energy of a neutron

does not in theory exceed the excitation energy of the first excited state energy level

of the target atom. This energy may have very different thresholds depending on

target, ranging from several tens of keV for relatively heavy nuclei such as uranium

to several MeV for light nuclei. Inside a reactor, no neutrons produced from fission

have an energy greater than 14 MeV and the experimental mean of the fission

spectrum is 2 MeV.

In quantitative terms, elastic scattering thus represents the largest number of

collisions within the reactor, as we shall see below. In the laboratory framework, a

neutron of speed v collides with a nucleus of atomic massM, which is considered as

being initially immobile. The speeds after collision are denoted by 0 (prime). In the

center-of-mass framework in which speeds are denoted by�, the neutron and target

approach the center of mass where they will collide (Figs. 2.1, 2.2 and 2.3). The

physical laws of collision involved the real masses of particles. In the laboratory

framework, the very definition of the center of mass, G, is given by the vectorial

relationship M þ mð ÞOG�! � m On
�!þMON

�!
, which is derived in relation to time:

2L. Wolfenstein and J. Ashkin, Physical Review, 85, 947 (1952).
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M þ mð Þ dOG
�!
dt

¼ m
d On
�!
dt|ffl{zffl}
~v

þM
dON
�!
dt|fflfflffl{zfflfflffl}
~0

before the collision in the laboratory frame. Since the target is fixed, the vector ON
�!

does not vary with time; its temporal derivative is nil. Through the definition of the

speed of the neutron at position n, we have ~v ¼ d On
�!

=dt.

Giving: ~vG before
collision

¼ dOG
�!
dt

¼ m

M þ mð Þ~v

AFTERBEFORE

Target 

nucleus

n

Fig. 2.1 Elastic scattering

Nucleus

of mass M
and position N

G

v�
'v

'V
neutron

of mass m
and position n

ϕ
θGv�

Before scattering After scattering

0=V

O

Fig. 2.2 Elastic scattering at the laboratory frame
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Mv
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Before scattering After scattering

'⊗v
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Fig. 2.3 Elastic scattering on fixed target at center of mass frame (speeds are marked �)
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In the frame of reference of the center of gravity, V�
�! ¼ dGN

�!
dt

¼ � m

M þ mð Þ~v
before collision since:

ON
�! ¼ OG

�!þ GN
�!

~0 ¼ dOG
�!
dt

þ dGN
�!
dt

and
dOG
�!
dt

¼ m

M þ mð Þ~v

8><>:
Similarly, ~v� ¼ d Gn

�!
dt

¼ M

M þ m
~v before collision since:

On
�! ¼ OG

�!þ Gn
�!

d On
�!
dt

¼ dOG
�!
dt

þ d Gn
�!
dt

) ~v ¼ m

M þ m
~vþ d Gn

�!
dt

8<:
The conservation of kinetic energy at the center of mass frame (the hypothesis on

which elastic scattering is based) is given by:

1

2
M

mv

Mþm

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

V�

2

þ1

2
m

Mv

Mþm

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

v�

2

¼ 1

2
mv0�

2þ1

2
MV02

� at the center of mass frame

At the center of mass frame, m~v0�þM ~V0
� ¼~0¼ Mþmð Þ ~v0G�|{z}

0by
definition

) v0� ¼M
mV

0
�

Since the impulse is nil, this means that the speeds are opposite and collinear and

of modules inversely proportional to the masses.

Hence:
v� ¼ M

M þ m
v ¼ v0�

V� ¼ m

M þ m
v ¼ V0

�

8><>:
It should be noted that there is no variation in speed at the center of mass frame.

This is a highly specific characteristic of elastic scattering in the center of mass

frame, the importance of which is now apparent. Note also that at the laboratory

frame, neutron speed decreases by a factor of M/(M+m), which varies inversely

with M. The speed at the center of mass G is nil before and after scattering at the

center of mass. Another value is also of great importance in characterizing scatter-

ing, namely the angle θ between the direction of travel of the scattered neutron and

its initial trajectory in the laboratory frame, which enables us to answer the
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fundamental question: In which direction does a neutron travel following collision?
The answer to this question allows increasingly precise of the complete trajectory of

the neutron in deterministic fashion. Conservation of the momentum ~p before and

after scattering in the laboratory framework is expressed as:

m~vþM: g~V
0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

before scattering

¼ m~v0|{z}
neutron

þM ~V0|ffl{zffl}
target|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

after scattering

Thus ~v ¼ ~v0 þM

m
~V0

Furthermore, M þ mð Þ ~v0G ¼ m~v0 þM ~V0 by definition of the center of gravity,

hence:

~v0G ¼ dOG
�!
dt

¼ m

M þ mð Þ ~v ¼ ~vG

The speed of the center of mass in the laboratory framework is constant before

and after scattering. The composition of the speeds in the two frameworks is given

by:

Projecting onto 0x (Fig. 2.4):

v0 cos θ ¼ m

M þ m
vþ v0� cosΨ

where v0� ¼ M

M þ m
v

v02 ¼ m

M þ m
v

� �2

þ 2 cosψ
m

M þ m
vv0� þ v02�

Substituting v0�, we get: v
02 ¼ M2 þ 2Mm cosψ þ m2

M þ mð Þ2
 !

v2
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v0 cos θ ¼ mþMcosψ

M þ m

� �
v

v02 ¼ M2 þ 2Mm cosψ þ m2

M þ mð Þ2
 !

v2

8>>><>>>:
Where: cos θ ¼ mþMcosψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ 2Mm cosψ þ m2
p

is the cosine of the scattering angle in the laboratory framework (Fig. 2.4).

At this stage of the calculation, even though we are nearer to identifying the

angle (via its cosine), we can see that it depends on μ0¼ cosψ , a value shown in the
diagram of speeds after scattering in the center-of-mass frame. We thus have no

absolute knowledge of the scattering angle of the neutron, which is a concrete

example of the difficulty in determining exactly where a pool ball will land after a

collision! However, a key hypothesis that will enable us to progress is as follows: if

there are no directions of predilection for scattering, in other words scattering is

isotropic at the center of mass frame of a fixed target, the probability of scattering at

the solid angle dΩ is dΩ/4π. If scattering occurred consistently in the same plane,

there would be an equal probability of angle ψ assuming any value between 0� and
180�. However, since the scattering plane is not fixed, the cosine of angle ψ is

equiprobable between [�1, +1], which, in other words, predicts that the neutron

may be scattered anywhere within the 4π steradians of space around the collision in
the center-of-mass framework. In practice, this hypothesis has been amply verified

for light target nuclei and for energies below 1 MeV. The geometrical symmetry of

the nucleus also affects the isotropism of scattering. The mean value of cosθ, very
commonly noted μ, may also be calculated using the following hypothesis as

follows (Meghreblian and Holmes 1960, p78):

Velocity of neutron 

after scattering in 

centre of mass

Velocity of neutron 

after scattering in 

laboratory

v
mM

m
+

'v⊗

'v

Ψθ

N

y

0

= Velocity of centre of mass

x

Fig. 2.4 Velocity triangle (fixed target)
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cosθ¼

ð4π
0

mþMcosψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ2Mm cosψþm2

p dΩð4π
0

dΩ

¼

ð π
0

mþMcosΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ2Mm cosΨ þm2

p 2π sinΨ dΨð4π
0

dΩ¼ 4π

cos θ ¼ 1

2

ðþ1

�1

mþM xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2Mm xþ m2

p dx

¼ 1

2
m

1

Mm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2Mm xþ m2

ph iþ1

�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2m
M

þ
ðþ1

�1

M xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2Mm xþ m2

p dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�2

3
m
M

0BBBBBB@

1CCCCCCA
Ultimately,

Mean cosine of scattering angle in laboratory framework: cos θ ¼ 2

3

m

M
ð2:1Þ

where M is the mass of the target, m is the mass of the neutron, and θ is the

scattering angle of the neutron in the laboratory framework.

The mean energy after scattering may be calculated as follows:

E0 ¼ 1

2
mv02 ¼ 1

2
m

ðπ
0

M2 þ 2Mm cosψ þ m2

M þ mð Þ2
 !

v22π sinψ dψ

4π

¼ 1

2
mv2

�M2 cosψ þMm sin 2ψ � m2 cosψ

M þ mð Þ2
" #π

0

¼ E
M2 þ m2

M þ mð Þ2

These results, which are particularly simple, are only valid for isotropic scatter-

ing in the center of mass frame and the fixed target. They are thus not valid as

regards thermal energy in particular, since the speed of the neutron becomes

practically equal to that of the agitation of its target. This result is frequently

presented in reference works in the form cos θ ¼ 2= 3Að Þ, where A is the mass

number of the target (GA Vol. 1 1967, p209). This comes from a shortcut in writing

the equations, in which the mass of the neutron is taken as one unit of atomic mass

(in reality, 1.008 u) and the target is taken as having a mass of A units of atomic

mass. This is tantamount to replacing m by 1 and M by A in all the foregoing

formulae. These approximations are conventionally acceptable to within 1%. This

result shows that scattering is in fact not at all isotropic in the laboratory framework.

The mean value of angle θ in fact tends towards 90� as the mass number increases,

and for lower mass numbers, scattering occurs in the forward direction. Note the
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special case in which the mass of the target is equal to the mass of the incident

particle. The formula cosθ gives an indeterminate form when Ψ ¼ π, which can be

resolved using l’Hôpital’s rule on the limit of a quotient:

lim
cosΨ!�1

mþ m cosΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2m2 cosΨ þ m2

p
� �

¼
d mþ mxð Þ

dx

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2m2 xþ m2

p
dx

0B@
1CA

�1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2m2 xþ m2

p

m

 !
�1

¼ 0

This result shows that angle θ tends towards π/2. Where the masses are strictly

identical, the incident particle may be stopped dead with transmission of all its

energy to the target. Curiously, if mass m diverges fromM (even very slightly, as in

the case of a proton and a neutron), for cosΨ ¼ � 1, we have:

cos θ ¼ m�Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 2Mm þ m2

p ¼ 1 if m > M
�1 if m < M

�

Regarding the target nucleus, the cosine of angle φ cannot be negative, meaning

that the nucleus is consistently ejected in the forward direction (Berthelot 1956,

p14). It may also be seen that, disregarding the absorption problems of neutrons,

heavy materials have a greater reflective potential per atom (greater backscattering)

with regard to neutron scattering. However, this remark must be tempered by the

fact that the greater the mass number of the target, the less effective will be the

slowing down of neutrons, as we saw in our presentation of scattering laws

(Table 2.1).

Angle θ ¼ Arc cos cos θ
� 	

, which is in fact devoid of any physical meaning, is

only of value in demonstrating that this mean pseudo-angle rapidly tends towards

90� as the target mass number increases. Generally speaking, it is fairly standard to

consider scattering as isotropic at the center of mass. We know that inelastic

scattering is generally isotropic up to an energy of 1 MeV. With inelastic scattering,

this threshold falls to around 100 keV, thus seriously challenging the very widely

held belief that elastic scattering is always isotropic. In general, elastic scattering

tends to be mostly in a forward direction as the energy of the incident neutron

increases.

Table 2.1 Mean neutron deflection by target mass

Atom 1
1H

2
1D

9
4Be

12
6 C 238

92 U

A 1 2 9 12 238 1
cos θ 0.667 0.333 0.074 0.056 0.0028 0

Arc cos cos θ
� 	

48� 70.5� 86� 87� 89.8� 90�
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2.1.2 Elastic Scattering on a Moving Target

A key assumption in the foregoing calculations is that the target is completely

immobile. The use of neutrons as a means of investigating matter has resulted in a

great deal of theoretical work on the quasi-elastic interaction between neutrons and

both solids and liquids (Springer 1972). Within the bounds of reactor physics, the

atoms that make up the materials involved are subject to thermal agitation. We shall

examine this subject in greater detail in the chapter dealing with the Doppler effect.
In the present section, we shall simply examine the implications of the speed of the

target on the foregoing formulae. We saw that elastic scattering thus consists of

simple rotation of velocity vectors in the center of mass. If the target is mobile, the

speed triangle is modified as a result of speed ~V of the target prior to scattering: θ is
the scattering angle in the laboratory framework (between ~vG and ~v0), and ψ is the

scattering angle in the center-of-mass framework (Fig. 2.5).

It is important to note that angle θ, and thus its cosine, μ¼ cos θ, are not

independent of velocity v. All points P describing the entire sphere of radius v
0

may be reached with equal probability if the collision is isotropic in the center of

mass. The speed of the center of mass is given by:

~v0G ¼ dOG
�!
dt

¼ m

M þ mð Þ ~vþ
M

M þ mð Þ
~V ¼ ~vG

Hence: v2G¼
m2v2þ2mMvV cosφþM2V2

Mþmð Þ2 where φ is the angle between ~V and~v

If A ¼ M

m
and v2G ¼ v2 þ 2AvV cosφþ A2V2

Aþ 1ð Þ2 , the relative velocity of the neutron

in relation to the target is given by:

Gv

'⊗v

V

θ

⊗v

⊗V '⊗V

'v

v

ψ

ϕ

P

Infographie Marguet

Fig. 2.5 Velocity triangle

(moving target)
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~vr ¼ ~v� ~V with v2r ¼ v2 þ V2 � 2vV cosφ

further: ~v� ¼ A

Aþ 1
~vr, hence v0� ¼ v� ¼ A

Aþ 1
vr

Since: ~v0 ¼ ~vG þ~v 0�, we have: v02� ¼ v2G sin
2θ þ v0 � vG cos θð Þ2

And v02 ¼ v2G þ v02� þ vGv
0
� cosψ with v0� ¼ v0� ¼ A

Aþ 1
vr

Hence: cos θ ¼
v2G þ v02 � A2

Aþ 1ð Þ2 v
2
r

2vGv0

Regarding angle ψ , the isotropic scattering means that cosψ varies equiprobably

between�1 and 1, and the probability density is thus 1=2 for [�1, +1] and 0 elsewhere.

In reality, the collision is not isotropic in the center of mass, particularly at low

energies, where the chemical bond energy of atoms in molecules becomes consid-

erable in relation to the energy of the neutron, and at high energies, where forward

scattering becomes very marked. Overall, forward scattering is very slightly aniso-

tropic. This may be represented by a probability density biased towards forward

scattering with μ¼ cos θ and μ0¼ cosψ according to the following formula:

p μ0ð Þdμ0 ¼
1

2
1þ 3μ0 μ0ð Þdμ0

for which the mean value is
Ðþ1

�1
p μ0ð Þμ0dμ0 ¼

1

2

μ20
2
þ 3μ0

μ30
3

� �
 �þ1

�1

¼ μ0

μ0 is the mean value of the cosine of the scattering angle in the center-of-mass

framework, the theory of which enables an approximated value to be calculated as a

function of total energy:

E ¼ 1

2

mM

mþM
v2r ¼

1

2

mA

Aþ 1
v2r μ0 � 0:07 A

2
3E MeV½ �

Allowing for this anisotropy in the calculation of μ leads to a correction (Woods

1964) of the previous calculation (μ ¼ 2= 3Að Þ) that is valid when the temperature of

the moderator is low (and thus the speed of the target is low comparatively with that

of the neutron) and of the form:

μ ¼ 2

3A
þ μ0 1� 3

5A2

� �
Note that the degree of isotropy of scattering at the center of the laboratory

augments as the mass of the target increases.
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2.1.3 Moderator

The neutron emitted at energy E0 ¼ mv20=2, i.e. around 2 MeV in the case of

fission, may be slowed down in a thermal reactor to an energy of around

En ¼ 0.0253 eV (300 K, 2200 m/s).

E1 ¼ 1

2
mv21 ¼

1

2
m
M2 þ 2Mm cosψ þ m2

M þ mð Þ2 v20 ¼
M2 þ 2Mm cosψ þ m2

M þ mð Þ2 E0

Energy E1 is a random variable due to the presence of cosψ . The term 2Mm
cosψ before M2 +m2 may be reasonably overlooked (which is equivalent to con-

sidering a right-angle collision), and calculating the successive energy after

n collisions, we obtain:

Encollisions � M2 þ m2

M þ mð Þ2
 !n

E0 Thus: n ¼
ln

E0

En

� �
2� ln M þ mð Þ � ln M2 þ m2

� 	
It is now possible to calculate the approximate value of n that enables us to

obtain the thermal energy En¼ 0.0253 eV. The following table shows the percent-

age energy loss at the first collision as well as the approximate number of collisions

required to reach thermal energy (Table 2.2):

Obviously, this result is only an indication given the highly simplified hypoth-

eses on which it is based, namely considering the collisions as right angles. Reuss

(2004, p190) correctly notes that the previous reasoning leads to multiplication of

the energy ratios before and after scattering. Each ratio is a random variable, and the

statistical mean of a product is not equivalent to the product of the means. A

logarithmic approach, which we shall follow in Chap. 4 below, is accurate to the

extent that it sums logarithmic increments and that the mean of the sum is rightly in

this case the sum of means. Nonetheless, we may conclude that from the strict

standpoint of scattering, light nuclei are superior to heavy nuclei in terms of slowing

down power. Although capture by the latter is negligible, they will thus make good

moderators, and the aim of the reactor physician is to continually seek to optimize

neutron loss in order to ensure effective fuel use. Similarly, a good moderator will

take the densest chemical form possible in order to increase the number of atoms of

moderator per unit volume, which in turn will result in more effective slowing down

of neutrons. Liquid water presents a good technical compromise in terms of density/

low absorption/low mass number, and is also a useful option for thermal spectrum

reactors.

Table 2.2 Energy loss of

neutrons by target mass
1
1H

2
1H

12
6 C 16

8 O 23
11Na

238
92 U

(E0�E1)/E0 % 50 44 14 11 8 0.8

n 27 31 121 157 222 2 200
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2.1.4 Inelastic Scattering

Inelastic scattering is characterized by the non-conservation of kinetic energy

before and after collision. Some of the energy of the incident particle may be

absorbed by the target nucleus, which is then in an excited state. This reaction

can only occur if the kinetic energy of the incident neutron is greater than the

difference in energy between the first level of excitation of the nucleus and the

ground state. Hence inelastic scattering is a threshold reaction. The neutron is then

re-emitted and carries with it the residual energy not expended in excitation of the

target nucleus.

1
0nþ 7

3Li ! 7
3Li

∗ þ 1
0n

∗denotes that the nucleus is excited

If the incident particle is a neutron, we speak of (n,n0) scattering, with n0

indicating that the re-emitted neutron does not have the same characteristics as

the incident neutron (which may be a different neutron in fact). Using this notation,

it is possible to distinguish between inelastic scattering and elastic scattering. Total

energy conservation is written as:

Total energy conservation in the center of mass:

1

2
mv�2 þ 1

2
MV�2 þ mc2 þMc2 ¼ 1

2
mv0�

2 þ 1

2
M∗V0

�
2 þ mc2 þM∗c2

ð2:2Þ

Here, an asterisk indicates the mass of the excited target,M∗. Using Q to denote

the excitation energy of the first nuclear level, we may state that:

M∗ ¼ M þ Q

c2

Since the kinetic energy is generally low in relation to the rest energy, we

normally write:

1

2
M∗V0

�
2 � 1

2
MV0

�
2

The balance is thus:

1

2
mv�2 þ 1

2
MV�2 ¼ 1

2
mv0�

2 þ 1

2
MV0

�
2 þ Q

This formula may be used to calculate the threshold kinetic energy in the

laboratory framework needed to excite the target nucleus. It corresponds to the

kinetic energy of a neutron with zero scattering in the center of mass, in the same

way as the kinetic energy of the target nucleus after collision. We thus find that:

100 2 Interaction Between Neutrons and Matter



1

2
mv�2 þ 1

2
MV�2 ¼ 1

2

mM

mþM
v2 ¼ M

mþM
Ethreshold ¼ Q

If the kinetic energy of the neutron (laboratory framework) is below this

threshold, only elastic scattering is possible. If it is above this threshold, elastic

scattering and inelastic scattering compete, and the higher the energy the greater the

inelastic scattering will be. The formula shows that the threshold is lower as the

target mass decreases. Inelastic scattering modifies both the kinetic energy of the

scattered neutrons and their scattering angle. Since the amount of movement

remains zero before and after collision in the center of mass, the following con-

tinues to apply:

M∗V0
�
�!þ m v0�

�! ¼ 0

Hence:
v0�2 ¼ m

mþM

� �2

v2 ~A2 Eð Þ

~A Eð Þ ¼ M

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþM

M

Q

E

r
¼ M

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ethreshold

E

r
8>><>>:

The energy of the scattered neutron in the laboratory framework may be written

as follows, assuming that A¼M/m:

E0 ¼
1þ eA 2 Eð Þ þ 2eA Eð Þ cosΨ
� 

Aþ 1ð Þ2 E and also: v02 ¼
1þ eA 2 Eð Þ þ 2eA Eð Þ cosΨ
� 

Aþ 1ð Þ2
v2

At the laboratory frame, the neutron is deflected at angle θ such that:

Deflection by inelastic scattering: cos θ ¼
1þ eA Eð Þ μ0

� 
Aþ 1

v

v0

¼ 1þ eA Eð Þ μ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eA 2 Eð Þ þ 2eA Eð Þ μ0

q ð2:3Þ

This formula, in which E is the energy before collision, is also valid for elastic

scattering where ~A Eð Þ ¼ A. Within a certain energy domain, it is no longer possible

to distinguish between the different levels of excitation, and we speak of the

unresolved range. The probability of slowing down of energy is modeled using a

continuous function, occasionally referred to as the evaporation spectrum, as

follows3 (Price et al. 1957, p121):

3Care should be taken to record the energies (in the laboratory framework) before collision as E’,
and after collision as E, in accordance with the procedures for writing scattering integrals.
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p E0 ! Eð Þ ¼ E

I
e
� E

θ E0ð Þ

where I is a normalization constant and θ(E
0
) is a tabulation dependent on the

energy of the incident neutron. If the energies of the inelastic excitation levels are

known, which shall be denoted as Ei with i being the index of the excitation level,

the inelastic cross-section is written as:

σ i
s E0 ! Eð Þ ¼ σ i

s E0ð Þ pi E0; μ0 E0;Eð Þð Þ dμ0 E0;Eð Þ
dE

where:

– σ i
s E0ð Þ is the cross-section corresponding to the energy level, integrated in the

incident energy,

– pi(E
0
, μ0(E

0
,E)) is the probability of angular scattering,

– μ0(E
0
,E)¼ cosΨ is the cosine of the scattering angle in the center of mass.

In accordance with what was seen earlier:

μ0 E0;Eð Þ ¼
Aþ 1ð Þ2
2A

E

E0 þ
A

2

Ei

E
� A2 þ 1

2Affiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ei

E0

r ¼
Aþ 1ð Þ2E

E0 � 1þ eA 2 E0ð Þ
� 

2eA E0ð Þ

where eA E0ð Þ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ei=E

0p
is occasionally referred to as the effective mass

number for a neutron scattered at the ith level. The scattering probability is

normally developed using a Legendre polynomial expansion to give:

σ i
s E0 ! Eð Þ ¼ σ i

s E0ð Þ Aþ 1ð Þ2
2E0eA E0ð Þ

X1
l¼0

2lþ 1ð Þ
2

p
l
i E

0ð Þi Pl μ0ð Þ

The approach involving development of the probability according to Legendre

polynomials as μ0 rather than μ¼ cos θ is based on the fact that the collision is

considered isotropic at the center of mass frame (but not in the laboratory frame).

We shall see in the chapter on the Boltzmann equation how transition from one to

the other may be effectively managed.
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2.2 Transmutations

(Mayo 1998, p62)

Neutrons, which are uncharged particles, interact very little with the electron

cloud and do not have to overcome the electrostatic repulsive forces due to

positively charged protons in the nucleus. They can reach the nucleus at very low

speeds, and even lower than those of thermal agitation in the nucleus itself.

1
0nþ 235

92U ! 236
92U þ γ radiative capture: 235

92U n; γð Þ23692U

Other particles may also reach the nucleus if they have sufficient energy:

4
2Heþ 14

7N! 1
1H þ 17

8O α capture: 14
7N α; pð Þ178O

The capture process involves absorption of the incident particle which creates an

excited composite nucleus, allowing re-emission of the ejected particle (Fig. 2.6):

When the energy of the incident particle is below 50 MeV, the compound

nucleus constitutes the principal mechanism of nuclear reactions. Since the Louis

de Broglie wavelength is far greater than the characteristic size of nucleons, the

incident particle reacts with the entire nucleus and not just with its nucleons. The

capture of a neutron or another particle may statistically result in several different

products. We speak of exit channels, corresponding to entry channels, which may

also be multiple (Cameron 1982, p20) (Fig. 2.7).

Thus, the excited 27
13Al

∗ nucleus may be formed by numerous entry channels and

will result in exit channels that may also be multiple:

1
0n þ 26

13Al

4
2He þ 23

11Na

γ þ 27
13Al

	 	 	

9>>>>=>>>>;) 27
13Al

∗ )

26
13Al þ 1

0n

23
11Na þ 4

2He

27
13Al þ γ

	 	 	

8>>>><>>>>:
When the nucleus resulting from the capture is different from the initial nucleus,

we talk of transmutation, a term dear to mediaeval alchemists. During transmuta-

tion, the elements of the final state (after collision) are thus different from those of

Compound 

nucleus
After collision

M4

θ

ϕ

M3

M2
m1

Before collision

Fig. 2.6 Capture showing an intermediate state: the compound nucleus
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the initial state (before collision). Transmutation was first identified by Rutherford

in 1919 and proven by photography undertaken in 1925 by Patrick Blackett4:

4
2Heþ14

7 N ! 1
1H þ17

8 O

As with fission, the intermediate nucleus theory assumes that the target nucleus

absorbs the particle before fragmenting according to several possible decay

channels.

2.2.1 Absorption

Absorption indicates that the incident particle is absorbed by the target. Absorption

of a neutron is written as follows:

α

Na23
11

Infographie Marguet

A particle hits a target (here, a sodium 23 

isotope).

*27
13 Al

A transient excited aluminum 27 isotope is 

created. This is the intermediate nucleus.

n1
0

Al26

13

The excited isotope emits a neutron and forms a

Al nucleus.
26
13

Fig. 2.7 Reaction 23
11Na α; nð Þ2613Al

4Sir Patrick Maynard Stuart Blackett (1897–1974) was an English physicist who completed his

studies at Cambridge in 1921. He was extremely familiar with the experimental sciences in the

dynamic setting of the Cavendish Laboratory, and thanks to his monk-like devotion to his work,

which involved taking more than 20,000 photographs in his Wilson chamber, in 1925 he managed

to identify only 8 collisions demonstrating the first transmutation of nitrogen-14 to oxygen-17 as a

result of the capture of an α particle. Together with Guiseppe P. S. Occhialini, on February 7, 1933,
he experimentally confirmed the existence of the positron, which had been discovered in cosmic

rays by Carl D. Anderson in 1932. He was awarded the Nobel Prize for physics in 1948 for his

work on cosmic rays, and he became President of the Royal Society in 1965.
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1
0nþ A

ZX ! Z
Aþ1∗X

The Z
Aþ1∗X nucleus is generally excited at around 6–7 MeV above the ground

state. Strictly speaking, absorption consists of transmutation since it follows the

definition of a change in quantum state of the target, while use of the term

transmutation is restricted to reactions involving changes in the chemical bodies

between the initial and final states. In the case of absorption, the same chemical

body is found in the final state, but in the form of another isotope.

2.2.2 (n,γ) Neutron Capture or Radiative Capture

This type of absorption is written as:

1
0nþ A

ZX ! Z
Aþ1∗X ! Z

Aþ1X þ hv

or more schematically:

Neutron capture: 10nþ A
ZX ! Z

Aþ1X þ Eγ ð2:4Þ

(The Marguet collection)
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An important example in the physics of uranium reactors is the fertile capture of

the isotope 238
92 U to form fissile 239

94 Pu (Cameron 1982, p68):( 1
0nþ 238

92U ! 239
92U þ γ

239
92U ! 239

93Np þ 0
�1e

�
by β�

239
93Np ! 239

94Pu þ 0
�1e

�
by β�

The capture of 239
94 Pu is, however, sterile in a PWR since it results in a non-fissile

isotope, 24094Pu (although in a fast neutron reactor, 24094Pu is fissile):

1
0n þ 239

94Pu ! 240
94Pu

2.2.3 (n,α) Capture

This type of neutron capture produces an α particle. An important capture of this

type for the physics of PWRs is the high-probability capture of 105B , according to the

reaction:

1
0n þ 10

5B !
7
3Liþ 4

2Heþ 2:793 MeV in 6% of cases
7
3Li

∗ þ 4
2Heþ 2:313 MeV in 94% of cases

�
The first excitation level of 7

3L
3i is 0.480 MeV and energy Q of the reaction is

2.793 MeV, which accounts for the energy of 2.313 MeV of the second reaction.
10
5B is a potent neutron absorbing material that is introduced into the water in PWR
in the form of boric acid in order to control the nuclear reaction rate. It should be

noted that the inverse reaction, i.e. (α, n) capture on light nuclei present in PWRs
such as oxygen 17, oxygen 18, nitrogen 14 and lithium 7, can occur and produces a

weak but detectable inherent source5, which increases in MOX fuels due to the

activity of plutonium 238.

2.2.4 Other Forms of Capture

Numerous other forms of capture exist, such as (n, 2n) captures, which are threshold
reactions that become possible at an energy corresponding to (A+ 1)/A times the

binding energy of the last additional neutron of the target. The coefficient (A+ 1)/A

5Richard Babut:Modélisation des réactions (α, n) sur les noyaux légers pour déterminer la source
inhérente d’un réacteur nucléaire [Modelling (α, n) reactions on light nuclei to determine the

inherent source of a nuclear reactor], PhD thesis, Université Blaise Pascal (2002).
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allows recoil energy in the nucleus to ensure conservation of movement (Price et al.

1957, p141):

1
0n þ 238

92U ! 1
0n þ 1

0n þ 237
92U

Other more exotic forms of capture also exist, such as (n, 3n), (n, αn), (n, p), and
(n, pn) captures, etc. At the energies involved in water reactors, only (n, 2n) and
(n,α) captures are likely. Higher energy is required for the emergence of greater

numbers of emitted particles.

2.2.5 High-Energy Reactions

At high energies (between 10 and 100 MeV), the nucleus may be considered by

incident neutrons as an opaque medium. By analogy with optics, the diffraction of

neutrons is similar to the diffraction of light through an opaque object having the

same shape and size as the nucleus. The nucleus may be considered as a translucent

medium having the following absorption cross-section:

Σ ¼ ρσ

where ρ is the mean density of the nucleus and σ¼ [Zσnp + (A� Z ) σnn]/A is the

mean neutron/nucleus scattering cross-section, where σnp and σnn are respectively

the cross-sections characterizing the probability of neutron/proton and neutron/

neutron interaction. We shall examine this notion of cross-sections in more detail

below. This relatively simple approach provides an adequate explanation of inter-

actions involving high-energy neutrons.

2.2.6 Energy Balance

(Mayo 1998, p83)

Nuclear reactions are subject to the fundamental laws of the conservation of total

energy, momentum and charge. Let us use the following generic reaction in which

x is a light incident particle, X is the target, and y and Y are the products of the

reaction:

xþ X ! Y þ y

with: Ex, EX, EY, Ey the kinetic energies (if X is the target, EX¼ 0)
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mx, MX, MY , my the masses at rest:

The energy balance (conservation of total energy) is written as follows:

mx þ MXð Þc2 þ Ex þ EX ¼ MY þ my

� 	
c2 þ EY þ Ey

The total energy of the reaction is given by:

Q ¼ mx þ MXð Þ:c2 � MY þ my

� 	
c2 ¼ EY þ Ey � EX � Ex

If Q> 0, the reaction is exothermic (or exo-energetic). If Q< 0, the reaction is

endothermic. In the latter case, it may only occur through the kinetic energy, ex,
provided by the incident particle, and the reaction is said to be a threshold reaction.
If one of the resulting particles is a photon, we replace its kinetic energy and the rest

mass energy by hν. For all nuclear reactions except scattering, the balance of the

rest mass is not conserved. The kinetic energy balance before and after collision is

modified by term Q in relation to that established for collisions with elastic

scattering. We shall use the same notations (i.e.� in the center of mass framework,

after collision) as in the calculation already described for elastic scattering, with a

reaction energy term specific to a threshold reaction (Fig. 2.8):

8i 2 fx,Xg Ei� ¼ 1

2
mivi�2 ¼ 1

2
mi v

!
i � VG
�!��� ���2 with VG

�! ¼ mxvx
!þ mX VX

�!
mx þ mX

8j 2 fy,Yg Ej� ¼ 1

2
mjvj�

2 ¼ 1

2
mj v

!
j � V 0

G

�!��� ���2 with V 0
G

�! ¼ myvy
!þ mY VY

�!
my þ mY

8>>><>>>:
since: vx

!� VG
�! ¼ vx

!� mxvx
!þ mX VX

�!
mx þ mX

¼ mX

mx þ mX
vx
!� VX

�!� 
and: VX

�! � VG
�! ¼ VX

�! � mxvx
!þ mX VX

�!
mx þ mX

¼ mx

mx þ mX
VX
�! � vx

!� 
giving: Ex� ¼ 1

2

mxm
2
X

mx þmXð Þ2 vx
!� VX

�!��� ���2 ¼ 1

2

mxm
2
X

mx þmXð Þ2 v2x þ V2
X � 2vx

!: VX
�!� 

and EX� ¼ 1

2

mXm
2
x

mx þ mXð Þ2 VX
�! � vx

!��� ���2 ¼ 1

2

mXm
2
x

mx þ mXð Þ2 v2x þ V2
X � 2vx

!: ~VX

� 	
and summed: Ex� þ EX� ¼ Ex þ EX � 1

2

mxmX

mx þ mX

mxvx
!þ mX VX

�!
mx þ mX

�����
�����
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
EG
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in identical fashion: Ey� þ EY� ¼ Ey þ EY � 1

2

mymY

my þ mY

myvy
!þ mY VY

�!
my þ mY

�����
�����
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E
0
G

The reaction energy is given by:

Q ¼ EY þ Ey � EX � Ex ¼ EY� þ Ey� � EX� � Ex� þ E0
G � EG

Since MYVY�
��! þ myvy

!
� ¼ ~0, we have MYEY� ¼ myEy�:

Similarly, MX VX
�!

� þ mxvx
!

� ¼ ~0, giving MXEX�¼mxEx�. Finally, we have:

Energy balance: Q ¼ my

MY
þ 1

� �
Ey� � mx

MX
þ 1

� �
Ex� þ E0

G � EG ð2:5Þ

The special case in which the target is fixed in the laboratory framework

( VX
�! ¼ ~0) enables the results to be simplified:

Ex� ¼ MX

MX þ mx

� �2

Ex EX� ¼ mxMX

MX þ mxð Þ2 Ex EG ¼ mx

MX þ mx
Ex

Ey� ¼ MY

MY þ my
Qþ 1� mx

MY þ my

� �
Ex


 �
EY� ¼ my

MY þ my
Qþ 1� mx

MY þ my

� �
Ex


 �
8>>><>>>:

Thus, for any reaction that occurs, the energy equation Q¼EY+Ey�EX�Ex

shows that if the target and particles after collision are assumed (in theory) to be

immobile, it is necessary that Ex> �Q at least in order for the reaction to be

possible. However, although necessary, this condition is not sufficient to ensure

conservation of the momentum. The formulae of Ey� and EY� show the following to

be necessary:

Ψ
Ψ

X of mass XMG

X
xX

x
X v

mM
mV
+

−=⊗

x
xX

X
x v

mM
Mv
+

=⊗

�

x of mass xm

Before collision After collision 

'yv

'YV

y of mass ym

Y of mass YM
Infographie Marguet

Fig. 2.8 Non-elastic scattering in center-of-mass framework
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Q 
 � 1� mx

MY þ my

� �
Ex i:e: Ex 
 � Q

1� mx

MY þ my

� � > �Q

The corrective term mx/(MY+my) may be negligible if the mass of the incident

particle is small in relation to that of the target, but for a small target correction must

be considered.

2.3 Fission

(Physics Chemistry Fission 1969; Endt and Smith 1962, p42; Lilley 2001, p263)

Fission of an atom of uranium 235 struck by a slow (thermal) neutron generally

produces two fission fragments, and less commonly three (in the case of ternary
fission, one of the products is normally extremely light6), known as fission products.
Fission also produces some fission neutrons, and a great deal of energy compared to

the mass used:

1
0n þ 235

92U ! 137
56Ba þ 96

36Kr þ 3 1
0nþ Eγ

This reaction is only one example among others since another neutron may cause

fission of a heavy nucleus according to a different mode of fission, and the balance

will produce other fission products, such as the following for example:

1
0n þ 235

92U ! 135
54Xe þ 99

38Sr þ 21
0nþ Eγ

Under experimental circumstances, it may be seen that fission can generally

produce two or three neutrons, and less commonly more neutrons (up to 6) or fewer

neutrons (a single emitted neutron). The mean number of neutrons depends on the

fissioning nucleus (this number increases with heavy nuclei) and the energy of the

incident neutron (the umber increases with increasing energy). The mean number of

neutrons emitted is of the order of 2.5 for 235
92U. Fission, a key reaction in nuclear

fission reactors, will be examined in more detail later.

2.4 Fusion

(Dolan 1982; Jancel and Kahan 1963; Landshoff 1957, 1958; Mayo 1998, p241; Pai

1962; Stacey 1981; Survey of Phenomena in Ionized Gases 1968)

6For an overview of ternary fission, a useful discussion is provided by N. Feather (Physics and

Chemistry of Fission, 1969, p83).
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The fusion of two light atoms also releases a great quantity of energy. It results in

the emission of neutrons having a kinetic energy superior to that of fission, of the

order of 14 MeV, and generally produces a heavier particle.

2
1H|{z}

Deuterium

þ 3
1H|{z}

Tritium

! 4
2Heþ 1

0nþ 17:59 MeV

2
1H þ 2

1H !
3
2Heþ 1

0n þ3:27MeVð Þ
3
1H þ 1

1p þ4:00 MeVð Þ
�

In relation to the atomic mass involved, fusion releases far more energy than

fission. Moreover, it employs isotopes that are abundant on earth (for instance

isotopes present in water), in contrast with uranium, and it generates few highly

radioactive fission products (in fact, radioactive fusion products have a short half-

life), and it is thus highly attractive from an industrial standpoint, independently of

the technical problems that must be overcome. For fusion reactions to take place,

the Coulomb barrier must be overcome, which requires either an extremely high

speed of the incident particle, or a very high temperature of the target to harness

Brownian motion, and, generally, a very large magnetic field in order to contain the

totally ionized gas (plasma) in a sufficiently small volume, in order to control the

fusion process. All of these conditions have been combined in a Tokamak fusion

reactor (Smirnov 2001).

2.5 Cross Sections

2.5.1 Basic Definitions

(Mayo 1998, p115)

The probability of interaction between particle and matter brings up the notion of

cross sections. This probability of interaction with matter over a distance dx is

defined by the dimensionless value Σ dx. It is logically proportional to the path

length, and since it is dimensionless, Σ represents the dimension of the inverse of

length (Fig. 2.9).

This value is called the macroscopic cross section and it is a property of the

material being crossed. By geometric analogy, this probability is also proportional

to the number of nuclei N per cm3:

dP xð Þ ¼ Σ dx ¼ Nσ dx

with σ thus defined as a microscopic cross section [cm2].

Since Σ dx is the probability of interaction with matter, 1�Σ dx is logically the

probability of no interaction occurring over the distance dx. Where Q(x) is the

probability of a neutron travelling from the origin to x without interaction, we can
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calculate the probability of a neutron reaching x+ dx from the probability of it

reaching x, i.e.Q(x), and of it not interacting throughout the distance dx, which is by
definition (1�Σ dx):

Q xþ dxð Þ ¼ Q xð Þ 1� Σ dxð Þ

thus, by integration: Q(x)¼ e�Σx

Where P(x) is the probability of an initial interaction between x and x + dx (and
thus not an interaction on 0x) (Fig. 2.10):

P xð Þ dx ¼ e�ΣxΣ dx

The integral of this probability over an infinite path is:
Ð1
0

e�ΣxΣdx ¼ 1,

meaning that the neutron will necessarily have an interaction, but also that P(x) is
a normalized probability in the mathematical sense of the term. The mean free path

between the origin and the first collision (thus between two successive collisions) is

given by:

v
x

in cm 

Material

dx
n

Infographie Marguet

Fig. 2.9 Interaction of a

neutron with matter

Nuclei of a gas for instance

v

Fig. 2.10 Ratio of

probability of interaction to

concentration of target

nuclei
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λ cm½ � �
Ð1
0

xP xð ÞdxÐ1
0

P xð Þdx ¼
ð1
0

e�Σxdx ¼ 1

Σ

For a neutron travelling at speed v, the flight time between two collisions is l¼ λ/
v¼ 1/(Σv). At the end of the mean free path, the intensity of the beam of neutrons is

weakened by a factor of e (the Napier’s constant). If a narrow beam of monokinetic

neutrons with speed v is now projected perpendicularly onto a target material, the

neutron current is the name given to the intensity I of neutrons per cm2 and per

second. To simplify the problem, we will consider that any interaction between a

neutron and the material will either result in the scattered neutron leaving the beam,

or else disappearing purely and simply through absorption. The probability of

complete interaction is named the total cross section Σt. The variation in intensity,

dI, measured along the axis of the beam due to interaction between neutrons and

matter, is given by (Fig. 2.11):

dI ¼ �IΣt dx

The neutron current of speed v is attenuated on passing through the foil. This

method enables the total cross section to be determined, provided there are incident

monokinetic neutrons.

2.5.2 Measurement of Cross Sections

(Harvey 1970)

An ingenious experimental setup can be used to select neutrons at a desired

speed (monokinetic). The required neutrons may be filtered using an apparatus

called chopper (Egelstaff 1965, p57) which works by means of a rotating cylindri-

cal wheel containing overlaid strips of cadmium and aluminum (Fig. 2.12 and Photo

2.1), in the axis of a beam of multi-kinetic neutrons. These neutrons are produced

by a source of short pulses, with the impulses being separated by a longer latency

time. The layers of aluminum, a substance that is relatively transparent for neutrons,

allows the passage of those neutrons whose speed enables them to be transmitted

v

Thin foil

dxn

I

Infographie Marguet

Fig. 2.11 Exponential attenuation of a neutron beam I xð Þ ¼ I0:e
�Σtx
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without being stopped by a layer of cadmium, which, in contrast, is totally opaque

for thermal neutrons. By varying the speed of rotation of the selector, the distance

between the pulse source and the detector, and the time lapse between emission of

the pulse and discernible opening of the sensor, it is possible to filter neutrons

travelling at a given speed (Kahan 1963, p67; Neutron time-of-flight 1961).

2.5.3 Notion of Flux and Reaction Rate

In reality, within the reactor, neutrons obviously do not all travel at the same speed

and, above all, not in the same direction. We therefore define an order of scale, the

neutron flux (in neutrons per cm2 and per second), which is the product of the

concentration of neutrons and their speed:

Pulsed
neutron
source

Speed selector

Target being studied Detector

cadmium

aluminum

Neutron
pulse

Fig. 2.12 Chopper used to obtain monokinetic neutrons

Photo 2.1 Chopper: the layers of aluminum are clearly discernible. After (Progress in Nuclear

Energy Vol 2 1958, pp160–161)
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Neutron flux: Φ n=cm2=s½ � � n n=cm3½ � v cm=s½ � ð2:6Þ

The unit of flux suggests, by analogy, a flow rate of neutrons crossing a surface.

However, in contrast with the current, where neutrons travel perpendicularly

through a unit of area, flux here corresponds rather to a volume: all of the neutrons

in one cm3 are counted and then multiplied by their respective speed. The term flux
is thus somewhat misleading and in the past, numerous authors have sought to

redefine an alternative term, although unsuccessfully, since the word flux is now too

widely used in neutron physics to be abandoned. Since neutrons have different

energies, and thus different speeds, i.e.~v Eð Þ in direction ~Ω, and numbers n(E), it is
possible to define angular flux in an element of solid angle dΩ and in an element

with energy differential dE such that:

Angular flux: φ ~r; ~Ω;E
� 	

dΩ dE ¼ n ~r; ~Ω;E
� 	

v Eð Þ dΩ dE ð2:7Þ

The non-relativistic neutron speed is given by its kinetic energy, v ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2E=m

p
,

hence the notion of flux spectrum (flux depends on energy). The integrated flux is

defined by integration on the solid angle and the energy:

Φ ~rð Þ ¼
ð
4π
dΩ

ð1
0

φ ~r; ~Ω;E
� 	

dE ¼ n ~rð Þ �v

where �v �
Ð1
0

n ~r;Eð ÞvdEÐ1
0

n ~r;Eð ÞdE is the mean speed over the spectrum.

For each reaction, a specific cross section is defined: σ(n, γ) , σ(n, α) ,
σscattering,. . . as well as logical reconstruction rules:

σtotal � σabsorption þ σscattering
σabsorption � σcapture þ σfission

�
Since the order of magnitude of microscopic cross sections is very small, we use

a subunit of the SI unit, the barn7, equivalent to 10�24 cm2. For a neutron of speed

v, the probability of interaction during dt is Σ dx¼Σ v dt. Where n is the density of

incident neutrons (in neutrons per cm3), the number of interactions is given by

nΣv dt, that is per unit of time, i.e. nΣ v interactions per second. The reaction rate is
R�ΣΦ in reactions	cm�3	s�1.

7The invention of the term barn for cross sections is ascribed to M.G. Holloway and C.P. Parker

while they were working late into the night of December 1942 on the atomic bomb project in Los

Alamos. “If a neutron is a tomato, then U238 has a cross-section as big as a barn!”. Terms based

on the names of key project leaders were thus narrowly avoided: the Oppenheimer, which was

considered too long, or the Bethe, considered too. . . Greek!
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2.5.4 Resonance

The cross section of a given material (e.g. a metal) may be measured by placing an

extremely thin foil of this material in a flux of monokinetic incident neutrons

(travelling at the same speed) of known energy. We simply measure attenuation

of the neutron beam and deduce the corresponding microscopic cross-section using

the law of attenuation. Measurement of cross sections shows them to be dependent

not only on the type of material involved, naturally, but also on the energy of the

incident neutron. In general, the cross section decreases as the neutron speed

increases (since matter is more “transparent” to faster neutrons). However, at low

energies, sudden variations occur in the cross section as a function of energy, as if

neutrons at a certain energy level are captured virtually systematically.

In classical Newtonian mechanics, the probability of interception of the neutron

would be constant, if we disregard the Brownian movement of the target. These

capture peaks are in fact due to quantum mechanics, in which the nucleus is

modeled not as a large bead, but rather as a resonant cavity, with the neutron

being seen as a wave (in similar fashion to an electron in the formalism of Louis de

Broglie). When the “neutron” wave resonates with the target cavity at certain

frequencies, there is every chance of the neutron being absorbed. The cross section

(Fig. 2.13) is represented in terms of increasing energy.

This area of sudden variation is referred to as the “resonance region”. Only those

neutrons having a post-collision energy different to the energy of the residences will

be able to escape the latter. Analyzing the levels of excitation of the compound

nucleus Z
Aþ1X, we find the position of the resonances of a particular reaction. When

a neutron interacts with a target nucleus A
ZX, in addition to the kinetic energy of the

neutron, En, in the center of mass frame, the binding energy, Bn(A + 1, Z ) is also
released such that Bn(A+ 1, Z)¼ [M(A,Z ) +mn�M(A + 1, Z)] c2, and it is

Neutron 

energy 

Zone of resonance

Σ

100 KeV 10 MeV 

Fig. 2.13 Cross sections

with resonances
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distributed in the compound nucleus, which it then excites. Taking as an example

nitrogen 15
7N, this nucleus may be formed by different reactions (on the left) and

produce various disintegration pathways (on the right):

14
7N þ 1

0n

14
6C þ 1

1p

11
5B þ 4

2He

	 	 	

9>>>>>>=>>>>>>;
! 15

7N
∗ !

14
7N þ 1

0n

14
6C þ 1

1p

11
5B þ 4

2He

15
7N þ γ0
15
7N

∗ þ γ1

	 	 	

8>>>>>>>>>>><>>>>>>>>>>>:
If a neutron (taken as having no speed) is captured by 14

7N, the resulting nucleus
15
7N recovers the binding energy of the new neutron in the form of excitation energy

based on the principle that the mass of the compound nucleus is lower than the total

mass of 14
7N and of the initial neutron. If the neutron possesses kinetic energy in its

center of mass, this further increases the excitation energy. Several possibilities

then arise: first, 15
7N

∗
may de-excite to its ground state, emitting a γ0 photon.

Nuclear de-excitation of the nucleus may also occur with emission of a γ1 photon of
even lower energy, leaving the 15

7N
∗
nucleus in an excited state. Another outcome is

possible, namely elastic (or inelastic) scattering, which will produce 14
7N and a

scattering neutron.

If we analyze for instance the (n, p) and (n, α) capture cross sections of 14
7N, we

see resonances that coincide with the levels of excitation of 157N taking into account

the shift of 10.75 MeV corresponding to the binding energy Bn(A+ 1,Z ) of this
nucleus. The same conclusion applies to the ( p, n) cross-section of 14

6C, this time

with a shift of 10.15 MeV corresponding to the binding energy of a proton of 15
7N.

Because of the multiple levels, not described in our simplified schema (Fig. 2.14),

coupled with Heisenberg’s uncertainty principle, the resonances widen around the

levels, or even overlap with one another, thus “softening” the peaks. We may even

define negative resonances to describe the levels not reachable by the neutron and

situated just below the 10.75 MeV for neutron capture threshold. However, the

width of these theoretical resonances affects the shape of the low-energy cross

section. By way of illustration, Fig. 2.15 shows the broad resonance for fission of
235
92U (JEF 2.2) at 0.3 eV and the start of narrow resonances as of 1 eV. Capture

resonances are symmetrical when the scattering resonances are clearly asymmetri-

cal. We will see later that this phenomenon is due to an interference effect with the

potential scattering cross-section, and we will analyze this phenomenon in the

chapter on the Doppler effect. Resonances may follow one another rapidly, as in

the case of the (n, γ) capture resonances of 238
92U (Fig. 2.16), which can still be

described in the resolved region.

One way of weighing successive resonances in the discernible region is to

compare the resonance integral of two isotopes, defined mathematically as follows:
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Resonance integral: I barn½ � ¼
ðE¼þ1

E¼Eth

σ Eð Þ barn½ �dE=E ð2:8Þ

),1( AAB n +

10. 75

nN 1

0

14

7
+

pCnN 1

1

14

6

1

0

14

7
+→+ HeBnN 4

2

11

5

1

0

14

7
+→+

pC 1

1

14

6
+

10. 15

nNpC 1

0

14

7

1

1

14

6
+→+

nE

Negative resonance  

Emission of a 

γ0 photon

of energy

En towards the 

ground state

Scattering

Infographie Marguet 

Cross section of  

Cross section of  
Cross section of  

Fig. 2.14 Levels of 15
7N

7 after (Lederer and Shirley 1978): On the left is the complete and

extremely complex scheme of the energy levels of the isotope 15
7N

7, as found in databanks, with

different possible transitions and spin. If the capture process results in the formation of a

compound nucleus 15
7N

7* excited at level En, de-excitation can occur with emission of a γ0 photon
towards the ground state, but also, depending on the cross sections of the entry channels

represented on the right of the schema, with the emission of neutron, proton or helium particles

118 2 Interaction Between Neutrons and Matter



In practice, since the limits of the integral have no physical meaning, the

epithermal resonance integral, found in libraries of cross-sections, is defined as

follows:

I barn½ � ¼
ðE¼100keV

E¼0:5 eV

σ Eð Þ barn½ �dE=E

Not all isotopes necessarily have resonances, and thus 10
5B presents a total cross-

section almost perfectly of 1/v (or 1=
ffiffiffi
E

p
), as shown in Fig. 2.17. At low energy, 1/v

behavior, occasionally referred to as Gamov’s law, is highly systematic for all

isotopes of less than 0.1 eV (Fig. 2.15).

A noteworthy fact of particular use for simplified calculations is that the (n, α)
cross-section of 10

5B is a law perfectly in 1/v below 100 keV (Cameron 1982, p32).

The extremely marked (n, α) capture by this isotope (cross-section at 2200 m/s

σ0¼ 3840.5 barns[JEF2], epithermal resonance integral I¼ 1724.37 barns[JEF2]),

present in natural boron, is used particularly in light-water reactors to control

chain reactions, but also in the protective materials industry (Photo 2.2). Natural

boron containing between 18% and 20% (depending on its source) of 10
5B is placed

in the reactor water by diluting boric acid. If we suppose a perfect 1/v law, its

Fig. 2.15 Cross section of 235
92U up to 5 eV (data from JEF2)

2.5 Cross Sections 119



Fig. 2.16 Cross sections of 238
92U between 100 eV and 1000 eV (data from JEF2)

Fig. 2.17 Cross sections of 10
5B (data from JEF2)
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resonance integral in barns may be readily calculated (between 0.5 eV and 100 keV

depending on the definition of the resonance integral):

I barn½ ��
ðE¼100keV

E¼0:5eV

σ Eð Þ barn½ �
dE

E
¼

ðE¼100keV

E¼0:5eV

σ0v0ffiffiffiffiffiffi
2E

m

r dE

E
¼ �2σ0v0ffiffiffiffiffiffi

2E

m

r
2664

3775
E¼100keV

E¼0:5eV

¼ �2σ0

ffiffiffiffiffi
E0

E

r" #E¼100keV

E¼0:5eV

I barn½ � ¼ 2σ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0253
0:5 �

q ffiffiffiffiffiffiffiffiffiffiffi
0:0253
100 103

qh i
¼ 1723:93 barns � I ¼ 1724:37 JEF2½ �

Excellent coherence may be noted between the calculation of the resonance

integral assuming a 1/v law and the value given in the JEF2 library. It should be

noted that the unit of I is the barn, which means that σ(E) is also expressed in barns8.
Certain rare isotopes present resonances below 0.5 eV, notably in the important

Photo 2.2 French advertisement from 1957 for “made in France” protective materials containing

boron (The Marguet collection)

8Care should thus be taken to avoid calculating function σ(E) with a change in the variable

normally used in probability theory:

σ vð Þdv ¼ σ0v0ffiffiffiffiffiffiffiffiffiffiffiffi
2E=m

p dv ¼ σ0v0ffiffiffiffiffiffiffiffiffiffiffiffi
2E=m

p dE

mv
¼ 2σ0v0

E
dE ¼ σ Eð ÞdE

since in this formula, the unit of the new functional σ(E) is barns/(m.s�1), which is inconsistent

with the unit of I. The exact calculation must thus incorporate σ(E) expressed in barns.
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case of 135
54Xe, which is the most absorbent fission product in the thermal spectrum,

and which weighs considerably in the neutron balance (over 2000 pcm9 in a PWR)
(Fig. 2.18).

Generally speaking, scattering cross sections are constant over a wide energy

range. For example, the scattering cross-section of 1
1H (Fig. 2.19), the main

moderator isotope in water reactors, exhibits an extremely stable plateau of around

20 barns between 0.1 eV and 10 keV. Note the classic 1/v form at very low energy

due to Doppler broadening at 20 �C. This concept will be described later in a

specific chapter.

The case of scattering in crystal, the general theory of which is developed in

(Progress in Nuclear Physics Vol 1 1960a, p185), contains an interesting particu-

larity. Above around 1 eV, scattering is chiefly due to the potential cross-section,
i.e. scattering by the field potential of the nucleus (Egelstaff and Poole 1969, p6). If

the wavelength of the incident neutron is far greater than the radius of the target

nucleus, the potential cross-section is virtually energy-independent. Below 0.01 eV,

different scattering processes occur, and these are clearly dependent on temperature

according to a 1/v curve.
At around 0.005 eV, when neutrons undergo coherent scattering by adjacent

atoms as in a crystal or a molecule, interference is noted between the scattered

neutron waves to the extent that the Louis de Broglie wavelength of the neutron is

around 10�8 cm, i.e. the order of magnitude of the inter-atomic space in a network.

Fig. 2.18 Cross sections of 135
54Xe (data from JEF2)

9pcm ¼ pour cent mille. This unit is used particularly to express the reactivity.
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This phenomenon, which is well known with regard to x-rays, is known as Bragg
scattering and results in the appearance of a threshold (Fig. 2.20) in the curve of the
cross section (Bragg cut-off) that is given by the following formula (Glasstone and

Sesonske 1994, p94), (Bekurts and Wirtz 1964, p17):

b

E

1000

100

10

1

0,1

le-5 le-4 0,001 0,01 0,1 1 10 100 1000 le4 le5 le6 le7 le8
(in eV)

MT=2 : (z,z0) elastic scattering Cross section for HI from JEFF 3.0 from Local

Fig. 2.19 Scattering cross-section of 1
1H (data from JEF2)

10

1.0

0.1

0.0001 0.001 0.01 0.1 1.0

(Neutron)Energie(eV)

T = 440 K

T = 300 K

T = 100 K

s
s 

(b
)

Bragg cut-off

Fig. 2.20 Bragg cut-off for the scattering cross-section of crystalline beryllium after [P.K Job,

M. Srinivasan: Exploitation of Bragg cut-off phenomenon for improved albedo in Beryllium-
reflected minimum critical mass systems, Nuclear Science and Engineering, 85, 422 (1983)]
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EBragg eV½ � ¼ 2:04� 10�4

d2nm½ �

where d is the maximum distance between two rows of atoms in the crystal. This

phenomenon has little effect inside a reactor since at 300 K, only 5% of neutrons

with Maxwellian distribution are below 0.005 eV. However, it enables

non-intrusive investigation of matter, and gave rise to neutron optics (Diffraction
et diffusion des neutrons (Diffraction and diffusion of neutrons) 1964).

Within a reactor, materials composed of several isotopes are found. If we ignore

the effects of binding of molecules, the microscopic cross sections combine by

simple addition (Meghreblian and Holmes 1960, p47; Mayo 1998, p135):

ΣH2O ¼ ΣH þ ΣO ¼ NHσH þ NOσO

The fact that a water molecule contains two hydrogen atoms per oxygen atom is

reflected in the fact that NH¼ 2NO. This is applied by composing the abundances of

natural chemical bodies, for example:

NBoronσ
a
Boron ¼ N10

5
B σa10

5
B þ N11

5
B σa11

5
B

At low energy, the effects of molecular binding, particularly in the case of light

water and heavy water, significantly increase the scattering cross-section (Bennet

1981, p39), cancelling out the law of composition of macroscopic cross sections

(Fig. 2.21):

Cross sections show great variation (e.g. for 235
92U, Fig. 2.22) as a function of

energy, and for this reason precise calculation of the neutron spectrum of a reactor

OH
sσ 2

barn

0,01 eV 0,1 eV 1 eV 10 eV 

50

100
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O
s

H
s σσ +2

Fig. 2.21 Effect of binding

of water molecule on the

scattering cross-section: the

cross-section of free atoms

is constant while the cross-

section of the water

molecule increases

practically linearly at low

energies
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requires the cross sections to be arranged by energy group. The mean cross-section
for the energy group [E1,E2] is defined as follows:

Mean macroscopic cross section by energy group:

Σ �
Ð E2

E1
Σ Eð ÞΦ Eð Þ dEÐ E2

E1
Φ Eð Þ dE

¼
Ð E2

E1
Σ Eð Þn Eð ÞvdEÐ E2

E1
Φ Eð Þ dE

ð2:9Þ

We speak of flux in the group [E1,E2] or integrated flux: Φ ¼ Ð E2

E1
Φ Eð Þ dE.

Generalization to a single group is performed by setting E1¼ 0 and E2¼ +1.

Calculations for PWR are frequently performed in two energy groups with a cut-off at

0.625 eVwhich corresponds to the cut-off in the absorbing isotope of cadmium:11348Cd.
This isotope pf cadmium presents a giant capture resonance at 0.172 eV, the

wings of which extend to 0.6 eV, and we may thus consider that any neutrons under

0.625 eV would be absorbed by a piece of cadmium foil. We can therefore measure

the ratio of thermal flux to total flux by placing a counter in the area to be measured,

successively surrounded with and without a cadmium foil (Fig. 2.23).

Natural cadmium is a strong neutron absorber, primarily because of its isotope
113
48Cd (12.22% in natural cadmium). This resonance makes cadmium practically

“impermeable” (we refer to a black body) to neutrons below 0.3 eV. Since its

Fig. 2.22 Cross sections of 235
92U (data from JEF2)
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resonance integral (I ¼ 394.072 barns) is lower than that of 10
5B, it is in fact fairly

ineffective at energies greater than 10 eV compared with 10
5B. However, in the

thermal region, it is an excellent neutron absorber, like xenon. At two energy

groups, the energy condensations are written as follows:

Fast Φ1 ¼
Ðþ1
Ecutoff

Φ Eð Þ dE Σ1 ¼
Ðþ1
EC

Σ Eð ÞΦ Eð Þ dE
Φ1

Thermal Φ2 ¼
Ð Ecutoff

0
Φ Eð Þ dE Σ2 ¼

Ð EC

0
Σ Eð ÞΦ Eð Þ dE

Φ2

8>>><>>>:
The total reaction rate is obtained by summing the rates for the two groups:

Σ1Φ1 +Σ2Φ2. The reaction rates are cumulative in the same way as the integrated

fluxes Φtotal¼Φ1 +Φ2. In choosing the type of cross-section, we choose the type of

reaction rate:

Rabsorption ¼ ΣaΦ, Rfission ¼ Σf Φ, Rproduction ¼ νΣf Φ

It is in fact possible to define an energy production rate κΣfΦ in which κ is the

energy liberated by fission. The energy production rate is thus an expression of

power by volume in [J/cm3/s] or in [W/cm3]. Where κ is given in MeV (of the order

Fig. 2.23 Cross sections of 113
48Cd (data from JEF2)
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of 200 MeV), the energy rate is expressed in [MeV/cm3/s]. Figure 2.24 provides a

summary of the interaction of neutrons with the various isotopes. Below a mass

number of 25, i.e. for light nuclei, the main reaction is scattering, with the notable

exception of (n, α) reactions on 10
5B and 6

3Li, as well as the (n, p) reaction on 3
2He.

Only radiative capture (n, γ) is able to excite the target nucleus, with its clearly

isolated resonances. The first excited level is generally above a few MeV. For

nuclei of intermediate mass (between 25 and 80), and for low energies (�1 keV)

and moderate energies (�500 keV), the predominant reactions are elastic scatter-

ing and radiative capture, with clearly separated resonances. Inelastic scattering is

generally impossible since the first excited level is situated several hundred keV

above the ground state of the compound nucleus. (n, p) and (n, α) reactions are weak
due to the strong Coulomb barrier. Regarding low-energy heavy nuclei, only

neutrons having a moment l¼ 0 are able to interact and produce fissions, radiative

captures or inelastic scattering. The very high Coulomb barrier prevents the emis-

sion of charged particles. The width of the absorption resonances is far greater than

that of the neutron involved in scattering. This idea will be discussed in more depth

in the chapter on resonant absorption. Even Z, odd A nuclei have large fission cross

sections while even Z, even A nuclei mainly tend towards capture. For intermediate

energies, the neutron resonance width of heavy isotopes increases as
ffiffiffi
E

p
while the

absorption width remains relatively constant. Inelastic reactions and the emission of

charged particles are highly unlikely. At high energies (
500 keV), both interme-

diate and heavy nuclei present non-negligible inelastic scattering cross-sections, as

well as the emission of charged particles, while the space between levels diminishes

and the capture cross-section increases with mass number (although it decreases

Light 
nuclei

Intermediate 
and heavy 

nuclei: 
high energy

Heavy nuclei: 
intermediate 

energy

Heavy nuclei: 
low energy

Intermediate 
nuclei: 

intermediate 
and low energy

25 80 245

1 keV 

500 keV 

10 MeV 

Energy of incident neutron

Mass number of target nucleus

Fig. 2.24 Classification of nuclear reactions by target, after (Soodak 1955)

2.5 Cross Sections 127



with energy). The neutron resonance width decreases. Even Z, even A nuclei

become fissile.

2.6 Nuclear Fission

In October 1934, after positing the theory of β radioactivity, Enrico Fermi

(1901–1954) understood the phenomenon of the slowing down of neutrons as

they passed through light substances, and he noted that the probability of interaction

with matter increased inversely with speed (1/v). He was awarded the Nobel Prize

in 1938 for his work on β decay. This provided him with the opportunity to “go

west”, in other words to leave Fascist Italy, where he feared government excesses

(his wife was of Jewish origin). In 1936–1937, interested in artificial radioactivity,

Fermi built his own “neutron canons” by mixing beryllium powder and radon

(a naturally gaseous element, radium was far too expensive at the time for the

limited means of the University of Rome). Radon is an α emitter and its interaction

with beryllium produces neutrons in accordance with the reaction already

interpreted by Chadwick:

4

2
Heþ 9

4
Be ! 12

6
Cþ 1

0
n

Fermi used his canon to bombard all species of chemicals bought from a local

shop by fellow physicist Emilio Segrè, another future Nobel Prize winner (who

according to Fermi’s wife was sent out with an errand list and shopping bag!)

starting with the lightest substances. He obtained no radioactivity with hydrogen,

boron, carbon or nitrogen, but just as he was about to give up, he noted strong

radioactivity in fluorine, and also in other heavier chemical substances.

Bombarding uranium in the same way, he noted intense radioactivity produced

by several radioactive elements but he was unable to recognize any particular

period of radioactivity. He claimed to have discovered element 93 (“An Italian
produces the element 93 by bombarding uranium!” ran the New York Times
headline) but others thought that it was in fact only protactinium (Z¼ 91) or another

element close to uranium but lighter.

In any event, these studies were of great interest to German radiochemist Otto

Hahn (1879–1968) and Austrian chemist Lise Meitner (1878–1968). Hahn had

worked as a young man with Rutherford in Montreal. Together with Lise Meitner,

he replicated Fermi’s experiments at the Kaiser-Wilhelm Institute in Berlin. Along-

side chemist Fritz Strassman (1902–1980), he carried out in-depth studies on the

uranium capture reaction products, but in July 1938, Lise Meitner, who was of

Jewish origin, was forced to flee Nazi Germany. Hahn and Strassman continued

their experiments in 1939 and, while seeking traces of radium using a chemical
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priming technique involving barium, they noted that they were unable to isolate

radium purely and simply because it was barium10. Using an ingenious method to

scan air, they also detected the radioactive gases krypton and xenon (Nahmias 1953,

p96) (Photo 2.3).
Lise Meitner interpreted the experiment in Stockholm11, ascribing it to the

fission of uranium! This was a stunning discovery for a time when the atom was

still considered indivisible (Photo 2.4).

In Paris, Frédéric Joliot immediately provided photographic evidence of the

trajectory of a fission fragment in a Wilson chamber, and together with Von Halban

and Kowarski12, he showed that fission produced 2–3 neutrons of a mean energy of

2 MeV (Mathieu 1991, p235). Fission of an atom of uranium 235 almost always

produces two fission fragments, known as fission products, as well as neutrons

known as prompt fission neutrons since they are produced practically

Photo 2.3 In the early

1960s, Karl Wirtz shows

Otto Hahn (right) the plans
of Germany’s first research
reactor, FR2 (1961–1981),

in Karlsruhe (photo

Karlsruhe)

10Otto Hahn, Fritz Strassman: Uber den nachweis und das verhalten der bei bestrahlung des urans
mittels neutronentstehenden erdalkalimetalle [On the detection and characteristics of the alkaline

earth metals formed by irradiation of uranium with neutrons], Die Naturwissenschaften, No
27, p. 11–15 (9 January 1939).
11Lise Meitner, Otto Frisch: Disintegration of Uranium by Neutrons: a New Type of Nuclear
Reaction, Nature, No 143, p. 239–240 (11 February 1939).
12Hans Von Halban Junior, Frédéric Joliot, Lew Kowarski: Liberation of neutrons in the nuclear
explosion of uranium, Nature No 143, p. 470–471, (8 March 1939).
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instantaneously. The excess mass that disappears is transformed into energy.

Ternary fission (which produces three fragments, one of which is generally

extremely light) is very rare (<1 case per 100,000 fissions), and is generally

ignored, except of course where the focus is on production of a light isotope such

as tritium for example. Normally, binary fissions of the following type occur:

1
0nþ 235

92U ! 137
56Baþ 96

36Kr þ 3 1
0nþ Eγ

It should be noted that fission of the uranium atom can produce a large number of

statistically different fission products. The intermediate nucleus theory assumes

absorption of the incident neutron, resulting in a highly unstable nucleus that breaks

up like a drop of water (Born 1971, p298) (Fig. 2.25).

In 1939, N. Bohr and J.A. Wheeler, taking up the ideas postulated by Gamov in

1929, proposed the liquid drop model (Valentin 1982a, b, p130), in which the

nucleus is represented as a group of nucleons whose equilibrium is governed by

antagonistic forces: a cohesive force associated with the surface tension of the

nuclear “liquid’ that maintains cohesion, and a dislocation force due to Coulomb

repulsion between protons (Pollard and Davidson 1956, p230). When the system

undergoes a collision during interaction with an external particle, it vibrates around

its position of spherical equilibrium. If the oscillation is too great and allows a

particular geometrical configuration to be reached, that results in sufficient

narrowing at the center (the saddle point) and corresponding to the maximum

Photo 2.4 Otto Hahn’s work table on which we see the device used to detect fission. This fairly

simple equipment enabled production of sufficient fissions for chemical detection of the presence

of barium (photo Karlsruhe)
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potential energy of the system, the nucleus breaks into two smaller drops. The

saddle point is reached in trans-uranium elements by adding energy of around

6 MeV, but in some cases this potential barrier may be overcome via tunneling

effect, which accounts for the spontaneous fissions noted with certain actinides. The

chances of fission are increased with slow neutrons while a fast neutron at 14 MeV

(the maximum energy of a neutron generated by fission) has a very low probability

of causing a fission itself.

2.6.1 Fission Energy

Fission energy may be calculated using the Aston curve for binding energy by

calculating loss of mass. For a fission producing 137
56Baand

96
36Kr, the energy liberated

by the fission is of the order of:

8:6MeV=nucleon�96|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
825:6

þ 8:5MeV=nucleon�137|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1 164:5

� 7:6MeV=nucleon�236|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1 793:6

¼196:5MeV

n1
0

U235
92

A slow incident neutron strikes an atom of uranium 

235.

*236
92U

The resulting compound nucleus is highly unstable. It 

oscillates around its spherical equilibrium position.

*236
92U

The nucleus is deformed and reaches thesaddle point 

before breaking (the liquid drop model) into two 

fragments of virtually identical size. In rare cases, a 

third, extremely light fission product appears...

Ba137
56

Kr96
36

n1
0

n1
0

n1
0

… together with anumberof neutrons (two or three,  

according to the individual case) and intense energy 

liberation (around 200 MeV per fission). The majority  

of this energy is dissipated in the form of kinetic energy

of the recoil fragments. Given the size of these 

fragments (fission products), this energy is rapidly 

transferred to the medium and the fragments are 

practically stopped dead in their tracks.

Fig. 2.25 Liquid drop model of fission
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i.e. near the level of 200 MeV calculated by W. Heisenberg in 1930. If each fission

produces several neutrons, it may be seen that under sufficiently propitious circum-

stances, certain neutrons will be able to recreate a fission. Frédéric Joliot, Hans Von

Halban and Lew Kowarski were the first to consider that the ν neutrons created by

fission might be used to fission another atom of 23592U. This phenomenon is known as

a chain reaction. The fission energy of 235
92U may be broken down as follows:

Ekinetic recoilð Þof fissionproducts¼ 166:2� 1:3MeV

Eγ prompt ¼ 8:0� 0:8MeV

Eγ delayed ¼ 7:2� 1:1MeV Eneutrinos ¼ 9:6� 0:5MeV lost
Eβ ¼ 7:0� 0:3MeV

Ekinetic of neutrons¼ 4:8� 0:1MeV

Total recoverable¼ 193:2MeV

The energy of the neutrinos is lost, since there is practically no interaction

between matter and these particles, so they escape from the reactor. The kinetic

energy Ekinetic (in MeV) of the fission products increases overall as the mass of the

fissioning nucleus grows (Table 2.3). By way of illustration:

(Baur 1985, p180) provides a precise breakdown of the fission energy for the

main fissile isotopes. Prompt γ rays are emitted within 10�9 s after fission. The total

energy of these γ rays is around 8 MeV, and 10 or so photons are emitted per fission

(7.4 photons for 23592U þ n). The remaining ν� 1 neutrons that were not involved in

fission are generally captured by nuclei in the reactor structure (n, γ) (except from
those escaping from the reactor), and they give back a mean 6 MeV, i.e. 6(ν� 1)�
8.5 MeV to the total, since ν� 2.4 (Table 2.4).

The probability of fission for fissile isotopes is dependent on the energy of

the incident neutron and is characterized by the cross section. Several heavy

isotopes have high fission cross-sections, particularly the isotopes 233
92U,

235
92U, 239

94Pu,
241
94Pu and

242m
95Am. Others are only fissile at high energy levels,

and these are generally isotopes having an even mass number and an even atomic

number: 232
90Th,

238
92U, 240

94Pu and 242
94Pu. The isotope 235

92U is extremely fissile

with thermal neutrons while 238
92U is fissile only with the fastest neutrons in the

spectrum (above 1 MeV). Since a single inelastic scattering event is generally

Table 2.4 Total fission energy including capture effects

Fissioning nucleus 235
92U

238
92U

239
94Pu

241
94Pu

Recovered energy (MeV/fission), including E (n, γ) 201.7 205.0 210.0 212.4

Table 2.3 Kinetic energy (in MeV) of fission products for several fissile systems (+n ¼ neutron-

induced fission, sp ¼ spontaneous fission)

229
90Thþ n 233

92U þ n 235
92U þ n 239

94Puþ n 241
94Puþ n

160 163 166 172 174
242
94Pu sp

242
96Cm sp 244

96Cm sp 252
98Cf sp

254
100Fm sp

174 197 185 185 176
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sufficient to ensure transition of a neutron to above 100 keV, and thus to below the

1 MeV threshold, it is legitimate to consider that 238
92U is only fissile with fission

neutrons from the initial collision. It should also be noted that the rapid fission cross-

section of 235
92U is of the same order of magnitude as that of 238

92U, which is why

enrichment of around 5% with 235
92U is sufficient to maintain a chain reaction in the

rapid spectrum in a reactor considered as infinite. For a fast reactor of reasonable size,

the minimum enrichment required tomaintain such a reactionmay be taken as 10% in
235
92U.

In a water-moderated reactor, natural uranium is not sufficient to attain critical

mass due to parasite captures by the water, and the fuel must therefore be enriched

in 235
92U. Enrichment of around 3% enables an industrially acceptable critical size to

be attained. In 3.7% UOX PWR fuel, the following mean numbers of neutrons

emitted per fission may be used:

ν235
92U

¼ 2:47 ν238
92U

¼ 2:78

These mean values summarize the distribution of fission neutrons. For example,

for 23592U, the number of neutrons produced per fission ranges from 0 to 6 (Table 2.5).

2.6.2 Spontaneous Fission

Although we are chiefly concerned with neutron-induced fission, it is useful to

know about the phenomenon of spontaneous fission that occurs with certain heavy

nuclei. Spontaneous fission consists of segmentation into two fission products that

is not induced by shock. This rare form of fission is characterized by a branching

ratio on the decay constant and it obeys the same rules as disintegration. A heavy

nucleus will therefore emit α radiation and undergo spontaneous fission with very

slight branching. Thus, 235
92U has spontaneous fission branching of 3.76 � 10�7%,

with the complement of 1 corresponding to the principal α decay. In general, the

heavier the nucleus the greater the degree of spontaneous fission. Spontaneous

fission occurs with nuclei having an even mass number (with the notable exception

of 235
92U and 239

94Pu).

Table 2.5 Numbers of

neutrons emitted by fission

(after (Uhrig 1970, p52))

ν p(ν) ν p(ν) ν2p(ν)

0 0.03 0 0

1 0.16 0.16 0.16

2 0.33 0.66 1.32

3 0.30 0.90 2.70

4 0.15 0.60 2.40

5 0.03 0.15 0.75

6 <0.001 �0 �0

total 1 ν ¼ 2:47 ν2 ¼ 7:33
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2.6.3 Neutrons Produced by Fission

(Goldstein 1959, p46; Rockwell 1956, p32)

The mean number of neutrons, ν, emitted by fission depends on the fissile heavy

nucleus in question and on the incident neutron energy. Experimental measure-

ments show that there are two types of neutrons: prompt neutrons, which are

produced practically instantaneously after fission of the nucleus (within less than

10�10 seconds following fission) and make up over 99% of neutrons; and delayed
neutrons, which occur in small quantities and may be emitted a significant time

after fission. Although they occur only in very small quantities, we shall see that

delayed neutrons are crucial in achieving kinetic control of the reactor. The heavier

the fissioning nucleus, the more neutrons it will produce on average. Similarly, the

greater the energy of the incident neutron, the greater the number of neutrons

produced (always as a mean value). The change in ν, which includes prompt and

delayed neutrons, is practically linear, in accordance with the energy.

ν Eð Þ ¼ νthermal þ dν

dE
E

By way of example, Howerton13 measured the following for 242
96Cm :

ν Eð Þ ¼ 3:44þ 0:172E MeV½ �.
The values of νthermal and dν=dE for different fissile systems are given in

Table 2.6. Where χ(E) is the number of prompt neutrons emitted at energy E and

normalized to production of 1 neutron, normalization is as follows:

Table 2.6 Constants of mean

neutrons emitted per induced

fission (Evaluation and
Testing of Actinide Cross
Section, EPRI NP-1067, 1979
and Reactor Physics
Constants—ANL-5800)

ν Eð Þ ¼ νthermal þ dν
dE E νthermal dν

dE
232
90Th 2.047 0.1530

233
92U 2.500 0.1150

235
92U 2.430 0.1346

238
92U 2.409 0.1385

239
92Pu 2.868 0.1106

242
96Cm 3.440 0.1720

245
96Cm 3.830 0.1900

249
97Bk 3.410 0.2140

13R.J. Howerton, Nuclear Science and Engineering, 62, 438, 1977.
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ð1
0

χ Eð Þ dE ¼ 1:

The mean energy of the neutrons emitted is of the order of 2 MeV, and only 5%

of emitted neutrons have an energy level above 5 MeV. In the 1950s, and in the

absence of any sufficiently precise theory of fission, many empirical formulae were

introduced in order to provide an analytical description of the fission spectrum. The

following is an example of the Maxwellian type (Woods 1964):

χ Eð Þ � 2a

ffiffiffiffiffiffi
aE

π

r
e
�aE

where for 235
92U, the constant a is around 0.775 MeV�1. Whatever the value of the

constant a, this empirical formula complies with normalization of the spectrum:ð1
0

χ Eð ÞdE ¼
ð1
0

2a

ffiffiffiffiffiffi
aE

π

r
e
�aE

dE ¼ 2ffiffiffi
π

p Γ
3

2

� �
¼ 1

The mean neutron energy is given by:ð1
0

χ Eð ÞE dE ¼
ð1
0

2a

ffiffiffiffiffiffi
aE

π

r
Ee

�aE
dE ¼ 2

a
ffiffiffi
π

p Γ
5

2

� �
¼ 3

2a

i.e. 1.93 MeV for 235
92U. Other identical Maxwellian approaches exist for the

majority of fissile isotopes such as the formula for the number of neutrons emitted

as a function of energy14, in which T is called the Maxwell spectrum temperature
(in MeV):

n Eð Þ ¼ C
ffiffiffi
E

p
e�

E
T

Normalization of this formula is such that:ð1
0

n Eð Þ dE ¼
ð1
0

C
ffiffiffi
E

p
e
�E=T

dE ¼ CT
3
2Γ

3

2

� �
¼ C

ffiffiffi
π

p
2

T
3
2 ¼ ν

The mean energy of the spectrum is given by the formula:

�E ¼
Ð1
0

n Eð ÞE dEÐ1
0

n Eð Þ dE
¼

C

ffiffiffi
π

p
2

3

2
T

5
2

C

ffiffiffi
π

p
2

T
3
2

¼ 3T

2

14Reactor Physics Constants, ANL-5800, second edition, 1963.
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according to this formulation: χ Eð Þ ¼ 2ffiffiffi
π

p
T

3
2

ffiffiffi
E

p
e
�E=T ¼ 2

T

ffiffiffiffiffiffi
E

Tπ

r
e
�E=T

We find the previous formula in which T assumes the role of 1/a (Table 2.7).
These values are provided for purely thermal incident neutrons. In an

actual neutron spectrum, induction of fission is not limited to thermal neutrons.

A Maxwell spectrum may be extrapolated taking the following as the mean

energy15:

�E ¼ 0:78þ 0:621
ffiffiffiffiffiffiffiffiffiffiffi
1þ ν

p

where ν is the mean number of neutrons emitted by fission in the real spectrum. The

spectrum:

χ Eð Þ ¼ 2ffiffiffi
π

p
T

3
2

ffiffiffi
E

p
e
�E=T

may be analytically integrated by parts if we wish to determine the proportion

of neutrons in a given energy group [Ei,Ef], without specific numeric integration

since there exists a library of pre-tabulated functions, using the following error

function:

erf xð Þ ¼ 2ffiffiffi
π

p
ðx
0

e�t2dt ¼ 2ffiffiffi
π

p
ðx2
0

1

2
ffiffi
t

p e�tdt

Indeed:

Table 2.7 Maxwell coefficients describing the fission neutron spectrum n Eð Þ ¼ C
ffiffiffi
E

p
e�

E
T

Fissile nucleus T[MeV] C �½ � ¼ 2νπ�
1
2T�3

2 �E MeV½ � ¼ 3T
2

Ð1
0

n Eð Þ dE ¼ ν
235
92U þ n 1.290 1.872 1.935 2.430

233
92U þ n 1.306 1.888 1.959 2.497

239
94Puþ n 1.333 2.121 1.999 2.893

252
98Cf sp 1.420 2.504 2.130 3.756

15J. Terrell, Fission Neutron Spectra and Nuclear Temperatures, Phys. Rev. 113, No 2, p. 527

(1959).
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ðEf

Ei

χ Eð ÞdE ¼ 2ffiffiffi
π

p
ðEf

Ei

1

T
3
2

ffiffiffi
E

p
e�

E
TdE ¼ 2ffiffiffi

π
p
ðEfT
Ei
T

ffiffiffiffi
t

p
e�tdt

¼ 2ffiffiffi
π

p � ffiffi
t

p
e�t

� �Ef
T
Ei
T

þ
ðEfT
Ei
T

1

2
ffiffiffiffi
t

p e�tdt

0BB@
1CCA

and thus:

ðEf

Ei

χ Eð ÞdE ¼ 2ffiffiffi
π

p
ffiffiffiffiffi
Ei

T

r
e�

Ei
T �

ffiffiffiffiffi
Ef

T

r
e�

Ef
T

 !
þ erf

ffiffiffiffiffi
Ef

T

r !
� erf

ffiffiffiffiffi
Ei

T

r !

In the 1950s, B. E. Watt proposed an empirical formulation16 valid between

0.1 MeV and 18 MeV that was widely used in the following form (Price et al. 1957,

p146):

Watt spectrum: χ Eð Þ ¼ Ce�aEsinh
ffiffiffiffiffiffi
bE

p
ð2:10Þ

where a ¼ 1 MeV�1, b ¼ 2 MeV�1 and C ¼ 0:48387 for the isotope 235
92U:

Since then, the term Watt spectrum has been commonly used to designate the

fission spectrum, despite the fact that the exact formula proposed by Watt is not

used in reality. Newer more precise coefficients have been provided by Lamarsh

circa (1966): a¼ 1.036 MeV�1, b¼ 2.29 MeV�1 and C¼ 0.453 for the isotope
235
92U (Fig. 2.26). The mean neutron energy is given by:
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Fig. 2.26 Fission spectrum for 235
92U : χ Eð Þ ¼ 0:453e�1:036Esh

ffiffiffiffiffiffiffiffiffiffiffiffi
2:29E

p

16B. E. Watt, Phys.Rev. 87, p. 1037 (1952).
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Emean ¼
Ð
χ Eð ÞEdEÐ
χ Eð ÞdE ¼ 1:98MeV

Watt coefficients exist for the majority of fissile systems. Above, we present the

values of the coefficients for the most widely used fissile systems (Table 2.8) and

for three incident neutron energies: thermal energy, fission neutrons at 1 MeV, and
fusion neutrons at 14 MeV.

2.6.3.1 Theoretical Fission Spectrum

The hyperbolic sine function proposed by Watt is derived from a calculation based

on the hypothetical energy distribution of fission fragments. Let us suppose that

neutrons are emitted in an isotropic fashion by fission products during slowing

down in matter. The composition of the particle speeds is written as follows:

v2 ¼ v2r þ V2 þ 2Vvr cosψ

where v is the speed of the neutron (mass m) in the center of the laboratory, V is the

speed of the emitting fission product (massM ) in the center of the laboratory, and vr
is the relative speed of the neutron in relation to its emitter. Since the mass of the

Table 2.8 Coefficients of the Watt fission neutron spectrum χ Eð Þ ¼ Ce�aEsh
ffiffiffiffiffiffi
bE

p

Incident neutron energy a [MeV�1] b [MeV�1]

232
90Thþ n Thermal

1 MeV

14 MeV

0.9184

0.9012

0.8547

1.6871

1.6316

1.4610
233
92U þ n Thermal

1 MeV

14 MeV

1.0235

1.0235

0.9964

2.5460

2.5460

2.6377
235
92U þ n Thermal

1 MeV

14 MeV

1.0121

1.0121

0.9728

2.2490

2.2490

2.0840
238
92U þ n Thermal

1 MeV

14 MeV

1.3449

1.1172

1.0359

3.4005

3.2953

2.8330
239
92Puþ n Thermal

1 MeV

14 MeV

1.0352

1.0352

0.9479

2.8420

2.8420

2.3830
240
92Pu Spontaneous fission 1.2516 4.9030

242
92Pu Spontaneous fission 1.1995 4.4317

242
94Cm Spontaneous fission 1.1236 4.0460

244
94Cm Spontaneous fission 1.1037 3.8480

252
98Cf Spontaneous fission 0.9756 2.9260
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neutron is generally far lower than that of its emitter, we may consider that the

center of mass of the emitter/neutron system is located in the fission product.

neutron

fission product

Velocity triangle

If E¼mv2/2 is the kinetic energy of the neutron in the center of the laboratory

and whose distribution we are seeking to establish, ε ¼ mv2r=2 is its “relative”

kinetic energy, and EFP¼MV2/2 is the kinetic energy of the fission product, the

composition of velocities indicates that the “relative’ energy can range from

εmin¼m(v2�V2)/2 for an emission angle of ψ ¼ 0 to εmax¼m(v2 +V2)/2 for an

angle of ψ ¼ π.
If we assume neutron emission to be isotropic in the center of mass, this means

that the probability of emission at a given angle is proportional to the solid angle:

p Ωð ÞdΩ ¼ dΩ
4π

¼ 2π sinψ dψ

4π
¼ sinψ dψ

2

Differentiating the velocity composition law taking vr as the constant, we find

that (without accounting for the sign):

2vdv ¼ 2Vvr sinψ dψ

Thus:

sinψ dψ

2
¼ v

2Vvr
dv ¼

ffiffiffiffiffiffi
2E

m

r
2V

ffiffiffiffiffi
2ε

m

r ffiffiffiffi
2

m

r
1

2
ffiffiffi
E

p dE ¼ 1

2V
ffiffiffiffiffiffiffiffi
2mε

p dE

If we now assume that the distribution of neutrons by “relative’ energy is

Maxwellian and of the form:

m εð Þdε ¼ 2

T
ffiffiffiffiffiffi
πT

p ffiffiffi
ε

p
e�

ε
Tdε

of which the integral over the entire energy range is:
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ðþ1

0

m εð Þdε ¼ 2ffiffiffi
π

p
ðþ1

0

ffiffiffi
ε

T

r
e�

ε
T
dε

T
¼ 2ffiffiffi

π
p Γ

3

2

� �
¼ 1

The energy T is the “temperature” of the Maxwell spectrum. The energy

distribution of neutrons is then given by:

χ Eð ÞdE ¼
ðε¼εmax

ε¼εmin

m εð Þdε 1

2V
ffiffiffiffiffiffiffiffi
2mε

p dE ¼ 1

V
ffiffiffiffiffiffiffiffiffiffiffiffi
2πmT

p
ðε¼εmax

ε¼εmin

e�
ε
T
dε

T
dE

After integration between the limits εmin ¼
ffiffiffi
E

p �
ffiffiffiffiffiffiffiffiffiffiffiffi
m

M
EPF

r� �2

and εmax ¼ffiffiffi
E

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
m

M
EPF

r� �2

, we obtain a hyperbolic sine function:

χ Eð ÞdE ¼ 2

V
ffiffiffiffiffiffiffiffiffiffiffiffi
2πmT

p e�
mEPF
M T e�

E
Tsh

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mEPFE

M

r
T

0BB@
1CCA dE

By selecting the numerical values T� 1 MeV and mEFP/M� 0.5MeV it is

possible to formulate a first approximation of the experimental distribution.

Under these hypotheses:

χ Eð ÞdE ¼ 2

V
ffiffiffiffi
m

p ffiffiffiffiffiffiffiffi
2π e

p e�Esh
ffiffiffiffiffiffi
2E

p� 
dE

It may also be seen that:

mEFP

M
¼

m
1

2
MV2

M
¼ mV2

2
¼ 0:5MeV thus V

ffiffiffiffi
m

p ¼ 1MeV0:5

Taking a ¼
ffiffiffiffiffiffi
2

π e

r
� 0:484, we finally obtain a “Watt” type formula for

E expressed in MeV:

χ Eð ÞdE ¼ ae�Esh
ffiffiffiffiffiffi
2E

p� 
dE

Note that the expression mEFP/M¼ 0.5MeV implies uniform behavior among

fission products. It would have been more accurate to consider a Maxwellian

distribution of the energy of fission products having a mean of 166/2 ¼ 83 MeV,

since 166 MeV is the total recoil kinetic energy of the two fission products, as well

as a curve for the distribution of mass of the fission products. However, this
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hypothesis would greatly complicate the calculation without significant improve-

ment in precision.

2.6.3.2 Average Energy of Fission Neutrons

The mean value of the previous spectrum may be calculated analytically:

�E�
ðE¼þ1

E¼0

Eχ Eð ÞdE¼a

ðE¼þ1

E¼0

Ee�Esh
ffiffiffiffiffiffi
2E

p� 
dE¼a

ðE¼þ1

E¼0

Ee�Ee
þ ffiffiffiffi

2E
p

�e�
ffiffiffiffi
2E

p

2
dE

Using a change in variable
ffiffiffi
E

p
¼ x� 1ffiffiffi

2
p or

1

2
ffiffiffi
E

p dE ¼ dx, we obtain:

�E

a
�

ðx¼þ1

x¼� 1ffiffi
2

p

xþ 1ffiffiffi
2

p
� �3

e
� xþ 1ffiffi

2
p

� 2

e
þ ffiffi

2
p

xþ 1ffiffi
2

p
� 

dx

�
ðx¼þ1

x¼þ 1ffiffi
2

p

x� 1ffiffiffi
2

p
� �3

e
� x� 1ffiffi

2
p

� 2

e
� ffiffi

2
p

x� 1ffiffi
2

p
� 

dx

�E

a
� ffiffiffi

e
p ðx¼þ1

x¼� 1ffiffi
2

p

xþ 1ffiffiffi
2

p
� �3

e�x2dx�
ðx¼þ1

x¼þ 1ffiffi
2

p

x� 1ffiffiffi
2

p
� �3

e�x2dx

0BB@
1CCA

These integrals may be judiciously segmented to obtain:

�E

a
ffiffiffi
e

p �
ðx¼0

x¼� 1ffiffi
2

p

xþ 1ffiffiffi
2

p
� �3

e�x2dxþ
ðx¼þ1

x¼0

xþ 1ffiffiffi
2

p
� �3

e�x2dx

�
ðx¼þ1

x¼0

x� 1ffiffiffi
2

p
� �3

e�x2dxþ
ðx¼þ 1ffiffi

2
p

x¼0

x� 1ffiffiffi
2

p
� �3

e�x2dx

Noting that:

ðx¼þ 1ffiffi
2

p

x¼0

x� 1ffiffiffi
2

p
� �3

e�x2dx ¼ �
ðy¼0

y¼� 1ffiffi
2

p

yþ 1ffiffiffi
2

p
� �3

e�y2dy

Using the factorial for real numbers: Γ nð Þ � Ðx¼þ1

x¼0

xn�1e�xdx we obtain:
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ðx¼þ1

x¼0

x2e�x2dx¼
ðy¼þ1

y¼0

ffiffiffi
y

p
2
e�ydy

¼1

2
Γ

3

2

� �
¼

ffiffiffi
π

p
4

and

ðx¼þ1

x¼0

e�x2dx¼
ðy¼þ1

y¼0

1

2
ffiffiffi
y

p e�ydy¼1

2
Γ

1

2

� �
¼

ffiffiffi
π

p
2

:

�E

a
ffiffiffi
e

p ¼
ðx¼þ1

x¼0

6x2 þ 1ffiffiffi
2

p e�x2dx ¼ 1ffiffiffi
2

p
6Γ

3

2

� �
þ Γ

1

2

� �
2

¼ 1

2
ffiffiffi
2

p 8
ffiffiffi
π

p
2

¼
ffiffiffiffiffi
2π

p

With a ¼
ffiffiffiffiffiffi
2

π e

r
, we obtain: �E ¼ 2MeV

The reader may adapt this result in accordance with the specific parameters a and
b for the isotope under consideration.

2.6.4 Prompt Fission Photons

(Goldstein 1959, p58; Rockwell 1956, p34)

The fission diagram in the liquid drop model seen earlier contains 7 γ rays that
are produced instantaneously. This figure tallies with reality since the exact figure

for the fissile nucleus 235
92U is 7.028 per fission (this is obviously a mean number: in

most cases, 7 γ rays are emitted, and more rarely, 8). The spectrum of prompt γ rays,
i.e. the number n(Eγ) of γ rays at a corresponding γ energy level, is illustrated
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Fig. 2.27 Prompt γ spectrum for 235
92U
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below for fission of 23592U. It may be correctly approximated (n Eγ

� 	 ¼ 8:0e�1:1Eγ) by

n Eγ

� 	 ¼ 8:0e�1:1Eγ with Eγ in MeV. Note that since fission products also produce

photons according to the approximate law nFP Eγ

� 	 ¼ 6:0e�1:1Eγ , the sum of the

two contributions gives the total number of photons produced by a fission. The

energy of these prompt γ rays, m(Eγ)¼Eγ n(Eγ), is also plotted. The sum of these

energies, (i.e. the total energy of γ rays denoted E γ prompt in the energy balance seen

in the breakdown of the energy liberated by fission of 235
92U ) is 7.8265 MeV

(Figs. 2.27 and 2.28) (Table 2.9).

2.6.5 Delayed Fission Neutrons

Delayed particle emission occurs with both neutron-deficient and neutron-rich

nuclei. Proton emission was observed for the first time in 1962, while delayed

neutron emission being seen initially in 1939 by R.O. Meyer and Wang. In 1939,

Bohr and Wheeler investigated the possible origin of these delayed neutrons and

concluded that this phenomenon occurs upon β� decay of certain fragments. It was

long thought that only 6 delayed neutron precursors existed, until in 1953 A. C. Pappas

reported the existence of numerous periods of delayed neutrons. Nevertheless, to this

day delayed neutrons continue to be widely grouped under 6 families. Maria Mayer

was the first person to note the effects of closed (completely filled) neutron shells on

the emission of delayed neutrons. Subsequent studies showed that the precursors are

frequently located far from regions of closed neutron shells. The greater the neutron

charge of a fission fragment, the further it is from stability, and the weaker the neutron

binding energy, Bn, and conversely, the greater the energy Qβ between two isobaric

isotopes. At a certain distance from stability, the following may be found:
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Fig. 2.28 Prompt γ energy spectrum for 235
92U
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Qβ � Bn 
 0

The β� radioactivity of an isotope A
ZX containing A–Z neutrons can produce

excited states Zþ1
AY

∗
holding A� (Z + 1) neutrons. If the level of excitation attained

is greater than the binding energy, Bn, there may be de-excitation to the ground state
A�1
Zþ1Y

∗
with the emission of a neutron. In this case, the nucleus AZX is called a delayed

neutron precursor while the nucleus Zþ1
AY

∗
is termed a delayed neutron emitter. The

delayed neutron spectrum is mainly continuous, but with some fairly pronounced

peaks at around 0.2 MeV. It should be noted that delayed neutrons are emitted at a

lower energy level (between 0.2 and 0.6 MeV) than prompt neutrons. Delayed

neutrons created through β �,n decay (or “neutron decay”) from extremely neutron-

rich radioactive fission products. They are quantified in terms of the fission event

that created the fission products in question. Around 1% of the neutrons emitted

following fission are delayed neutrons.

Although they occur in low numbers, these neutrons are essential for reactor

control. If there were only prompt neutrons, the reactor would become uncontrol-

lable since divergence would be explosive. The number of delayed neutrons per

fission (absolute delayed neutrons yield) depends on the fissile nucleus in question.
The absolute delayed neutrons yield is directly correlated with the yield of delayed

neutrons by fission of the precursor.

The greater the number of delayed neutrons per fission (see Table 2.10), the

“slacker”17 the fuel containing the fissioning nucleus in question, in other words the

easier to manage. Fuel containing heavy nuclei with small numbers of delayed

neutrons per fission will be highly reactive in the event of reactivity accidents and

thus more difficult to control. Consequently, the Natural Uranium and Graphite-Gas

(UNGG in French) reactors containing little 235
92U and a great deal of 238

92U are

easier to control than fast-neutron reactors containing large quantities of 239
94Pu

(Tables 2.11, 2.12 and 2.13).

The delayed neutron fraction, β, denotes the number of delayed neutrons divided

by the total number of neutrons emitted. β is often expressed in pcm (pour cent mille).

The delayed neutron fraction depends on the fissioning isotope and on the incident

neutron energy (Table 2.14 gives no data for non-fissile isotopes in thermal spectrum).

Table 2.10 Number of delayed neutrons per fission for some fissile isotopes

Fissile nucleus Number of delayed neutrons per fission

235
92U 0.0158

233
92U 0.0066

239
94Pu 0.0061

238
92U 0.0412

17This relatively unorthodox term was used by staff managing the first FrenchUNGG, stigmatizing

the slow responses of the reactor, for example during the divergence stage.
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Table 2.13 Delayed neutrons for 239
94Pu

Group Period [s] Abundance [%] Total neutrons per fission

1 54.3 3.5 0.00021

2 23.0 29.8 0.00182

3 5.60 21.1 0.00129

4 2.13 32.6 0.00199

5 0.618 8.6 0.00052

6 0.257 3.4 0.00027

Total 100% 0.00610

Table 2.11 Delayed neutrons for 235
92U

Group Period [s] Abundance [%] Total neutrons per fission

1 55.7 3.3 0.00052

2 22.7 21.9 0.00346

3 6.2 19.6 0.00310

4 2.3 39.5 0.00624

5 0.61 11.5 0.00182

6 0.230 4.2 0.00066

Total 100% 0.0158

Table 2.12 Delayed neutrons for 233
92U

Group Period [s] Abundance [%] Total neutrons per fission

1 55.0 8.6 0.00057

2 20.57 29.9 0.00197

3 5.0 25.2 0.00166

4 2.13 27.8 0.00184

5 0.615 5.1 0.00034

6 0.277 3.4 0.00022

Total 100% 0.00660

Table 2.14 Delayed neutron fractions for major fissile systems

β (pcm) Fast Thermal

233
92U 270 � 20 264 � 20

235
92U 650 � 30 650 � 30

238
92U 1570 � 120 –

239
94Pu 210 � 20 210 � 20

240
94Pu 260 � 30 –

232
90Th 2200 � ? –
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Delayed neutrons are grouped together by family according to the fission

products of similar period by which they are produced. The number of delayed

neutron groups has been optimized for the study of reactor kinetics to 6 groups (not

to be confused with energy groups!). The percentage thus corresponds to weighting

of the fission yields of the isotopes included in these families. The main precursors

and the average energy of the emitted neutrons are given in Table 2.15. It may be

seen that this energy is far less than the mean fission energy (2 MeV). Conse-

quently, delayed neutrons are not so important inside the reactor, and in particular,

they are practically incapable of causing fission in fast isotopes such as 238
92U which

have threshold fission cross sections. Both the periods and abundance of delayed

neutron groups are relatively unaffected by the energy of neutrons causing fission.

This effect is of secondary importance in relation to the fissile nucleus effect.

2.7 Fission Products Resulting from Fission

Fission products are created statistically as a percentage of the fission yield, which

has a highly characteristic double-humped curve (the so-called camelback—though

not a dromedary back—curve, as everyone knows!) peculiar to each heavy fissile

nucleus. The sum of the yields is normalized to 2 (since two nuclei are produced).

The fission yield of a fission product depends on the fissioning isotope and on the

energy of the incident particle. Nuclear libraries provide three yield values for each

fissile system: the so-called high-energy yield for neutrons at 14 MeV, a fast yield

for neutrons at 400 keV, and a thermal yield for neutrons having a Maxwellian

distribution. The two peaks in the curve are centered around the neighboring masses

of 95 and 140, whereas a single peak would be centered approximately around half

the mass number of the fissile isotope.

This asymmetry is due to the fact that the fission products tend to be distributed

around the magic numbers of nucleons (Reuss 1987, p58), (GA, Vol. 1 1967, p132).

Whetstone proposed a simple empirical model to account for the fact that for fission

products of comparable mass, the lightest fragment receives the highest excitation

Table 2.15 Precursor groups for 235
92U

Precursor Period (s)

Neutron energy

(MeV)

Number of delayed

neutrons per fission

neutron (βi)
87
35Br to

87
36Kr 55.6 0.25 0.00026

137
53I to

137
54Xe 22.0 0.46 0.00170

89
35Br to 91

35Br 4.51 0.40 0.0021

139
53I or 135

51Sb 1.52 0.45 0.0024

137
51Sb 0.43 0.42 0.00084

85
33As 0.05 – 0.00025
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energy (Nuclear Structure 1960, p865). This idea is based upon the position of the

fracture of the deformed compound nucleus: Whetstone defined a probability of

rupture that is symmetrically dependent on the distance from the rupture.

For an actual reactor, the yields are weighted by the fast and thermal reaction

rates with a cut-off energy (generally 0.625 eV), enabling the thermal part be

considered as corresponding to a Maxwell spectrum, while the fast part corresponds

to a fast and epithermal spectrum. To simplify, the thermal yield provides a good

approximation of the yield of a fission product in a PWR reactor. The yields

produced by a high-energy neutron (14 MeV) are of the same order of magnitude

as those produced at low energy, except in the middle of the hump, where the

divergences are significant and can reach a coefficient of 100. At high energy levels,

the number of neutrons emitted per fission increases. Note that certain fissile

systems such as 238
92U only fission by means of fast neutrons (since the fission

cross section is a threshold cross section). Figure 2.29 presents the total chain yield

as a function of mass number. It may be seen that the maximum yield is of the order

of 6.4% for mass numbers in the vicinity of 95 (first hump) or 137 (second hump).
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Fig. 2.29 Total chain yield

per fission of 235
92 U as a

function of mass number,

after Reactor Physics
Constants ANL-5800.
Circle: thermal neutrons

triangle: neutrons at

14 MeV
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This is why it was the isotope 137
56 Ba that enabled the discovery of fission, since it is

produced in greater quantities (Fig. 2.30).

2.7.1 Direct Yield of an Isotope

The term direct yield (or independent yield) denotes the percentage of an isotope

created directly by fission following the emission of prompt neutrons, but prior to

the emission of delayed neutrons. This is a relatively subjective notion, since it is

difficult for researchers to ensure that a given isotope is not the product of the

extremely rapid decay of a “highly-volatile” transient parent entity. Regardless,

independent decay thus does not take into account the potential formation of the

isotope by parent entities that might have produced it through radioactivity. Not all

directly yields have necessarily been measured and yields are generally normalized

to the yield of 140
56Ba for thermal fission of 235

92U þ n, i.e. 6.44%. The independent

yield of an isotope of mass number A, atomic number Z, and isomeric state I is
written as y(A,Z, I ).

Most likely scission

point of mass

Division of 

symmetric 

mass

Probability of 

scission

Distance from 

scission

Heavy 
fragmentLight 

fragment

Fig. 2.30 Whetstone fission model. Where fission occurs at the scission point, most probably

midway between the nuclei, asymmetric distribution of mass occurs since the fragments tend to

conform to the magic number rule for nucleons, thus one light fragment and one heavy fragment. If

scission occurs near the lighter nucleus, the heavier nucleus will be that most excited by the

deformation energy, and the masses of the two fragments will differ greatly; more equitable

distribution of masses signifies scission near the heavy fragment, in which case the “intermediate”

mass will make the light fragment heavier, resulting in this case in the light fragment being the

most excited
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2.7.2 Total Chain Yield

The total isobaric chain yield Y(A) is defined as the sum of the different independent

yields of fission products having the same mass number A. The total chain yield of a
radioactive isotope is frequently noted alongside the name of a radioactive isotope,

which indicates that it is the last isotope created directly by fission in the mass

number in question. The maximum value attained is of the order of 7%. If f(A,Z ) is
the independent yield fraction of all isomers of (A,Z ) and R(A,Z, I) is the yield ratio
of the isomer in question, we have the following closure laws:

8A,
X
Z

f A; Zð Þ ¼ 1

8 A; Zð Þ,
X
I

R A;Z; Ið Þ ¼ 1

8><>:
8A,

X
Z, I

y A; Z; Ið Þ ¼ Y Að ÞX
A

Y Að Þ ¼ 2

8><>:
The value of these formulae stems from the fact that most of the radioactivity of

fission products is of the type β+ or β� and thus conserves the relevant mass

numbers during successive decays (with the exception of β� decays of delayed

neutron precursors). It may therefore be assumed with relatively little risk of error

that the fission product chains are distinct in terms of mass number. These closure

laws are extremely useful as a complement to any theoretical models that provide

independent yields for unmeasured isotopes. These models, such as the Wahl18

model for example, enable the independent yield to be calculated using the formula:

f A; Zð Þ ¼ 1

2
F A; Zð Þ N Að Þ erf

Z � Zp Að Þ þ 0, 5

σz
ffiffiffi
2

p
� �

� erf
Z � Zp Að Þ � 0, 5

σz
ffiffiffi
2

p
� �� �

where N(A) is a normalization coefficient allowing verification of normalization to

1 of the independent yields, F(A, Z) represents the even-odd effect, and Zp(A) and σz
are respectively the mean value and standard deviation of a Gaussian distribution

that does not include the odd-even effect. The cumulative chain yield may be

modeled using 5 Gaussian distributions19 (two for each peak and one for the

symmetrical central part of the fission):

18A.C. Wahl (1985), Phys. Rev. C32, 184. For the record, Wahl is one of the co-discoverers of

plutonium, along with Seaborg.
19In particular: Musgrove et al: Prediction of Unmeasured Fission Yields, Proc. Panel Fission
Product nuclear Data, Bologna IAEA-169 2,163.
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Y Að Þ ¼ N1

σ1
ffiffiffiffiffi
2π

p e� A��A�D1ð Þ2=2σ2
1 þ e� A��AþD1ð Þ2=2σ2

1

� 
þ N2

σ2
ffiffiffiffiffi
2π

p e� A��A�D2ð Þ2=2σ2
2 þ e� A��AþD2ð Þ2=2σ2

2

� 
þ N3

σ3
ffiffiffiffiffi
2π

p e� A��Að Þ2=2σ2
3

where Ni is the normalization factor of the ith Gaussian function and σi is its

standard deviation, �A is the mean mass of the distribution, and Di is the deviation

of the peak in Gaussian function from the mean value �A. Normalization of chain

yields to 2 implies that N3¼ 2(1�N1�N2).

2.7.3 Cumulative Yield of an Isotope

The cumulative yield is defined as the probability of appearance of an isotope

formed either directly through fission, or by radioactive decay of its parent atoms in

the decay chain. It is thus the total number of atoms of fission product accumulated

over time following fission excluding any radioactivity of the latter. This assumes

instantaneous decay of all parents in the isotope for which we are seeking the

cumulative yield. The cumulative yield of a given isotope is always less than the

chain yield of its mass number since isotopes of the same mass not contained in the

chain of its parents may be created directly by fission and are naturally not counted

in the cumulative figure for the isotope in question. Note that because of the

presence of isomers, which may be created directly by fission, the limited yield

of the last isotope in the chain may also be lower than the chain yield (in which the

isomer is counted in the same way as the fundamental isotope), when the isomer

decays not only to its fundamental state but also to an isotope of different mass

number (e.g. α decay). Cumulative yields are used to calculate the residual power of

all fission products.

2.7.4 Slowing Down of Fission Products in Matter

During fission, the fragments acquire strong acceleration due to Coulomb repulsion

between the two nuclei. As a first approximation, it may be considered that their

kinetic energies are inversely proportional to their mass at speeds of the order of

10,000 km/s. For incident neutrons of energy below 2 MeV, fission is overwhelm-

ingly isotropic. This is no longer the case above this level, where forward scattering

is preponderant. Given the loss of electrons, the effective charge of the fragments is

around +20e. Slowing down thus occurs primarily through different ionizations

throughout their trajectory, during which their electronic cloud fills up and the atom

finally becomes neutral (GA Vol. 1 1967, p13).
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Chapter 3

Interaction of Electromagnetic Radiation

and Charged Particles with Matter

All nuclear reactions are associated with the emission of radiation. This radiation

contributes in part to the release of nuclear energy by interacting with materials in

the reactor core, and more generally, poses problems of radioprotection. Similarly,

a large number of particles is created during operation of the reactor, in particular,

charged particles such as α particles, as well as electrons and positrons as a result of

β radioactivity. All of these particles interact with matter and release energy that

contributes to the thermal balance of the pile. They also pose radioprotection

problems for staff and can damage the reactor structures through the cumulative

effects of collision. In this chapter, we examine the fundamentals needed to

understand the phenomena of interaction between charged particles and matter.

(Baur 1985; Berthelot 1956; Born 1971; Brasseur 1945; Cohen-Tannoudji et al.

1988; Delacroix et al. 2006; Filippi 1965; Herzberg 1991; Hine and Brownell 1956;

Lawson 1977; Métivier 2006; Shultis and Faw 2000; Sigmund 2008; Sharpe and

Taylor 1958, p. 103).

3.1 Electromagnetic Radiation

(Loudon 2000)

The frequency range of electromagnetic waves varies greatly.

Figure 3.1 gives a breakdown of the spectrum into radio waves (wavelength

30 km to 1 mm), followed by submillimeter, infrared (Déribéré 1954), visible and

ultraviolet radiation, and then x-rays (Brasseur 1945) and γ rays. These different

names refer to a single physical phenomenon: electromagnetic radiation Radio

waves are themselves grouped according to different applications such as televi-

sion, radar, etc. We generally speak of frequency (Hertz) for low energy levels, but

of electronvolts (eV) for higher energies. Electromagnetic waves may be envisaged

in the form of either waves (having a wavelength λ) or corpuscles (photons of

energy hv).
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At low energy levels (radio waves), only the wave function is of interest. At high

energies (x-rays and beyond), the particle function (corpuscular properties) is crucial.

The frequency characterizing a wave is given by: v s�1½ � ¼ c=λwhere c is the speed of
light in a vacuum. The energy of a photon is given by E[J]¼ hv¼mc2. The mass thus

defined is in fact an equivalent mass since photons have no discernible mass.

3.2 X-radiation

(Boutaric 1948; Peaslee and Mueller 1955, p. 104)

Analysis of energetic photons began at the end of the nineteenth century.

Progress with the Ruhmkorff coil, invented by German engineer Heinrich

D. Ruhmkorff (1803–1877), and the generation of high-voltage discharges (around

20,000 V), enabled high-speed electron currents to be produced in Crookes tubes,

invented by Sir William Crookes (1832–1919). Thanks to the use of increasingly

efficient vacuum tubes, Julius Plücker (1801–1868) was able to discover in 1858

that the light appearing on discharge disappears at very low pressures since

collisions no longer occur between electrons and air molecules. In 1895, Wilhelm

R€ontgen (1845–1923) succeeded in bombarding the target anode of his vacuum

tube with extremely high energies (Photos 3.1, 3.2).

He detected highly penetrative radiation which he dubbed x-rays (“x” for

“unknown”), the attenuation of which by dense substances enabled him to obtain

the first radiograms. A radiographic image taken of his wife Bertha’s hand enjoyed

phenomenal success and very quickly made the rounds throughout Europe. An

enormous opaque ring may clearly be made out on one of Mrs. R€ontgen’s fingers.
Following the discovery of x-rays, many studies conducted to analyze their elec-

tromagnetic characteristics. Charles Barkla (1877–1944), winner of the Nobel Prize

in Physics in 1917, showed in 1905 that they were polarizable1 (Brasseur 1945,

p. 12).

Fig. 3.1 Types of electromagnetic radiation by wavelength range and energy

1Concerning polarization, see (Filippi 1965, p. 101) and the work of the French physicist Etienne

Malus (1808).
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Photo 3.1 Wilhelm R€ontgen (left) is celebrated in Germany as the first winner of the Nobel Prize

in Physics in 1901, as indicated in the commemorative stamp issued by the West German Post

Office (Public domain and the Marguet collection).

Photo 3.2 The famous radiograph of Mrs. R€ontgen’s hand (Public domain)
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Studies in 1908 by B. Walter and Robert Pohl, followed by those of Koch and

finally Arnold Sommerfeld, established the possibility of deflecting x-rays through

a slit, thereby demonstrating the wave character of this form of radiation. In June

1912, Walter Freidrich, Paul Knipping and Max Von Laue (1879–1960) provided

irrefutable proof [using a device described in Brasseur (1945, p. 15)] of the

diffraction of x-rays by crystals, thus opening the way for modern crystallography

that allows the study of periodic networks. William L. Bragg (1890–1971) showed

that on the basis of Von Laue’s analysis, the condition of diffraction is written as a

function of:

– θ, the angle of the incident beam and of the diffracted beam at maximum

intensity,

– d, the reticular distance,
– λ, the wavelength of x-rays,

with θ/2 being the glancing angle, i.e. the complement of the angle of incidence

(Brasseur 1945, p. 42; Squires 1996; p. 33; Valentin 1982a, b, p. 33). In Fig. 3.2, AO
represents the incident neutron wave vector and AB the scattered neutron wave

vector. Since the collision is elastic, AO¼AB. BO is the vector perpendicular to the

lattice of crystal planes such that BO¼ 2π n/d where n is an integer.

Bragg’s law : nλ ¼ 2d sin
θ

2
ð3:1Þ

This law is also valid for the diffusion of neutrons by a crystal.

The principle of radiography is based upon the exponential absorption of x-rays,

the attenuation coefficient of which increases with the density of the matter through

which they pass (Brasseur 1945, p. 31). X-ray imaging enjoyed massive success and

in the First World War in 1914–1918, Marie Curie created a military ambulance

corps equipped with x-ray equipment allowing radiography to be performed near

the battlefield. Her daughter, Irène Joliot-Curie, worked as an assistant for the use of

this device (Radvanyi 2005). In the 1950s, extremely detailed treatises on electro-

therapy were published for the attention of the medical professions (Delherm 1951).

One of the principal ways of creating x-rays is through braking radiation or

Bremsstrahlung (in German). The trajectory of the negative electron curves due to

Coulomb’s force of attraction of positively-charged protons and the electron is

abruptly slowed down. Loss of energy by the electron is compensated by the

emission of an x-photon, in the same way as a catapult releases its stone when

Fig. 3.2 Coherent elastic

diffusion in the reciprocal

plane of the wave vectors
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the rotary movement is halted. The emission spectrum is continuous but is limited

by the kinetic energy of incident electrons (Fig. 3.3).

At low energy, the measurable spectrum is limited by the phenomenon of auto-

absorption of the target (neighboring atoms absorb the least energetic X photons). It

is possible for the interaction of an electron (or an α particle) to excite an electron in

the target without detaching it. In this event we have an excited electron in the

electron cloud that de-excites towards the ground state by emitting a photon. This

photon, if situated at the right wave length (in other words the atom is sufficiently

heavy and the electron belongs to a sufficiently deep shell), will be an x-ray. These

emissions were analyzed by Henry G. Moseley (1887–1915), who in 1913 studied

the correspondence between emitted frequencies and atomic number Z (Renault

1948, p. 85; Jouguet 1964, p. 54) and then quantified. They produce x-rays

characteristic of the target that are precisely described in the Bohr-Sommerfeld

theory. The most energetic photons—which we shall call γ rays, using the term

x-rays for electron emission—are produced by de-excitation of the excited nuclei

which return to their ground state by emitting nuclear photons. It is thus possible to

obtain a cascade of photons passing through intermediate energy levels where the

energy of the nucleus is far higher than that of its ground state. Indeed, x-rays are

used in a host of applications in the field of metrology [non-destructive control

testing, spectroscopy (Turpain 1913, p. 77), imaging, etc.].2

3.3 Interaction of Photons with Matter

(Baur 1985; Berthelot 1956; Cabannes 1929; Delacroix et al. 2006; Filippi 1965;

Harrison 1958; Lilley 2001, p. 136; Métivier 2006; Pollard and Davidson 1956;

Semat 1955; Thorre et al. 1999).

Fig. 3.3 Slowing-down of

an electron by the nucleus

with emission of an x-ray

via Bremsstrahlung

2An illustration is provided by way of the x-ray applications used by the Department of Military

Applications of CEA described in the journal CHOCS No 9 (December 1993). For the technical

aspect of sensors, see Samueli et al. (1968).
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3.3.1 Attenuation of a Photon Beam

(Goldstein 1959, p. 140)

As a monokinetic beam of photons passes through matter of a certain thickness,

an exponential loss of energy (illuminance) occurs. Energetic illuminance is

defined by the following formula:

I W=m2½ � ¼
dΦ

ds

where Φ is the energy flux in Watt and ds the area of the interposed screen. The

attenuated rays crossing in a straight line (these are occasionally referred to as

ballistic rays, indicating photons that do not undergo shock) may be distinguished

from scattered rays that have undergone collision. It can be seen that backwards

diffusion is possible (this phenomenon is known as backscattering). Because of

attenuation, the energy transmitted behind a screen is lower than the incident

energy. The difference in energy is that transferred to the interposed screen

(Fig. 3.4).

If the x-axis origin is placed at the start of the screen, photon attenuation may be

written as:

I W=m2½ � ¼ I0e
�μ Eð Þ:x

The coefficient μ is known as the linear attenuation coefficient [in m�1] and

depends on the type of matter being crossed and the energy of the photons in

question. The inverse value, 1/μ, is sometimes referred to as the mean free path of

photons in matter. Attenuation is often presented in the form of mass attenuation

using the density of the matter crossed by the photons:

Diaphragm

Scattered ray

Source of 

rays

Attenuated ray 

continuing in a 

straight line
Backscattered

ray

I

Fig. 3.4 Attenuation of energy of photons on passing through a screen
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Linear attenuation of photons : I W=m2½ � ¼ I0e
�μ Eð Þ

ρ :ρx ð3:2Þ

This law is known as the Beer-Lambert-Bouguer law by direct analogy with the

attenuation of a monochromatic beam in a liquid at concentration c and having an

absorption coefficient α (Fig. 3.5):

I1 W=m2½ � ¼ I0 e
�α c ‘

The same law as that governing irradiance applies to the number of photons:

N¼N0 e
�μ(E) . x.

It can be shown experimentally that the denser the matter crossed, the greater the

degree of attenuation. Similarly, the selective absorption of particular wavelengths

by different chemical bodies forms the underlying principle of atomic absorption
spectrometry (Pinta et al. 1979), which for example allows rapid analysis of the

impurities present in a given sample of gas (Turpain 1913, p. 79). The protective

screen industry regularly uses the concept of the half-value layer (HVL), which is

the thickness of a screen at which the number of photons transmitted is reduced by

half. These values are energy-dependent, and for information, Table 3.1 provides

some values for standard materials and photons at 1 MeV:

Fig. 3.5 Beer-Lambert-Bouguer law (source: Wikipedia)

Table 3.1 Efficiency of gamma-radiation shielding materials

Water Concrete Iron Lead

Density ρ[g/cm3] 1.00 2.30 7.85 11.30

Attenuation coefficient μ[cm�1] 0.07 0.15 0.47 0.79

HVL [cm] 9.90 4.62 1.47 0.88
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3.3.2 Photon Transport

(Goldstein 1959, p. 159)

If we now examine photons moving in different directions and at different

energies, we must first of all define (Duderstadt and Martin 1979) the intensity of

the photons as the product of the energy hv and the photon flux at speed c and

concentration n ~r;E; Ω
!
; t

� �
:

I ~r; Ω
!
; t

� �
¼ hv n ~r;E; Ω

!
; t

� �

The equation governing photon transport, known as the Boltzmann equation, is
written:

1

c

∂I ~r;Ω
!
; t

� �
∂t

þ Ω
!
:grad
��!

I ~r;Ω
!
; t

� �
¼ ρ ~r; tð Þ �κ ~r;Ω

!
; t

� �
I ~r;Ω

!
; t

� �
þ ε ~r;Ω

!
; t

� �h i

where:

ρ ~r; tð Þ is the density of the medium crossed

κ ~r; Ω
!
; t

� �
is the photon absorption coefficient, which depends on the nature of the

medium crossed

ε ~r; Ω
!
; t

� �
is the emission coefficient, which depends on the nature of the medium

crossed

At thermodynamic equilibrium at temperature T, the black-body radiation law

(Planck’s formula) gives the ratio between emission and absorption:

Bv ¼ ε

κ
¼ 2hv3

c2
1

e
hv
kT � 1

If we take into account elastic scattering (Rayleigh-Thomson scattering) for the

re-emission of photons at the same frequency, using the ratio of the absorption

cross-section to the total cross-section (absorption + diffusion), we may write:

1

c

∂I ~r; Ω
!
; t

� �
∂t

þ Ω
! : grad

��!
I ~r; Ω

!
; t

� �
¼ ρ ~r; tð Þκ ~r; Ω

!
; t

� �
� I ~r; Ω

!
; t

� �
þ σabs

σtot
Bv

�

þ 1� σabs
σtot

� �ð
dΩ

4π
I ~r; Ω

!
; t

� ��

The integral for the frequencies in this equation leads to an equation very similar

to the equation for neutron transport in one energy group.
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3.3.3 Rayleigh-Thomson Scattering

(Loudon 2000, p. 339; Shultis and Faw 2000, p. 42).

This is the simplest case of interaction in which a photon collides with matter

without loss of energy. During this type of scattering, which is also called coherent
diffusion, the photons excite electrons, which oscillate and re-emit photons at the

same energy as the incident photons. This phenomenon is known as elastic diffusion
without energy transfer. It is important at low energies although such diffusion is

generally disregarded in favor of the other interactions of photons. The differential

cross section as a function of the diffusion angle is given by the Thomson formula

(Hine and Brownell 1956, p. 55):

dσ θð Þ
dΩ

¼ r2e
2

1þ cos 2θ
	 
 ¼ e4

2m2
ec

4
1þ cos 2θ
	 


where re is the electron radius (2.817938� 10�14 m). This formula is valid for a

free electron. For a bound electron, the moment of recoil, q, may be transferred to

Z electrons without energy absorption, but the formula is corrected by a multipli-

cative term dictated by the atomic number of the target. The correction coefficient

may be obtained by means of complex quantum-electrodynamics calculations, out

of the scope of this book:

dσ θð Þ
dΩ

¼ r2e
2

1þ cos 2θ
	 


F q; Zð Þ

3.3.4 Photoelectric Effect

Antoine Becquerel, the grandfather of Henri Becquerel, was apparently the first

person to have observed (in 1839) electrical current resulting from the action of

light [(Zworykin and Ramberg 1953, p. 1), in which he is, however, confounded

with his son, Edmond]. He noted that a blue light resulted in a stronger current

between a pair of electrodes placed in electrolyte than did a yellow or a red light. He

presented this photovoltaic effect to the French Science Academy in late 1839. In
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1887, while working on the production of sparks and electrical arcs, Heinrich

Hertz3 (1857–1894) noticed that production was in fact facilitated if the cathode

was bathed in ultraviolet light. He thus devised the following experiment to

understand this phenomenon. A fine sheet of zinc is placed on an experimental

device comprising an electroscope and then illuminated with like resulting either

from an electrical arc or from a mercury-vapor lamp rich in ultraviolet radiation.

It may be seen that if the electroscope is negatively charged and the zinc sheet

then lit up, the electroscope discharges continuously and rapidly, indicating that

electrons are expelled from the metal by the ultraviolet rays. A positive charge then

builds up in the zinc sheet, which discharges the electroscope. Conversely, if the

3Heinrich Rudolf Hertz (1857–1894) was a German physicist known for his work on electromag-

netic radiation, including light. Born into a comfortably-off family in Hamburg, at the age of

6 years he entered the demanding School of Dr. Richard Lange. In 1872, he entered the prestigious

Johanneum Gymnasium and obtained the Abitur in 1875. He then entered a construction engi-

neering school but after reflection, signed up in for the University of Munich, where his mathe-

matics teacher, Von Jolly, introduced him to the rigor of mathematics. He then studied under Von

Helmholtz and de Kirchhoff in Berlin. Thanks to Von Helmholtz’s training, he was awarded the

gold medal of the Faculty of Philosophy for a study on electrical inertia. He defended his thesis on

electrical induction: €Uber die induction in rotirenden kugeln (On the induction of rotating balls) in
February 1880. He analyzed the problem of contact between two elastically and linearly deform-

able balls, a problem known as Hertzian contact stress. He then worked for 3 years as assistant to

Von Helmholtz. He obtained a teaching position in Kiel for 2 years, after which he moved to

Karlsruhe to become the assistant of future Nobel prizewinner, Karl Ferdinand Braun, and it was

here that he carried out studies to verify that light is indeed a form of electromagnetic radiation. On

November 13, 1886, he created the first wireless link using electromagnetic radiation produced by

an oscillator and showed that these waves also travel at the speed of light. In 1887, he turned his

attention to the photoelectric effect discovered empirically by Antoine Becquerel, but he is rightly

considered to be the principal investigator in this field. These experiments, then those of his

assistant, Wilhelm Hallwachs, are central to Einstein’s theory of quanta of light and that of the

photoelectric effect (initially known as the Hallwachs effekt). He died at a mere 37 years through

septicemia that was doubtless caused by recurrent mastoiditis, before he had time to understand the

significance of his experimental discoveries [Sources: article by R. Haidar in Photoniques No

56, pp. 21–23 (2011), “Heinrich Hertz, a Short Life” by Charles Susskind, San Francisco Press

(1995)] (Public domain and the Marguet collection).

Heinrich Hertz
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electroscope is positively charged, the discharge no longer occurs since the elec-

trons created by the process are attracted to the electroscope. Further, if a glass that

absorbs the ultraviolet radiation in light is interposed, discharge no longer occurs.

The logical conclusion is that when adequately lit, the zinc sheet emits electrons.

This phenomenon is known as the photoelectric effect. If a light source strikes a

metal plate, the electromagnetic waves detach electrons from the metal which may

then be attracted by a positively charged plate (anode), thereby creating an electric

current (Figs. 3.6 and 3.7).

It may be seen experimentally that the frequency of the radiation must exceed a

certain level in order to initiate the photoelectric current. Even if the position of the

anode becomes slightly negative, current is measurable, but decreases in accor-

dance with the negative value at the anode. When the current is extinguished, we

may deduce the maximum kinetic energy carried by the electrons (Cagnac and

Pebay-Peyroula 1995, p. 7). The photoelectric current occurs quasi-instantaneously

when the light source is switched on and the maximum kinetic energy of the

electrons does not vary with the intensity of the light. Classical electromagnetic

theory cannot account for these phenomena, since if it were the wave that excites an

electron in order to detach it from the metal, this phenomenon would occur at all

wavelengths if sufficient time were allowed.
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Further, the kinetic energy of the electrons should depend upon the intensity of

the wave, but this is not what happens in experiments. Albert Einstein accounted for

the photoelectric effect positing the existence of a particle, the photon,4 a sort of

“grain of light” that transports the energy of the light beam (Bergia 2004, p. 31).

This particle also possesses wave qualities, as part of its dual particle/wave nature.

In order to overcome the dead-end posed by the problem of the photoelectric effect,

he proposed in 1905 that Plank’s quanta notion be applied to light.

A wave train with an extremely high frequency has particle properties, in other

words particle of energy, hv. As soon as the energy of a photon is able to overcome

the binding energy W responsible for the bond between the electron and the atomic

nucleus, the electron is ejected with kinetic energy Te� ¼ hv � W. If the intensity

of the light increases, so too does the number of detached electrons, but not their

kinetic energy, since the energy of photons is fixed (it is in fact the number of photons

that increases with intensity). The device shown in Fig. 3.8 enables either positive or

negative current to be applied. A negative countercurrent, �V0, independent of the

frequency of the light must be used to cancel out the photoelectric effect induced

when the photocathode is lit. With more negative currents, the electrode repels the

electrons. The effective cross section of the photoelectric effect, usually denoted τ,
presents discontinuity at each level of binding energy in the electron shell up to the

Fig. 3.6 Lamp switched

off: no electrons produced

Fig. 3.7 Lamp switched

on: electrons produced by

zinc

4The term “photon” is derived from the Greek word for light. It was first used in 1926 by chemist

Gilbert N. Lewis (1875–1946) in a theory. Although the theory was not confirmed, the term itself

was immediately adopted by the scientific community.
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most tightly bound level, K, beyond which the cross section varies inversely with the
cube of the energy of the photon 1/(hv)3 (Figs. 3.9 and 3.10).

A photon with sufficient energy can expel an electron by transferring to it the

kinetic energy equal to the difference between the energy of the photon hv and the

binding energy of the outermost electron. Following the collision, the photon disap-

pears after transferring all of its energy. For conservation of the impulse, the pattern

to which the electron undergoing collision belongs participates by carrying away the

remainder of the impulse [this also means that complete disappearance of a photon

that projects a free electron is physically impossible, and there is inevitably a

Compton effect (GA Vol. 1 1967, p. 85)]. The photoelectric phenomenon is espe-

cially likely with photons of energy less than 100 keV. The probability of interaction

[linear attenuation coefficient (Hine and Brownell 1956, p. 53) due to photoelectric

effect τ] is given by the empirical law of William Henry Bragg (1862–1942)5 and

S.E. Peirce (Cahen and Treille 1963; Shultis and Faw 2000, p. 44):

τ

ρ
� Cst

Z3

A

1

hvð Þ2,8

Volt

meter 

Am-

meter I 

Photocathode 

Anode 

V 

Infographie Marguet

Fig. 3.8 Electrical device

to measure the stopping

potential

5William Henry Bragg was the father of William Laurence Bragg, cited earlier, with whom he

shared the 1915 Nobel Prize in Physics “for their services in the analysis of crystal structure by
means of X-rays.”
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This formula shows that the photoelectric effect is enhanced in media with a

high Z (such as metals), but that it decreases considerably with energy. Expulsion of

an electron from the K shell results in rearrangement of the electrons and in the

consequent emission of an X photon by fluorescence in what is known as the Auger
effect (Mayo 1998, p. 285). The expelled electron is termed the Auger electron.
Photoelectrons are emitted in all directions but principally forwards at high photon

energies. Einstein’s original approach to the photoelectric effect won him the Nobel

Prize in 1921 “for his services to theoretical physics, and especially for his
discovery of the law of the photoelectric effect”. More or less deterministic models

can be used to obtain laws of the effective cross section of the photoelectric effect,

such as Heitler’s law (Baur 1985, p. 71), which describes the non-relativistic

contribution of electrons in the K shell for photons at energies below 0.5 MeV.

3.3.5 Compton Effect

When waves are reflected or diffracted by obstacles, no change is expected in either

wavelength or frequency, although there may possibly be some variation in inten-

sity. However, if monochromatic photons are fired at a lattice of atoms, the

Fig. 3.9 Ejection of an

electron from electron cloud

by a photon

Fig. 3.10 Re-arrangement

of electron cloud
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scattered wave changes particularly in frequency as a function of the angle of

reflection. In 1923, Arthur Compton6 demonstrated that x-rays (thus photons with

little energy) are scattered by relatively free electrons (in remote shells) while

losing their energy, in other words at a much lower frequency v (Wissman 2004;

Baur 1985, p. 78; Cottereau and Lefebvres 1971, p. 102; Shultis and Faw 2000,

6Arthur Holly Compton (1892–1962) was an American physicist who obtained his doctorate in

physics from the University of Princeton in 1916. He worked and taught at various universities,

including Chicago (1923–1945), then Saint-Louis (1945–1961). His experimental and theoretical

work on x-rays was considerable, earning him the 1927 Nobel Prize in Physics for discovery of the

effect that bears his name.

(the Marguet collection)
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p. 33; Filippi 1965, p. 220). Further, the difference in wavelength is given exper-

imentally by the following law:

λscattered � λincident ¼ λCompton 1� cos θð Þ

where θ is the angle of deviation of the photon. The constant λCompton has been

found to be the following for electrons:

λCompton ¼ h

me� c
¼ 2:4262� 10�12 m

The kinematics of collision may be considered as elastic scattering of the photon

on a free electron. The conservation of energy and of the quantity of movement is

given by:

hv ¼ hv0 þ me� γ � 1ð Þ
hv ¼ hv0 cos θ þ me�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 � 1ð Þp

cosφ

0 ¼ hv0 sin θ þ me�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 � 1ð Þp

sinφ

8<
: where: γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2
:

r

The energy of the scattered photon is maximal at θ¼ 0. For a of 90� right angle,
the shift in wavelength is 0.024 Å. The physical explanation for this phenomenon

involves the quantity of movement p¼ hv/c¼ h/λ of a photon of zero mass at rest

that undergoes collision with an electron (Fig. 3.11).

The conservation of kinetic energy (E¼ p c before the collision, assuming that

the electron is immobile, E ¼ p0cþ Te� after the collision, assuming the electron to

be nonrelativistic) and of the quantity of movement projected on the incident

direction and its perpendicular direction, leads to the following relationships:

Fig. 3.11 Compton

scattering
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hv ¼ hv0 þ Te�

pe�cð Þ2 ¼ T2
e� þ 2me�c

2Te�

hv

c

!
¼ hv0

c

�!
þ pe�
�!

8>><
>>:

h

λ
¼ h

λ0
cos θ þ pe� cosφ

h

λ0
sin θ ¼ pe� sinφ

λ0 � λ ¼ h

me� c
1� cos θð Þ

8>>>>><
>>>>>:

The energy of the scattered photon decays according to the following formula:

hv0 ¼ hv

1þ 1� cos θð Þ hv
me� c2

Since the energy of the scattered photon is never zero, the incident photon is

never completely absorbed, unlike in the case of the photoelectric effect. Note that

the shift in wavelength is independent of the incident wavelength and that this shift

is greater for X photons than for visible light at a higher wavelength. Moreover, the

approximation of the resting electron is more valid in the case of x photons with a

great amount of movement. The Compton effect thus corresponds to a photon

yielding only part of its energy in expelling an electron. This is known as incoherent
diffusion. Compton showed that electrons are always expelled forwards, while

photons may undergo backscattering. The energy of an electron with Compton’s
effect is greater for a particle moving forward in relation to the incidence.

Compton’s effect is preponderant between 100 keV and 2 MeV. The probability

of interaction (linear attenuation due to the Compton effect), which varies little with

energy, is usually denoted σ (Fig. 3.12).

Precise theoretical analysis of the angular deviation of the photon striking a free

electron as a result of the Compton effect, and not involving an isotope, was

conducted in 1928 in Copenhagen by Swedish physicist Oskar Klein (1894–1977)

and Japanese physicist Yoshio Nishina (1890–1951). Using the quantum theory of

electrodynamics, they established the formula for the differential cross section for

scattering as a function of the solid angle (Mayo 1998, p. 292; Shultis and Faw

2000, p. 41):

Klein-Nishinaformula 1929ð Þ : dσ E;θð Þ
dΩ

¼ r2e
2

P E;cosθð Þ�sin2θP2
	
E; cosθ


þP3
	
E; cosθ


� 
ð3:3Þ

where re¼ 2.817� 10�13cm and P(E, cosθ) is the relation between the energy of

the photon before and after collision:

P E; cos θð Þ ¼ 1

1þ E

mec2
1� cos θð Þ
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Oskar Klein (left) and Yoshio Nishina (right) (Public domain)

The differential cross section as a function of the angle of deviation is given by:

dσ E; θð Þ
dθ

¼ 2π sin θ
dσ E; θð Þ

dΩ

The energy of the photon after collision is:

E� ¼ E:P E; cos θð Þ ¼ E= 1þ E

mec2
1� cos θð Þ

� �
:

Fig. 3.12 Compton effect
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The higher the energy of the incident photon, the greater the probability of the

photon being scattered forwards. From 1 MeV upwards, backscattering may be

ignored. Note that the angular distribution of photons is not dependent on the type

of matter traversed, because of the hypothesis of the free electron initially posited to

create the Klein-Nishina formula. In the case of an electron bound to the electron

cloud, a correction to the model is required. In 1975, Hubbell et al. proposed the

following correction:

dσ E; θð Þ
dΩ

����
bound

¼ dσ E; θð Þ
dΩ

����
free

:S
sin θ=2ð Þ

λ
; Z

� �

where the term S([sin(θ/2)]/λ, Z) depends both on the wavelength λincident of the
incident photon and on the chemical body (via the atomic number Z ) to which the

electron is bound. Quantitatively, factor S is lower than one for forward-scattered

photons and, more particularly, for low energy levels or high Z numbers. In

concrete terms, photons are more back-scattered at low energy. If scattering

involves the strongly bound electron, the formula must take into consideration the

mass of the nucleus and that of the electron, and the shift in wavelength becomes

negligible. This is what happens with atoms having high Z values and it is why the

Compton effect is more readily observable for atoms with low Z values.

The effective Compton cross section is obtained by integrating the Klein-

Nishina formula for all angular directions. It has been shown (Baur 1985, p. 85)

that this cross section tends towards zero as the energy of the incident photon tends

towards infinity and that it tends towards the Thomson cross section 8π r2e=3 as the

incident energy tends towards zero.

3.3.6 Pair Production

When a photon of extremely high energy (>1 MeV) passes through an electromag-

netic field (near the nucleus), it may disappear with an electron-positron pair being

created (Kahan 1963, p. 57). This event can only occur in the vicinity of the nucleus

since otherwise the impulse could not be conserved. Indeed, the impulse balance for

a photon producing an electron-positron pair is written as follows (Fig. 3.13):

hv

c
¼ pe� cos θ þ peþ cosφ

pe� sin θ ¼ peþ sinφ

(

Fig. 3.13 Pair production
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In the specific case in which the angle of emission between the electron and the

positron forms a right angle (θ +φ¼ π/2), we have:

hv

c

� �2

¼ pe�ð Þ2 þ peþð Þ2

The total conservation of energy is written:

hv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe�

2c2 þ me�
2c4

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
peþ

2c2 þ meþ
2c4

p
Clearly, in the case of a right angle, these two expressions are incompatible,

suggesting that such a process is impossible in isolation. In reality, the atomic

nucleus near where the pair is produced contributes to the impulse balance through

a recoil movement that participates in the impulse and energy balance. If we ignore

the recoil energy, the energy balance equation is approximately correct.

Since the mass of the electron is 0.511 MeV/c2, as is the mass of the positron,

pair production cannot occur unless the energy of the incident photon is above the

threshold: hv > 1.022 MeV. This phenomenon becomes preponderant at high

energies (>5 MeV). The energy balance is written:

Te� þ Teþ ¼ hv� 2me�c
2

The positron, antimatter of the electron, cannot survive very long in matter

(Fig. 3.14).

As soon as it encounters an electron, both disappear and are transformed into

photons, thus verifying the law of conservation of energy. Conservation of the

impulse indicates that the two photons are emitted in opposite directions. The

Fig. 3.14 Pair production
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probability of interaction (linear attenuation through pair production) is classically

labelled π and varies approximately in relation to ρ Z2/A (Cahen and Treille 1963).

Bethe and Heitler showed that the effective cross section of pair production in the

field of a nucleus increases rapidly with the energy of the photon once the threshold

has been exceeded, and then tends towards a limit worth (Cottereau and Lefebvres

1971, p. 120):

σpair ¼ α r20 Z
2 28

9
ln 183 Z

�1
3

� �
� 2

27

� �
for a photon of energy greater than

500 MeV

Where α ¼ 1
4πε0

e2

hc ¼ 1
137

is the fine structure constant7 and r0 ¼ 1

4πε0

e2

me�c2
¼ 2:818

fm is the classical electron radius.
Pair production can also occur more rarely in an electron field, although because

of its small mass, it will remove extensive kinetic energy, giving a higher energy

threshold of pair production, i.e. 4me�c
2 ¼ 2:04 MeV (GA Vol. 1, 1967, p. 88).

7There is an amusing anecdote about the fine structure constant. A journalist was interviewing

Enrico Fermi one day and wished to take a photograph of the Master. In order to make the pose

more credible, he asked Fermi to pretend to be writing an equation on the blackboard. Fermi

played along graciously, but feeling uninspired, he wrote the formula for fine structure with the

numerator and the nominator reversed and he mischievously mixed up the units α¼ h2/ec ! The

picture incorporated this error in backstage, and we see Fermi smiling and drawing a vague

geometric figure in which he inserts angle θ where he fancies, and clearly visible on the blackboard
above his head sits the erroneous formula. That would have been fine, except that the United States

Post Office later decided to create a stamp using this very photo in honor of Fermi after his death.

The mistake was spotted too late and the stamp was issued. In a panic, the image on the stamp was

corrected in order to limit the damage. As Rutherford famously quipped: “All science is either
physics or stamp collecting”.

The historic photo on the left (Public domain) and the US postal stamp containing the error

issued in 2001 on the right (The Marguet collection).
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Beyond 10 MeV, the screen effects of atomic electrons, particularly with heavy

nuclei such as lead, tend to reduce the occurrence of pair production.

3.3.7 Cumulative Effects

(Valentin 1982a, b, p. 166)

If we plot the attenuation coefficients for each interaction, we see that the main

effects are: a photoelectric effect at low energies, followed by the Compton effect,

and finally the emergence of electron-positron pairs. Mass attenuation is the sum of

these three effects:

μ

ρ
¼ τ

ρ
þ σ

ρ
þ π

ρ

where τ/ρ is the mass attenuation due to the photoelectric effect, σ/ρ is the mass

attenuation due to the Compton effect, and π/ρ is the mass attenuation due to the

pair-production effect.

(Hine and Brownell 1956, p. 81) gives the corresponding curves for air and

aluminum (p. 84). Mass attenuation is a function of the mass fraction of the

components of a given medium:

μ

ρ
¼
X
i

mi

mtotal

μ

ρ

� �
i

Rayleigh-Thomson scattering is always negligible, except for low-energy pho-

tons. To each of these coefficients, we generally attribute the index t for transferred
or d for diffused. For information, Figs. 3.15 and 3.16 provide the attenuation

coefficient in cm�1 for lead (highly attenuating for photons) and water.

3.3.8 Scattered Radiation and Build-Up Factors

(Harrison 1958)

For argument, let us take an isotropic source S[γ/s] of γ rays. The γ flux (often

called intensity) in a vacuum (i.e. without attenuation) is given by the standard

formula of the inverse of the square root of distance:

I γ=cm2=s½ � ¼
S γ=s½ �

4π r2
cm½ �
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If this source is placed in an attenuating medium, the previous formula requires

correction:

– Exponential attenuation in a straight line of the fine beam of γ rays: e�μ r. For

beams passing through several thicknesses xi of different attenuation materials

μi, the correction is written exp �P
i

μi xi

� �
.

– Scattered radiation (for a broader beam) which increases the intensity of the

measuring point via the coefficient known as the accumulation factor or more

commonly build-up factor: Bu[�] (Lamarsh and Baratta 2001, p. 551; Métivier

2006, p. 281; Price et al. 1957, p. 40).

The intensity is written as: I γ=cm2=s½ � ¼ S γ=s½ �
4 π r2

cm½ �
Bu e�μ r

The accumulation factor may thus be defined as the ratio between the total

intensity and the intensity of the radiation not deviated during its trajectory. The

value of the accumulation factor depends on the nature and thickness of the matter

being crossed, as well as the angle of incidence of the radiation, but also on the

geometry and position of the sources. A build-up factor may also be defined by type

of application, i.e. the deposited energy or dose. Precise calculation of build-up

factors is generally complex and frequently involves reference calculations based

on the Monte-Carlo method. In the 1950s, J.J. Taylor then J.R.A. Lakey proposed a

practical though approximate analytical expression for the coefficient of the build-

up factor (see Rockwell 1956, pp. 9 and 415 for the value of the coefficients for

water, lead and concrete). Their approach involved expressing the build-up factor in

the form of exponentials (the Taylor formula, not to be confused with the extremely

well-known homonymic limited expansion):

Bu ¼ Ae�α1μ x þ 1� Að Þ e�α2μ x

where A , α1 and α2 are constants that depend on the type of material crossed and

the energy of the γ rays. This expression allows the exponentials to be grouped

together in the calculation of intensity and provides a formulation similar to that for

the intensity of non-deviated rays, thus simplifying analytical calculations for

simple geometries:

I ¼ S

4π r2
Ae� 1þα1ð Þμ x þ 1� Að Þ e� 1þα2ð Þμ x
� �

Taylor and Lakey have provided tabulated values for the coefficients A , α1
and α2 for the majority of materials used in radioprotection.8 Many authors have

proposed more or less empirical formulae, based for example on the atomic

8This methodology was used in the GRACE code for the calculation of the attenuation of photons

and the heating of the surrounding shielding of reactors, coded in Fortran on IBM 709 in 1959 by

D.S. Duncan and A.B. Speir (Atomics International).
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number.9 A more recent method10 offers an approximation of the accumulation

factors for a multilayer problem) using recurrent reasoning based on two layers.

The accumulation factor of a two-layer screen, in which the first layer is of

thickness x1 (in relation to the incident beam) and that of the second layer is x2
(expressed as mean free path), is modelled as follows:

Bu x1jx2ð Þ ¼ Bu1 x1ð Þ
Bu2 x2ð Þ Bu2 x1 þ x2ð Þ F x1; x2ð Þ

where F(x1, x2) is an adjustment function of the form α x1ð Þ þ x
β x1ð Þ
2

� �
=α x1ð Þ

� �p
in

which β(x1)> 0 and p¼ � 1 , 0 or 1 as a function of the energy source and

screen type. This formula is obviously empirical. The coefficients have been

carefully calculated for different types of two-layer screen and for several energy

sources, e.g. for a “steel-water” screen and also for a “water-steel” screen (the

results are not the same, and the formula is not commutative since the order of the

screens has real physical significance). By recurrence for the layers, we obtain the

following accumulation factor for a screen comprising n layers:

Bu x1jx2j� � �xn�1jxnð Þ ¼ Bu x1jx2j� � �xn�2jxn�1ð Þ
Bun

Pn�1

i¼1

xn�1

� � Bun
Xn
i¼1

xn

 !
F xn�1; xnð Þ

The build-up factors for two layers have been provided for penetration levels of

up to 30 mean free paths (mfp) and qualification by comparing against the reference

calculations show that the resulting error does not exceed 25% for extremely deep

penetrations, which is completely acceptable in the radioprotection field.

3.3.9 Application of Photon Attenuation in Matter

We have seen that at the start of the twentieth century, x-rays were used in the

medical field with great success. Another application of γ radiation very widely

used in the nuclear domain is non-destructive control testing (Lévêque et al. 1962,

p. 85). Depending on the depths to be penetrated, photons of different energies are

used to investigate the structure to be analyzed, and a film, placed on the other side

of the structure, is exposed and contains the residual photons not absorbed during

9Y. Sakamoto, S.I. Tanaka, Interpolation of gamma-ray build-up factors for point isotropic source
with respect to atomic number, Nuclear Science and Engineering, 100, p. 33–42 (1988).
10A. Assad, M. Chiron, J.C. Nimal, C. Diop, P. Ridoux: A new approximating formula for
calculating gamma-ray buildup factors for multilayer shields, Nuclear Science and Engineering,

132, p. 203–216 (1999).
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passage through the medium. Consequently, all defects or cavities appear to be

more marked on the film since more photons survive to strike the film in the

preferential directions of travel through cavities, with photons being absorbed

primarily by heavy materials (lead, uranium, etc.). The principle is completely

identical to that of radiography in humans, although more energetic photons are

used in order to penetrate heavy structures (Figs. 3.17 and 3.18).

Qualification of the procedures and setting of the exposure times may be carried

out by use of reference photon transfer calculation codes [TRIPOLI (CEA), MCNP

(Los Alamos), MODERATO (EDF), etc.]. By way of illustration,11 Fig. 3.19 pre-

sents a numeric simulation (MODERATO code using the Monte-Carlo method) of

the firing of 10 million photons through a dummy piece of steel containing

cylindrical holes of varying widths and heights (shown in grey in the figure). The

structure of lines represents the outside contours of the test piece which is in the

Fig. 3.17 The electrical apparatus used to produce photons (x-rays) from a Coolidge tube in order

to investigate unrevealed cracks inside a piston, as seen in “La Science et la Vie” n�30, December

1916 (!) (Public domain, The Marguet collection)

11Thanks to the work of Andréas Schumm (EDF/R&D) on the MODERATO code.
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Fig. 3.18 The radiogram

obtained with the previous

apparatus, cracks and

blowholes appear close to

north-side, as seen in “La
Science et la Vie” n�30,
December 1916. (Public

domain, The Marguet

collection)
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shape of a cylindrical segment. The trajectories are shown of the photons “raining

down” on the upper surface of the test piece and in some cases undergoing

scattering inside the piece. The trajectories of undeviated photons are occasionally

referred to as ballistic trajectories, in contrast with scattered trajectories.

Photons crossing the test piece in a straight line without undergoing scattering

imprint the film as shown in Fig. 3.20. Those scattering due to multiple collisions

may nevertheless reach the film, as may be seen in Fig. 3.21. It is clear that

scattering radiation in itself is difficult to exploit. Consequently, most analytical

methods use only direct (so-called “ballistic”) radiation. The actual image obtained

by the person conducting the test would in fact be a superimposition of the images

in Figs. 3.20 and 3.21. The Monte-Carlo method simulates the individual behavior

of each photon by random selection of possible interactions. The law of large

numbers provides a satisfactory probability for the result being sought by simulat-

ing a very great number of particles. With 10 million photons, the image is

Fig. 3.19 Digital firing of

photons, using the Monte-

Carlo method, into a test

piece containing cylindrical

holes of various sizes: the

trajectories of photons

irradiating the item from

above are shown. Some

undergo scattering inside

the piece. Below the test

piece, we see the film

imprinted by photons

emerging via the lower

surface and shown in

Fig. 3.20 (Courtesy

Schumm 2008)

Fig. 3.20 Digital film

simulating direct photon

flux without collision: the

larger the empty cylinders,

the greater the imprint on

the film. Note that the film is

completely imprinted

outside the base of the item

since there is no attenuation

in this region
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sufficiently clear to be usable. This radiography technique for analysis of items to

be tested is used for the nondestructive detection of defects. Note that identical

techniques exist with neutrons, which are stopped by chemical bodies with lower

mass numbers, in contrast with photons. Moreover, the diffusion of neutrons in

crystals has led to important theoretical developments (Krivoglaz 1969; Krawitz

2001, p. 105). This technique thus complements radiography and is used for

example to detect illicit substances in containers transported by sea. The two

techniques, using neutrons and photons, may ultimately be used in complementary

fashion to cover all elements in the periodic table. Nguyen and Truong (2006)

proposes a wide range of applications for scattering gamma radiation in the field of

imaging. Herman (1980) provides a detailed presentation of the principle of tomog-

raphy, which uses ballistic gamma radiation coupled with relevant specific

deconvolution signal-processing (e.g. Radon transformation) (Jansson 1984).

3.3.10 Photoneutrons

(Annual Review of Nuclear Science, Vol. 2 1953, p. 105; Cameron 1982, p. 36;

Goldstein 1959, p. 55)

With sufficiently high-energy photons, neutron production is observed on light

nuclei12 (Keepin 1965, p. 142), and we should bear in mind the photoneutron

reaction for beryllium (Keepin 1965, p. 147), the high yield of which led to hopes

at the start of the nuclear age that a fission reaction might be maintained using

massive quantities of beryllium, but which proved impossible (Bekurts and Wirtz

1964, p. 31):

Fig. 3.21 Digital film

simulating scattered photon

flux reaching the film

(at least one collision): here

the geometry is practically

no longer discernible. This

diffuse radiation blurs the

actual image, which is in

reality a superimposition of

the present image and the

image of Fig. 3.20

12On photoneutron cross sections, see: Rudy Lee Van Hemert: Threshold Phtoneutron Cross
sections for light nuclei, PhD, University of California, 1968.

3.3 Interaction of Photons with Matter 181



9
4Beþ γ ! 8

4Beþ 1
0n threshold of 1:67 MeV, neutron at 25 keV

Beryllium also produces neutrons when irradiated with α particles. In addition, a

photo-neutron reaction occurs on deuterium in water, but at a higher threshold:

2
1H þ γ ! 1

1H þ 1
0n threshold of 2:21 MeV

Naturally, this reaction occurs mainly in heavy water reactors. In power reactors,

the photon source is dependent in part on the occurrence of (n, γ) reactions and on

the decay of fission products (during operation but also at close-down, which

accounts for the source of neutrons even in reactors that have been closed down

for long periods). In industrial settings, rod assemblies containing antimony-beryl-

lium pellets are used as neutron sources to start up reactor cores that have already

been irradiated. Neutron activation of 124
51Sb produces extremely high-energy

photons at 1.857 MeV that activate the beryllium, producing around 1 million

neutrons per 1 Curie of decay (GA, Vol. 1, 1967, p. 99).

1
0n þ 123

51Sb ! 124
51Sb !β� 60:2 days 124

52Te þ 0
�1e

�

þ γ 1:857MeVð Þ

3.3.11 Photofission

The phenomenon of fission induced by photon absorption is generally ignored in

reactors, despite the fact that it is not completely absent. This special kind of fission

is always a threshold reaction (around 5 MeV, see Table 3.2), the effective cross

section of which presents a shape roughly similar to a peak at around 15 MeV

(Fig. 3.22). With higher energy photons (GeV), photofission becomes more pre-

ponderant, but such energy levels are not encountered in power reactors.

3.4 Measuring Radiation

(Duquesne et al. 1960; Lilley 2001, p. 152; Lévêque et al. 1962, p. 22; Sharpe 1964)

Photons are generally measured using an instrument known as a photomultiplier,
which works by transforming incident photon radiation into electrons that are then

counted using a classical electron chain (Samueli et al. 1968, p. 23). The photons

Table 3.2 Photofission reaction thresholds for some fissile isotopes

233
92U

235
92U

238
92U

232
90Th

239
94Pu

Photofission threshold [MeV] 5.18 5.31 5.08 5.40 5.31
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interact with the cathode of the photomultiplier and detach electrons according to

the principle of the photoelectric effect. These electrons are collimated in a multi-

plication chamber, where they interact with dynodes so as to amplify the beam, and

they are then sent to the anode, from which they are evacuated by the system

connected to the instrumentation (Fig. 3.23). The photomultiplier produces an exit-

slit charge proportional to the number of incident photons reaching the photocath-

ode. If N is the number of photoelectrons emitted by the cathode, the

photomultiplier measures the quantity GN electrons reaching the anode. Factor

G is the gain of the photomultiplier, which depends on the number of internal

dynodes. If the photomultiplier is subjected to packets of photons or pulses suffi-
ciently far apart in time, it reacts as though these events were separate. Following

amplification, the height of the pulse in question may be measured. Because of the

statistical variations inherent to the phenomenon of conversion of photons to

electrons, as well as the multiplication of the electrons by the dynodes, the charge

of the outgoing signal may vary for a single pulse of incident photons. The Gaussian

Fig. 3.22 General shape of the cross-section for photofission of fissile isotopes

Fig. 3.23 Internal schema of a photomultiplier
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distribution of the outgoing signal thus restricts the resolution of the device, and in

particular, the energy resolution of the scintillation method (Samueli et al. 1968,

p. 5). The photomultiplier is an essential instrument for the scintillation technique

and for Cherenkov counting (Progress in Nuclear Physics, Vol 8, 1960, p. 195;

Instrumentation en physique nucléaire (Instrumentation in Nuclear Physics) 1989,

p. 249). The scintillation counter is a radiation counter comprising three main

components: a scintillating medium that produces light under the effect of ionizing

radiation, one or more photomultipliers that transform the light (photons) into

electrical impulses, and an acquisition chain that transforms this current into a

usable signal.

Cherenkov counting involves a medium in which light is created via the Che-

renkov effect from the electromagnetic radiation to be measured, as well as one or

more photomultipliers optically coupled with the Cherenkov medium, and natu-

rally, an acquisition chain.

If the source to be measured is too intense, the photomultiplier response will no

longer be linear and the outgoing signal is saturated. Care must therefore be taken to

use the photomultiplier within its linear range.

3.5 Interaction of Electrons with Matter

(Cauchois and Héno 1964; Miley 1970, p. 90)

Electrons have been intensively studied as fundamental vectors of electricity in

the form of free electrons, in other words not electrons gravitating around the

nucleus. The first famous experiment on the interaction between electrons and

matter was conducted in 1891 in a Crookes tube in which “cathode” rays, as they

were then called because they were emitted by a negatively charged cathode,

produced a strange green fluorescence on the bottom of the glass tube. At the

start of the twentieth century, exponential attenuation was observed along the travel

of β� particles in matter for which it was possible to measure mass attenuation in

the same way as for photons (Fournier and Guillot 1933). The passage of electrons

through matter, which was precisely modelled using a transport equation very

similar to that for neutrons, produces different interactions such as:

– elastic scattering on the nucleus of target atoms (Coulomb diffusion), resulting

in a slight loss of energy. The probabilities of interaction (effective cross

sections) are given in the classic form of Spencer’s tables.13 Electrons, being

light particles, are deviated far more frequently than heavier α particles. Total

statistical deviation is considered (Cahen and Treille 1963) proportional to the

ratio between the square root of the distance travelled and the energy of the

particle;

13L.V. Spencer: Energy dissipation by fast electrons, National Bureau of Standards, USA, 1959.

184 3 Interaction of Electromagnetic Radiation and Charged Particles with Matter



– inelastic scattering on the electrons of the atom. This form of scattering is the

main phenomenon responsible for energy loss at several MeV. It involves

excitation of peripheral electrons followed by de-excitation via the emission of

x-rays. The theory of M€oller (1932) produces effective cross sections (Mayo

1998, p. 276), with modelling of this phenomenon for use in Hans Bethe’s
general theory of approximation of continuous slowing down, which we shall

discuss later;

– inelastic diffusion on the nucleus is a phenomenon that occurs below the level of

several MeV. It results in the production of Bremsstrahlung photons, clearly

modelled in the theory of Bethe and Heitler (Cottereau and Lefebvres 1971,

p. 118), which gives the differential cross-section for production of a braking

photon in the frequency range [v, v+ dv]:

σ vð Þ ¼ 4α r20Z Z þ ξZð Þ Log 183 Z
�1

3 þ 1

8

� �
dv

v

where α ¼ 1
4πε0

e2

hc ¼ 1
137

is the fine structure constant and r0 ¼ 1
4πε0

e2

me� c2
¼ 2:818 fm

is the classic electron radius. ξZ is a coefficient that depends to a small degree on Z,
i.e. 1.4. for hydrogen and 1.14 for uranium. A constant value of 1.3. may be used.

– the production of secondary photons (by Bremsstrahlung or fluorescence pho-

tons). These photons may themselves produce electrons by means of the photo-

electric effect, the Compton effect or pair production, hence the concept of the

photoelectric cascade.

At high energies, electron/photon coupling is very strong, but the phenomenon

has a great tendency to occur in a forward direction (it is anisotropic), enabling

certain simplifications in the calculation of angular distributions. Bethe’s theory of

continuous slowing down (Continuous Slowing-Down Approximation or CSDA)
models the interactions of electrons, which are innumerable, by means of a contin-

uous phenomenon via the concept of stopping power (Hine and Brownell 1956,

p. 27), in other words, the mean energy loss across the distance of the trajectory

�dE/dx, which is also known in biological applications as linear energy transfer
(LET) [a name ascribable to Zirkle (Goldstein 1959, p. 21)]. Since certain electrons

lose more than the mean, the studies undertaken by Landau, O. Blunck and

K. Westphal14 led to distribution of energy loss that includes the broadening due

to loss of energy resulting from collision and radiation. The electron transport

equation is written in linear form:

14O. Blunck, K. Westphal: ”Zum energieverlust enrigiereicher elektronen in d€unnen schichten”
Zeitung Physik 130, p. 641 (1951).
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where:

Φ ~r; Ω
!
;E; t

� �
is the flux of electrons of energy E at point ~r in direction Ω

!
and at

time t,
Σt(E) is the probability (macroscopic cross-section) of interaction per unit of path

travelled

Σs E
0 ! E; Ω

!0 ! Ω
!� �

is the probability per unit of path travelled of scattering

towards energy E and direction Ω
!

This integro-differential Boltzmann equation expresses the balance of particles

between their appearance and disappearance. We seek to express the cumulative

effect of interactions throughout a given trajectory by expressing the temporal

derivative as a function of a derivative to the path ‘:

1

v

∂Φ ~r; Ω
!
;E; t

� �
∂t

¼
∂Φ ~r; Ω

!
;E; t

� �
∂‘

where the path followed is: ‘ ¼ Ð t
0
v t0ð Þdt0

The notion of stopping power dEd‘ ‘ð Þ is inserted in the calculation for energy loss:

E0 � E ‘ð Þ ¼
ð ‘
0

dE

d‘
‘0ð Þd‘0

3.5.1 Ionization

(Boutry 1962, p. 312)

Ionization indicates the stripping off of a planetary electron by a moving electron

(Kahan 1963, p. 51). The corresponding atom is thus no longer neutral but is

positively charged since it has lost an electron and is called an ion. A mean energy

of 35 eV is required in gases such as xenon to produce ionization. During the

interaction, the incident electron loses energy corresponding to the binding energy

of the planetary electron as well as the kinetic energy transferred to it.

The phenomenon of ionization is especially important as the charge and mass of

the incident particle increase. Several electrons on a single atom may be stripped

off. Since the stripped electrons have speed, they are able in turn to ionize other
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atoms in a cascade phenomenon that gradually decreases in step with the dissipation

of energy of the emitted particles (Fig. 3.24).

In the 1920s, very many scientists studied ionization, particularly of gases and

vapors. The reference (Bloch 1925; Herzberg 1991, p. 200) provides a table,

already extremely precise for the time (1937), of the ionization potentials for

many elements. The principle of ionization underlies a measuring device that

played a key role in the history of particle physics: the Wilson chamber or cloud

chamber.

3.5.2 Wilson Chamber

(Blanc 1966, p. 117)

The principle of the cloud chamber or Wilson chamber, named after its brilliant

inventor, Scottish physicist Charles Thomson Rees Wilson (1869–1959), winner of

the Nobel Prize in Physics in 1927, consists in visualizing the trajectory of a

charged (ionizing) particle in a cloud of water steam (Born 1971, p. 40; Kahan

1963, p. 23). An ionizing particle, such as an electron, ionizes the atoms contained

in a cloud formed of a gas saturated with water (or alcohol). If, at the same time,

depressurization occurs inside the apparatus by increasing the volume of the

chamber, both the pressure and the temperature decrease (Photo 3.3).

Thus, if the increase in volume is low, a balance is maintained between water

and vapor: there is no massive condensation of vapor if the system is well cali-

brated, but the conditions remain at the extreme limit of condensation. Indeed, just

as raindrops or snowdrops begin to aggregate by condensation around a “germ” (for

example a minute dust particle), ions ionized by the passage of the electron cause

visible condensation on a photograph that is sufficiently illuminated, enabling the

trajectory of the particle to be visualized (Fig. 3.25).

Ejected electron

Deviated electron

Fig. 3.24 Ionization
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His prodigious efforts in photographing more than 20,000 images in his Wilson

chamber in 1925 enabled Patrick M. Blackett15 to identify a mere eight collisions,

but these demonstrated the first transmutation of an atom of nitrogen 14 into oxygen

17 through the capture of an α particle.

Photo 3.3 Charles Wilson (1869–1957), winner of the 1927 Nobel Prize for physics (Public

domain)

Cloud

Particle
detector

Incident
electronn

Piston

Inspection window

The trajectory of 

the electron

leaves a trail

of bubbles

Fig. 3.25 Principle of the Wilson chamber used to visualize ionizing particles

15Patrick Maynard Stuart Blackett (1897–1974) spent a great deal of time working on the

characterization of cosmic rays and he was awarded the Nobel Prize for his work in 1948. After

completing his studies at Cambridge in 1921, he conducted many experiments. He became

President of the Royal Society in 1965, and was made a baron in 1965.
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Along with Guiseppe P. S. Occhialini, Blackett also provided experimental

confirmation on February 7, 1933, of the existence of the positron, which had

been discovered by Carl D. Anderson in 1932 among cosmic rays (Auger 1948;

Capdevielle 1984).

3.5.3 Excitation

(Boutry 1962, p. 312)

The phenomenon of excitation was discussed earlier in relation to the production

of x-rays. An incident electron excites a planetary electron and makes it change

orbital; this is followed by reorganization of the electrons associated with the

emission of an X photon at low energy (100–10,000 eV) (Fig. 3.26).

3.5.4 Braking Radiation or Bremsstrahlung

An electron that has been slowed down by an electromagnetic field loses energy and

emits a photon. At low energies, an x-ray photon is emitted during the course of

deviation of the electron in the same way as a catapult releases a stone (the photon)

when the rotating arm is blocked. This phenomenon of deceleration radiation is

historically designated by the German term Bremsstrahlung (Kahan 1963, p. 48). It
was discovered by Nikola Tesla (1856–1943), the Serbian genius of physics and

engineering, whose name has been given to the official unit of magnetic fields

(Fig. 3.27).

Li7
3n1

0

K

L

Incident electron
X photon

Li7
3

Electron at 
energy E’<E 

Fig. 3.26 Electron excitation
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3.5.5 Annihilation

When an electron encounters its antiparticle, the positron, the two are mutually

annihilated and two energetic photons are created. Positrons are slowed down in

matter in more or less the same way as electrons. Annihilation is a phenomenon that

always occurs between a particle and its antiparticle (Fig. 3.28).

3.6 Cherenkov-Mallet Effect

If a charged particle of low mass and high energy (e.g. an electron) is emitted at a

speed greater than that of light c/n in a medium with a refractive index n (NB: not

the speed of light in a vacuum, which is a physical limit that cannot be exceeded)

(Born 1971, p. 42; Berthelot 1956, p. 58; Cauchois and Héno 1964, p. 23 and p. 74),

the particle interacts with the refractive medium through which it crosses and

disturbs the electron shells of the nuclei in the vicinity of its trajectory. The

electrons are deviated from their initial position before returning to their previous

orbit. We speak of polarization of the medium. Small dipoles appear along the

entire trajectory of the charged particle (10 billion times per meter in water), and of

a field of dissymmetric polarization and emission of a cone of electromagnetic

Fig. 3.27 Braking

radiation or Bremsstrahlung

Fig. 3.28 Annihilation of

electron/positron pairs
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radiation during passage through a polarizable medium (such as water). In trans-

parent media such as water, air, or glass, depolarization occurs through the emission

of a light wave at all wavelengths, but predominantly in the blue and ultraviolet.

This radiation, caused by the depolarization of the medium, may occur in the

domain of visible light waves to form a shock wave identical in principle to the

sound waves generated when a supersonic aircraft breaks the sound barrier. This is

the Cherenkov-Mallet effect.16 This phenomenon of bluish luminescence in water

caused by radioactive products was detected in the 1900s by Marie Curie, and then

analyzed in greater detail by Lucien Mallet (Fig. 3.29).

Although initially associated with the fluorescence of solutes in water (discrete

de-excitation rays), the luminous spectrum was shown in 1926 by French physicist

Lucien Mallet to be continuous, contrary to what was obtained in the case of

fluorescence. Cherenkov showed as of 1934 that this continuous radiation was

independent of the composition of the medium through which it passed. Where

the speed of the charged particle is low, depolarization is incoherent. Since the

waves emitted by the atoms are superimposed on one another in a disordered

fashion and they are never in phase. However, where the speed of the charged

article is very high, emission by each atom encountered causes a coherent wave

front emitted in the blue and ultraviolet wavelengths and visible in the case of water

[for an electron at an energy of at least 0.26 MeV (Cahen and Treille 1963)], which

16Russian physicist Pavel Cherenkov (1904–1990), who won the Nobel prize in Physics in 1958,

together with I. Tamm and I. Franck for their physical explanation of the Cherenkov effect.

Lucien Mallet (1885–1981) was one of the first radiologists in France. In particular, he developed

radiotherapy in the field of cancer, going on to write a book on the subject: Les applications biologiques
des corps radioactifs artificiels [Biological applications of artificial radioactive bodies]. In 1921, he

worked with Dr. Robert Proust of the Hôpital Tenon in Paris on the development of a treatment for

certain cancers involving radiotherapy. In 1926, he described the luminous radiation produced by a

source of radium irradiating water which he attributed to the inexact nature of direct photons. He

showed in 1928 that this radiation is continuous in energy. A Mallet prize was created in 1985 and is

awarded by the “Fondation de France” for deserving work in the field of oncological radiotherapy.

Two stamps celebrating the Russian physicist, Pavel Cherenkov (The Marguet collection).
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follows the particle as a cone of light. The cone of light is thus blue “at the surface”

of the cone and dark inside the cone. It is the multiple trajectories, followed by

electrons, that create luminosity visible everywhere. Ultimately, this is equivalent

to the classic Compton effect in which the relativistic Compton recoil electron is

produced by “hard” photons arising from fission products (GA Vol. 1 1967, p. 78).

Depolarization of the medium (in this case, water) under the effect of β� radioac-

tivity leads to the emission of photons in the visible spectrum. This is the case of

pools containing radioactive materials (fuel). Within the visible domain, a bluish

light is emitted. Where n is the refractive index of the refractory medium, if

c> v> c/n, the cosine of angle α of the collision cone is given by:

Fig. 3.29 The Cherenkov-

Mallet effect

(The Marguet collection) Plaque from the Paris Mint
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sin α ¼ cos θ ¼ c

v n

We are more interested in angle θ beneath which a motionless observer sees the

light wave moving towards him. For a maximum speed of v¼ c, the maximum

angle attainable in air (n¼ 1.0003) is 1.4�, compared with 41� in water (n¼ 1.33).

The energy threshold of the Cherenkov effect is given by:

Ethreshold ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n2�1

q
� 1

� �
mc2, or 0.265 MeV for electrons in water.

The Cherenkov-Mallet effect enables the ready identification of irradiated fuels

in a deactivation pool, with the electrons emanating from the β� radiation of the

fission products. The Cherenkov-Mallet effect is also used to detect the trajectories

of muons produced by the interaction between neutrinos and the Earth. This is the

underlying principle of the Antarès submarine detector, installed at a depth of

2400 m off the island of Porquerolles (South of France) and of which the

photomultipliers, arranged in 3D array at intervals of around 10 m and oriented

towards the depths, measure the light of the ascending muons produced by the

interaction of neutrinos arriving after travelling from the opposite side of the Earth.

Electronic neutrinos are produced primarily by the combustion of our Sun at a rate

of 65� 109 neutrinos per second and per cm2. It is known that extremely high

energy neutrinos (>100 GeV) produce muons that are collinear since they are

expelled forwards.

3.7 Charged Particles: Rutherford Diffusion

(Cauchois and Héno 1964; Cottereau and Lefebvres 1971, p. 9; Delcroix 1959, p. 8;

Mahan et al. 1970, p. 402; Mayo 1998, p. 263; Valentin 1982a, b, p. 9)

The charged particles are submitted to an electromagnetic field. As they evolve

in matter, the charged particles transfer energy to electrons in the electron cloud of

the atoms making up the medium through which they pass. The atom may then

become either excited if the electron receiving the energy remains in the electron

cloud, or ionized if the electron is ejected by the passage of the particle. For a

charged particle, interaction with the electrons of the atom is more likely than

interaction with the atomic nucleus, since on one hand the nuclear forces involved

act over a very short range, as was seen earlier, and on the other, if the particle is

positively charged, as is the case with α particles, it will be repelled by the protons

in the nucleus. Rutherford analyzed the deviation of an α particle by an atomic

nucleus. The equations are those for Coulomb attraction between two positive

charges (Berthelot 1956, p. 18). When a charged particle of mass m and charge

z arrives in the electromagnetic field of the target of massM and charge Z, creating a
central force field of potential V(r)¼ zeZe/(4πε0r), it undergoes a deflection that

may be calculated using the laws of mechanics and electromagnetics (Bayet 1960,

p. 57). If we disregard the relativistic effects and we assume the target to be

immobile, the conservation of kinetic energy and of change in potential energy

3.7 Charged Particles: Rutherford Diffusion 193



may be transposed as follows, using the notations in Fig. 3.30, (Sigmund 2008,

p. 75; Jouguet 1964, p. 17):

Ec ¼ 1

2
m

dr

dt

� �2

þ r2
dφ

dt

� �2
 !

þ V rð Þ ¼ 1

2
mv2�1

The speed varies according to the curvilinear coordinate s and assumes the value

v(sl) at the point nearest the target located at distance l. Distance b is classically

called the impact parameter (Foderaro 1971, p. 46; Sigmund 2008, p. 41, note p;

Delcroix 1959, p. 14). This is the closest distance at which an undeviated neutral

particle passes. Inside a central force potential, the trajectory of the incident particle

forms a hyperbola, the focus of which is the central target, and θ is the scattering

angle of the particle. Conservation of the kinetic moment L (Sigmund 2008, p. 74)

of the target + particle together is written as follows, for a fixed target:

mv �1ð Þb ¼ mv slð Þl hence v2slð Þ ¼ v2�1
b2

l2

Conservation of kinetic energy using these definitions of variables is written as

follows (Fig. 3.31):

1

2
mv2�1 ¼ 1

2
mv2slð Þ þ

zZe2

4πε0l

Inserting this in the energy equation gives: mv2�1l2 ¼ mv2�1 b2 þ zZe2

2πε0
l

Because of the properties of the hyperbola, assuming a2 + b2¼ c2, we have

l¼ c + a, and thus: v2�1 cþ að Þ2 ¼ v2�1 c2 � a2ð Þ þ zZe2

2mπε0
cþ að Þ

Namely: a ¼ zZe2

4mπε0v2�1
and tan θ

2
¼ a

b ¼ zZe2

4mπε0v2�1b

If we fire a given number of particles n0 per unit of area and per second, the

number of particles having an impact parameter b up to db is n0 2π b db due to

symmetry of revolution. The probability of a particle being scattered at angle θ is

given by:

Fig. 3.30 Deflection of a charged particle in a central potential field
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dσ

dΩ
¼ 2π bdb

2π sin θdθ

Since: db ¼
d zZe2

4mπε0v
2�1 tan θ=2ð Þ

� �
dθ ¼ 1

2
zZe2

4mπε0v2�1 sin 2 θ=2ð Þ dθ
we have:

Rutherford differential cross section :
dσ

dΩ
¼ z2Z2e4

64m2π2ε20v
4�1 sin 4 θ=2ð Þ ð3:4Þ

This is the expression for the differential diffusion cross-section (Sigmund 2008,

p. 78; Valentin 1982a, b, p. 14; Shultis and Faw 2000, p. 63) that enabled Ruther-

ford to interpret his famous experiment on the scattering of α particles on gold foil.

The case of backscattering (Fig. 3.32) by a target C at charge Z is identical to the

foregoing case, with the following notations:

θ þ 2φ ¼ π AC ¼ A0 þ OC ¼ aþ c 	 l KC ¼ 2a ¼ 2c cosφ b ¼ c sinφ

Giving:

l ¼ b 1þ cosφð Þ
sinφ

As before, the conservation of energy (for a fixed target) is always written:

1

2
mv2�1 ¼ 1

2
mv2slð Þ þ

zZe2

4πε0l

and conservation of the kinetic moment is: mv �1ð Þ b ¼ mv slð Þ l
These equations are naturally completely identical in the event of forward scat-

tering. These two qualities allow elimination of speed at the nearest pointv slð Þ, giving:

Fig. 3.31 Electrostatic deviation of a charged particle in an electromagnetic field
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b ¼ zZe2

4πε0mv2�1ð Þ
tanφ ¼ zZe2

4πε0mv2�1ð Þ
cotan

θ

2
ð3:5Þ

Let us now examine a thin target of thickness Δx in centimeters (if the target is

too thick, no α particles will be scattered since they will all be absorbed) and of area

1 cm2. This target contains N atoms of atomic number Z per cm3. An α particle is

deviated at an angle greater than θ if the approach distance is lower than the impact

parameter defined in Eq. (3.5). In this particular target, there are NΔx possible

circles that the incident particle might encounter. The probability of deviation at an

angle greater than θ is thus given by:

p deviation 
 θð Þ ¼
π b2NΔx
	 


cm2½ �
1 cm2½ �

¼ πNΔx
zZe2

4πε0mv2�1ð Þ

 !2

cotan
θ

2

By derivation, we obtain:

p θ � deviation � θ þ dθð Þ ¼ πNΔx
zZe2

4πε0mv2�1ð Þ

 !2
cotanθ

2

sin2 θ
2

dθ

Per unit of solid angle dΩ¼ 2π sin θ dθ, we arrive at Rutherford’s formula:

p Ωð Þ ¼ πNΔx
zZe2

4πε0mv2�1ð Þ

 !2
1

4sin4 θ
2

Fig. 3.32 Backscattering of a charged particle

196 3 Interaction of Electromagnetic Radiation and Charged Particles with Matter



Rutherford’s pupils, Hans Geiger17 and Ernest Marsden,18 carried out 19 exper-

iments on the diffusion of alpha particles by a gold foil (and by other metal foils) in

17Johannes (Hans) Wilhelm Geiger (1882–1945). German physicist. After his doctorate in 1906 in

Erlangen, he left for England and studied terrestrial magnetism at Manchester University. It was

here that he met Rutherford and became his assistant for experimental work. In 1912, he returned

to Germany and worked at the National Institute of Science and Technology in Berlin on the

detection of charged particles. It was in Kiel, from 1925 onwards, that together with his doctoral

student, Walther Müller, he developed the famous proportional Geiger-Müller counter, whose
clicking indicates the intensity of radiation being measured. In 1936, he was appointed director of

the Technische Hochschule in Berlin. He was one of the key signatories of the Heisenberg-Wien-

Geiger Memorandum of 1936, signed by many German scientists in protest against the poor image

of theoretical physics in Nazi propaganda, which they attributed to the disdain of students for this

subject. This memorandum ended such attacks and incited the regime to use physicists in the war

effort rather than discouraging them. Indeed, Geiger, whether or not favorable to the regime, was a

member of the German team that worked on developing the atomic bomb alongside Heisenberg.

(Public domain)

18Ernest Marsden (1882–1970). New Zealand physicist. A compatriot of Rutherford, under whom

he studied at Manchester, Marsden worked with Geiger on the α-particle diffusion experiments.

He returned to New Zealand in 1914, where in 1926 he founded the Department of Industrial and

Scientific Research. During the Second World War, he worked on the development of radars.

(Public domain)

19Hans Geiger, Ernest Marsden: “On a Diffuse Reflection of the α-Particles”, Proceedings of the
Royal Society, Vol. 82, pp. 495–500 (1909).
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1909 at the University of Manchester. These experiments were interpreted with

great precision using Rutherford’s formula. It was also shown that the probability of

deviation remains proportional to thickness, indicating the diffusion remains simple

(obviously, provided that the thickness remains low in relation to the stopping

distance). Consequently, the impact parameter b is very small in relation to the

diameter of the atom and the positive charges concentrated in a nucleus of very

small size in relation to that of the atom. This conclusion overturned the atomic

model of Thomson. These experiments also showed that the atomic number of the

target is approximately equal to A/2, within the series of metals considered, in other

words up to lead.

Another extremely interesting conclusion derived from these experiments is the

finding of a discrepancy in Rutherford’s law, where the angle of diffusion tends

towards π¼ 180
�
, in other words the impact parameter b is very small in the case of

a head-on collision where the approach distance is minimal. This finding indicates

that at very small approach distances, Coulomb’s law no longer applies, in other

words that very short-range nuclear forces are able to overcome Coulomb repulsion

at distances of less than 10�13 cm.

The discrepancy between Rutherford’s model and reality is all the greater as the

mass of the target decreases. Indeed, in this case, the recoil movement in the target can

no longer be ignored, since it absorbs part of the kinetic energy of the projectile and

modifies the balances established for a target that is assumed to be fixed. Second, the

lower atomic number of the target reduces the Coulomb repulsion, enabling the

incident particle to draw closer to the nucleus. In this case, the nuclear force field is

more intense, which more clearly demonstrates the limits of Coulomb’s law. The
effect is thus most marked when the target is hydrogen. Paraffin is a hydrogenated

substance perfectly suited for such experiments. Note that firing α particles at a

paraffin screen shows that the α particles eject nuclei of hydrogen, thus protons.

Indeed, if a source of α particles is placed in the air, scintillation can be seen on a

sulfide screen up to source/screen distances of around 20 cm. Beyond this point, all of

the α particles are absorbed. However, if a layer of paraffin is placed between the

source and the screen near the source, at distances of over 1 m, further scintillation of

different type is observed and is caused by radiation historically known as “H rays”.

These rays are in fact protons ejected by the paraffin. Since the mass of the proton is

around four times lower than that of an α particle, the speed of the protonmay be up to

1.6 times greater than that of the α particle, resulting in deeper penetration in the air.

3.8 Transfer of Energy to Matter

(Valentin 1982a, b, p. 161; Cauchois and Héno 1964, p. 37; Shultis and Faw 2000)

In order to calculate the energy transferred to matter by collisions of particles

passing through it, and according to the elastic scattering hypothesis, we can use the

results obtained during the study of neutron collisions, namely that speeds of

particles before and after interaction are constant in the center-of-mass framework

(Fig. 3.33).
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By projection on 0x:

v� cos θ ¼ m

M þ m
vþ v0� cosΨ

avec v0� ¼ M

M þ m
v

v� cos θ ¼ mþM cosψ

M þ m

� �
v

v2� ¼ M2 þ 2Mm cosψ þ m2

M þ mð Þ2
 !

v2

8>>><
>>>:

cos θ ¼ mþM cosψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2Mm cosψ þ m2

p
tan θ ¼ v0� sinΨ

m
mþM vþ v0� cosΨ

¼ sinΨ
m
M þ cosΨ

By construction, the angle of deviation of the target in the center-of-mass

framework, π�ψ , is equal to twice the angle of deviation of the target in the

laboratory framework, denoted φ: π�ψ ¼ 2φ. Conservation of the momentum

before and after collision in the laboratory framework is written:

m~v ¼ m~v� þM~V�

Projecting onto the 0x axis we have: (mv)2 + (MV�)
2� 2mvMV� cosφ¼ (mv�)

2

Conservation of (non-relativistic) kinetic energy is written as:

1

2
mv2 ¼ 1

2
mv2� þ 1

2
MV2

�

Combining these expressions gives the recoil energy of the target, classically
denoted T ¼ MV2

�=2 as a function of the initial kinetic energy of the incident

particle, E0¼mv2/2 (Figs. 3.34 and 3.35):

Fig. 3.33 Velocity triangle

(fixed target)
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T ¼ 1

2
MV2

� ¼ 4mM

mþMð Þ2 E0 cos
2φ ¼ 4mM

mþMð Þ2 E0 sin
2ψ

2

The total kinetic energy available at the center of mass is:

E0
tot ¼

1

2
mv02 þ 1

2
MV02 ¼ 1

2
m

Mv

M þ m

� �2

þ 1

2
M

mv

M þ m

� �2

¼ 1

2
mv2

M

M þ m
¼ E0

M

M þ m

The minimum approach distance of a charged target is given by the following

quality:

zZe2

4π ε0l
¼ E0

M

M þ m
thus : l ¼ zZe2 M þ mð Þ

4π ε0E0M

The impact parameter is given by:

Fig. 3.34 Elastic scattering at the center of the laboratory model

Fig. 3.35 Elastic scattering at the center of mass
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b ¼ l

2 tan ψ=2ð Þ ¼
zZe2 M þ mð Þ

8π ε0E0M tan ψ=2ð Þ :

The differential energy cross section characterizing the probability of energy

transfer T to dT is calculated as follows:

dσ

dT
¼ 2π bdb

dT

Since : b2 ¼ l2

4tan 2 ψ=2ð Þ ¼ l2cos 2 ψ=2ð Þ
4 sin 2 ψ=2ð Þ ¼

l2 1�sin 2 ψ=2ð Þð Þ
4 sin 2 ψ=2ð Þ

we have : sin 2 ψ=2ð Þ ¼ l2

l2þ4b2

giving T ¼ 4mM
mþMð Þ2 E0

l2

l2þ4b2

the logarithmic derivative of which yields:

dT

T
¼ � 8bdb

l2 þ 4b2

Finally, given that dT is negative for a collision due to energy loss:

dσ

dT
¼ � π l2

T2

mM

mþMð Þ2 E0

Since l ¼ zZe2 Mþmð Þ
4π ε0E0M

, the positive probability is finally given by:

dσ

dT

����
���� ¼ π

mM

mþMð Þ2 E0

l2

T2
¼ 1

T2

z2Z2e4m

16πε20ME0

A parabola is obtained as a function of the recoil energy T, indicating that there

is always a greater probability of losing a little energy than of losing a lot

of energy. Note that if we compare the probability of collision with an electron

(Z ¼ 1, M ¼ me�) or a nucleus (Z , M ), the ratio of probabilities is given by:

dσ

dT

� �
e�

¼ 1

Z2

M

me�

dσ

dT

� �
Z

Since the electron has a very low mass (0.0005 amu) compared with that of the

average nucleus, the probability of interaction with the electron at a given recoil

energy is greater for the electron than for the target nucleus. It must be noted that

this reasoning assumes a collision, and that the differential energy cross section

does not correspond to the pure probability of interaction of the incident particle

with the electron or the nucleus. We must also be conscious of the fundamental
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calculation hypotheses in which the target is considered immobile at the center of

mass prior to the collision. In practice, it is only necessary for the kinetic energy of

the electron to be negligible in relation to that of the incident particle, implying that

the speed of the particle is not too small compared with that of the orbiting

electrons. If the medium crossed has an atomic concentration of N nuclei per cm3

and an atomic number Z, the electron density is thus NZ, and the number of

collisions transferring energy T up to dT per unit length of matter crossed is NZdσ .
Since every collision by definition transfers an energy of T for an elementary path

dx, we have (the negative sign indicates energy loss):

�dT ¼ NZdσT dx

The quantity R¼ � dT/dx is known as the slowing down power (Berthelot 1956,
p. 41), or stopping power, and it has been measured for very many substances and

for various charged particles. The elementary transfer must be integrated over all

possible transfers between Tmin and the quantity:

Tmax ¼ lim
l!þ1

T ¼ lim
l!þ1

4mM

mþMð Þ2 E0

l2

l2 þ 4b2

" #
¼ 4mM

mþMð Þ2 E0

where, in the present case, M is the mass of the electron me� . Thus, using the

differential cross section in relation to the transfer, applied to a target electron:

dσ

dT

� �
electron

¼ 1

T2

z2Z2e4m

16πε20ME0

� �
Z ¼ 1

M ¼ me�

¼ 1

T2

z2e4m

16πε20ME0

dT

dx
¼
ðTmax

Tmin

NZ dσT ¼
ðTmax

Tmin

NZ T
1

T2

z2e4m

16πε20me�E0

dT ¼ NZ
z2e4m

16πε20me�E0

ln
Tmax

Tmin

� �

Since E0 ¼ 1
2
mv2, the mass of the incident particle may be eliminated from the

formula:

�dT

dx
¼ NZ

z2e4

8πε20me�v2
ln

Tmax

Tmin

� �
¼ NZ

z2e4

4πε20me�v2
ln

Tmax

Tmin

� �1
2

The stopping power dT/dx of a substance is obtained via the atomic number Z. It
also depends on the incident particle via z and is greater for a massive particle, via m.
This explains why α particles have very little penetration. The quantity Tmin, also

referred to as themean ionizing potential, I, is theminimum energy required to strip an

electron from an atom in the matter being traversed (Cauchois and Héno 1964, p. 52).

It can be calculated if we know the level of filling of the last electron shell in which the

electrons are less tightly bound according to the formulae seen in Chap. 1. A more
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precise analysis involving quantum physics enables this formula to be modified

slightly to take into account both the relativistic effects where the speed of the incident

particle approaches the speed of light, and the electron structure of the target nucleus

by means of a large correction coefficient at low energy c(E,Z)/Z which depends on

the energy and the matter being traversed: this is the Bethe-Bloch formula (Fig. 3.36):

�dT

dx
¼ NZ

z2e4

4πε20me�v2
In

Tmax

Tmin

� �
� ln 1� v2

c2

� �
� v2

c2
� c E; Zð Þ

Z

� �

It may be seen that the power 1=2 has disappeared from the logarithm (Cahen and

Treille 1963, p. 66; Berthelot 1956, p. 120; Lilley 2001, p. 131). If we disregard the

mass of the electron in relation to that of the incident particle, which is valid for a

proton or an α particle, we obtain:

Tmax ¼ 4mme�

mþ me�ð Þ2 E0 � 4me�

m

1

2
mv2 ¼ 2me�v

2

hence:

Bethe� Bloch formula :

� dT

dx
¼ NZ

z2e4

4πε20me�v2
ln

2me�v
2

I

� �
� ln 1� v2

c2

� �
� v2

c2
� c E; Zð Þ

Z

� � ð3:6Þ

At very high energies (above 1000 MeV), it may be seen experimentally that

linear energy loss saturates the value known as the Fermi ionization plateau
because the very high-speed particle polarizes the medium crossed and forms

dipoles whose electromagnetic field opposes that created by the movement of the

particle, thereby compensating for the stopping power. It should be noted that

Fig. 3.36 Bethe-Bloch formula as a function of energy of the incident particle
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stopping power depends solely on the charge of the incident particle and not on its

mass. However, the path followed by charged particles in matter depends both on the

z and the mass of the latter. It may be calculated by means of the following formula

(taking only the logarithmic term of the Bethe-Bloch formula and using dT¼mvdv):

X �
ðT¼E0

T¼0

dx

dT
dT ¼

ðT¼E0

T¼0

1

NZ
z2e4

4πε20me�v2
ln

2me�v
2

I

� �� �mvdv

¼ 4πε20me� m

NZz2e4

ðv¼v0

v¼0

v3

ln
2me�v

2

I

� �� � dv

3.9 Ion-Electron Pair Production by Ionization

We have seen that the number of collisions between the incident particle and the

electrons in substance being crossed is NZ dσ dx over a path of dx. Where Imin is the

minimum ionization energy (I is the mean energy), the number of electrons

receiving energy per unit length is:

dne�

dx
¼

ðT¼Tmax

T¼Imin

NZdσ¼
ðT¼Tmax

T¼Imin

NZ
1

T2

z2e4m

16πε20me�E0

dT¼NZ
z2e4

8πε20me�v2
1

Imin

� 1

Tmax

� �

This result gives only the number of primary electrons produced by ionization,

but the total number of ion pairs created is far higher since the primary electrons

speeded up also create ions by virtue of an electromagnetic cascade in which every
particle emitted must be followed. The Monte-Carlo codes, which provide a

statistical simulation of the path of particles through matter, are extremely useful

for this kind of calculation. The order of magnitude of ionization energy necessary

to create an ion-electron pair can be calculated using the following formula (again,

using only the logarithmic part of the Bethe-Bloch formula):

Eionization ¼ dT

dne�
¼

dT
dx

dne�
dx

�
NZ

z2e4

4πε20me�v2
ln

2me�v
2

I

� �� �

NZ
z2e4

8πε20me�v2
1

Imin

� 1

Tmax

� � � 2

ln
2me�v

2

I

� �� �
1

Imin

� 1

Tmax

� �

� 2Imin ln
2me�v

2

I

� �� �

and disregarding 1/Tmax with respect to 1/Imin.
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3.10 Variation in Charge

Charged particles may capture electrons as they pass through matter. Thus, moving

protons may capture an electron to become a neutral hydrogen atom that continues

along its path from the point of capture tangentially to its initial trajectory deflected

by the electromagnetic field (Berthelot 1956, p. 28). The probability of capture of

an electron is characterized by the effective capture cross section, σ+. However, the
hydrogen atom thus formed may itself give up at its electron over its own trajectory

with a probability of loss of σ�. Thus, for a beam comprising hydrogen protons and

atoms distributed randomly, its distribution of nH/np will tend towards σ+/σ� after

several mean free paths. It has been noted that the charge of a proton at 100 keV

changes several hundred times per mm of trajectory through a gas at normal

pressure and temperature (Berthelot 1956, p. 34). For α particles, there are three

possible states of charge: the neutral atom, 4
2He, the ion, 4

2Heþ, and the α particle

proper, 42He2þ. For the 4
2Heþ state, two effective cross sections, one for loss and the

other for capture, were measured by Rutherford and Henderson in 1924.

3.11 Fission Products

During fission, fission fragments are not necessarily neutral but are ionized. They

therefore have an effective charge lower than the z of the neutral isotope. On passing
through a medium, fission products may capture a certain number of electrons and the

effective charge varies over the trajectory (Berthelot 1956, p. 103). However, the

Bethe-Bloch formula is only valid provided there is no variation in the charge on the

incident particle. Experimentally, it may be seen that the effective charge is practi-

cally independent of the medium being crossed where the latter is thin; however, the

effective charge varies during slowing down in the medium. Because of their high

mass and speed, fission fragments collide not only with electrons but also with the

nuclei of the matter through which they are travelling, and the Bethe-Bloch formula

may thus be applied, taking into account the Z protons of the target nucleus. Thus, at

the start of travel, Bethe’s formula is applicable for collision with electrons, and at the

end of travel, only slowing down by protons in the nucleus is important. Finally, the

fission products have a very high stopping power and a high capacity for ionizing the

medium. In the case of a solid such as uranium, they may be considered as remaining

at the point of fission. Subsequently, chemical diffusion phenomena come into play,

particularly as a result of the high thermal gradients in the fuel pellet. Atoms of gas

such as xenon, which do not bond chemically, migrate towards the porosities, then

towards the pellet-cladding gap when these porosities open or when fissures appear in

the fuel (Radiation Effect in Refractory Fuel Compounds 1962).
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3.12 Path Length in Matter

(Bertin 1991)

Because of their mass, α particles are very quickly stopped in matter. It is

commonly said that a single sheet of paper is enough to stop α particles at an

energy of 5 MeV, which is a good order of magnitude of the energy of α particles

involved in decay. For this reason, it is normal to consider that external exposure to

α radiation is relatively harmless, since clothing stops these particles completely.

The situation involving ingestion or inhalation of α emitters, however, is totally

different, since in this case it is human tissue (lungs, stomach) that is irradiated

(Hine and Brownell 1956, p. 125). Table 3.3 summarizes the problems at several

different orders of magnitude (Boutin 1977, p. 97):

In air at STP (density ρ¼ 1.3 10�3g/cm3, mean atomic mass A¼ 14.4), the path

length of α particles at an energy of between 4 and 10 MeV is given by the

following correlation (Foos 1994, p. 138):

R cm½ � ¼ 0:32E1:5
MeV½ �

For protons at 10–100 MeV, again in air, the following formula may be used:

R cm½ � ¼ 1:8E1:8
MeV½ �

Electrons are able to penetrate much more deeply into matter. While less

destructive than other particles due to their very low mass, they still require external

radioprotection measures (Table 3.4).

The Bragg-Kleeman rule can be used to determine the path length for a charged

particle in matter of density ρ2 and atomic mass A2 where the path length in another

substance is known (ρ1, A1) (Mayo 1998, p. 273):

Table 3.3 Penetration of matter by α particles

Energy Air Water or living tissue Aluminum Lead

1 MeV 0.5 cm 8 μm 3 μm 1 μm
5 MeV 3.5 cm 45 μm 21 μm 7 μm

Table 3.4 Penetration of matter by electrons

Energy Air Water or living tissue Aluminum Lead

1 MeV 3 m 4 mm 1.5 mm 0.35 mm

3 MeV 10 m 15 mm 5.5 mm 1.3 mm
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Bragg� Kleeman rule for penetration distances :
R2

R1

¼ ρ2
ρ1

ffiffiffiffiffi
A1

A2

r
ð3:7Þ

Care should be taken not to invert atomic mass indices and densities. Photons are

by far the most penetrative particles and are better attenuated by heavy screens

(such as lead). The value generally used is the half-value layer (HVL), which is the

length over which the intensity of the photon beam is halved (Table 3.5):

In order to eliminate all danger, attenuation is generally multiplied by a coefficient

of 1000, i.e. around 10 HVL (210¼ 1024). While the path length in matter of the

heaviest ions is even lower than that of α particles, they cause far more damage. An

ion flux on a surface may even result in a certain degree of sputtering (abrasion) of the

latter (Atomic Collisions in Solids 1976). Such abrasion occurs, though more weakly,

for less massive particles such as neutrons and electrons. The science of radiopro-

tection, as utilized for the safety of staff working in the vicinity of natural or artificial

radioactivity, provides simple tables for the standard cases as well as precise calcu-

lation codes for more complex situations [e.g. travel of particles around obstacles via

reflection (Rockwell 1956, p. 316), use of holes as particle guides (Rockwell 1956,

p. 261), etc.], thus enabling effective determination of the actual protection required

(Baur 1985; Berthelot 1956; Delacroix et al. 2006; Harrison 1958; Métivier 2006).

3.13 Biological Effects of Radiation

Various types of biological damage may be caused by ionizing radiation and these

depend essentially on linear energy transfer (LET, usually expressed in keV μm�1).

Radiation at a high LET causes multiple lesions, primarily along the trajectory of

the particle, but also around this trajectory due to the appearance of secondary

particles (cascade effects). Sensitive impact sites include the cytoplasmic mem-

brane and nucleus of cells. In particular, incident particles can cause damage

(Fig. 3.37) to strands of deoxyribonucleic acid (DNA) bearing genetic information.

Damage can occur by direct impact of the particle on DNA, but also by thermal-

chemical effects due to the radiolysis of water molecules immediately surrounding

the DNA (with the appearance of “aggressive” free radicals). It should be noted that

in the case of neutrons, the problems arise more from the risk of protons being

ejected by neutrons since these charged protons interact strongly with matter and

have a high potential for secondary ionization with strong energy deposition.

To give an idea of the order of magnitude, it is estimated that a low-LET particle

depositing energy of 1 Gray in a cell produces 500–1000 single-strand breaks in

DNA and 40 double-strand breaks. Such breaks are partially repaired by a

Table 3.5 Half-value layer for photons in matter

Energy Air Water and living tissue Concrete Lead

1 MeV 150 m 15 cm 6 cm 1.5 cm
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continuous process, but they may be duplicated during cell division, with risk of

chromosomal mutation or aberration. Edwards’ formula (1990) correlates the

number of observed aberrations Ab to dose G (in Gray) using a quadratic equation:

Ab ¼ aþ bGþ cG2

The coefficients of this equation depend on the radiation type (neutrons, photons,

etc.), and, to a lesser extent, on the dose rate, as shown in Fig. 3.38. Following

accidental irradiation, this method of analysis may be used to determine the

Fig. 3.37 Effects of

radiation on DNA [adapted

from Poretti (1988)]
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absorbed dose by analyzing the number of aberrations in blood. We can see that

different types of radiation do not create the same amount of damage for the same

dose received, which is why the concept of dose equivalent is used.
The relative biological effectiveness (RBE) is the ratio between the absorbed

dose and a reference dose required to produce the same biological effect. RBE thus

corresponds to a given biological effect such as cell survival (Fig. 3.39). The
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standard reference radiation is that produced by cobalt 60, or high-energy x-rays.

RBE is dependent on LET as well as the absorbed dose. For neutrons, the RBE is

maximal for an energy of around 0.5 MeV as regards animal cells. Overall, the

effects of neutrons are more serious than those of x-rays or photons of lower LET,

which, although problematic in the event of accidental irradiation, may constitute

an advantage in local radiotherapy.
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Chapter 4

Neutron Slowing-Down

4.1 Historical Background

(Bernardini and Bonolis 2004; Génie de la science n�6 2001)

Neutron slowing-down was established at the end of the 1930s by Enrico Fermi.

He worked on several research areas in theoretical physics such as the behavior of

ideal gases based on a quantum statistical approach from 1925 to 1927, producing

the Fermi gas model (Greiner et al. 1999, p389), and on β radioactive decay in

1933, for which he was awarded the Nobel Prize. In 1934, he began working on

artificial radioactivity discovered by Frédéric and Irène Joliot-Curie. With his

Roman team composed of Emilio Segrè,1 Edoardo Amaldi,2 Franco Rasetti3 and

Oscar D’Agostino,4 he worked on the bombardment of several targets by neutrons.

Rutherford, who was quite contemptuous of pure theorists, congratulated him for

1Emilio Gino Segrè (1905–1989) was an Italian physicist who started his career under Fermi, and

who fled the fascist regime of Mussolini. He is the co-discoverer of the anti-proton. His significant

works in theoretical particle physics earned him the Nobel Prize in 1959.
2Edoardo Amaldi (1908–1989) worked under Fermi after his engineering studies at Rome Uni-

versity. He defended his PhD thesis in 1929 on the Raman Effect of benzene. In 1937, he replaced

Corbino as Professor of Experimental Physics at Rome University. Throughout the dark period of

war, he tried to ensure that the Roman physics school remained. He worked on spectroscopy and

detectors. A conference at La Sapienza University paid tribute to him in 2008.
3Franco Rasetti (1901–2001) followed the career of Fermi from Florence to Roma. He became the

first assistant to Corbino, Professor of Experimental Physics. His specialization in experimental

physics complemented Fermi’s theoretical skills. In 1939, he left Italy for Quebec, where he

became a world specialist on molecular spectroscopy. Although invited by his Italian friends

Fermi and Segrè to join the Manhattan project in 1939, he vehemently refused on ethical grounds.

His exceptional career is described in Franco Rasetti, physicien et naturaliste (Il a dit Non �a la
bombe) [Franco Rasetti, physicist and naturalist: the man who said “No” to the bomb] by

D. Ouellet, Ed. Guérin (2000).
4Oscar d’Agostino (1901–1975) became a Doctor in Chemistry in 1926. After his work with

Fermi, he joined the Italian National Scientific Research Center.

© Springer International Publishing AG 2017
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crossing the line into experimental work. One morning, according to Laura Fermi,

his wife, Emilio Segrè was sent out with a shopping basket to buy all of the pure

elements that could then be bought in pharmacy stores. While the experiments on

light elements produced nothing, for heavier nuclei, Fermi and his team obtained

artificial radioactivity in large quantities (Photo 4.1).

While investigating optimum conditions for neutron capture, Edoardo Amaldi

and Bruno Pontecorvo5 observed a strange phenomenon. They placed a neutron

source inside a silver cylinder for irradiation, the cylinder being itself inside a lead

casket. Quite surprisingly, the induced activity differed depending on whether the

cylinder was in the center or in a corner of the casket. Fermi suggested irradiating

the external surface of the cylinder and they observed that nearby objects influenced

the activity of the radioactive silver produced during the experiment. Even stranger

was the fact that when the cylinder was placed on a wooden table, the activity was

intense, whereas on the marble chemistry bench, it was weak. Intrigued by this

Photo 4.1 The Italian team: from left to right D’Agostino, Emilio Segré, Edoardo Amaldi, Franco

Rasetti and Enrico Fermi (University of Rome)

5Bruno Pontecorvo (1913–1993) was one of Fermi’s youngest assistants. Like many Italian Jews,

he fled fascism in his home country. Moving to the United States, already in 1942, while working

for a petrol prospection company, he was seeking to develop a principle based on neutron

emission. In 1948, he became a British citizen. In 1950, at the height of the “Cold War”, he

sensationally defected to the East with his family in unexpected and unexplained circumstances,

despite having never worked on the bomb project. He was warmly welcomed In the USSR, where

he specialized in high-energy physics until the end of his life.
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effect, the experimenters dubbed the wooden table a “magic table”. On October

20, 1934, they decided to remove the neutron source from the cylinder and place it

next to the cylinder, with a thin sheet of lead inserted between the two in order to

differentiate between absorbed neutrons and those scattered by the lead. In a flash of

inspiration, Fermi replaced the lead casket with a paraffin block (Photo 4.2).

The paraffin block very significantly increased the induced activity of the silver.

Fermi immediately proposed a physical explanation: the paraffin slowed down the

Photo 4.2 Although Enrico Fermi (1901–1954) is not well-known to the general public, the

French magazine “Les génies de la science” [‘Geniuses of science’] published an excellent article

in his honor. Although several attempts were made to name a unit of length after him (one Fermi is

equal to one femtometer), this was never a success, doubtless because F is already the symbol for

the farad, the unit of capacitance in electromagnetism (courtesy Belin)
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neutrons, rendering themmore “effective”. Thus, the induced activity was inversely

proportional to neutron speed. Fermi discovered that capture cross sections have a

1/v shape. The experimental apparatus was immediately set up in the fountain, with

its goldfish, in front of the Institute. The result was identical: just like paraffin,

hydrogen-rich water increased the induced activity by slowing down the neutrons.

The collision of neutrons with light atoms in paraffin or water causes the slowed-

down neutrons to be captured with maximum efficiency. This work on neutron

properties continued until 1936, when the Italian political climate worsened dra-

matically. Indeed, Mussolini’s fascist movement was now at the height of its power

thanks to its agreements concluded with Germany. The Second World War even-

tually disrupted Italian science. Let us return, however, to Fermi’s team: they

bombarded different substances in rising order of mass and finally came to uranium.

However, the large number of radioactive products observed prevented Fermi from

understanding uranium fission (an unthinkable feat at that time!). In an unfortunate

experiment, Amaldi failed to detect recoil fission products due to an aluminum foil

that created a barrier and prevented these products from entering the ionization

chamber. Hahn and Strassman discovered uranium fission in 1939 using chemical

methods.

The initial energy of a neutron created immediately after fission is distributed

according to a fast spectrum χ(E) given by several semi-empirical formulae

(e.g. Watt spectrum) and has a mean value of 2 MeV. The neutron travels through

matter and may eventually collide with a 238
92U nucleus, which may in turn undergo

fission. Otherwise, the neutron loses energy during the slowing-down phase, in

which successive collisions cause energy loss in a discontinuous fashion. These

collisions are initially inelastic and anisotropic but they become elastic and isotro-

pic as the speed of the neutron decreases. At high energies (>0.8 MeV), the capture

cross sections are small and many neutrons are able to survive this primary slowing-

down phase. Between 50 keV and 5 keV, few captures occur and all collisions are

now elastic and virtually isotropic in the center of mass. Below 5 keV, the neutron

passes through the resonance region of the various cross sections, namely those of
238
92U , where its probability of capture greatly increases. If it survives below this

energy, it reaches the thermal domain in which absorption becomes more probable

as its speed decreases (1/v law). The speed of the neutron then reaches thermal

equilibrium with Brownian motion of the medium (with a mean energy of

kT¼ 0.0253 eV for a medium at 20.44 �C): this is the thermalization phase in

which the neutron may gain energy by collision with “hot” matter.

4.2 Continuous-Energy Slowing-Down Theory

(Glasstone and Edlund 1972, p137; Baur 1985, p141; Mayo 1998, p110; Soodak

1962, p121; Ferziger and Zweifel 1966, p47)
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4.2.1 Elastic Collision with a Stationary Target

The laws of elastic collision, seen earlier in the chapter on neutron interaction with

matter, enable calculation of the energy, E1 (in the laboratory frame), of a neutron

(initial energy E0) after it has collided with a target of mass A, and where the

neutron mass is 1 unit:

Energy loss in the laboratory frame : E1 ¼E0

A2þ1

Aþ1ð Þ2þ
2A

Aþ1ð Þ2 cosΨ
 !

ð4:1Þ

as a function of the scattering angle in the center of mass (Fig. 4.1).

Using6 α � A�1
Aþ1

� �2
,

E1 ¼ E0

2
1þ αð Þ þ 1� αð ÞcosΨ½ �

The speed v1 of the neutron after collision in the laboratory frame is given by:

v21
v02

¼ A2 þ 1þ 2AcosΨ

Aþ 1ð Þ2 ð4:2Þ

By vector composition: v1
! ¼ v1��! þ 1

Aþ1
v0
! and v0�¼ v1�.

By projection on the x-axis, the cosine of the scattering angle θ in the laboratory
frame may be computed:

1

0

+A
v

1

0
1 +

=⊗ A
Avv

x
After collision

1v

θΨ

Fig. 4.1 Triangle for

velocity composition: θ is

the scattering angle in the

laboratory frame, and Ψ the

corresponding angle in the

center-of-mass frame

6The reader should note that not all references use the same definition of α. For instance,

(Weinberg and Wigner 1958) adopts the definition αw¼ 4A/(A + 1)2¼ 1� α, which makes trans-

position complicated. (Tait 1964, p12) prefers the notation q to αw. In this book, q is the slowing-

down density.
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v1 cos θ ¼ A

Aþ 1
v0 cosψ þ 1

Aþ 1
v0

Using Eq. (4.2):

cos θ ¼ Aþ 1

2

v1
v0

� A� 1

2

v0
v1

ð4:3Þ

and:

cosψ ¼ 1� Aþ 1ð Þ2
2A

1� v0
v1

� �2
" #

ð4:4Þ

These equations show that maximum energy loss occurs when Ψ ¼ π (head-on

collision with the neutron is reflected in the opposite direction) and minimum

energy loss occurs when Ψ ¼ 0 (tangential collision with a neutron, which con-

tinues in the same direction). Since collisions are random events, it is interesting to

compute the mean energy loss per collision. Let P(E) be the probability of

obtaining the energy E¼E0[(1 + α) + (1� α) cosΨ ]/2 after the collision. Thus:

dE ¼ �E0

2
1� αð Þ sinΨdΨ ) � d cosΨð Þ ¼ 2 dE

E0 1� αð Þ

If the collision is isotropic in the center of mass, which is the case at low energy,

all scattering directions are equiprobable and the probability of a neutron scattering

in a direction Ψ to dΨ is equivalent to the proportion of the solid angle7:

P Ψð ÞdΨ ¼ dΩ

4π
¼ 2π sinΨdΨ

4π
¼ sinΨ

2
dΨ ¼ � d cosΨð Þ

2

Since P(E)dE¼P(Ψ ) dΨ : P Eð ÞdE ¼ dE

E0 1� αð Þ
The energy after collision is always between αE0 and E0. For hydrogen (α ¼ 0),

the neutron may lose all its incident energy. This is the equivalent of a “stop-shot”

in pool for balls of the same mass. Thus, the neutron has zero probability of having

an energy below αE0 but a constant probability of an energy between αE0 and E0.

This probability is normalized to 1 as:ðE0

0

P Eð ÞdE ¼
ðE0

αE0

P Eð ÞdE ¼ 1

7In transport theory, angle ψ is usually denoted by θ0 and its cosine by μ0. However, we
differentiate here between this variable and the polar angle θ for the sake of clarity.

216 4 Neutron Slowing-Down



The mean energy of the neutron after collision is (Fig. 4.2):ðE0

αE0

EP Eð ÞdE ¼
ðE0

αE0

E

E0 1� αð Þ dE ¼ E2
0 1� α2ð Þ

2E0 1� αð Þ ¼
1þ α

2
E0

We thus see that the probability of reaching energy E depends on the initial

pre-collision energy, E0. A change of variable helps to avoid this problem. Leth-
argy, u, is defined as the dimensionless quantity such that (Fig. 4.3):

Definition of lethargy : u �½ � � ln
Eref

E
¼ 2 ln

vref
v

ð4:5Þ

Lethargy increases as energy decreases (during successive collisions) and is zero

for a chosen reference energy Eref. The latter may be equal to E0 which is the energy

of a neutron at the beginning of its life, before any collisions occur. To obtain only

positive values of lethargy, the reference energy may be taken as the maximum

d 

Ψ

v0

�

dS = 2π sin ΨdΨ

Fig. 4.2 Isotropic collision in the center of mass

α
ε 1Log=

)1(

1

0 α−E

P(E)

E w
E0 00 αE0

P(w)

Fig. 4.3 Probability of reaching energy E and change of variable to lethargy gain
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energy of neutrons emitted by fission, i.e. around 10 MeV. Thus a change in

lethargy between two successive collisions (or lethargy gain for a collision that

decreases the energy of the neutron) is computed as follows:

w � Δu ¼ ln
E0

E2

� ln
E0

E1

¼ ln
E1

E1

2
1þ αð Þ þ 1� αð Þ cosΨ½ �

¼ ln
2

1þ αð Þ þ 1� αð Þ cosΨ

The lethargy gain between two collisions here depends solely on α and Ψ , and no

longer on the initial neutron energy. This is because the post-collision energy

remains proportional to the pre-collision energy. Fermi used this feature to tackle

the problem in logarithmic terms. If the variable is changed to express the equation

P(E) as lethargy, the following is obtained:

P Eð ÞdE ¼ dE

E0 1� αð Þ ¼
�E0 e

�udu

E0 1� αð Þ ¼ � 1

1� α
e�udu ¼ P uð Þdu

It should be noted that during a collision, dE is negative when du is positive

and vice versa. The positive probability of reaching lethargy u, up to du, is given by
P(u)¼ e�u/(1� α). By extension, the probability of reaching an increment in

lethargy of w up to dw is given by P(w)¼ e�w/(1� α). The maximum lethargy
gain ε is:

Maximum lethargy gain per collision :

ε � wmax ¼ u αE0ð Þ � u E0ð Þ ¼ ln
E0

αE0

¼ ln
1

α

ð4:6Þ

The average lethargy gain ξ, also called the slowing-down parameter, is

defined as:

Average lethargy gain per collision :

ξ � w ¼
ðε
0

wP wð Þdw ¼
ðε
0

w

1� α
e�wdw ¼ 1� α

1� α
ln
1

α

ð4:7Þ

The mean square value of the lethargy gain (second moment), which is used in

some slowing-down models, is computed as:

w2 � Ð ε
0
w2P wð Þdw ¼

ðε
0

w2

1� α
e�wdw ¼ 1

1� α
�w2e�w
� � ε

0
þ 2

ðε
0

we�wdw

0@ 1A
¼ � α

1� α
ln
1

α

� �2

þ 2ξ
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from which the derivative, which characterizes the second moment, may be

deduced (Meghreblian and Holmes 1960, p104):

γ � w2

2ξ
¼ 1� α

2 1� α� α ln 1
α

	 
 ln
1

α

� �2

¼ 1� α

1� α

� �ε2
2ξ

This parameter is also used in some slowing-down models. When the mass of the

target increases, the following Taylor-series expansion may be expressed (Fig. 4.4):

α¼ A�1
Aþ1

� �2
�1�4

A
þO

1

A2

� �
α

1�α
¼A

4
1�1

A

� �2

ln
1

α
¼ln

Aþ1

A�1

� �2

¼2ln 1þ1

A

� �
1þ1

A
þ 1

A2
þO

1

A3

� �� �� �
�4

A
1þ 1

3A2

� �
þO

1

A4

� �

ξ ¼ 1� α

1� α
ln

1

α
� 1� 1� 1

A

� �2

1þ 1

3A2

� �
� 2

A
1� 2

3A

� �
þ O

1

A3

� �

γ ¼ 1�
α

1� α
2ξ

ln
1

α

� �2

� 1�
1� 1

A

� �2

1� 2

A2

� �2

1� 2

3A

� 4

3A
� 1

3A2
þ O

1

A3

� �

ε ¼ ln
1

α
� 4

A
þ 4

3A3
þ O

1

A5

� �

8>>>>>>>>>>><>>>>>>>>>>>:
Hence, thanks to the mean lethargy gain per collision, Fig. 4.5 is interpreted by

assuming that if energy loss is plotted on a logarithmic scale, the height of each step

is almost constant and equal to ξ (Glasstone and Edlund 1972, p173; Stephenson

1954, p137; Meghreblian and Holmes 1960, p87). Further, the time interval

between successive collisions increases since the speed of the neutron decreases

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

uranium 

alpha

deuterium (0,726)

carbon (0,158)
beryllium (0,207)

hydrogen (1,000)

ξ

γ

Fig. 4.4 Effect of mass

number (via α) on mean

lethargy gain ξ and second-

order moment) γ
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significantly. Fermi’s original idea consisted in transforming a discrete problem

into a continuous one, enabling the use of more advanced mathematical tools

(derivation, integration, etc.) for the slowing-down equations. In practice, assuming

that all neutrons are born at an energy of 2 MeV and slow down to 0.0253 eV, the

number of lethargy units gained is given by (Ligou 1982, p103) (Table 4.1):

Δu ¼ ln
2 106

0:0253
¼ 18:18 lethargy units

Thus, we may now modify Table 2.2, Chap. 2, in which only collisions at a right

angle (at the center of mass) were considered. This concept was used to compute the

mean number of collisions required to thermalize a fast neutron of 2 MeV, but this
value may now be computed more accurately using Δu/ξ:

The exact calculation (Δu/ξ) shows that the simplifying hypothesis of a collision

at a right angle overestimates the number of collisions required, especially if the

latter is small, though it remains representative. The slowing-down parameter ξ for
an isotope is constant, although the materials used are often chemical compounds,

which are themselves composed of an isotopic mix of varying abundances. If the

slowing-down medium is a compound (e.g. light water H2O, heavy water D2O,

eVEth 0253.0≈

MeVE 20 ≈

time

Neutron energy

Discrete slowing down

Discrete thermalization

Infographie Marguet

Fig. 4.5 Evolution of a fission neutron versus time

Table 4.1 Average number of collisions required to thermalize a 2 MeV fast neutron

1
1H

2
1H

12
6 C 16

8 O 23
11Na

238
92 U

Collision at a right angle 27 31 121 157 222 2200

Δu/ξ 18 25 115 153 205 2146
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beryllium oxide BeO), the average slowing-down parameter ξ is defined through

weighting of the slowing-down power ξΣs:

ξ Eð Þ �
X

Nuclide i2material

ξiΣ
i
S Eð Þ

ΣS total Eð Þ

While ξi is energy-independent,ξdepends (unfortunately for the simplicity of the

model) on E through the terms Σ i
S Eð Þ and ΣS total Eð Þ ¼PΣ i

S Eð Þ (Ligou 1982,

p106). The second-order moment is weighted as follows:

γ Eð Þ �
P
i

γi ξi Σ i
S Eð ÞP

i

ξi Σ i
S Eð Þ

However, the slowing-down power characterizes only the ability to slow down

neutrons in a scattering collision. In reality, absorption by a medium reduces its

moderating capacity. This is the case for light water for instance, in which the

isotope 1
1H has the best possible ξ value (~1), but which is far more absorbing than

deuterium 2
1H , which is preponderant in heavy water but has a 25% lower ξ.

Ultimately, heavy water is a far better moderator than light water, since it is far

more absorbing. Thus, the neutron-moderating capacity of a medium may be

characterized by its specific slowing-down power8:

Specific slowing-down power : r � ξΣS

Σa
ð4:8Þ

The specific slowing-down power characterizes a moderator by taking into

account both the number of scattering atoms, Ns (through the term ξΣS¼ ξNs σs),
and the number of absorbing atoms, Na, present. These atoms may in fact be the

same. This ratio is around 70 for light water but is greater than 20,000 for heavy

water! Table 4.2 summarizes the properties of the various moderators used in the

nuclear industry. It should be noted in particular that a light-water reactor cannot

become critical with natural uranium (0.711% of 23592U), and that enrichment in 235
92U

is thus essential. The moderation ratio is characteristic of a specific neutronic

situation involving the juxtaposition of some fuel and a moderator. Some authors

calculate this ratio using the same formula as for the specific slowing-down power,

with an additional term in the denominator to allow for the absorbing nuclides of

the fuel, at the risk of confusion with specific-slowing down power. Consequently,

this ratio is itself proportional to the ratio of the volumes of water to fuel for a water

8The specific slowing-down power is expressed by some authors as the moderation ratio, which

risks being confused with the technological moderation ratio if the latter term is shortened.
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reactor, which is generally termed the technological moderation ratio. For this

reason, we prefer to use the term “moderation ratio” to describe the ratio of a

volume of water to a volume of fuel.

In industrial reactors, light nuclei adversely affect the fast spectrum of fission

neutrons. Therefore, in fast reactors, oxygen from oxide fuel, carbon from carbide

fuel and steam from steam-cooled reactors thermalize the energy spectrum to a

greater or less extent depending on the moderation ratio. Clearly, this thermaliza-

tion effect is not desired in fast reactors; it is in fact an automatic consequence of the

fuel technology involving light nuclei (Fig. 4.6). It can be seen that reactors with

metallic fuel have a faster spectrum.

Fig. 4.6 Comparison of the

relative spectra for different

fast reactors (W. Häfele,

D. Faude, A. Fischer,

H. Laue: Fast Breeder
Reactors, Annual review of

Nuclear Science, Annual

Reviews, Inc., Palo Alto,

California, 1970. Reviewed

in (Walter and Reynolds

1981, p132).)

Table 4.2 Different industrial moderators [see also (Lamarsh and Baratta 2001, p317) and

(GA Vol. 1, 1967, p210)]

Moderator Formula State

Slowing

down

ξΣs cm�1½ �
Capture

Σa cm�1½ �
r
ξΣS/Σa [�] Cost Natural U

Water (298 K) H2O Liquid 1.5 0.02 75 Zero Impossible

Heavy water D2O Liquid 0.18 0.000008 22,500 High Possible

Beryllia BeO Solid 0.15 0.001 150 Moderate Possible

Graphite C Solid 0.063 0.0004 157 Moderate Possible
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4.2.2 Collision Statistics

During successive collisions, the probability of a neutron of reaching lethargy

u after two collisions is:

P2 uð Þ ¼
ð

u�ε�u0�u

P1 u0ð ÞP u� u0ð Þdu0

where: P(u) du¼ e�udu/(1� α). Note that if all neutrons are assumed to be

emitted at a single lethargy, chosen as the origin of lethargies, then P1(u) �P(u).
The probability of a neutron reaching u after n collisions is obtained by recurrence:

Pn uð Þ ¼
ð

u0<u

Pn�1 u0ð ÞP u� u0ð Þdu0

This equation clearly expresses Pn as a multiple convolution of P. If u> nε,
Pn(u)¼ 0 since ε is the maximum lethargy gain for a collision. The probability of

exceeding lethargy u after n collisions is calculated by integrating Pn over leth-

argies larger than u:

Πn uð Þ �
ðþ1

u

Pn u0ð Þdu0

This probability indicates the number of neutrons which cross the lethargy

u after exactly n collisions. Note that certain of these neutrons will have already

exceeded u after n� 1 collisions. The latter are, thus, characterized by the proba-

bilityΠn� 1(u), hence N(u) is the probability of reaching u after exactly n collisions:

N uð Þ ¼ Πn uð Þ � Πn�1 uð Þ

This probability enables us to calculate the mean number of collisions required

to exceed lethargy u by summing the number of collisions weighted by their

occurrence probability:

Mean number of collisions to reach u : n uð Þ ¼
Xþ1

n¼1

nN uð Þ ð4:9Þ

Since Pn is a convolution, its Laplace transform9 is easily computed as the

product of its respective images. Using the mathematical notations of (Abramowitz

and Stegun 1972) where the Laplace transform F(s) of a function f(u) is:

9For a theoretical background on Laplace transforms used in many physics problems, the reader is

referred to (Doetsch 1959; Holbrook 1969; Kaplan 1962; Starkey 1954; Widder 1952).
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F sð Þ ¼
ðþ1

0

e�suf uð Þ du

we get:

p sð Þ ¼
ðþ1

0

e�su 1

1� α
e�udu ¼ 1� αsþ1

1� αð Þ sþ 1ð Þ

and:

pn sð Þ ¼ 1� αsþ1

1� αð Þ sþ 1ð Þ
� �n

By composition:

n sð Þ ¼ Ðþ1
0

e�suN uð Þdu ¼ 1

s

1� αsþ1

1� αð Þ sþ 1ð Þ
� �n�1

� 1� αsþ1

1� αð Þ sþ 1ð Þ
� �n !

¼ 1

s

αsþ1 þ 1� αð Þ sþ 1ð Þ � 1

1� αð Þ sþ 1ð Þ
1� αsþ1

1� αð Þ sþ 1ð Þ
� �n�1

¼ 1

s
ϖn�1 1�ϖð Þ

using: ϖ ¼ 1� αsþ1

1� αð Þ sþ 1ð Þ.
The Laplace transform (or image) of the average number of neutrons which

exceed u is given by:

n sð Þ ¼
Xþ1

n¼1

nn sð Þ ¼ 1

s

Xþ1

n¼1

n ϖn�1 1�ϖð Þ

This is a series expansion of
1

1� xð Þ2 ¼
Xþ1

n¼1

n xn�1, thus:

Image of the average number of collisions to exceed u :

n sð Þ ¼ 1

s

1

1�ϖð Þ ¼
1

s

1� αð Þ sþ 1ð Þ
αsþ1 þ 1� αð Þ sþ 1ð Þ � 1

ð4:10Þ

This image will be later used to compute the neutron flux. The neutron spectrum

φn(E) after n collisions may be expressed for hydrogen as:

φ0 Eð Þ ¼ δ E� E0ð Þ
φn Eð Þ ¼ 1

E0 n� 1ð Þ!ln
n�1 E

E0

� �8<: φ0 uð Þ ¼ δ uð Þ
φn uð Þ ¼ 1

n� 1ð Þ!e
�uun�1

8<:
For a nuclide of mass > 1:

224 4 Neutron Slowing-Down



φn Eð Þ ¼
ðE=α
E

φn�1 E0ð Þ
1� αð ÞE0 dE

0 φn uð Þ ¼
ðmin u;εð Þ

0

φn�1 u� u0ð Þe�u0

1� αð Þ du0

It should be noted that φn(u) is the probability density for a given n at a given

value of u, and a discrete probability for a given u at a given value of n.10 For a
mixture of hydrogen and a heavier nuclide X characterized by its α, the neutron

spectrum is written as (with the Heaviside function Θ):

φ0 uð Þ ¼ δ uð Þ
φ1 uð Þ ¼ Σ H

s

Σ H
s þ Σ X

s

e�u þ Σ X
s

Σ H
s þ Σ X

s

e�uΘ ε� uð Þ
1� α

φn uð Þ ¼ Σ H
s

Σ H
s þ Σ X

s

ðu
0

φn�1 u� u0ð Þe�u0du0 þ Σ X
s

ΣH
s þ Σ X

s

ðmin u;εð Þ

0

φn�1 u� u0ð Þe�u0

1� αð Þ du0

8>>>>>>><>>>>>>>:
Some authors, e.g. Lamarsh, have insisted on the fact that

n ¼ u=ξh i ¼ ln E0=Eð Þ
ξ

D E
is not the average number of collisions required to reach

energy E but rather the number of collisions required to gain a mean lethargy

of〈u〉, corresponding to energy E0 e
�〈u〉. The difference is subtle but very signif-

icant and is due to the fact that the statistical average of a product (of energies

during collisions) is not the product of the average values. Masakuni Narita and

Koichi Narita11 computed the complete analytical formula for n for nuclides with

10S.A. Pozzi, I. Pazsit: Neutron slowing down in a detector with absorption, Nuclear Science and
Engineering, 154, p367–373 (2006). After obtaining his PhD at the Roland E€otv€os University in

Budapest in 1975, Imre Pazsit, taught nuclear engineering at the University of Michigan, and then

at the University of Chalmers in Sweden. He has written numerous articles dealing in particular

with neutron noise, as well as a treatise on neutron fluctuations.

(Courtesy Pazsit)
11In Masakuni Narita, Koı̈chi Narita: Average number of collisions necessary for slowing down of
neutrons, Journal of Nuclear Science and Technology, Vol. 26 No 9, pp819–825 (1989).
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mass > 1 using a symbolic calculator. From the very complicated expressions, they

derived an approximation given by:

n uð Þh i � Cþ u

ξ

With C¼ 1 for hydrogen (A¼ 1), C¼ 0.8 for deuterium (A¼ 2) and C� 0.7 for

A> 2.

4.2.3 Effect of the Motion of the Target Nucleus

During the slowing-down process, we have seen that the motion of the target

nucleus is assumed to be negligible. However, when the velocity of the neutron

decreases, the Brownian motion due to thermal agitation cannot be disregarded (for

solids the motion is not pure Brownian motion). In the chapter on “Thermalization”

below, we shall examine the consequences of taking this phenomenon into account.

Here, the influence of this motion on the gain in lethargy will be analyzed. Like the

average cosine of the scattering angle in elastic scattering (μ0 ), discussed in the

chapter “Interactions of neutrons with matter”, the gain in lethargy is averaged over

all the possible scattering angles in the center of mass using the standard notations:

μ0¼ cosψ and p(μ0)dμ0 is the probability of a collision angle ψ in the center of

mass:

ξh i ¼ 1

2

ðþ1

�1

ln
E0

E1

� �
p μ0ð Þdμ0 ¼

1

2

ðþ1

�1

ln
E0

E1

� �
1þ 3μ0 μ0ð Þdμ0 �

1

2

ðþ1

�1

ln
E0

E1

� �
dμ0

The approximation is obtained by assuming that the collision is reasonably

isotropic in the center of mass. Using a vector diagram for velocities:

~v0 ¼ ~vG þ~v0,�
~v1 ¼ ~vG þ~v1,�


hence : v21 ¼ v2G þ v21,� þ 2v2Gv

2
1,� μ0

V is denoted as the average velocity of the target nuclei and the ratio of the

incident velocities b � v0=V is introduced. The laws of elastic collisions enable

calculation of the velocities vG and v1 ,� after a collision as a function of the ratio of

masses A and the angle between the neutron velocity and that of the nucleus in the

laboratory frame, given by its cosine μ¼ cosφ:

vG ¼ V

Aþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ A2 þ 2bA cosφ

q
and v1,� ¼ AV

Aþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1� 2b cosφ

q
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Using:

S � v2G
V2

þ v21,�
V2

¼ b2 þ A2 þ 2bA cosφþ A2 b2 þ 1� 2b cosφ
	 


Aþ 1ð Þ2

P � 2
vGv1,�
V2

¼ 2
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ A2 þ 2bA cosφ
	 


b2 þ 1� 2b cosφ
	 
q

Aþ 1ð Þ2

8>>>><>>>>:
The integral 〈ξ〉 can be computed analytically by substituting

ln
E0

E1

� �
¼ 2 ln

v0
v1
, thus:

ξh i ¼ 1

2

ðþ1

�1

ln b2 � ln Sþ Pμ0ð Þ� �
dμ0

¼ 1þ ln b2 � Sþ Pð Þ ln Sþ Pð Þ � S� Pð Þ ln S� Pð Þ
2P

This expression depends on μ¼ cosφ via the terms S and P. The average of hξi
over all the incident angles may be computed by assuming that the random motion

of the target nuclei leads to an isotropic collision, giving:

ξh i ¼ 1

2

ðþ1

�1

ξh idμ ¼ 1þ ln b2 �
ðþ1

�1

Sþ Pð Þ ln Sþ Pð Þ � S� Pð Þ ln S� Pð Þ
4P

dμ

R.L. Murray performed a numerical analysis12 of this non-analytical integral in

terms of A and b using a Gauss quadrature, and he showed that for high values of b,
the usual expression is obtained:

ξ ¼ 1� α

1� α
ln
1

α

whereas for weak values, ξh i can be approximated by:

ξ � 1þ 2 ln
b Aþ 1ð Þ

2A

4.2.4 Transfer Probability as a Function of Angle

We shall try to compute the probability P Ω
!! Ω0�!; u ! u0
� �

of a neutron being

scattered from one direction, Ω
!
, to another, Ω0�!, by changing lethargy from u to

12R.L. Murray, Nuclear Science and Engineering 128, p329–330 (1998)
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u0 > u. The scattering is assumed to be isotropic in the center-of-mass frame,

implying that the probability of scattering at a given angle will no longer depend

on that angle but rather on the solid angle. The scattering probability density is thus

1/(4π). By definition, a differential element of solid angle is (Fig. 4.7):

dΩ

4π
¼ 1

4π
sinψ dψ dθ

where θ is the polar angle (co-latitude) and ψ the azimuthal angle. θ0 is the

deviation angle resulting from scattering. Deriving Eq. 4.4:

sinψ dψ ¼ Aþ 1ð Þ2
8πA

e� u0�uð Þdu

This equation leads to expression of the probability density of isotropic scatter-

ing towards lethargy u0. Further, in the collision equations, the scattering angle in

the laboratory frame is given by the following equation:

Ω
!
: Ω0�! ¼ cos θ0 ¼ Aþ 1

2

v1
v0

� A� 1

2

v0
v1

¼ Aþ 1

2
e�

u0�uð Þ
2 � A� 1

2
eþ

u0�uð Þ
2 ð4:11Þ

Knowing angles θ, θ0, ψ and ψ 0 is sufficient to determine the scattering angle θ0,
given by:

cos θ0 ¼ cos θ cos θ0 þ sin θ sin θ0 cos ψ � ψ 0ð Þ

Ω

'Ω

'θ

θ

0θ

ψx

y

z

'ψ

Fig. 4.7 Collision

parameters
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Angle θ0 is the only possible angle once all the collision parameters are imposed.

Therefore, the isotropic scattering probability, which depends solely on Ω
!
: Ω0�!

¼ cos θ0 in angular terms, and on the difference in lethargy, is obtained by:

P Ω
!! Ω0�!;u!u0
� �

¼P Ω
!
: Ω0�!;u!u0

� �
¼ Aþ1ð Þ2

8πA
e� u0�uð Þ δ cosθ0�Aþ1

2
e�

u0�uð Þ
2 �A�1

2
eþ

u0�uð Þ
2

� �
using the Dirac δ function. The integral of this distribution over 4π steradians

is equal to 1. If multiplied by a total scattering cross section, this probability

leads to the differential scattering cross sectionσs Ω
!
: Ω0�!; u ! u0

� �
. The expression

may be rendered more general by considering anisotropic collisions in the center of

mass. Classically, the differential cross section is expanded over a Legendre

polynomial expansion for the cosine of the scattering angle in the center of mass,

μ ¼ cosΨ ¼ Ω
!
: Ω0�! (expansion is generally truncated at order 5, even for highly

anisotropic materials):

σs μ;E ! E0ð Þ ¼ 4π

1� αð ÞE
X5
l¼1

Bl Eð ÞPl μð Þ

Also, from the laws of elastic collision, μ¼ 1� 2(1�E0/E)/(1� α), meaning

that with this model, the differential cross section is an algebraic expression

depending solely on the considered isotope and on μ. In a multigroup representa-

tion in which the energy interval is divided into n energy groups with upper and

lower limits [Ei,Ei� 1] whose index increases as energy decreases (a universally

adopted convention), the transfer cross section from energy E to group i is written
as:

σs E ! Ei�1;Ei½ �ð Þ ¼
ðEi�1

Ei

σs E ! E0ð Þ dE0

Furthermore, the transfer cross section from group j to group i is computed as:

σs Ej�1;Ej

� �! Ei�1;Ei½ �	 
 ¼ σj!i
s ¼

ðEj�1

Ej

dE

ðEi�1

Ei

σs E ! E0ð Þ dE0

which is approximated by 1
2
σs Ej ! Ei�1;Ei½ �	 
þ σs Ej�1 ! Ei�1;Ei½ �	 
	 


.

In the neutron scattering equations discussed later, the transfer cross section to

lower groups (or to the same group) is considered:
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σ j
r ¼

Xi¼n�1

i¼jþ1

σs Ej�1;Ej

� �! Ei�1;Ei½ �	 
 þ σs
	
Ej�1;Ej

� �! Ej�1;Ej

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σs,0




4.2.5 Isotropic Collision

We saw earlier that the cosine of scattering angle θ in the center-of-mass frame is:

μ0 � cos θ ¼ A

Aþ 1
cosψ þ 1

Aþ 1

� �
v0
v1

v0
v1

� �2

¼ Aþ 1ð Þ2
A2 þ 2A cosψ þ 1

8>><>>:
where:

μ0 � cos θ ¼ A cos ψ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 2A cosψ þ 1

p ¼ Aμþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 2Aμþ 1

p
with μ� cosψ the cosine of the collision angle in the center-of-mass frame.

Deriving the square of this expression, the following equation is obtained:

dμ0 ¼
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ 2Aμþ 1
p � 1

2

Aμþ 1

A2 þ 2Aμþ 1
	 
3

2

2Að Þ
0@ 1Adμ

In the case of hydrogen, where A ¼ 1:

dμ0 ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2μ

p
� �

dμ and μ0 ¼
μþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μþ 2

p ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
μþ 1

p
2

giving

dμ0 ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2μ

p
� �

dμ ¼ 1

4μ0
dμ

Assuming that the collision is isotropic in the center of mass, the probability

density, which is constant over the interval [�1, +1], may be computed, and its

integral is equal to 1 (by definition), i.e.:
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P μð Þ ¼ 1

2

For a collision with hydrogen, the probability of reaching μ0 at dμ0 close is given
by:

P μ0ð Þdμ0 ¼ P μð Þdμ ¼ 1

2
dμ ¼ 2μ0dμ0

but only where μ0	 0, since collision with hydrogen always scatters the neutron

in a forward direction.

Finally:

P μ0ð Þdμ0 ¼ 2μ0dμ0 for μ0 	 0

0 for μ0 < 0



4.3 Continuous Slowing-Down Theory

(Meghreblian and Holmes 1960, p85)

If a neutron balance is carried out at energy E (resp. lethargy u), fission neutrons
are created at energy E (respectively u), if this energy allows (hence, fast energy),

with a source S(E) (resp. S(u)) (Fig. 4.8).
Neutrons can also reach this energy by slowing down from a higher energy, E0,

through scattering on moderator nuclei. This slowing down is represented by the

differential reaction rate Σs(E
0)Φ (E0)P(E0 !E) where Rs(E

0)¼Σs(E
0)Φ (E0) is the

number of neutrons scattering from energy E0 and P(E0 !E) is the probability of

reaching E by scattering from E
0
. All scattering at higher energies than E must be

considered, i.e.:

dEE

q(E)

udu

du’dE’
Fig. 4.8 Slowing-down

balance

4.3 Continuous Slowing-Down Theory 231



ðþ1

E

Σs E
0ð ÞΦ E0ð ÞP E0 ! Eð ÞdE0

In practice, the upper limit +1 of the integral is the maximum energy of the fast

spectrum E0� 10MeV. Neutrons are removed from energy E through scattering

and absorption, and hence through the reaction rate13 RT(E)¼Σt(E) Φ(E). The
balance is finally written as (Dresner 1960, p8):

Balance of slowing-down in energy:ðþ1

E

Σs E
0ð ÞΦ E0ð ÞP E0 ! Eð ÞdE0 þ S Eð Þ ¼ Σt Eð ÞΦ Eð Þ ð4:12Þ

This balance may be written in the form of lethargy:

ðu
�1

Σs u
0ð ÞΦ u0ð ÞP u0 ! uð Þdu0 þ S uð Þ ¼ Σt uð ÞΦ uð Þ

The number of neutrons undergoing a collision in the interval [u, u + du], i.e.
Rt(u)¼Σt(u) Φ(u), is equal to the number of neutrons set directly at this energy by

the fission source S(u), along with the neutrons reaching this lethargy after scatter-

ing from a lower lethargy:

ðu
�1

Σs u
0ð ÞΦ u0ð ÞP u0 ! uð Þdu0

If u0 > u , P(u0 ! u)¼ 0, in mathematical terms, a neutron at lethargy u0 cannot
be slowed down to a lower lethargy, at least during the slowing-down phase (this is

not the case for thermalization, where a neutron may gain energy).

Let q(E) be the slowing-down density or slowing-down current, that is, the
number of neutrons per unit time and volume scattering from above a higher energy

E to a lower energy. It is assumed for the moment that neutrons cannot gain energy

(Fig. 4.9).

Using q(u), the number of neutrons crossing the lethargy u by slowing down

above or beyond u is expressed by the double integral:

13The notation R(E) is preferred here instead of the more common F(E) (Glasstone and Edlund

1972; GA Vol. 1, 1967, p213), since it provides a mnemonic (R(E) for slowing-down Reaction

Rate).
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Slowing-down density : q uð Þ¼
ðu

�1
ΣS u0ð ÞΦ u0ð Þ du0

ðþ1

u

P u0 ! u00ð Þdu00 ð4:13Þ

Deriving q(u), the following expression is obtained14:

dq uð Þ
du

¼ ΣS uð ÞΦ uð Þ þ
ðu

�1

d

du
ΣS u0ð ÞΦ u0ð Þdu0

ðþ1

u

P u0 ! u00ð Þdu00
0@ 1A

¼ ΣS uð ÞΦ uð Þ �
ð u
�1

ΣS u0ð ÞΦ u0ð Þdu0P u0 ! uð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Σt uð ÞΦ uð Þ�S uð Þ

Since Σt(u)¼Σs(u) +Σa(u), the differential equation for slowing-down is

obtained using the neutron balance:

dq uð Þ
du

¼ S uð Þ � Σa uð ÞΦ uð Þ

In the case of a monatomic, elastic and isotropic collision:

P u0 ! u00 � u0 þ εð Þ ¼ P u00 � u0ð Þ ¼ 1

1�α
e� u00�u0ð Þ and P u0 ! u00 > u0 þ εð Þ ¼ 0

The second equation indicates that it is not possible for a neutron to acquire more

than the maximum gain in lethargy ε. Thus, the number of neutrons transferred

from lethargy u0 beyond lethargy u (the term crossing probability will be used) can
be calculated using e�ε¼ α:

dEE

q(E)

udu

Fig. 4.9 Slowing-down

density q(E)

14 d
du

Ðu
�1

f u; vð Þdv
� �

¼ f u; uð Þ þ Ðu
�1

df u;vð Þ
du dv
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ðþ1

u

P u0 ! u00 	 uð Þdu00|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Number of neutrons transferred

beyond u for a neutron
undergoing a collision at u0 u0 < uð Þ

¼
ðu0þε

u

1

1� α
e� u}�u0ð Þdu} ¼ e� u�u0ð Þ � α

1� α

for 0� u� u0 � ε; otherwise ¼ 0.

For a simple monatomic, elastic, isotropic and non-absorbing (Σa¼ 0) medium,

the slowing-down equation reduces to:

dq uð Þ
du

¼ S uð Þ

If the source is represented by a Dirac distribution of intensity S neutrons per unit
volume and time at lethargy u0, i.e. S(u)¼ S δ(u0), q(u) is the Heaviside step

distribution (zero neutrons before the energy value of the source and S neutrons

per unit volume after the source since there is no absorption) (Fig. 4.10).

Assuming a source with a unit Dirac distribution and of lethargy u0¼ 0, the

corresponding slowing-down density will be the Heaviside unit step function Θ(u).
By defining the slowing-down density, the following equation is obtained:

q uð Þ ¼ Θ uð Þ ¼
ðu

�1
ΣS u0ð ÞΦ u0ð Þdu0

ðþ1

u

P u0 ! u00ð Þdu00

¼
ðu

u�ε

RS u0ð Þdu0 e
� u�u0ð Þ � α

1� α

This expression includes a convolution with the “crossing function” Fr:

Fr uð Þ � e�u � α

1� α
for 0 � u � ε

Fr uð Þ � 0 otherwise

(

having the following Laplace transform:

S

S(u)

u
u0

S

q(u)

u
u0

Fig. 4.10 Slowing-down density due to a point source in a non-absorbing medium
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f r sð Þ ¼ 1

s

αsþ1 þ 1� αð Þ sþ 1ð Þ � 1

1� αð Þ sþ 1ð Þ ¼ 1

s
1�ϖð Þ

with ϖ � 1� αsþ1

1� αð Þ sþ 1ð Þ. Hence, using the crossing function:

q uð Þ ¼ Θ uð Þ ¼
ðu

�1
RS u0ð Þ Fr u� u0ð Þdu0 ð4:14Þ

The Laplace transform of the latter equation is written as:

1

s
¼ rs sð Þ f r sð Þ

where:

Scattering reaction rate image for a neutron source: rs sð Þ ¼ 1

1�ϖ
ð4:15Þ

If a source neutron is emitted at u0¼ 0, it must necessarily be scattered by

collision at this very lethargy in order to be slowed down (in which case, the

neutron travels through vacuum and has a constant lethargy). This implies that

the scattering rate includes a Dirac delta function at the origin. Furthermore, it is

seen that the constant term:

1

ξ
¼ 1Ð ε

0
Fr uð Þdu ¼ 1� α

1� α� αε
is the asymptotic solution to Eq. 4.14.

George Placzek expressed the scattering rate created by a unit source at lethargy

0 in the following form (Dresner 1960, p9):

Σs uð ÞΦ uð Þ ¼ δ uð Þ þ Rs uð Þ ¼ δ uð Þ þ 1

ξ
1þΦ uð Þð Þ ð4:16Þ

This rate has a singular term, δ(u), in the sense that the source itself is singular in
lethargy. Rs(u) is the non-singular part of the scattering rate, also called the Placzek
function. The functionΦ(u)—which in fact is not a flux—decays quickly and can be

easily computed using its Laplace transform φ(s) (Photo 4.3):

Rs sð Þ ¼ 1þ rs sð Þ ¼ 1þ 1

ξ

1

s
þ φ sð Þ

� �

4.3 Continuous Slowing-Down Theory 235



Hence, the image expression is:

φ sð Þ ¼ 1

s
1� ξð Þ 1þ ξsð Þ 1� e�εsð Þ � εs

εs� 1� ξð Þ 1� e�εsð Þ

which is usually expanded in a series in terms of s:

φ sð Þ ¼
X1
n¼0

φns
n ¼ 1� ξ� 1� ξð Þ

2ξ
εþ 1� ξð Þ

2ξ
εþ 3þ ξ2 � 4ξ

12ξ2
ε2

� �
s2 þ . . .

This expansion shows the importance of integer multiples of ε, which will be

analyzed for the slowing-down process on a target heavier than hydrogen. Com-

paring with Eq. 4.10, it can be seen that:

n sð Þ ¼ 1

s

1

1�ϖð Þ ¼
1

s
Rs sð Þ

Therefore, by an inverse transformation process:

n uð Þ ¼
ð u
0

Σs u
0ð ÞΦ u0ð Þdu0 ¼

ð u
0

δ u0ð Þ þ 1

ξ
1þΦ u0ð Þð Þ

� �
du0 ¼ 1þ u

ξ
þΦ0

ξ

Where Φ0 ¼
Ð u
0
Φ u0ð Þdu0 ¼ Ðþ1

0
Φ u0ð Þdu0 ¼ 1� ξ� 1� ξð Þ

2ξ
ε is the first

moment of the Placzek complementary function.

Photo 4.3 Georges Placzek (1905–1955) was a Russian physicist of Czech origin. After his

studies in Prague, then Vienna, he worked on fission. He migrated to Denmark in 1932, and was

later a professor at the University of Jerusalem and the University of Kharkov (USSR). He devised

a pioneering theory on the Raman effect. After his migration to Canada, he contributed as a

theorist to the Manhattan Project aspart of the British Chalk River group. From 1948, he worked at

Princeton University. He died prematurely at the age of 50 (Public domain)
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4.3.1 Slowing Down by Non-Absorbing Hydrogen

(Ferziger and Zweifel 1966, p65)

In a seminal article,15 Amaldi and Fermi analyzed the resulting flux during

slowing down by non-absorbing hydrogen. The probability of a neutron reaching

energy E (resp. lethargy u) following a collision immediately after its birth at

energy E0 (resp. u0¼ 0) is plotted in Fig. 4.11. In the case of hydrogen, it may be

observed that any lower energy may be attained (even the theoretical value of 0 eV)

since α1
1H

¼ 0 at first order. This hypothesis is valid if the neutron mass is assumed

to be equal to that of the hydrogen proton, which is not strictly true. The probability

of energy loss P(E0!E�E0) is constant:

P E0 ! E � E0ð Þ ¼ C

E0

In terms of lethargy, this probability is expressed as:

P u0 ¼ 0 ! uð Þ ¼ Ce�u

C is a normalization constant equal to 1 if it is assumed that the neutron can be

slowed down until it has no energy. In reality, the neutron gains the average energy

of the slowing-down medium, thus C is slightly above 1. The differential elastic

scattering cross section of hydrogen (A¼ 1) can be modeled by expanding the

cosine of the scattering angle in the laboratory frame on a Legendre polynomial

basis:

( ) ( )uuPuR →= 0001

u

S
ueS −

0E 0E

∞+

( ) ( )E0EE0PE0R1 ≤→

E0

S

Fig. 4.11 Number of

neutrons reaching energy

E after scattering from E0

on non-absorbing hydrogen

15E. Amaldi, E. Fermi, Physical Review. 50, p899 (1936).
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Σs u
0 ! u; μ0ð Þ ¼ 1

2

Xþ1

l¼0

2lþ 1ð Þ Σs, l u
0ð ÞP u0 ! u; μ0ð Þ Pl μ0ð Þ

where

Σs, l u
0 ! uð Þ ¼ Ðþ1

�1

Σs u
0ð Þ P u0 ! u; μ0ð Þ Pl μ0ð Þ dμ0

From Eq. 4.11, the cosine of the angle after collision depends solely on the

difference of lethargies (as A¼ 1):

μ0 ¼
1

2
Aþ 1ð Þe�u�u0

2 � A� 1ð Þeþu�u0
2

h i
¼ e�

u�u0
2

After a collision at lethargy u’ such that the cosine of the scattering angle is μ0,
the probability of reaching lethargy u depends solely on the change in lethargy:

P u0 ! u; μ0ð Þ ¼ e� u�u0ð Þ δ μ0 � e�
u�u0
2

� �

The moments of the scattering cross section can thus be computed analytically:

Σs, l u
0 ! uð Þ ¼

ðþ1

�1

Σs u
0ð Þ P u0 ! u; μ0ð Þ Pl μ0ð Þdμ0 ¼ Σs u

0ð Þ e� u�u0ð Þ Pl e�
u�u0
2

� �

The first few moments are:

Σs, 0 u0 ! uð Þ ¼ Σs u
0ð Þ e� u�u0ð Þ

Σs, 1 u0 ! uð Þ ¼ Σs u
0ð Þ e�3

2
u� u0ð Þ

Σs, 2 u0 ! uð Þ ¼ Σs u
0ð Þ 3e� u�u0ð Þ � 1
� �

2
e� u�u0ð Þ

8>>><>>>:
For hydrogen, the collision is isotropic in the center-of-mass frame until around

9 MeV, i.e. almost the whole spectrum. The change of center-of-mass frame to the

laboratory frame is taken into account in the following (μ is the cosine of the

scattering angle in the center of mass):

P μ0ð Þdμ0 ¼ P μð Þdμ

The isotropic collision in the center of mass leads to P(μ)¼ 1/2. From Eqs. 4.2

and 4.3:
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cos 2θ ¼ Aþ 1ð Þ2
4

v1
v0

� �2

þ A� 1½ �2
4

v0
v1

� �2

� Aþ 1ð Þ A� 1ð Þ
2

¼ A2 þ 1þ 2A cosΨ

4
þ A� 1½ �2 Aþ 1ð Þ2
4 A2 þ 1þ 2A cosΨ
	 
� Aþ 1ð Þ A� 1ð Þ

2

This equation is differentiated with respect to μ and μ0 to obtain the

probability P(μ):

2 cos θd cos θð Þ ¼ 2Ad cosΨð Þ
4

� A� 1½ �2 Aþ 1ð Þ2
4 A2 þ 1þ 2A cosΨ
	 
2 2Ad cosΨð Þ

or: μ0 dμ0 ¼ 1� A� 1½ �2 Aþ 1ð Þ2
A2 þ 1þ 2A μ
	 
2

 !
A
4

dμ

If applied to hydrogen, in which case the neutron is always scattered forwards

(μ0> 0), the following equation can be written

dμ ¼ 4μ0 dμ0 if μ0 > 0

0 if μ0 < 0



where: P μ0ð Þ ¼ 2μ0 if μ0 > 0

0 if μ0 < 0


The mean cosine of the scattering angle is computed as:

μ0 ¼
ðþ1

�1

μ0P μ0ð Þdμ0 ¼
2

3

The higher moments of the cosine of the scattering angle characterize strong

anisotropy in the laboratory frame:

μ02 ¼
ðþ1

�1

μ0
2P μ0ð Þdμ0 ¼

1

2
and μ03 ¼

ðþ1

�1

μ0
3P μ0ð Þdμ0 ¼

2

5

If a neutron balance is established at energy E, it may be assumed that some

neutrons originate directly from the source of intensity S by scattering after the first
collision, i.e. R1(E0)P(E0!E)dE¼ SdE/E0 (the index 1 indicates that it is the first

collision directly at energy E0, in the present case taking a normalization constant of

C¼ 1). Indeed, without absorption at E0, all neutrons emitted by the source are

scattered at a lower energy, thus R1(E0)¼Σs(E0)Φ(E0)¼ S/E0. It is not possible for

any neutrons to have energy lower than E0 after a first collision, i.e.R1(E<E0)¼ 0.

Other neutrons appear at energy E after undergoing several previous collisions.

These neutrons are referred to as nth collision neutrons”. They are scattered in the
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forward direction from energy E0 	E to E as given by the following differential

rate:

Rnþ1 E0 ! Eð Þ ¼ Rn E0ð ÞdE0P E0 ! Eð Þ ¼ Rn E0ð ÞdE0

E0

This formula allows computation of the scattering rate at any collision “order”

by recurrence. Here, the index n gives the number of collisions undergone by the

neutron to reach E0 from E0. The reaction rate Rn(E
0) itself stems from recurrence

for all the possible collisions, leading to energy E0 at any time. Moreover, by

definition, the number of neutrons leaving energy E without absorption is:

Σt Eð ÞΦ Eð Þ ¼ ΣS Eð ÞΦ Eð Þ ¼ Rs Eð Þ

It must be borne in mind thatΦ(E) is the number of neutrons per cm2, per second

and per unit energy (e.g. eV). For the nth collision neutrons scattering from E0 	E,
the total number per unit energy is computed by integrating over the interval E0

and E: ðE0�E0

E

Rn E0ð ÞdE0

E0

In the end, the neutron balance at energy E is (Glasstone and Edlund 1972, p149)

(Fig. 4.12):

8E 6¼ E0

S

E0

dEþ dE
Xþ1

n¼2

ðE0¼E0

E0¼E

Rn E0ð ÞdE0

E0 ¼ Rs Eð ÞdE

dEE udu

du’dE’

0E 00 =u

)Φ(E(E)ΣR(E) s=

0

001

/

)(

ES
EE)p(ER

=
→

'/'' EdE)(ERn

Fig. 4.12 Neutron balance

at energy E for

non-absorbing hydrogen
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The first-collision term, S/E0 has deliberately been introduced into this equation so

as to show the neutron source. Nevertheless, this equation has been written only for

energies lower than E0 to avoid including the flux of unscattered neutrons Φ0 (neu-

trons which have not undergone any collisions) at that energy. At E0, there is a

singularity due to the point source. The flux at E0 is composed of unscattered neutrons

as well as scattered neutrons without any velocity change (Rayleigh scattering) in

very small, though not zero, quantities due to the scattering probability law (propor-

tional to S dE/E0). Similarly, neutrons that are scattered several times but remain at E0

must also be taken into account, even if infinitesimal in number (proportional to

S (dE/E0)
n). Asymptotically, the reaction rate is idealized as the limit of a large

number of collisions, lim
n!þ1

Pm¼n

m¼0

Rm Eð Þ ¼ Rs Eð Þ, such that the integral equation is:

8E < E0

S

E0|{z}
1st collision
term

þ
ðE0!E0

E0¼E

Rs E
0ð ÞdE0

E0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
multi-collision
term

¼ Rs Eð Þ

E ¼ E0 S
 δ E� E0ð Þ ¼ R0 E0ð Þ corresponds to the unscattered flux

E ¼ E0

S

E0

¼ R1 E0ð Þ corresponds to the first-collision flux

8>>>>>>>>>>><>>>>>>>>>>>:
The notation E!E0 in the integral means that the unscattered term is not taken

into account. For the latter, a Dirac distribution δ(E�E0) is introduced into the

equation and is homogeneous (dimensionally) to the inverse of the energy, and with

the following property for any continuous function f:

8E � E0,

ðE0¼E0

E0¼E

f E0ð Þ 
 δ E0 � E0ð Þ dE0 ¼ f E0ð Þ

R0(E0) cannot be written as Σs(E0)Φ0(E0), which assumes that it is the first-

collision term. Concerning the term R1(E0)¼Σs(E0)Φ1(E0), given that there cannot

be a first collision at an energy lower than E0, it is almost completely concentrated

at energy E0. The definition of Rs(E)¼Σs(E)Φ(E) here includes the unscattered

term. This equation may be written in a single form, valid for any energy (Tait

1964, p68; Reuss 2003, p181):

S
 δ E� E0ð Þ þ Ð E0¼E0

E0¼E

Rs E
0ð ÞdE0

E0 ¼ Rs Eð Þ in terms of energy

S
 δ u� u0ð Þ þ Ð u0¼u
u0¼u0

Rs u
0ð Þe� u�u0ð Þ ¼ Rs uð Þ in terms of lethargy
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It may be proven that Rs Eð Þ¼Rcollision
s Eð ÞþRwithoutcollision

s Eð Þ¼ S
EþS
δ E�E0ð Þ

is a solution to the integral equation. Indeed, if that solution is introduced into the

integral equation, the following expression is obtained:

S
 δ E� E0ð Þ þ
ðE0¼E0

E0¼E

S
E0 þ S
 δ E0 � E0ð Þ	 


dE0

E0 ¼ S

E
þ S
 δ E� E0ð Þ

This equation is verified since:ðE0¼E0

E0¼E

S
E0 þ S
 δ E0 � E0ð Þ	 


dE0

E0 ¼
ðE0¼E0

E0¼E

SdE0

E02 þ S

E0

¼ � 1

E0

� �E0

E

þ S

E0

¼ S

E

In the end, the flux spectrum in an infinite medium filled with non-absorbing

hydrogen is given by (Bekurts and Wirtz 1964, p123):

The flux spectrum in energy in an infinite medium of non-absorbing hydrogen:

Φ Eð Þ ¼ S

Σs Eð ÞEþ S

Σs Eð Þ 
 δ E� E0ð Þ ð4:17Þ

The contribution of the unscattered flux is infinite since the Dirac distribution

has a singular contribution at E0. Hence, the flux tends to infinity as energy tends to

0 due to an accumulation of neutrons at 0 in the absence of absorption (Fig. 4.13).

It may reasonably be asked whether a permanent solution in a non-absorbing

medium in which neutrons are continuously being injected really exists. The

stationary solution may be obtained assuming that neutrons do not accumulate at

any energy. In fact, the number of neutrons reaching a very low energy ε close to
0 (not to be confused with the maximum gain of lethargy) is:ðE0¼E0

E0¼ε

S
E0 þ S
 δ E0 � E0ð Þ	 


dE0

E0 ¼ � 1

E0

� �E0

ε

þ S

E0

¼ S

ε

This result is identical to the number of neutrons coming from their first

scattering from a source S placed at ε. Thus, the same number of neutrons must

be removed to conserve a stationary solution, i.e. the source S must be completely

Φ(E)

E
0E

Fig. 4.13 Flux spectrum of

neutrons slowing down in

an infinite lattice of

non-absorbing hydrogen

(monoenergetic source)
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removed by slowing-down. This result can be extended by making ε tend towards

0. The quantity S
 δ(E� 0)¼ S δ(E) must be deducted from zero energy, its

integral
ÐE¼E0

E¼0

Sδ Eð ÞdE being equal to a total source S, in order to obtain a stationary

regime.

In terms of lethargy, the reaction rate of neutrons arriving after n + 1 collisions at

lethargy u is:

Rnþ1 u0 ! uð Þ ¼ Rn u0ð Þdu0P u0 ! u � u0 þ εð Þ ¼ Rn u0ð Þdu0 e� u�u0ð Þ

and the neutron balance is finally expressed as:

Sδ uð Þ þ
ðu0�u

0

Rs u
0ð Þe� u�u0ð Þdu0 ¼ Rs uð Þ

The trivial solution of the non-singular contribution is Rs(u)¼ S, which is also16

Rs(E)¼ S/E. The resulting flux has a singular component at the origin of lethargies

and a Heaviside step function Θ(u), which indicates slowing down without neutron

loss:

Flux spectrum in lethargy form for an infinite medium of non-absorbing hydrogen:

Φ uð Þ ¼ S

Σs uð ÞΘ uð Þþ S

Σs uð Þ
 δ uð Þ ð4:18Þ

Since Rs(E)¼Σs(E)Φ(E), the asymptotic flux spectrum is hence a hyperbolic

function of the energy. The flux has a 1/E shape if the scattering cross section is

roughly constant, which is the case of hydrogen in water reactors (about 19 barns).
This result is valid only if there is a large number of collisions, such that the limit

can be computed. Thus, this remains valid for energies smaller than αE0 for a

monoenergetic source at E0, and also, for cases with a small mean gain in lethargy

representing isotropic scattering (energies lower than 100 keV). It no longer applies

at higher energies due to the association of inelastic scattering and a much greater

variation of the cross sections with energy. This model exhibits good agreement

with the 1/E shape up to 0.7 MeV when applied to carbon, the moderator used by

Enrico Fermi for the first pile in Chicago. The discrepancy with the 1/E law

increases as the mass of the target nucleus decreases. Extending the model to

light water remains acceptable.

16In strict mathematical terms, the function Rs(u) does not correspond to the same functional Rs(E)
where the variable E¼E0e

�u has been changed. We have opted against overloading the text with

new variables. The context in which the notations appear is thus essential for a correct under-

standing of quantities and their units.
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4.3.1.1 Neutronic Definition of the Napier’s Constant

Let us assume a monoenergetic source with S neutrons per second, at energy E0,

placed in a non-absorbing hydrogen gas. The probability of a neutron created at E0

reaching a lower energy is:

p E0 ! Eð ÞdE ¼ dE

E0

Assuming that the atomic mass of hydrogen is 1, for a cut-off energy Ec the

slowing-down density is given by:

q Ecð Þ �
ð E¼E0

E¼Ec

ð E0¼Ec

E0¼0

Σs Eð ÞΦ Eð Þp E ! E0ð ÞdE0dE

This quantity is the number of neutrons crossing this cut-off energy. In a simple

stationary state, the neutron density is equal to the source S for any cut-off energy,

since no neutrons are absorbed (non-absorbing medium). The slowing-down den-

sity for first scattering is computed as:

q1 Ecð Þ ¼ S

ð E¼Ec

E¼0

p E0 ! Eð ÞdE ¼ S
Ec

E0

For the density for second scattering:

q2 Ecð Þ ¼
ð E0¼E0

E0¼Ec

ð E00¼Ec

E00¼0

Sp E0 ! E0ð Þp E0 ! E
0 0

� �
dE0dE

0 0 ¼ S
Ec

E0

Log
E0

Ec

Then, for third scattering:

q3 Ecð Þ¼ Ð E0¼E0

E0¼Ec

Ð E00¼E0

E00¼Ec

Ð E0 0 0¼Ec

E0 0 0¼0
Sp E0!E0ð Þ
p E0!E

0 0	 

p E

0 0 !E
0 0 0	 


dE0dE
0 0
dE

0 0 0

¼S
Ec

E0

ðE0¼E0

E0¼Ec

ln
E0

Ec
dE0

Using the dimensionless energy expressions x¼E0/Ec and x0¼E0/Ec, the

following expression is obtained:

q3 Ecð Þ ¼ S

x0

ð x¼x0

x¼1

ln x

x
dx ¼ 1

2

S

x0
ln2x0

This calculation can be extended to the slowing-down density for the nth

scattering, which requires computation of the following integral:
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ðx¼x0

x¼1

lnn�2x

x
dx ¼ 1

n� 1
lnn�1x0

Finally, the total slowing-down density is the sum of all the partial densities for

all scattering events:

q Ecð Þ ¼ S

x0
þ S

x0

ln x0
1!

þ S

x0

ln2x0
2!

þ ::þ S

x0

lnnx0
n!

þ ::

Assuming that an infinite number of scattering events is attainable, the following

series is obtained:

q Ecð Þ ¼ S ¼
Xn¼þ1

n¼0

S

x0

lnnx0
n!

This expression can be simplified to:

x0 ¼
Xn¼þ1

n¼0

lnnx0
n!

for any value of x0> 1. If the Napier’s constant e is chosen, the well-known

series expansion is obtained:

e ¼
Xn¼þ1

n¼0

1

n!

It is now simple to obtain an expansion of the exponential function using

x0¼ ez:

ez ¼
Xn¼þ1

n¼0

zn

n!

The notion of “energy attenuation with an exponential decay law” can thus be

introduced as it is the attenuation of an initial source of neutrons by the constant

e (similar to the decay period regarding radioactivity). The number of neutrons

crossing this exponential energy after n scattering events in hydrogen is given by

1/(en!) . Indeed, the “magical” simplicity of this result arises solely from the

multiple integrations of the slowing-down density in 1/E . Nevertheless, this calcu-

lation gives a neutronic meaning to the Napier’s constant.
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4.3.2 Taking into Account Absorption by Hydrogen

There is no general solution if the target is now supposed to be absorbing, except

in the case of hydrogen. This solution was developed by Hans Bethe (1937).

The previous equations are extended by introducing a monoenergetic source of

intensity S:

Σt uð ÞΦ uð Þ ¼ Sδ uð Þ þ Rt uð Þ

Rt(u) is the non-singular component of the total reaction Σt(u)Φ(u), thus verify-
ing the integral equation (Dresner 1960, p12):

Rt uð Þ ¼
ðu0¼u

u0>0

Σs u
0ð ÞΦ u0ð ÞP u0 ! uð Þdu0 þ Σs 0ð ÞΦ 0ð ÞP 0 ! uð Þ

One can see that the lower limit of the integral u0 > 0 should not strictly set to

0 as the singular source term is treated separately. At the origin of lethargies, the

total reaction rate is equal to the source since a neutron is either absorbed at that

energy or scattered to higher lethargies. Thus, S¼Σt(0)Φ(0) and the previous

equation is then written as:

Rt uð Þ ¼
ðu
0

Σs u
0ð Þ

Σt u0ð Þ Rt u
0ð Þe� u�u0ð Þdu0 þ Σs 0ð Þ

Σt 0ð Þ Se
�u

¼ e�u

ðu
0

Σs u
0ð Þ

Σt u0ð Þ Rt u
0ð Þeu0du0 þ Σs 0ð Þ

Σt 0ð Þ S
24 35 ð4:19Þ

Using u¼ 0 in the latter equation, Rt(0)¼ SΣs(0)/Σt(0). On deriving it, the

following differential equation in Rt(u) is obtained:

dRt uð Þ
du

¼ e�u Σs uð Þ
Σt uð Þ Rt uð Þeu � e�u

ðu
0

Σs u
0ð Þ

Σt u0ð Þ Rt u
0ð Þeu0du0 þ Rt 0ð Þ

0@ 1A
¼ Σs uð Þ

Σt uð Þ Rt uð Þ � Rt uð Þ

The expression in brackets is simplified using Eq. 4.17. Introducing the absorp-

tion cross section Σa(u)¼Σt(u)�Σs(u), the following equation is obtained:
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dRt uð Þ
du

¼ �Σa uð Þ
Σt uð Þ Rt uð Þ

the solution of which is: Rt uð Þ ¼ S Σs 0ð Þ
Σt 0ð Þ e

�
Ðu
0

Σa u0ð Þ
Σt u0ð Þdu

0

The slowing-down density is given by:

q uð Þ¼
ðu
0

Σs u
0ð Þ

Σt u0ð ÞRt u
0ð Þdu0

ðþ1

u

P u0 ! u00ð Þdu00 þΣs 0ð Þ
Σt 0ð ÞS

ðþ1

u

P 0! u00ð Þdu00 ¼Rt uð Þ

Normalized to a unit source, q(u) is simply the resonance escape probability p
(u) at lethargy u, which will be introduced in the chapter on resonant absorption. It

is the number of neutrons that survive until lethargy u for one emitted neutron. It

should be mentioned that (Dresner 1960, p13) developed the analytical solution for

cases where the ratio of the scattering cross section to the total cross section is

constant with lethargy.

4.3.3 Taking Account of a Spectral Source

In the case of hydrogen, with a general spectral source S(u), the slowing-down

equation in absorbing hydrogen is written as:

S uð Þ þ
ð u
0

Σs u
0ð ÞΦ u0ð Þe� u�u0ð Þdu0 ¼ Σt uð ÞΦ uð Þ

Using the linear property of this equation with respect to the source (takingΦa as

the solution to a problem with source Sa, and Φb as the solution to another problem

with source Sb, Φa+Φb is then the solution to Sa + Sb), the general solution to this

equation is a convolution of the source by a Green function. The latter is given in

terms of the flux spectrum φ(u0! u) in the established stationary state in absorbing
hydrogen after the introduction of a unit source δ(u� u0):

Φ uð Þ ¼
ðu0¼þ1

u0¼0

S u0ð Þφ u0 ! uð Þdu0

The Green function has a singular component due to the point nature of the

energy source and a regular component for the contribution from multi-scattering

(Reuss 2003, p186):
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φ u0 ! uð Þ ¼ 1

Σt uð Þ 
 δ u� u0ð Þ þ 1

Σt uð Þ
Σs u0ð Þ
Σt u0ð ÞΘ u� u0ð Þe

�
Ðu0¼u

u0¼u0

Σa u0ð Þ
Σt u0ð Þ du

0

4.3.4 Slowing Down by Targets Heavier Than Hydrogen

(Ferziger and Zweifel 1966, p69)

Hydrogen is a special case since the part of the energy spectrum lower than E0

may be reached after scattering given that αH¼ 0. Therefore, the neutron balance

equation always includes a scattering term from the source energy, S/E0. Extension to

moderators heavier than hydrogen uses the target’s α in the expressions. If there is no

absorption, the number of neutrons reaching lethargy u 6¼ u0¼ 0 is equal to the

scattering rate at that lethargy since there is no source for all values of u. Considering
a lethargy that may be reached after scattering of a neutron immediately after its

emission at lethargy u0, the neutron balance equation includes a term for the first

possible collision with a source neutron, but otherwise, only neutrons with

n scattering events may attain that lethargy. This logic is quite confusing as it consists

in counting the first scattering term at the source SP(u0! u) in the neutron balance

for u0< u� u0 + ε. This term could be included “naturally” in the total scattering

term
Ðu
u0

Σs u
0ð ÞΦ u0ð ÞP u0 ! uð Þdu0, hence, Ðu0¼u

u0>u0

Σs u
0ð ÞΦ u0ð ÞP u0 ! uð Þdu0, where

the lower limit of the integral u0 > u0 means that neutrons from first-collision rate

SP(u0! u) are not counted. Using the asymptotic reaction rate Σs(u)Φ(u) is equiv-
alent to integrating the first-collision events and avoids making a particular case for

first scattering from the source itself. Besides, if u tends towards u0, neutrons that do
not disappear by absorption are systematically removed by scattering at lethargy u0
(at least in an infinite medium). Thus, the scattering density (which does not

contain the non-scattering component) at u0, must necessarily be equal to the source

(Tait 1964, p70):

If u¼ u0 S¼Σs(u0)Φ(u0)

If u0<u�u0þε, SP u0!uð Þþ Ðu0¼u

u0>u0

Σs u
0ð ÞΦ u0ð ÞP u0 !uð Þdu0 ¼Σs uð ÞΦ uð Þ

If u > u0 þ ε
Ðu
u0

Σs u
0ð ÞΦ u0ð ÞP u0 ! uð Þdu0 ¼ Σs uð ÞΦ uð Þ

It may be seen that for higher energies, there can no longer be any term for

scattering from the source itself; let us examine the consequences for the

asymptotic regime. If the scattering rate Rs is introduced, the resulting integral

equation is known as the Placzek equation, named after George Placzek, since he
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was the first to analyze the mathematical behavior (1946)17 of a non-absorbing

medium:

ðu
�1

Rs u
0ð Þ P u0 ! uð Þdu0 ¼ Rs uð Þ

Since the probability P(u0 ! u) du0 is normalized to 1 (which may in fact be

obtained by direct calculation):

ðu
�1

P u0 ! uð Þdu0 ¼
ðu

u�ε

e� u�u0ð Þ

1� α
du0 ¼ 1

The constant reaction rate R0 is an asymptotic, or trivial, solution to the Placzek

equation. R0 can be computed using the definition of the slowing-down density q
(u)¼ S in the absence of absorption:

q uð Þ ¼
ð u
�1

ΣS u0ð ÞΦ u0ð Þdu0
ðþ1

u

P u0 ! u00 � u0 þ εð Þdu00

Sinceðþ1

u

P u0 ! u00ð Þdu00 ¼
ðu0þε

u

e� u00�u0ð Þ

1� α
du00 ¼ �e� u00�u0ð Þ

1� α

� �u0þε

u

¼ e� u�u0ð Þ � α

1� α
,

q uð Þ ¼
ðu

�1
Rs u

0ð Þdu0
ðþ1

u

P u0 ! u00 � u0 þ εð Þdu00 ¼
ðu

u�ε

R0

e� u�u0ð Þ �α

1�α
du0 ¼ R0ξ¼ S

leading to: R0 ¼ S

ξ
¼ Rs uð Þ

This result means that the S neutrons produced gain on average ξ lethargy units

per collision. The scattering rate (density of scattered neutrons per unit time) is thus

Rs(u)ξ¼ S, i.e.:

Φ uð Þ ¼ S

ξΣs uð Þ or, in energy terms : Φ Eð Þ ¼ S

ξΣs Eð Þ E

An asymptotic flux expression in the form of 1/E is obtained, and is consistent

with Fermi’s expression for hydrogen sinceξ1
1H

¼ 1. Studying the integral equation:

17G. Placzek, Phys. Rev., 69, p423 (1946).
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R Eð Þ¼
ðE0

E

R E0ð Þ
E0 1�αð ÞdE

0 or its lethargy form : R uð Þ¼
ð u
u�ε

R u0ð Þ e� u�u0ð Þ

1�α
du0

led Placzek to consider different reaction rates after n scattering events Rn(E)
(resp. Rn(u)) which are solutions of the equation. In the case of the very first

scattering of the neutron immediately after its emission at lethargy u0¼ 0, the

number of once-collided neutrons, with energy E0 and arriving at energy E for a

second collision, is given by:

R2 Eð Þ ¼ R1 E0ð Þp E0 ! Eð Þ ¼ S

E0 1� αð Þ for αE0 � E � E0

or in lethargy terms R2 uð Þ ¼ R1 0ð Þp 0 ! uð Þ ¼ S
e�u

1� α
for 0 � u � ε

R2(E) is the scattering rate of neutrons undergoing a second scattering at energy

E, after having been scattered a first time at E0. If third scattering events are now

considered, the contribution of the neutrons with first collisions at E0 (resp. u0) i.e.
R1(E0)p(E0!E0) dE0 (resp. R1(0)p(0! u0) du0) and undergoing their second scat-

tering, produce a third-scattering density of:

dR3 E0!E0!Eð Þ¼R1 E0ð Þp E0!E0ð ÞdE0

1�αð ÞE0 ¼ SdE0

E0 1�αð Þ2E0 for αE0�E0 �E0

dR3 0!u0!uð Þ¼R1 0ð Þp 0!u0ð Þdu0 e
� u�u0ð Þ

1�α
¼S

e�u0

1�α

e� u�u0ð Þ

1�α
du0 ¼S

e�u

1�αð Þ2du
0

for 0�u0 �ε

8>>>>><>>>>>:
The contribution of neutrons from first scattering is zero where E0 < αE0 (resp.

u0 > ε). Similarly, it is not possible for second-scattering neutrons to reach E< α2

E0 (resp. u> 2ε). The rate for neutrons of third scattering is computed by integra-

tion of the differential quantities:

R3 E0 ! Eð Þ ¼
ðE0¼E0

E0¼αE0

dR3 E0 ! E0 ! Eð ÞdE0

R3 0 ! uð Þ ¼
ðu0¼ε

u0¼0

dR3 0 ! u0 ! uð Þdu0

8>>>>>>><>>>>>>>:
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The contribution to the fourth scattering is thus calculated as:

dR4 E0 ! Eð Þ ¼ R3 E0ð ÞdE0

1� αð ÞE0 for
E

α
	 E0 	 E

dR4 u0 ! uð Þ ¼ R3 u0ð Þ e
� u�u0ð Þ

1� α
du0 for u� ε � u0 � u

8>><>>:
and so on for the higher scatterings. The differential contribution must be

integrated over the lethargy interval where the first scattering density is not zero,

i.e. [E0, αE0] (resp. [0, ε]), to obtain the scattering rate for the third collisions, which
is not zero, on [E0, α

2E0] (resp. [0, 2ε] in lethargy).

For E	 αE0, R3 Eð Þ ¼ Ð E0¼E0

E0¼E

SdE0

E0 1� αð Þ2E0 ¼
S

E0 1� αð Þ2 ln
E0

E

For α2E0�E� αE0,

R3 Eð Þ ¼
ðE0¼E

α

E0¼αE0

SdE0

E0 1� αð Þ2E0 ¼
S

E0 1� αð Þ2 ln
E

α2E0

� �
¼ S

E0 1� αð Þ2 2ε� ln
E0

E

� �

It can be seen that R3(E) is a triangle with a vertex of S ε/[E0(1� α)2] if energy is
expressed on a logarithmic scale. It should be carefully noted that R3(E), as defined
by:

R3 uð Þ¼ Ð u0¼u
u0¼0

Se�udu0

1�αð Þ2¼
Se�u

1�αð Þ2u for 0�u�ε

R3 uð Þ¼ Ð u0¼u
u0¼u�εdR3 uð Þ¼ Ð u0¼ε

u0¼u�ε

R1 u0ð Þp 0!u0ð Þdu0
1�αð Þ þ

ðu0¼u

u0¼ε

R1 u0ð Þp 0!u0ð Þ
zfflfflfflfflffl}|fflfflfflfflffl{0

du0

1�αð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

¼ Se�u

1�αð Þ2 2ε�uð Þ for ε�u�2ε

8>>>>>>>>>>>><>>>>>>>>>>>>:
is not a triangle if defined in terms of lethargy. The successive integrations

smoothen the scattering probability density for multiple collisions. Hence, for

R4(E), a pseudo-parabolic profile is obtained (Fig. 4.14).

R4 uð Þ ¼ Ð u0¼u
u0¼0

Se�u u0du0

1� αð Þ3 ¼ Se�u

1� αð Þ3
u2

2
for 0 � u � ε

R4 uð Þ ¼ Ð u0¼ε
u0¼u�ε

Se�u u0du0

1� αð Þ3 þ
ðu0¼u

u0¼ε

Se�u 2ε� u0ð Þdu0
1� αð Þ3

¼ Se�u

1� αð Þ3
ε2

2
� u� εð Þ2

2

 !
þ 2ε u� εð Þ � u2

2
þ ε2

2

" #
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¼ Se�u

1� αð Þ3 �u2 þ 3εu� 3

2
ε2

� �
for ε � u � 2ε

R4 uð Þ ¼ Ð u0¼2ε
u0¼u�ε

Se�u 2ε� u0ð Þdu0
1� αð Þ3 ¼ Se�u

1� αð Þ3 2ε 3ε� uð Þ � 4ε2

2
þ u� εð Þ2

2

" #

¼ Se�u

1� αð Þ3
u2

2
� 3εuþ 9

2
ε2

� �
for 2ε � u � 3ε

0E
0Eα

0
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'
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Fig. 4.14 Constructing the probability density for second scattering and its generalization
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The possible scatterings are finally obtained by summing over the different scattering

terms, ideally up to infinity as defined by a Von Neumann18 series. Nevertheless, the

number of possible scattering events before absorption is finite for a true absorbing

medium19:

Rs uð Þ ¼
X1
i¼2

Ri uð Þ

The sum starts at index 2 to avoid including the singular term R1(u)¼ Sδ(u) and
to remain consistent with the definition of Eq. 4.16: Σs(u)Φ(u)¼ Sδ(u) +Rs(u). This
scattering rate shows that there is a discontinuity at lethargy u¼ ε, a discontinuity of
its first derivative at u¼ 2ε, and, by recurrence, a discontinuity of the nth derivative
at u¼ (n + 1)ε (Dresner 1960, p11). This phenomenon is characteristic of Placzek
wiggles. It should be noted that where:

Rnþ1 εð Þ ¼ Sα

1� αð Þn
εn�1

n� 1ð Þ! for n 	 2 and R1 εð Þ ¼ 0

the following is obtained: Rs ε�ð Þ ¼ Sα

1� α

X1
n¼1

ε
1�α

	 
n�1

n� 1ð Þ! ¼
Sα

1� α
e

ε
1�α

18John Von Neumann (1903–1957) was a Hungarian-born mathematician. As a child, he displayed

prodigious mathematical skills. After his PhD in 1926 in Budapest, he left for Germany to work

with the major physicists of the time. In 1930, he immigrated to the United States, where he

worked at Princeton with Albert Einstein. He developed applied mathematics, then a thriving field

with the advent of information technology, and he contributed significantly to numerical analysis

and game theory, as well as economic analysis. He worked on the Manhattan Project, where his

exposure to radiation is assumed to be the cause of his fatal bone cancer. (Public domain)

19In practice, this is due to the fact that the flux results from a non-scattering flux added to a first-

scattering flux, second-scattering flux, and so on to infinity in a non-absorbing medium, although

the number of scattering events is obviously finite in a realistic medium.
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whereas:

Rs ε
þð Þ ¼ Sα

1� α
e

ε
1�α � 1

	 

since R2(ε

+)¼ 0 and R2(ε
�)¼ Sα/(1� α). The difference Rs(ε

�)�Rs(ε
+)¼ Sα/

(1� α) increases as the mass of the target nucleus increases (i.e. where α! 1). This

difference indicates the discontinuity in the scattering rate. For lethargies higher

than ε, the scattering rate is always continuous. Furthermore, it verifies the follow-

ing equation:

Rs uð Þ ¼
ðu

u�ε

Σs u
0ð ÞΦ u0ð ÞP u0 ! uð Þdu0 þ Σs 0ð ÞΦ 0ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

S

P 0 ! u � εð Þ ð4:20Þ

with: P u0 ! uð Þ ¼ e� u�u0ð Þ

1� α
and P 0 ! u � εð Þ ¼ e�u

1� α
P 0 ! u > εð Þ ¼ 0

(

Deriving the latter balance equation, the following is obtained with ε ¼ Log1 α=

and e�ε¼ α:

dRs uð Þ
du

¼ d

du

e�u

1� α

ðu
u�ε

Rs u
0ð Þeu0du0 þ S

0@ 1A24 35

¼ e�u

1� α
Rs uð Þeu � Rs u� εð Þeu�εð Þ �

ðu
u�ε

Rs u
0ð Þeu0du0 þ S

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1�αð Þ euRs uð Þ

2666664

3777775
¼ α

1� α
Rs uð Þ � Rs u� εð Þð Þ

except at u¼ 0 and u¼ ε, where the term P(0! u� ε) is not differentiable. The
term Rs(u� ε) does not exist if u> ε. In the interval, this differential equation can

be integrated as:

Rs uð Þ ¼ Rs 0
þð Þe α

1�αu ¼ 1

1� α
e

α
1�αu

Rs(0
+) is obtained by making u tend to 0 in Eq. 4.18.

Similarly over the interval ]ε, 2ε[, the differential equation can be integrated

(Dresner 1960, p10) by observing that Rs εþð Þ ¼ α
1�α e

ε
1�α � 1

	 

using a limit

approach on the balance equation:
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Rs uð Þ ¼ 1

1� α
e

α
1�αu 1� 1� ε� u

1� α

� �
e�

ε
1�α

h i
By subsequent integrations, the scattering rate is obtained for higher lethargies.

The Placzek function is defined as the product pA(E/E0)¼E0Rs(E), given for a

unit source. It is classically plotted (Fig. 4.15) in a reduced form (Dresner 1960,

p10; Ferziger and Zweifel 1966, p74; Meghreblian and Holmes 1960, p98):

1� αð Þ E
E0

pA
E

E0

� �
¼ 1� αð ÞRs uð Þ ¼ f

u

ε

� �
pA(E/E0) tends towards the asymptote E0/(ξE) when E! 0 (i.e. u! +1), and

the reduced function tends to (1� α)/ξ.
Physically speaking, at the beginning of the slowing-down process, fission

neutrons are emitted with an energy spectrum (Watt spectrum) that overwhelms

Placzek wiggles, which is why this discontinuity is usually not seen in an actual

reactor spectrum.

0 1 2
u / ε

(1
 –

 α
 ) 

(E
/E

0)
 P

A
 (E

/E
0)
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A=4

A=12
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A =>infinite

Reduced Placzek function
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2.8Fig. 4.15 The reduced

Placzek function

1� αð Þ EE0
pA

E
E0

� �
¼ 1� αð Þ

Rs uð ÞAdapted from Reactor

Physics Constants

ANL-5800, 1963
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4.3.5 Influence of the Fast Fission Spectrum

(GA tome 1 1967, p217; Meghreblian and Holmes 1960, p119)

Taking into account the fission spectrum, the neutron balance equation in a pure

scattering medium in a stationary state is written as:

Sχ uð Þ þ
ðu
u0

Σs u
0ð ÞΦ u0ð ÞP u0 ! uð Þdu0 ¼ Σs uð ÞΦ uð Þ

In an asymptotic case, far removed from the neutron sources (at a given energy),

i.e. assuming that the lethargy limit of the fission spectrum is uc� 100 keV, for a

minimum lethargy of uc+ 2ε, it can be said that the resulting spectrum at lethargy

u is the sum of the asymptotic components of the point sources Sχ(u0)du0 placed at

u0 (Fig. 4.16):
The asymptotic component of the source Sχ(u0)du0 at u is given by:

dRs u
0ð Þ ¼ Sχ u0ð Þdu0

ξ
or dRs E

0ð Þ ¼ Sχ E0ð ÞdE0

ξE

The resulting equation is obtained by integrating over the whole energy

spectrum:

Rs uð Þ ¼
ðuc
0

dRs u
0ð Þ ¼ S

ξ

ðuc
0

χ u0ð Þdu0

or, expressed in energy terms:

cu

)(uR

00 =u ε2+cu

u
ε+cu

)1(

')'(

α
χ

−
duuS

)1(

')'(

α
αχ

−
duuS

'u

)'(uχ

Fig. 4.16 Collision density due to a fission spectrum
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Rs Eð Þ ¼
ðE0

Ec

dRs E
0ð Þ ¼ S

ξE

ðE0

Ec

χ E0ð ÞdE0

Note that: χ Eð ÞdE ¼ χ Eð ÞEdu � 2ffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:775E0e�u

p
e�0,775E0e

�u
0:775E0e

�u

du ¼ χ uð Þdu

This asymptotic result has physical meaning only for lethargies that correspond to

energy values below 100 keV where there are no fission neutrons. Analytical formulae

such as the Leachman formula (1955), χ Eð Þ � 2ffiffiffi
π

p 0:775
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:775E

p
e�0:775E, are

normalized to 1 by construction:

ð1
0

χ Eð ÞdE ¼ 2ffiffiffi
π

p
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:775E

p
e�0:775E 0:775dE ¼ 2ffiffiffi

π
p Γ

3

2

� �
¼ 1

or else a similar Watt spectrum enables the analytical calculation to be

performed by writing the spectrum in canonical form:

χ Eð Þ ¼ 2ffiffiffi
π

p
T

3
2

ffiffiffiffiffiffi
Ee

p �E=T
withT ¼ 1

0:775
¼ 1:29MeV�1

As discussed earlier, the fission spectrum can be integrated analytically using the

error function:

erf xð Þ � 2ffiffiffi
π

p
ðx
0

e�t2dt ¼ 2ffiffiffi
π

p
ðx2
0

1

2
ffiffi
t

p e�tdt

ðEf

Ei

χ Eð ÞdE ¼ 2ffiffiffi
π

p
ffiffiffiffiffi
Ei

T

r
e�

Ei

T �
ffiffiffiffiffi
Ef

T

r
e�

Ef

T

 !
þ erf

ffiffiffiffiffi
Ef

T

r !
� erf

ffiffiffiffiffi
Ei

T

r !

Finally, the scattering rate is written as:

Rs Eð Þ ¼ S

ξE

2ffiffiffi
π

p
ffiffiffiffiffi
Ec

T

r
e�

Ei
T �

ffiffiffiffiffi
E0

T

r
e�

Ef
T

 !
þ erf

ffiffiffiffiffi
E0

T

r !
� erf

ffiffiffiffiffi
Ec

T

r ! !

Let us consider a situation corresponding to an energy at which neutrons are

directly emitted by fission (i.e. E> 100 keV). This situation is not a perfectly

established asymptotic case. The neutron balance is written as:
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Sχ uð Þ þ
ðu
u0

Σs u
0ð ÞΦ u0ð ÞP u0 ! uð Þdu0 ¼ Σs uð ÞΦ uð Þ pour u � u0 þ ε

Sχ uð Þ þ
ðu

u�ε

Σs u
0ð ÞΦ u0ð ÞP u0 ! uð Þdu0 ¼ Σs uð ÞΦ uð Þ pour u 	 u0 þ ε

8>>>>>><>>>>>>:
The only difference is on the lower limit of the integral, which is fixed (¼u0) for

the case u� u0 + ε. Deriving the neutron balance wrt.u, we get the following

equation:

dRs uð Þ
du

¼d Σs uð ÞΦ uð Þð Þ
du

¼S
dχ uð Þ
du

þRs uð ÞP u!uð Þ|fflfflfflfflffl{zfflfflfflfflffl}
1= 1�αð Þ

pour u�u0þε

dRs uð Þ
du

¼d Σs uð ÞΦ uð Þð Þ
du

¼S
dχ uð Þ
du

þRs uð ÞP u!uð Þ|fflfflfflfflffl{zfflfflfflfflffl}
1= 1�αð Þ

�Rs u�εð ÞP u�ε!uð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
α= 1�αð Þ

pour u	u0þε:

8>>>>><>>>>>:
For the first equation (u� u0 + ε), the solution of the homogeneous equation is

Rs uð Þ ¼ Ce
u

1�α. C can be deduced by the traditional variation method:

dRs uð Þ
du

¼ C uð Þ 1

1� α
e

u
1�α þ dC uð Þ

du
e

u
1�α ¼ S

dχ uð Þ
du

þ C uð Þe u
1�α

1� α

that is:
dC uð Þ
du

¼ S
dχ uð Þ
du

e�
u

1�α

C uð Þ ¼
ðu
0

S
dχ u0ð Þ
du0

e�
u0

1�αdu0 ¼ S χ u0ð Þe� u0
1�α

� � u
0

þ
ðu
0

S

1� α
χ u0ð Þe� u0

1�αdu0

¼ Sχ uð Þe� u
1�α þ

ðu
0

S

1� α
χ u0ð Þe� u0

1�αdu0

Finally: Rs uð Þ ¼ Sχ uð Þ þ e
u

1�α

Ðu
0

S
1�α χ u0ð Þe� u0

1�αdu0 for u � u0 þ ε

The second equation (u	 u0 + ε) must be considered numerically for each case,

and particularly where ε is very small compared to 1 (heavy moderator). In the latter

event, it may reasonably be assumed that Rs(u� ε)�Rs(u), leading to:

dRs uð Þ
du

¼ S
dχ uð Þ
du

þ Rs uð Þ

the solution of which is:
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Rs uð Þ ¼ Sχ uð Þ þ eu
ðu
0

Sχ u0ð Þe�u0du0 for u � u0 þ εand whereε is very low:

These solutions are pseudo-asymptotic, established for weak lethargy values,

and are not exact from a theoretical point of view because the Placzek wiggles are

not present. For an exact solution, numerical integration is carried out using spectral

bands.

4.3.6 Mixture of Moderators

(Dresner 1960, p20; Ferziger and Zweifel 1966, p78)

Supposing that the scattering medium consists of several target nuclei of mod-

erating power ξi and scattering parameter αi, the scattering density resulting from

the partial scattering densities can be written as (Stacey 2001, p97):

Rs Eð Þ ¼
X

i 2 moderators

ð E
αi

E

Rs i E
0ð ÞdE0

E0 1� αið Þ

Since the partial scattering density is proportional to the total density:

Rs i E
0ð Þ ¼ Σs i E

0ð Þ
Σs E

0ð Þ Rs E
0ð Þ with Σs E

0ð Þ ¼
X
i

Σs i E
0ð Þ

the asymptotic solution to this equation is expressed as:

Rs Eð Þ ¼ SP
i

Σs i Eð Þξi
� �

E
Σs Eð Þ

:

Thus, the slowing-down power of a mixture of isotopes is given by:

ξ Eð Þ ¼
P
i

Σs i Eð Þξi
Σs Eð Þ

The asymptotic flux is thus obtained by the usual 1/E formula (assuming that the

variation in ξ is insignificant):
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Φ Eð Þ ¼ S

ξΣs Eð ÞE or else Φ uð Þ ¼ S

ξΣs uð Þ

For an absorbing medium, the scattering cross section can be substituted by the

total cross section. When far enough from the resonances, the scattering cross

section may be replaced by the potential cross section, Σp, which is of practically

constant versus energy. If the medium is a mixture of heavy nuclei (uranium) and

light nuclei (hydrogen and oxygen from water), the flux spectrum is governed by

the heavy nuclei in the fast energy region, close to the energy at which neutrons are

emitted since collisions with these heavy nuclei induce a slight increase in lethargy.

Light nuclei, however, chiefly influence the epithermal and thermal parts since most

scattering collisions with hydrogen result in high energy loss. The stationary

neutron flux verifies the Boltzmann integro-differential equation for a mixture,

assuming isotropic scattering:

Ω
!:grad
��!

Φ ~r;Ω
!
;u

� �
þΣt ~r;uð ÞΦ ~r;Ω

!
;u

� �

¼
X

k constituents

ðu
u�εk

du0
ð
4π

dΩ0 Σ k
s ~r;u0ð Þ
P Ω

!
: Ω0�!;u! u0

� �
Φ ~r;Ω

!
;u0

� �
þS ~r;Ω

!
;u

� �

4.4 Slowing Down in an Absorbing Medium

(Ferziger and Zweifel 1966, p82)

Let us first consider the case of weak absorption localized in terms of space and

energy, as occurs for instance with a sufficiently thin sheet of absorbing material

(e.g. cadmium, indium or aluminium). Such set-ups exist in detectors like Mobile
Fission Chambers (MFC), which have a coating of fissile uranium, which are

introduced through the bottom of the vessel into the instrumentation thimble of

PWR assemblies to measure activity. It is assumed that the flux spectrum Φ(E) is
not disturbed by the presence of the detector in the fission chamber (although this

necessarily affects the geometrical design of the detector given the perpetual

dilemma of instrumentation design: to measure without disturbing the phenomenon
by the act of measurement itself!). Hence, the detector absorption rate is:

Ra ¼
ðE0

0

Σa Eð ÞΦ Eð ÞdE¼ Na

ðE0

0

σa Eð ÞΦ Eð ÞdE absorptions percm3 and per second

In the continuous slowing-down theory frame, the flux spectrum may be

substituted by S= ξΣs Eð Þ	 

. Supposing that the slowing-down cross section is
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constant as a first-order approximation, which is approximately verified for indus-

trial moderators, the following is obtained:

Ra ¼ NaS

ξΣs

ðE0

0

σa Eð Þ dE
E

¼ NaS

ξΣs

I1a

This formulation introduces the concept of the infinite dilution resonance
integral:

I1a barn½ � �
ðE0

0

σa Eð Þ dE
E

for a given nuclide (the absorbing nucleus of the detector in the considered

example). These values are given in nuclear data banks such as JEF2 (Table 4.3):

The resonance integral allows comparison of the intrinsic absorption power of a

single nuclide placed in a diffusing medium. It should be noted that Ra leads to the

value S, i.e. the slowing-down density in a purely scattering medium since q(u)¼ S.
Let us suppose now that absorption is homogeneous in space and energy (as for

industrial moderators), and there is a point source at lethargy u0.The neutron

balance must account for neutron loss at lethargy u:

ðu
u0¼u0

Σs u
0ð ÞΦ u0ð ÞP u0 ! uð Þdu0 ¼ Σt uð ÞΦ uð Þ � Σs uð ÞΦ uð Þ þ Σa uð ÞΦ uð Þ

The total reaction rate can be introduced in the integral term by expressing

Σs(u
0)Φ(u0) in the obvious form Σt(u

0)Φ(u0)Σs(u
0)/Σt(u

0), where Σs(u
0)/Σt(u

0) rep-
resents the scattering probability. The quantity SΣs(u0)/Σt(u0) signifies the fact that
only neutrons emitted by the source and not absorbed may scatter. P u0 ! uð Þ
¼ e� u�u0ð Þ= 1� αð Þ is the probability for a neutron emitted at lethargy u0 of reaching
lethargy u. Hence:

ðu
u0¼u0

Rt u
0ð Þ Σs u

0ð Þ
Σt u0ð Þ P u0 ! uð Þdu0 ¼

ðu
u0¼u�ε

Rt u
0ð Þ Σs u

0ð Þ
Σt u0ð Þ P u0 ! uð Þdu0 ¼ Rt uð Þ

In the case of hydrogen (α¼ 1 , ε¼ +1), this equation is written in energy

terms as:

Table 4.3 Infinite dilution

resonance integral for some

notable nuclides

235
92U

115
49In

113
48Cd

135
54Xe

I1a barn½ � (JEF2.2) 403.67 3223.11 394.07 7663.79
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ðE
�1

Rt E
0ð Þ Σs E

0ð Þ
Σt E

0ð Þ
1

E0 dE
0 ¼ Rt Eð Þ

Differentiating this equation wrt.E:

Rt Eð Þ Σs Eð Þ
EΣt Eð Þ ¼

dRt Eð Þ
dE

which by integration gives:Rt Eð Þ¼Ce

ÐE0
E

Σs E0ð Þ
Σt E0ð Þ

dE0
E0 ¼Ce

ÐE0
E

Σt E0ð Þ�Σa E0ð Þ
Σt E0ð Þ

dE0
E0 ¼C

E0

E
e
�
ÐE0
E

Σa E0ð Þ
Σt E0ð Þ

dE0
E0

The constant C can be deduced by carrying out the neutron balance at the origin

of lethargies, where the reaction rate tends towards the first collision scattering rate:

S
Σs E0ð Þ
Σt E0ð Þ

1

E0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
neutrons
scattering
atE0

þ lim
u!u0

ðu
u0

Rt u
0ð Þ Σs u

0ð Þ
Σt u0ð Þ P u0 ! u0ð Þdu0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

¼ Rt u0ð Þ ¼ C
E0

E0

Simplifying the terms:Rt uð Þ ¼ S
Σs u0ð Þ
Σt u0ð Þ e

�
Ðu
u0

Σa u0ð Þ
Σt u0ð Þdu

0

or Rt Eð Þ ¼ S
Σs E0ð Þ
EΣt E0ð Þ e

�
ÐE0
E

Σa E0ð Þ
Σt E0ð Þ

dE0
E0

Compared to cases without absorption, this solution contains the multiplying

term:

p Eð Þ � Σs E0ð Þ
Σt E0ð Þ e

�
ÐE0
E

Σa E0ð Þ
Σt E0ð Þ

dE0
E0

which is the probability for a neutron born at energy E0 of escaping absorption

and reaching energy E. Physical reasoning may be used to obtain an order of

magnitude of p(u): variations in slowing-down density are caused strictly by

neutron loss in accordance with the absorption rate. Furthermore, the slowing-

down density may be approximated in a homogeneous medium by:
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q uð Þ � ξ Σs þ Σa uð Þð ÞΦ uð Þ
dq uð Þ ¼ �Σa uð ÞΦ uð Þ


) dq

q uð Þ � � Σa uð Þ
ξ Σs þ Σa uð Þð Þ ) p uð Þ

¼ q uð Þ
q 0ð Þ � e

�
ðu
0

Σa uð Þ
ξ ΣsþΣa uð Þð Þ du

The resonance escape probability factor p is defined as the probability for a

neutron of reaching thermal energy Eth without being absorbed in the medium,

principally by the resonances of heavy-nuclei cross sections:

p � p Eth¼0;0253 eVð Þ �
Σs E0ð Þ
Σt E0ð Þ e

�
ÐE0
Eth

Σa E0ð Þ
Σt E0ð Þ

dE0
E0

The factor 1� p is thus a measure of the amount of neutrons absorbed chiefly by

the resonances. Slowing-down by hydrogen with an absorption term characterizes

quite satisfactorily a hydrogenated medium with an infinite mass. Actually, hydro-

gen is weakly absorbing, whereas scattering collision with heavy nuclei causes

slight loss of neutron energy. For slowing-down by a nuclide heavier than hydro-

gen, there is no analytical solution, and the problem must be solved numerically

with the help of computers. For the particular case where Σa(E)/Σs(E)�C is almost

constant, a further analytical solution can be applied. Introducing this condition into

the slowing-down differential equation gives:

dq uð Þ
du

¼ �Σa uð ÞΦ uð Þ ¼ S uð Þ � CΣs uð ÞΦ uð Þ ¼ �CRs uð Þ

with q uð Þ ¼
ðu0¼u

u0¼u�ε

RS u0ð Þdu0
ðu

0 0¼u0þε

u0 0¼u

P u0 ! u00ð Þ du00

8>>>>><>>>>>:
for which the asymptotic solution far from the source may be written as q(u)¼

q0e
�mu¼ Se�mu

By substituting RS(u
0) by � 1

C

dq u0ð Þ
du0

, a transcendental equation in m is

obtained:

q0e
�mu ¼

ðu0¼u

u0¼u�ε

1

C
q0me

�mu0 du0
ðu

0 0¼u0þε

u0 0¼u

e� u00�u0ð Þ

1� α
du00

¼ q0
m

C 1� αð Þ
ðu0¼u

u0¼u�ε

e�mu0 e� u�u0ð Þ � α
� �

du0
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e�mu ¼ m

C 1� αð Þ
ðu0¼u

u0¼u�ε

e�mu0e� u�u0ð Þ � αe�mu0
� �

du0

¼ m

C 1� αð Þ
e�mu

m� 1

1

αm�1
� 1

� �
� αe�mu

m

1

αm
� 1

� �� �
1 ¼ m

C 1� αð Þ
1

m� 1

1

αm�1
� 1

� �
� α

m

1

αm
� 1

� �� �
thus, the transcendental equation over m:

m

1�αð Þ
1

m�1

1

αm�1
�1

� �
�α

m

1

αm
�1

� �� �
¼ 1

1�αð Þ m�1ð Þ
1

αm�1
�mþα m�1ð Þ

� �
¼C

Using the moments of the slowing-down probability densityP(0! u) :

ðu¼ε

u¼0

P 0! uð Þ du¼ 1,Δu �
ðu¼ε

u¼0

uP 0! uð Þ du¼ ξ,Δu2 �
ðu¼ε

u¼0

u2P 0! uð Þ du¼ 2ξγ

with C ¼ Ðu¼ε

u¼0

P 0 ! uð Þ emudu� 1 and expansion into a Taylor series up to

order 2 of emu � 1þ muþ m2u2

2
, the following equation is obtained:

C ¼ mξþ m2ξγ i:e: m � C

ξ
� γC2

ξ2
¼ Σa

ξΣs
1� γΣa

Σs

� �
� Σa

ξΣs þ γΣa

This approximate result is found by computing the total reaction rate, given by:

Rt uð Þ¼
ðu

u�ε

Rs u
0ð Þ P u0!uð Þdu0 ¼

ðu
u�ε

Σs uð Þ
Σt uð ÞRt u

0ð Þ e� u�u0ð Þ

1�α
du0

¼
ðu

u�ε

1

1þC
Rt u

0ð Þ e� u�u0ð Þ

1�α
du0

the solution of which is of the form Rt(u)¼Ae�mu. Since:

dq uð Þ
du

¼ �mq0e
�mu ¼ �CRs uð Þ ¼ �C

Σs

Σt
Rt uð Þ ¼ � C

1þ C
Ae�mu,

it can be deduced that: A ¼ mq0
1þC
C

If absorption is weak, the energy attenuation of the slowing-down density is also

weak. Thus, m is small compared to 1, thereby justifying the expansion of q(u)¼
q0e

�mu into a Taylor series around 0. Finally, the following equation is obtained:
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m ¼ 1

ξ

C

1þ C
þ ξ� γ

ξ2
C

1þ C

� �2

þ . . . ¼ 1

ξ

Σa

Σt
þ ξ� γ

ξ2
Σa

Σt

� �2

þ . . .

where γ � Δu2=2ξ characterizes the order 2 moment of the scattering law (Reuss

2008, p219). At first order, the following relations are found:

q uð Þ ¼ q0e
�mu ¼ Se�

1
ξ
Σa
Σt
u and Rs uð Þ ¼ q uð Þ=ξ

for slowing-down in a non-absorbing medium. At order 2, and assuming

that (ξ� γ)∑a is insignificant compared to ξ∑s (γ is very close to ξ), the equations
are:

q uð Þ ¼ Se�
Σa

ξΣsþγΣa
u

and Rt uð Þ ¼ Σs þ Σa

ξΣs þ γΣa

q uð Þ

The Wigner approximation then consists in assuming that q uð Þ ¼ Se
�
Ðu
0

Σa
ξΣt

du0

.

4.4.1 Slowly Varying Absorption: The Greuling-Goertzel
Model

(Ferziger and Zweifel 1966, pp. 91 and 161)

The slowing-down density is given by:

q uð Þ ¼
ð u
0

R u0ð Þdu0
ð u
�1

P u0 ! u00 � uþ εð Þdu00 ¼
ð u
u�ε

R u0ð Þ e� u�u0ð Þ � α
	 


1� α
du0

Assuming that the reaction rate R(u0) varies slowly owing to a slowly-varying

absorption process, a first order expansion may be written as:

R u0ð Þ � R uð Þ þ u0 � uð ÞdR
du

Thus, the slowing-down density can be computed as:

q uð Þ �
ð u
u�ε

1

1� α
R uð Þ þ u0 � uð ÞdR

du

� �
e� u�u0ð Þ � α
h i

du0

¼ 1� αε

1� α

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ξ

R uð Þ � 1� α

1� α
ε� α

1� α

ε2

2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

γ ξ

dR

du

Or even: q uð Þ ¼ ξR uð Þ � ξγ dR uð Þ
du with ξ ¼ 1� α

1�α ε and γ ¼ 1� α
1�α

ε2

2
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Differentiating the integral expression of q(u) leads to:

dq uð Þ
du

¼ d

du

ð u
u�ε

R u0ð Þ e� u�u0ð Þ � α
	 


1� α
du0

 !
¼ R uð Þ � 1

1� α

ð u
u�ε

R u0ð Þe� u�u0ð Þdu0

Using the Taylor series expansion of R(u0) in the integral term, the differential

equation obtained is:

dq uð Þ
du

¼ ξ
dR uð Þ
du

Since R(u)¼Σs(u)Φ(u) and without any source at lethargy u, dq(u)/
du¼ �Σa(u)Φ(u), by substitution:

q uð Þ ¼ ξR uð Þ � ξγ
dR uð Þ
du

¼ ξR uð Þ � γ
dq uð Þ
du

¼ ξΣs uð ÞΦ uð Þ þ γ Σa uð ÞΦ uð Þ

Giving the flux expression in the model of Eugene Greuling20 and Gerald

Goertzel21:

Greuling-Goertzel model : Φ uð Þ ¼ q uð Þ
ξΣs uð Þ þ γ Σa uð Þ ð4:21Þ

It may be seen that, in the case of γ¼ ξ, the Wigner approximation Φ(u)¼ q(u)/
(ξΣt(u)) is found, and if absorptions are considered to be weak compared to

scattering, the Fermi model Φ(u)¼ q(u)/(ξΣs(u)) is obtained. The Greuling-

Goertzel model for a source at zero lethargy leads to:

20Eugene T. Greuling studied at Duke University and obtained his PhD in 1942 from the University

of Indiana (Theoretical Half-Lives of Forbidden beta-Transition), with Emil Konopinski as his

doctoral advisor—himself a specialist of β disintegration. As a specialist in nuclear physics,

Greuling wrote his first article on the computation of permitted transitions for disintegrations

using the tensor method as early as 1942 (Phys. Rev. 61–588 (1942). He was the doctoral advisor

of Paul Frederick Zweifel (born 1929) in 1954 (Capture-Positron Branching Ratios), the well-

known author of several books on neutronics [among which (Case and Zweifel 1967)]. He

contributed to the Manhattan Project at Los Alamos, then Oak Ridge. Greuling later taught physics

at Duke University.
21Gerald Goertzel (1920–2002) obtained his PhD in theoretical physics from New York University.

He was proficient in both numerical analysis and nuclear engineering. He was a member of the

Manhattan Project, and later of the Nuclear Development Corporation of America. In addition, he

developed medical instruments for Sage Instruments throughout part of his career. He then spent

28 years until his retirement at the research division of IBM devising algorithms for data compres-

sion. He designed the Goertzel algorithm, which helps identify the dominant cycles of a noise signal

by computing the Fourier coefficients of multi-frequency sinusoidal signals inside the noise.
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q uð Þ ¼ Se
�
Ðu
0

Σa
ξΣsþγΣa

du0

The zeroth moment of the Boltzmann equation with P1 approximation contains

the slowing-down rate due to elastic scattering (R0[ ], brackets stand for operator):

R0 Φ0 uð Þ½ � �
ð
u0

Σs,0 u0 ! uð ÞΦ0 u0ð Þdu0 ¼
X

constituents i

ðu
u0�εi

Σs,0 u0ð Þe
� u�u0ð Þ

1�αi
Φ0 u0ð Þdu0

A constituent i contributes to the slowing-down density as follows:

qi uð Þ �
ðu

u0�εi

Σs, 0 u0ð Þ e� u�u0ð Þ � αi
1� αi

Φ0 u0ð Þ du0

By differentiation of this quantity, the following equation is found:

dqi uð Þ
du

¼Σs,0 u0ð ÞΦ0 u0ð Þ�
ðu

u0�εi

Σs,0 u0ð Þ e
� u�u0ð Þ

1�αi
Φ0 u0ð Þ du0 ¼Σs,0 u0ð ÞΦ0 u0ð Þ�R0Φ0 uð Þ

Similarly, the first moment of the Boltzmann equation introduces the anisotropic
slowing-down density by elastic scattering (R1[ ] operator and current Φ1, scattering

angle μ in the laboratory frame):

R1 Φ1½ � u;μð Þ�
ð
u0

Σs,1 u0!uð ÞΦ1 u0ð Þ du0 ¼
X

constituents i

ðu
u0�εi

μΣs,0 u0ð Þ e
� u�u0ð Þ

1�αi
Φ1 u0ð Þ du0

The anisotropic slowing-down density is defined as:

qi
1 u; μð Þ �

ðu
u0�εi

μΣs, 0 u0ð Þ e� u�u0ð Þ � αi
1� αi

Φ1 u0ð Þdu0

For non-absorbing hydrogen (α¼ 0), the slowing-down rate is strictly equal to

the slowing-down density, which leads to a completely analytical solution

(Silvennoinen 1976, p145):
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dqH uð Þ
du

¼ Σ H
s u0ð ÞΦ0 u0ð Þ � qH uð Þ

dqH
1 uð Þ
du

¼ ΣH
s u0ð ÞΦ1 u0ð Þ � 3

2
qH
1 uð Þ

8>><>>:
For other isotopes, the Greuling-Goertzel formalism is applied. As seen earlier,

this model implies that:

qi uð Þ þ γi
dqi uð Þ
du

¼ ξiR
i uð Þ ¼ ξiΣ

i
s Φ0 uð Þ

The solution to this equation is a first-order approximation of the slowing-down

density:

ξi ¼ 1� αi
1� αi

ln
1

αi
and γi ¼

1

2ξi

ðu
u�εi

u� u0ð Þe
� u�u0ð Þ

1� αi
du0

For anisotropic slowing-down, the following equation is written:

qi
1 u; μð Þ þ λi

dq i
1 u; μð Þ
du

¼ ωiΣ
i
s Φ1 uð Þ

with: ωi ¼
Ðu

u�εi

μ u� u0ð Þe� u�u0ð Þ
1�αi

du0 and λi ¼ 1
2ωi

Ðu
u�εi

μ u� u0ð Þ2e� u�u0ð Þ
1�αi

du0

Each nuclide can be considered separately or all the nuclides can be computed at

the same time in a homogeneous approximation (except hydrogen which can be

computed exactly) using the mean values of γ andλ:

γ uð Þ ¼
P
i

γi uð Þ ξi uð ÞΣ i
s uð ÞP

i

ξi uð ÞΣ i
s uð Þ and λ uð Þ ¼

P
i

λi uð Þ ωi uð ÞΣ i
s uð ÞP

i

ωi uð ÞΣ i
s uð Þ

4.4.2 Slowing Down in a Medium with a Resonant Cross
Section

For low energies, a resonance may be thought as a “trap” of lethargy width Δu that

absorbs any neutron found inside it (considered as a black trap), or even as a

negative monoenergetic source S(u)¼ � Sδ(u� uR). uR is the lethargy
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corresponding to the resonance, thereby leading to a flux discontinuity at u¼ uR + ε.
An analogy can be drawn with age distribution by age group, where a very marked

decrease was seen in the infant age group during the both World Wars as men died

in action and the birth rate decreased (in this case, ε is equivalent to the age of

reproduction, i.e. around 25 years here). In theory, a depletion occurs once more at

50 years (�2ε) but it is in fact far less pronounced due to smoothing over time.

Supposing that resonance is modeled as a trap of infinite depth and of width Γ in

lethargy units, the slowing-down density crossing the resonance located at uR is

given by:

q uRð Þ ¼
ðuR

�1
Rs u

0ð Þdu0
ðþ1

uR

P u0 ! u00ð Þdu00

Taking the origin of lethargies to be at the entrance/beginning of the trap and in

the case of the asymptotic state (Rs(u)¼ S/ξ), the number of neutrons falling into the

trap, and hence, by definition, the complementary to 1 of the resonance escape

probability after renormalization to the source, we have:

1� p ¼
ðΓ
0

1

ξ
du0

ð0
u0�ε

e� u0�u00ð Þ

1� α
du00 ¼

ðΓ
0

1

ξ
du0

e�u0 � α

1� α
¼ 1� e�Γ � αΓ

ξ 1� αð Þ

If Γ> ε, absolutely no neutrons can escape from the trap, thus p¼ 0 (Fig. 4.17).

If Γ is small enough, e�Γ can be expanded in a Taylor series leading to

1� p�Γ/ξ, and the number of neutrons absorbed by the trap is thus identical to

the number reaching the lethargy band Γ under the asymptotic hypothesis Rs¼Γ/ξ.

Ru

)(uR

00 =u ε2+Ru

u

ε+Ru

Γ

Fig. 4.17 Trap of width Γ
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The impact on the spectrum beyond lethargy uR is very small. If the trap is

not “black” but “grey”, i.e. some neutrons have a non-zero probability of escap-

ing absorption, the resonance escape probability is given with satisfactory predic-

tion by:

p Eð Þ � e
�
ÐE0
E

Σa E0ð Þ
ξΣt E0ð Þ

dE0
E0

For a set of resonances, the escape probabilities are multiplicative assuming that

they do not interfere with each other. Furthermore, assuming that Σs is independent

of energy, the integrated escape probability simplifies to:

p Ethð Þ ¼ e
�Na

ξΣs

ÐE0
Eth

σa E0ð Þ
1þNaσa E0ð Þ

Σs

dE0
E0

the integral form of which tends to the infinite dilution resonance integral
Ð1
0

σa

Eð ÞdE=E where the dilution factor Ns/Na tends to infinity. The slowing-down

density can be computed from the differential equation seen previously:

dq uð Þ
du

¼ �Σa uð ÞΦ uð Þ ¼ �Σa uð Þ q uð Þ
ξΣs uð Þ þ γ Σa uð Þ

Its solution is:

ln
1

q uð Þ ¼
ð u
0

Σa u0ð Þ
ξΣs u0ð Þ þ γ Σa u0ð Þ du

0

Outside the resonance, the absorption and scattering cross sections are almost

constant. Therefore, the slowing-down density out of the trap is computed as:

ln
1

q uð Þ ¼
Σa

ξΣs þ γ Σa
u for u < uR

ln
1

q uð Þ ¼
Σa

ξΣs þ γ Σa
uþ Γ

ξ
for u > uR þ Γ

8>><>>:
where Γ/ξ is the number of neutrons lost inside the trap. Hence, by assuming that

absorption occurs only in the resonance:
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q uð Þ ¼ e
� Σa uð Þ

ξΣs uð Þ u for 0 < u < uR

q uð Þ ¼ e
� Σa uð Þ

ξΣs uð Þ ue�
Γ
ξ for uR þ Γ < u

8<:
Inside the resonance, the cross section is assumed to be infinite, thus:ðuRþΓ

uR

Σa u0ð Þ
ξΣs u

0ð Þ þ γ Σa u0ð Þ du
0 �

ðuRþΓ

uR

1

γ
du0 ¼ Γ

γ

4.4.3 Inelastic Slowing-Down

While the literature on elastic slowing-down theory is copious, theoretical works on

inelastic slowing down are less common. In 1968, the approach of Martine Pujol,22

developed when she was working at the famous “Service de Mathématiques

22Martine Pujol (1941–1995) completed her Master’s Degree in Reactor Physics in 1964–1965.

She worked on her PhD at the CEA/Department of Pile Studies/Department of Mathematical

Physics of Saclay, where she met Jean Bussac, Head of the Department, Oleg Tretiakoff, Michel

Cadilhac, and Paul Reuss, then a young engineer. She later left the CEA to teach in Senegal, then at

the University of Orleans. In 1971, she became a scientific journalist under the pen-name Martine

Barrère for the scientific newspaper “La Recherche”, where she worked in the “Science and

Politics” section. She worked on several documentaries on nuclear power, the Soufrière volcano

and AIDS. From 1979 to 1981, she presided over the Scientific Journalist Association. She left La

Recherche in 1990 due to disagreements and worked as a freelance journalist for Le Monde
amongst others. She taught scientific journalism at the University of Paris VII and contributed

significantly to subjects dealing with Science or Consciousness. She died of cancer in 1995.

(Courtesy La Recherche)
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Appliquées” (CEA) headed by Jean Bussac,23 resulted in a simple and elegant

method for solving several problems in a semi-analytical manner. Her method

allowed the introduction of an analytical consideration inside a wide energy

group. While the increasing use of computational power superseded the use of

analytical models for fine multigroup calculations, Pujol’s analytical model pro-

vides a more didactic understanding of inelastic slowing-down.

By the end of the 60’s, the multigroup approach became more widespread but

physical models with energy as a variable nevertheless remained in use. Martine

Pujol worked on slowing-down in plutonium oxides by combining the inelastic

problem for plutonium with the elastic problem for oxygen.24

The slowing-down operator (in brackets) is written as:

23Jean Bussac (1929–). After his studies at the illustrious “Ecole Polytechnique” (promotion

1948), he was recruited in September 1951 to the « Commissariat �a l’Energie Atomique » by

Jacques Yvon au (CEA) where he participated in the developments of the mathematical theories

applicable to nuclear reactors. In August, 1952, he participated in the International Seminar of

physics of Les Houches in French Savoy (around thirty young scientists, some French people of

whom future Nobel price Pierre-Gilles de Gennes). Appointed in 1962 head of the department of

mathematical physics of the CEA, which he will lead at the top of the excellence in the field of the

reactor physics, he went in 1972 to Oklo (Gabon) to study the natural reactor of uranium which

produced fission there are 2 billion years. Having been the principal private secretary of the High-

commissioner of the CEA, he went to be the Director of Research for Nuclear Safety before

retiring in 1984. He was also named Associated Professor at the University of Paris-XI and at the

“Conservatoire National des Arts et Métiers”. Writing en 1978 avec Paul Reuss the famous

Treatise of Neutronics, republished several times, he also has written for the Encyclopedia
Universalis with Jules Horowitz the article Nuclear reactors published in 1980 et he participated

to the collective work L’aventure de l’Atome (the Adventure of Atom) published in 1992.

(Courtesy Jean Bussac)
24Martine Pujol: Modèle approché pour la diffusion inélastique des neutrons rapides [Approxi-
mated model for inelastic scattering of fast neutrons], PhD thesis at the Faculty of Science,

University of Orsay, 1968.
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R Φ Eð Þ½ � �
ðE0¼þ1

E0¼E

Σs E
0ð ÞP E0 ! Eð ÞΦ E0ð ÞdE0

The inelastic transfer probability is approximated by:

~P E0 ! Eð Þ � f E0ð Þg Eð Þ if E0 	 E
0 if E0 < E


This approximated probability must satisfy certain normalization conditions:

ðE¼E0

E¼0

~P E0 ! Eð ÞdE ¼ f E0ð Þ
ðE¼E0

E¼0

g Eð ÞdE ¼ 1

so as to conserve the integrated scattering cross section.

~R Φ0 Eð Þ½ � �
ðE0¼þ1

E0¼E

~P E0 ! Eð ÞΣs E
0ð ÞΦ0 E0ð ÞdE0

¼
ðE0¼þ1

E0¼E

P E0 ! Eð ÞΣs E
0ð ÞΦ0 E0ð ÞdE0 ¼ R Φ0 Eð Þ½ �

This means that the approximated operator must be equal to the exact operator

for a well-chosen reference flux. Conservation of the integrated scattering cross

section leads to the conclusion that ~P E0 ! Eð Þ depends only on one function:

~P E0 ! Eð Þ � g Eð Þ
ðE00¼E0

E00¼0

g E00ð ÞdE00

Using the function h Eð Þ � 1
f Eð Þ, which is positive and increases with energy, and

which is equal to 0 for E ¼ 0:

~P E0 ! Eð Þ ¼
dh
dE Eð Þ
h E0ð Þ

h(E) is defined up to a constant which can be such that h(+1)¼ 1. The function

h is computed from the exact operator by:
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Y Eð Þ � R Φ Eð Þ½ �
dh
dE Eð Þ ¼

ðE0¼þ1

E0¼E

Σs E
0ð ÞΦ E0ð Þ
h E0ð Þ dE0

Since:

d Y Eð Þh Eð Þð Þ
dE

¼ R Φ Eð Þ½ � � Σs Eð ÞΦ Eð Þ

the following equation is obtained:

h Eð Þ ¼ h þ1ð Þexp �
ðE0¼þ1

E0¼E

R Φ E00ð Þ½ �ÐE0¼þ1

E0¼E00
Σs E

0ð ÞΦ E0ð Þ � R Φ E0ð Þ½ �
dE00

0BBB@
1CCCA

Pujol proposed the use of an approximated inelastic slowing-down operator

introducing the concept of reduced inelastic lethargy v or the generalized lethargy
such that:

~P v0 ! vð Þ ¼ e� v�v0ð Þ for v0 � v

where:

Pujol inelastic lethargy : v Eð Þ ¼ � ln h Eð Þð Þ ð4:22Þ

The function ~P v0 ! vð Þ behaves in exactly the same way as that for elastic

slowing-down on hydrogen as a function of lethargy u. If slowing down is elastic

and isotropic, then v Eð Þ ¼ u Eð Þ
ξ where u(E) is the usual lethargy.

The mixed case of elastic and inelastic cross sections is modeled by:

eΣs E
0 ! Eð Þ ¼ Σs, inel

dhinel
dE Eð Þ
hinel E

0ð Þ þ Σs,elas

dhelas
dE Eð Þ
helas E

0ð Þ

Pujol showed that the approximation:

eΣs E
0 ! Eð Þ ¼ Σs, inel þ Σs,elasð Þ

dh
dE Eð Þ
h E0ð Þ

is satisfactory in terms of precision. She computed h(E) as a function of cross

sections using an iterative flux calculation, starting with a given fission spectrum.

Assuming the inelastic slowing down to be characterized correctly by an ana-

lytical law, several space-dependent problems may be considered in a semi-
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analytical manner, just as for thermalization. These works were published25

in 1967.

4.4.4 The Qn Slowing-Down Approximation

The standard analytical slowing-down models (Fermi in 1936, Wigner in 1955,

Greuling-Goertzel in 1960, Pujol in 1967, etc.) were not sufficiently precise for fast

neutrons in media with large inelastic scattering cross sections. Improvements were

made in the 1970s, in particular through the use of numerical considerations in

multigroup approximations.

In 1976, Brigitte Rocca-Volmerange26 proposed27 a generalization of the previ-

ous models to order n, using the global slowing-down parameters and a differential

formalism of the integral form of the Boltzmann equation.

Let Ψ(u,w) be the fraction of the slowing-down density q(u), which arrives at

lethargy u00 ¼ u +w, where w is the minimum gain in lethargy attained by the

neutrons:

Ψ u;wð Þ �
ðu0¼u

u0¼�1
Σs u

0 ! uþ wð ÞΦ u0ð Þdu0 ¼
ðu0¼u

u0¼�1
Σs u

0ð ÞP u0 ! uþ wð ÞΦ u0ð Þdu

Ψ(u,w) is called the minimum jump density. It is integrated from u� �1 to

avoid any problem of reference for lethargies. Differentiating the previous equation

and supposing that Φ(�1)¼ 0, the following equation is obtained:

∂Ψ u;wð Þ
∂u

¼ ∂Ψ u;wð Þ
∂w

þ Σs u ! uþ wð ÞΦ uð Þ

Introducing the particular value of:

25Michel Cadhilac, Martine Pujol: A simple model for the inelastic scattering of fast neutrons,
Journal of Nuclear Energy, Vol. 21, pp58–63, 1967.
26Brigitte Rocca-Volmerange: After her PhD at the CEA in 1976, this French physicist turned to

astrophysics. Today, she works at the Institut d’Astrophysique de Paris, where she specializes in
the evolution model of galaxies. She teaches at the University of Paris XI in this field. Further-

more, she is also Vice-President of the association Femmes et sciences. [Women and Science]
27Brigitte Rocca-Volmerange: Approximation Qn du ralentissement dans les réacteurs nucléaires
�a neutrons rapides [Qn approximation of slowing-down in fast-neutron nuclear reactors], PhD

thesis at the University of Orsay, 1975.
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Ψ u; 0ð Þ � R Φ uð Þ½ � ¼
ðu0¼u

u0¼�1
Σs u

0ð ÞP u0 ! uð ÞΦ u0ð Þdu0

With the usual neutron balance equation:

Σt uð ÞΦ uð Þ � R Φ uð Þ½ � þ S uð Þ

A differential form of the slowing-down equation wrt. Ψ(u,w) is obtained:

∂Ψ u;wð Þ
∂u

¼ ∂Ψ u;wð Þ
∂w

þ Σs u ! uþ wð Þ
Σt uð Þ Ψ u; 0ð Þ � S uð Þð Þ

The moments of the function Ψ(u,w) may now be defined, and are called the

slowing-down density of order n:

qn uð Þ �
ðw¼ε

w¼0

wmΨ u;wð Þdw

where ε is the maximum gain in lethargy. By definition, q0(u)� q(u), the usual
slowing-down density. By successive differentiations wrt. lethargy, we get the

following equations:

dq0 uð Þ
du

¼ Σs uð ÞΦ uð Þ � R Φ uð Þ½ �
dqn uð Þ
du

¼
ðw¼ε

w¼0

wmΣs uð ÞP u ! uþ wð Þdw� nqn�1 uð Þ for n > 0

8>>>><>>>>:
Using the transfer moments:

ξn uð Þ �

Ðw¼ε

w¼0

wmΣs uð ÞP u ! uþ wð Þdw
Σs uð Þ ¼

ðw¼ε

w¼0

wmP u ! uþ wð Þdw

and the scattering fraction:

Cs uð Þ � Σs uð Þ
Σt uð Þ

the Qn system with n + 1 differential equations is found:
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dq0 uð Þ
du

¼ Cs uð Þ R Φ uð Þ½ � þ S uð Þð Þ � R Φ uð Þ½ �
dqj uð Þ
du

¼ Cs uð Þξj uð Þ R Φ uð Þ½ � þ S uð Þð Þ � jqj�1 uð Þ for 0 < j � n

8><>:
In reality, the fraction Ψ(u,w) of the slowing-down density is significantly

affected by the fact that the cross section Σs(u
0 ! u+w) either has discontinuities

or sudden peak resonance values of inelastic cross sections. B. Rocca-Volmerange

proposed that the function be made as regular as possible, enabling it to be

approximated by a polynomial expansion:

Ψ u;wð Þ
π u;wð Þ �

Xi¼n

i¼0

ri uð Þwi and
eΨ u;wð Þ
π u;wð Þ ¼

Xi¼n

i¼0

ri uð Þwi

The weight function π(u,w) used is the reference fraction Ψ u;wð Þ such that:

Ψ u;wð Þ �
ðu0¼u

u0¼�1
Σs u

0 ! uþ wð ÞΦ u0ð Þdu0

Φ uð Þ is here chosen as an arbitrary reference spectrum. These notations are

generalized as:

eΨ u; 0ð Þ ¼ r0 uð ÞΨ u; 0ð Þ � r0 uð ÞR Φ uð Þ� �
and R eΦ uð Þ

h i
¼ r0 uð ÞR Φ uð Þ� �

Similarly:

~qj uð Þ ¼
ðw¼þ1

w¼0

wj eΨ u;wð Þdw ¼
Xi¼n

i¼0

ri uð Þqiþj uð Þ

with:

qiþj uð Þ �
ðw¼þ1

w¼0

wiþjΨ u;wð Þdw ¼
ðw¼þ1

w¼0

wiþj

ðu0¼u

u0¼�1
Σs u

0 ! uþ wð ÞΦ u0ð Þdu0

The functions R eΦ uð Þ
h i

and ~qj uð Þ are the unknowns of the Qn differential system

previously established. By solving this system, all values of ~qj uð Þmay be computed

using a linear inversion, allowing computation of the approximated spectrum eΦ uð Þ
and eΨ u; 0ð Þ:
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eΨ u; 0ð Þ ¼
Xi¼n

i¼0

Qi,n uð Þ~qi uð Þ and Ψ u; 0ð Þ ¼
Xi¼n

i¼0

Qi,n uð Þqi uð Þ

In the same way:

R Φ uð Þ½ � ¼
Xi¼n

i¼0

Qi,n uð Þqi uð Þ

The Pujol and Cadilhac model described in the previous section represents the Q0

approximation. The Q1 approximation uses the first moment of the function Ψ(u,w):

Ψ u; 0ð Þ ¼ Q0,1 uð Þ
ðw¼þ1

w¼0

Ψ u;wð Þdwþ Q1,1 uð Þ
ðw¼þ1

w¼0

wΨ u;wð Þdw

The n + 1 coefficients Qi , n(u), which are regular functions in lethargy, are

solutions to:

R Φ uð Þ� � ¼ Ψ u; 0ð Þ ¼
Xi¼n

i¼0

Qi,n uð Þqi uð Þ

This equation may be written in matrix form as:

Ψ u; 0ð Þ
0

⋮
0

0B@
1CA ¼

q0 uð Þ : : : qn uð Þ
: : : : :
: : : : :
: : : : :

qn uð Þ : : : q2n uð Þ

0BBBB@
1CCCCA

Q0,n uð Þ
Q1,n uð Þ
⋮
Qn,n uð Þ

0BB@
1CCA

The matrix is symmetrical and has 2n + 1 qi uð Þ terms.

The choice of the reference spectrum Φ uð Þ was in fact independent of the true

spectrum Φ(u) to be computed. Further, the functions Qi , n(u) are additive for a

mixture of isotopes (weighted by the number of nuclides of the considered

isotopes).

Computation of the n + 1 Qi , n(u) functions is carried out using the 2n + 1 qi uð Þ
reference functions, which are fitted on the 2n + 1 physical parameters, namely the

2n + 1 ξi(u) moments. As n increases, the importance of the reference spectrum used

for weighting decreases, given that the number of moments increases as 2n + 1. In

practice, for n ¼ 3, the result does not depend on the reference spectrum used.

The approximated densities ~qj uð Þ satisfy the following differential system:
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d~q0 uð Þ
du

¼ Cs uð Þ � 1ð Þ
Xi¼n

i¼0

Qi,n uð Þ~qi uð Þ
 !

þ Cs uð ÞS uð Þ

d~qj uð Þ
du

¼ Cs uð Þξj uð Þ
Xi¼n

i¼0

Qi,n uð Þ~qi uð Þ þ S uð Þ
 !

� j~qj�1 uð Þ for 0 < j � n

8>>>><>>>>:
which can be integrated numerically using such approaches as the Euler or

Runge-Kutta methods or Laplace transforms.
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Chapter 5

Resonant Absorption

As discussed in previous chapters, the neutron interacts with the target nucleus as an

incident wave. Indeed, the interaction probabilities at certain energies have a

peaked shape due to quantum physics considerations. From the very inception of

nuclear physics, more precise knowledge of cross sections as a function of energy

and their modeling in a resonance zone were deemed essential. This is the goal of

resonant absorption theory.

(Dresner 1960; Reactor Physics 1966) volume

5.1 Cross Section Model

5.1.1 Historical Background

Since the initial work by P. Kapur and Rudolph Peierls,1 several formalisms exist to

describe cross sections as a function of incident particle energy, σ(E), e.g. the
Reich-Moore formalism or the Adler-Adler formalism. However, the most

renowned formalism is that of Gregory Breit and Eugen Wigner (Photos 5.1 and

5.2). When resonances are separated (with no overlapping), the sum of contribu-

tions of single-level Breit-Wigner cross sections is sufficient. This model works for

most nuclei, except for certain light nuclei or fissile nuclei in which the resonance

width is not small compared to the energy spacing of the resonances. In this case, a

multi-level formalism must be used.

1P.L. Kapur, R.E. Peirls, Proceedings of the Royal Society (London), A166, 277 (1938).

© Springer International Publishing AG 2017
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5.1.2 Intermediate Nucleus Theory

(Lilley 2001, p. 113)

The Breit-Wigner2 formalism is based on the process by which the intermediate

nucleus, formed by interaction with the target nucleus, returns to ground state. In

Photo 5.1 A Hungarian

stamp celebrating the

physicist Eugen Wigner

(The Marguet collection)

Photo 5.2 Gregory Breit

(Public domain)

2Gregory Breit (1899–1981) was an American physicist of Russian origin. After working as Paul

Ehrenfest’s assistant at the University of Leide, he left for the United States, where he was a

professor at a number of prestigious universities. His work on the Dirac equation led to a

relativistic wave theory named after him. His work on resonance with Wigner led to the forms

of Breit-Wigner cross sections. At the outbreak of war, Breit was the leader of the team of

scientists that worked on the atomic bomb. Due to differences of opinion, he was replaced on

the Manhattan Project by Robert Oppenheimer.

Eugen Paul (Jenő Pálin Hungarian) Wigner (1902–1995) was a Hungarian physicist who

immigrated to the United States. He joined the faculty of Princeton University and became a US

citizen in 1937. The same year, he introduced the concept of total isospin tuples vector for nucleon
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the liquid-drop model discussed earlier in the section on fission, the collision of a

neutron with a heavy nucleus such as 238U may lead to several possible configura-

tions with various probabilities. The possible interactions are fission, radiative

capture, elastic or inelastic scattering, or, more generally, any reaction. With

inelastic scattering, the incident neutron energy is used to excite the compound

nucleus, especially for heavy nuclei, which have a high density of excitation levels,

in contrast with light nuclei, which have excessively high excitation levels. Where λ
is the decay constant (in s�1) for a nucleus for a reaction from its excited state to its

ground state (e.g. 239U∗ in the case of neutron absorption by 238U ), the neutron

lifetime is given by τ¼ 1/λ. Each quantum state of the excited nucleus has a

corresponding lifetime τ, which represents the mean time during which the nucleus

remains in this excited state. The decay probability, λ, is the sum of decay

probabilities for partial decay in accordance with the other modes:

λ ¼ λ n; fð Þ þ λ n;γð Þ þ λ n;n0ð Þ

A decaying nucleus is not in a precisely-known (deterministic) energy configu-

ration. Using the Heisenberg3 uncertainty principle, ΔEΔt� h, Δt represents the

time period during which any measurement may be made. This time is limited by

the mean nucleus lifetime, τ.
The minimum precision for energy, i.e. mid-height width or total width,

ΔEmin¼Γ[eV], is thus related to the lifetime by the equation: Γτ¼ h¼ h/(2π)
(Fig. 5.1).

For each interaction type, it is thus possible to define the neutron width for

resonant scattering, Γn, radiative capture, Γγ, and fission, Γf, as well as the widths

for other possible reactions. Concepts of wave physics are used to describe the

interaction: the impulse of the incident particle-target nucleus system is given by

p ¼ ffiffiffiffiffiffiffiffi
2μE

p
, where E is the total kinetic energy in the center-of-mass frame and μ is

the reduced mass of the system (1/μ¼ 1/M+ 1/m). The reduced wavelength D is

given by D ¼ h=p. The partial widths, Γi, are related to the decay constants as

follows:

systems to improve understanding of nuclear reactions (Mathieu 1991, p. 234). In 1939, he was

part of the group of five scientists (that included Albert Einstein) who warned President Roosevelt

of the potential military use of atomic energy by Germany. During the Second World War, he

contributed to the design of plutonium reactors and worked on the Manhattan Project. In 1963 he

was awarded the Nobel Prize for Physics along with Jensen and Maria Goeppert-Mayer for the

discovery of the symmetry principle. He belongs to the highly renowned Hungarian School of

Physicists, along with Leo Szilard, Edward Teller and John von Neumann. Furthermore, he was

one of the first to propose the use of water as a moderator and a coolant in reactors.
3For details on the Heisenberg uncertainty principle, see (De Broglie 1982).
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Γi ¼ �h 1

τi

where λi ¼ 1
τi
is the decay constant of the compound nucleus by reaction i.

The partial decay constants depend on the partial widths as follows:

λi
λ
¼ Γi

Γ
λ ¼ λ n;γð Þ þ λf þ λ n;n0ð Þ þ . . . ; Γ ¼

X
i

Γi

In the compound nucleus model, the probabilities for the possible exit channels

depend solely on the compound intermediate nucleus and not its mode of formation.

Each channel is fully determined by dividing the compound nucleus into reactive

pairs (e.g. 23592U þ 1
0n or 235

92U þ 1
0nþ γ which stem from the same excited nucleus),

on the total angular momentum, J, the orbital angular momentum, ‘, and the spin

angular momentum, s (all expressed in terms of h). The angular momenta verify the

vector conservation laws:

~J ¼ ~‘þ~s and ~s ¼~I þ~i

where ~I and~i are the spins of the two particles involved in the collision. The total

energy, total angular momentum and parity are conserved during a nuclear reaction.

If the model is applied in reverse fashion, i.e. the particle is ejected from the

nucleus, the relationship between probabilities of occurrence (cross sections) can

be established for both reaction types. This is known as the principle of reciprocity.

Γ Width of  resonance

at mid-height 

E

0σ

20

ΓE +
20

ΓE −

0E

2/0σ

Fig. 5.1 Effective cross

section dependence with

energy close to a resonance
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5.1.3 Principle of Reciprocity

The principle of reciprocity allows the calculation (or at least an estimation) of a

reaction cross section as a function of the inverse reaction, as for chemical reac-

tions. (Weinberg and Wigner 1958) cites the example of the (α, n) reaction for 94Be:

Reaction 1 : 4
2Heþ 9

4Be ! 12
6Cþ 1

0nþ Q

the cross section of which is noted as σ
9
4
Be

α;nð Þ E1ð Þ with the energy released during the

reaction being Q ¼ 5.7 MeV. The inverse reaction n; αð Þ126C is:

Reaction 2 : 12
6Cþ 1

0n ! 4
2Heþ 9

4Be

with a cross section of σ
12
6C

n;αð Þ E2ð Þ. For a reactive mixture of 4
2He, 94Be,

12
6C and 1

0n at

thermal equilibrium, the reaction rates are equal:

v1 σ
9
4
Be

α;nð Þ E1ð Þ 9
4Be
� �

4
2He
� � ¼ v2 σ

12
6C

n;αð Þ E2ð Þ 12
6C
� �

1
0n
� �

At equilibrium, the number of pairs reacting per unit of momentum dp is given

by g p2dp, i.e. g p2dE/v per unit energy. The coefficient g is a statistical factor that

depends on particle spins and it can be computed quite simply in practice. Hence,

the reciprocity principle is written as follows:

σ
9
4Be

α;nð Þ E1ð Þ
σ

12
6C

n;αð Þ E2ð Þ
¼ g2

g1

p22
p21

where g1 ¼ 2I4
2He

þ 1
� �

2I9
4Be

þ 1
� �

is the statistical weight of the 4
2Heþ 9

4Be pair,

I4
2He

is the spin of the α-particle (here equal to 0), and I9
4
Be that of the

9
4Be nucleus

(equal to 3/2).

p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ1E1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m4
2He

m9
4Be

m4
2He

þ m9
4
Be

E1

s

is the momentum in the center-of-mass frame for reaction 1. g2 ¼ 2I12
6C

þ 1
� �

2I1
0
n þ 1

� �
is the statistical weight of the 12

6Cþ 1
0n pair, with I

12
6C being the spin of

the 12
6C nucleus and I1

0
n that of the neutron (equal to ½).
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Similarly: p2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ2E2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m12
6
C
m1

0
n

m12
6
C
þm1

0
n
E2

s
is the momentum in the center of

mass frame for reaction 2. The energies are related to each other through reaction

energy E2¼E1 +Q. The principle of reciprocity is particularly useful in estimating

cross sections for “exotic” reactions where no measurement is available for the

most usual inverse reaction; for instance the photon-neutron reaction (γ, n) is

described from the capture cross section (n, γ), which is often better known.

5.2 Single-Level Breit-Wigner Formalism

Several cross section formalisms have been developed (Fr€ohner 2000, p. 54): the
Blatt-Biedenharn, the R transfer matrix model of Wigner-Eisenbud (exact model),

the R-matrix model of Kapur-Peierls (also exact), the Single Level Breit-Wigner

(SLBW) formalism (the least precise though most commonly used model), the

Multi-Level Breit-Wigner (MLBW) approximation, which extends the latter, the

Adler-Adler Multi-Level formalism, and the Multi-Level Reich-Moore formalism,

which remains the most precise approximation. Most of these models are outside

the scope of this book. Focus will be on the simplest model, the SLBW, which is

very satisfactory for most industrial applications or for understanding resonant

absorption. In 1936, G. Breit and E. P. Wigner proposed a formalism for modeling

cross sections in a multi-level model.4 The latter may be simplified into a compound

nucleus from a reactive pair, noted 1 (in the present case, a neutron and a target

nucleus). The total cross section is given by:

Breit-Wigner Formalism : σ1 Eð Þ ¼ π�h2
p21

gc
g1

Γ1Γ
Γ
2

� �2 þ E� E0ð Þ2
ð5:1Þ

where gc is the weight of the compound nucleus5: gc¼ 2Ic + 1. Since Γ2/Γ is the

probability of generating pair 2 (i.e. channel towards 2), the cross section 1! 2 is

written as:

σ1!2 Eð Þ ¼ π�h2
p21

gc
g1

Γ1Γ2

Γ
2

� �2 þ E� E0ð Þ2
¼ 4π�λ21g

Γ1 Γ2

Γ2

1þ 4 E�E0ð Þ2
Γ2

with g � gc
g1

4G. Breit and E.P. Wigner: Capture of slow neutrons, Phys. Rev. 49, p. 519 (1936).
5gN¼ 2IN + 1 is the statistical weight of the target nucleus, and gn is that of the neutron (gn ¼ 2
1=2þ1¼2).
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5.2.1 Total Cross Section

Breit and Wigner established that the total cross section could be written as the sum

of a constant energy-independent cross section6 (the potential cross section), a
symmetrical term with respect to the energy of the resonance, and an interference

term between the resonance and the potential diffusion (Progress in Fast Neutron

Physics 1963, p. 280) of asymmetric form:

σt Eð Þ ¼ 4πR2 þ 4π�λ2g Γn

Γ

1

1þ 4 E�E0

Γ

� �2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π�λ2g 4πR2 g

q Γn

Γ 4 E�E0

Γ

� �
1þ 4 E�E0

Γ

� �2
The potential cross section, given by 4π R2, corresponds in wave mechanics to

the interaction of a neutron (wave) with the potential at the nuclear surface. In

reality, the neutron does not penetrate the nucleus and no compound nucleus is

formed (Kahan and Gauzit 1957; GA volume 1, 1967, p. 114). This potential

reflection is also referred to as shape elastic scattering since it depends solely on

the shape and the transparency of the target nucleus. It varies slightly with energy

(for uranium 238, this cross section is roughly equal to 10.7 barns). The potential
scattering cross section characterizes the elastic collision of a “ball” of outer surface

area 4π R2. At low energies, the cross section varies as the inverse of the velocity,

and the scattering cross section consists only of its potential contribution. The total

cross section is often shown in the more convenient form:

σt xð Þ ¼ σp þ σt 0
1

1þ x2
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σt 0 σp g
p

ffiffiffiffiffiffi
Γn

Γ

r
2x

1þ x2

where x �½ � ¼ E� E0ð Þ= Γ=2Þð is the reduced energy and σp¼ 4π R2 is the potential

scattering cross section, which corresponds to the surface of the nucleus (assuming

that it is in fact a perfect sphere of radius R), and not the longitudinal cross section

of the nucleus ( ¼ π R2).

g � gc
g1

¼
2IAþ1

z X
∗ þ 1

� �
2IA

z X
þ 1

� �
2I1

0
n þ 1

� � ¼
2IAþ1

z X
∗ þ 1

� �
2IA

z X
þ 1

� �
2

as I1
0
n ¼

1

2

IAþ1
z X

∗ is the spin of the compound nucleus, IAþ1
z X

∗ ¼ IA
z X

� 1=2 using the rule for spin

combination. σt 0 ¼ 4π�λ2gΓn=Γ is the value of the total cross section at the

resonance peak, and depends on energy as follows:

6More precisely, the potential cross section is equal to σpot¼ 4π λ2g sin2δ1, where δ1¼R/λ�Arctg
(R/λ) is the neutron wavelength (not to be confused with the decay constant) and is the statistical

weight of the compound nucleus.
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Γn Eð Þ ¼ Γn E0ð Þ
ffiffiffiffiffi
E

E0

r
and �λ2 ¼ �h2

p2
¼ �h2

2μE

Finally: σt Eð Þ ¼ σp þ σt 0
1

1þ x2
þ σt 0

R

�λ
2x

1þ x2

5.2.2 Scattering Cross Section

The scattering cross section (i.e. Γ1¼Γ2¼Γn in the initial formalism) of neutrons

of zero magnetic momentum (which is the case for most neutrons inside a reactor at

thermal energy) consists of the potential cross section (optical cross section) and an
interference term. It may be written in the following form:

Breit-Wigner scattering cross section :

σs Eð Þ ¼ 4πR2|ffl{zffl}
σp

þ 4π�λ2gΓn

Γ|fflfflfflfflffl{zfflfflfflfflffl}
σt 0

Γn

Γ

1þ 4 E�E0

Γ

� �2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σt 0 σp g

p
ffiffiffiffiffiffi
Γn

Γ

r Γn

Γ
4

E� E0

Γ


 �
1þ 4 E�E0

Γ

� �2
¼ σp þ σt 0

Γn

Γ

1

1þ x2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σt 0

Γn

Γ
σp g

r
Γn

Γ

2x

1þ x2

¼ σp þ σs 0
1

1þ x2
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σs 0 σp g
p Γn

Γ

2x

1þ x2

ð5:2Þ

In references, the scattering cross section is often simplified to:

σs Eð Þ ¼ σp þ σs 0 Eð Þ 1

1þ x2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σs 0 Eð Þ σp g

q Γn

Γ

2x

1þ x2

where σs 0 Eð Þ ¼ σt 0 Eð Þ Γn

Γ ¼ 4π�λ2g Γ2
n

Γ2

5.2.3 Radiative Capture Cross Section

For the radiative capture cross section, the general formalism with Γ1¼Γn and

Γ2¼Γγ is used:
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σn, γ Eð Þ ¼ 4π�λ2gΓnΓγ

Γ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
σn, γ 0

1

1þ 4 E�E0

Γ

� �2 ¼ σn, γ 0

1

1þ x2

where σn, γ 0 ¼ σt 0 Eð ÞΓγ

Γ ¼ 4π�λ2g ΓnΓγ

Γ2

There is no potential cross section for the capture reaction.

The first resonance at 6.64 eV for 23892U is of the utmost importance for reactors in

which uranium is the predominant isotope.

Breit-Wigner capture cross section :

σn, γ Eð Þ ¼ 4π�λ2gΓnΓγ

Γ2

1

1þ 4 E�E0

Γ

� �2 ¼ σn, γ 0

1

1þ x2
ð5:3Þ

For most even-even target nuclei (e.g. 238
92U ), and I¼ 0, hence gj¼ 1. λ is the

neutron wavelength:

D ¼ h
p
¼ h

μ:v
� h

2π mv

for heavy target nuclei since mneutron<<mtarget.

D2 ¼ h2

4π2m2v2
¼ h2

8mπ2
:
1

E
as E ¼ 1

2
mv2

Basic nuclear data: Γ¼ 0.0265 eV, g¼ 1, Γn¼ 0.00148 eV, Γγ¼ 0.025 eV,
E0¼ 6.64 eV in the center-of-mass frame (6.67 eV in the laboratory frame).

σt E0ð Þ ¼ 4π:D2:
Γn

Γ
¼ h2

2πm:E0

Γn

Γ

σt E0ð Þ ¼ 6:62:10�34 J:s½ �� �2
2�3:14�1,67:10�27 Kg½ ��6:64 eV½ ��1:6:10�19 J:eV�1

� �:0:00148 eV½ �
0:0265 eV½ �

σt E0ð Þ¼2:1956:10�24 J:s2

Kg

� 
¼2:1956 10þ4: 10�24cm2

� �¼21956 barns

σn, γ 0 ¼ σt 0 Eð ÞΓγ

Γ
¼ 21956

0:025

0:0265
¼ 20713 barns

σn, γ Eð Þ ¼ 4π�λ2gΓnΓγ

Γ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
σn, γ 0

1

1þ 4 E�E0

Γ

� �2 ¼ σn, γ 0

1

1þ x2
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5.2.4 Fission Cross Section

For fission cross sections, the general equation is used with Γ1¼Γn and Γ2¼Γf:

Breit-Wigner fission cross section :

σf Eð Þ ¼ 4π�λ2gΓnΓf

Γ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
σn, γ 0

1

1þ 4 E�E0

Γ

� �2 ¼ σf 0
1

1þ x2
ð5:4Þ

with σf 0 ¼ σt 0 Eð ÞΓf

Γ ¼ 4π�λ2g ΓnΓf

Γ2

5.2.5 Absorption Cross Section

If the two main channels by which neutrons are lost, i.e. the fission and capture

cross sections, are added, the absorption cross section is obtained as follows:

σa Eð Þ ¼ σn, γ Eð Þ þ σf Eð Þ

¼ 4π�λ2gΓn Γγ þ Γf

� �
Γ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

σa 0

1

1þ 4 E�E0

Γ

� �2 ¼ σa 0

1

1þ x2

The 1/v behavior is obtained at low energies, where only neutrons of orbital

angular momentum ‘¼ 0 interact to form the compound nucleus. In this process, it

is assumed that �λ 	 1 ffiffi
E

p= , Γn, ‘ ¼ Γ0
n, 0 V‘

ffiffiffi
E

p
, where V‘ is called the penetrating

factor, σp	 cst and Γγ	 cst. Far from the resonances, the distance of E�E0, if

larger than 1 eV, is predominant over the resonance width Γ, which is generally

only a few thousandths of an eV. At very low energies where E<<E0, the cross

section may be simplified as follows:

σγ Eð Þ 	 π
1

E|{z}
�λ2

g

ffiffiffi
E

p
cst

E� E0ð Þ2 þ cst|ffl{zffl}
Γi=2ð Þ2

Thus, the cross section is inversely proportional to the square root of the energy:

σγ Eð Þ 	 1ffiffiffi
E

p
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This relation has been confirmed experimentally. It is particularly well verified

for the (n, α) cross section of 10
5B over the whole energy spectrum of nuclear

reactors.

5.2.6 Negative Resonances

Although possibly surprising, cross sections may have negative resonances. The

latter correspond to energy levels that cannot be reached by the capture of a neutron.

The negative levels of these bound states are computed using theoretical models.

Yet the “wings” of these “fictitious” resonances influence the shape of the cross

section at low energy when the “mirror” energy of the first bound state is closer to

the neutron-target threshold reaction than to the first non-bound state (|E0|<E1).

The asymptotic tendency in the vicinity of a negative resonance E0< 0 is the same

as for a positive resonance of a non-bound state for the “mirror” energy of |E0|. Far

to the right of the resonance, the capture cross section is inversely proportional to

E
5=2 , i.e. a line of gradient �5=2 on a logarithmic scale.

σn, γ Eð Þ ¼ 4π�λ2gΓnΓγ

Γ2

1

1þ 4 E�E0

Γ

� �2 	
ffiffiffiffiffiffi
E0

E

r
1

E2
/ 1

E
5
2

Figure 5.2 shows the plot of the tendency of a positive resonance (E0> 0, upper

curve) and a negative resonance (E0< 0, lower curve) as a function of the normal-

ized energy (normalized to the modulus of the resonance energy). Both tend

towards a 1/v law on the left and a 1=E
5=2 law on the right. Only the tendency

close to the resonance itself is different. For a positive resonance, the curve varies as

1/(1 + x2), whereas for the negative resonance, the tendency is regular between the

two asymptotes.

5.2.7 Distribution of Resonances

Unfortunately, up to now, no model can perfectly predict the precise position and

width of resonances, especially in the unresolved range. Nevertheless, Eugen

Wigner showed (Weinberg and Wigner 1958; Foderaro 1971, p. 283), that the

spacing between levels, D(E), i.e. the interval between two resonances for a given

spin, depending on the energy of resonances, follows an empirical fluctuation law

of the following form:
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P xð Þ ¼ π

2
xe�

π
4
x2 with : x ¼ D

Dh i

When computed exactly under the hypothesis of random distribution of reso-

nance energies of the compound nucleus, this law provides a satisfactory approx-

imation at low energy. The partial widths7 are correctly described by a statistical χ2

(v) law where v is the number of degrees of freedom, i.e. the final number of output

channels for a given reaction8:

P x; vð Þ ¼ v

2Γ v
2

� � vx

2

� �v
2
�1

e�
v x
2

which includes the real factorial, known as the gamma function: Γ v=2ð Þ ¼Ðþ1

0

t
v
2
�1 e�t dt and where x¼Γi/〈Γi〉 is the reduced resonance width, normalized

1

1
v0.1

0.01

0.001

0.0001

0.01 0.1 101

σγ (E)

σγ (|E0|)

E0 > 0

E5/2
1

E0 < 0

|E0|
E

Fig. 5.2 Normalized

representation of the

tendency of the cross

section in the neighborhood

of a resonance [adapted

from (Fr€ohner 2000, p. 71)]

7L. Erradi: Etude des effets de température dans les réseaux caractéristiques des réacteurs nuclé
aires de la filière �a eau ordinaire[‘Study of the effects of temperature in representative lattices of

light water reactors’], PhD, Orsay, 1982.
8On the distribution of resonances, Tran Quoc Thuong provides a very good reference: Analyse
statistique des distributions des largeurs réduites partielles[‘Statistical analysis of the distribu-

tions of reduced partial widths’], Doctoral thesis, Université de Paris-VII (1973).
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to the mean value. In the case of elastic scattering, the neutron widths Γ0
n fluctuate

significantly between the resonances; since v¼ 1 (at low energy, the only output

channel with emission of a scattered neutron is the formation channel, and there is

thus only one degree of freedom), the Porter-Thomas law9 applies:

Porter-Thomas distribution of neutron widths :

PPorter�Thomas xð Þ � 1ffiffiffiffiffi
2π

p 1ffiffiffi
x

p e�
x
2 ð5:5Þ

In the case of radiative capture, there are very many degrees of freedom,

corresponding to the many possible excitation states of the target nucleus, and

thus of radiative transitions. In this case v>> 1 and the χ2(v) law tends towards a

Dirac δ function. The fluctuations of the radiative capture widths are thus very

slight and the following approximation is acceptable: Γγ¼〈Γγ〉. With fission, for

a given output channel, the fission widths experimentally obey Porter-Thomas

distribution with v� 2 or 3. Where several exit channels exist (v> 1), there

are two possibilities:

– either the partial widthsΓf i for the fission channels have the same mean value, in

which case Γf obeys a χ2(v) law with v between 1 and 4 (very often 2) for the

usual fissile isotopes,

– or the mean values are different, in which case, a convolution of several Porter-

Thomas laws should be done.

A statistical resonance in the unresolved range may be defined by taking a

random real number in the [0, 1] interval and then computing γ¼Γi/〈Γi〉 by

solving the following transcendental equation:

ðτ
0

PPorter�Thomas xð Þdx ¼
ðγ
0

P x; vð Þdx i:e: :

τ ¼ 1

Γ v
2

� � ðγ
0

v

2
t

� �v
2
�1

e�
v
2
t dt ¼ Γ

v

2
γ;
v

2

� �

where an incomplete gamma function is present:

Γ x; βð Þ ¼ 1

Γ βð Þ
ðx
0

tβ�1 e�t dt

9C.E. Porter, R.G. Thomas: Fluctuations of nuclear reaction widths, Phys. Rev. Vol. 104 n
2
pp. 483–491 (October 1956).
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In the case of a single degree of freedom (v¼ 1), the incomplete gamma function

degenerates into:

τ ¼ erf

ffiffiffi
γ

2

r
 �
The standard deviation with respect to 1 of Γi/〈Γi〉 is 2/vi, i.e. if the number of

degrees of freedom is small, as in scattering or fission, the variation in resonance

width will be significant from one resonance to another. The larger the number of

degrees of freedom, as in neutron capture, the more Γi may be considered to be

constant (Foderaro 1971, p. 284).

5.2.8 Resonant Absorption

(Dresner 1960; Progress in nuclear energy 1958, Vol 2, p. 233)

For a resonant trap with lethargy of width Γ where absorption is infinite (black

trap) and zero outside (Fig. 5.3).

As seen in the previous chapter, the probability of escaping a trap (with the

entrance of the trap as the origin of lethargies), i.e. the resonance escape probabil-
ity, is calculated as follows:

Resonance escape probability : p ¼
ðΓ
0

du

ð0
u�ε

1

ξ

e� u�u0ð Þ

1� α
du0 ð5:6Þ

The probability of being absorbed in a trap is:

Γ

u
0

n

Fig. 5.3 The “kangaroo” neutron with respect to lethargy (Paul Reuss compares the neutron to a

carefree kangaroo jumping around in the Australian bush, unaware of possible traps (Reuss 2003,

p. 194). These traps represent resonances and are like deep holes from which the kangaroo-neutron

cannot escape. However, the kangaroo may jump over a trap without noticing it if it does not land

straight in the trap. A “grey” trap is less deep and the neutron may statistically survive. A “black”

trap spells the “death” of the neutron by absorption. Hence, the discontinuous slowing-down

mechanism allows neutrons to survive in the resonance zone.)
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1� p ¼ 1� e�Γ � αΓ

ξ 1� αð Þ if Γ << 1, 1� p � Γ

ξ

G. Placzek showed that the scattering density Rs(u) before the trap has an

asymptotic value of 1/ξ. The value Γ/ξ proves that the arrival density in the trap

is the same as in the absence of a trap (only the neutrons scattered from the trap to

within it are missing, but these are few since Γ is small). The resonance escape

probability p for a “grey” (low absorption Σa) but very narrow trap (the du/ξ
neutrons coming from the du in the trap have a probability of being absorbed of

Σa/Σt) may be deduced by computing the number of neutrons absorbed in the trap:

1� p �
ð γ
0

1

ξ

Σa uð Þ
Σt uð Þ du

For a series of consecutive traps (Stacey 2001, p. 117; Etherington 1957,

pp. 6–80), the resonance escape probability factor is written as:

p �
Y
i

pi � e

�
X
i

ð
i

Σa uð Þ
ξΣt uð Þ du

 !
¼ e

�
ðumax

0

Σa uð Þ
ξΣt uð Þ du

Using this formalism, the escape factor in homogeneous situations can be

obtained.

5.3 Self-Shielding

The very existence of resonances leads to a phenomenon whereby the flux spectrum

Φ(E) in their vicinity is depressed.10 The energy flux decreases at the locations of

the resonances and thus fewer neutrons are lost than might be expected if the flux

were not depressed. This phenomenon is known as self-shielding:

Φ Eð Þ ¼ Rt Eð Þ
Σt

¼ Rs Eð Þ
Σs

�
Wigner

approximation

q Eð Þ
ξ Σa þ Σsð ÞE

where q(E)¼ERs(E)¼Rs(u).
In the resonance Σa>>Σs, the absorption rate is thus less significant than if

there were no flux Φ(E) depression (Fig. 5.4). Hence, Σa(E) increases while Φ(E)
decreases such that Σa(E)Φ(E) remains (relatively) small. This concept is described

10A very good summary is provided in: Théorie de l’absorption résonnante des neutrons[‘Theory
of resonant neutron absorption’], Technical report CEA-N-2679 (1991).
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formally with the use of effective cross sections, defined such as to conserve the

reaction rate while keeping the asymptotic flux Ψ (before the resonance).

Σeffective
a uð ÞΨ ¼ Σa uð ÞΦ uð Þ

Outside the resonances, the cross section consists of the potential cross section

only:

Σt uð ÞΦ uð Þ � Cste ¼ ΣpΨ

hence: Σ eff
a uð Þ ¼ Σa uð Þ Φ uð Þ

Ψ ¼ Σa uð Þ Σp

Σt uð Þ
The coefficient

Σp

Σt uð Þ is called the self-shielding factor (Fig. 5.5).

Furthermore, the effective microscopic cross section is defined as:

Σ eff
a � NU σ

eff
a

Φ (E)
Σ a (E)

/EΨ 1∝

Σ a (E)Φ (E)

0
E

Fig. 5.4 Self-shielding of a resonance

Flux

Total
cross
section 

Lethargy

Fig. 5.5 Self-shielding of the flux owing to the resonances
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where NU is the concentration of the resonant isotope. The effective resonance
integral is defined for a given resonance as the integral of the effective cross section
over lethargy such that the absorption rate is verified for the asymptotic flux (flux

outside the resonance) (Dresner 1960, p. 62):ð
resonance

NUσ
eff
a uð Þ Ψ uð Þdu �

ð
resonance

NUσa uð Þ Φ uð Þdu ¼ δqres

δqres is the variation in slowing-down density due to the presence of the resonance.

Using Ieff , res �
Ð

resonance

σ eff
a uð Þ du, we obtain the following:

Ieff , r�es ¼
ð

resonance

σa uð Þ Σp

Σt uð Þ du

and, thus for a set of narrow resonances well spaced in energy:

Ieff ¼
P
res

Ieff , res ¼
Ð
u

σa uð Þ Σp

Σt uð Þ du. This enables calculation of the escape probabil-

ity, which is the product of the escape probabilities for each resonance in a

homogeneous case:

p ¼ e
�

NU Ieffð Þ
ξ ΣSð Þmoderator

In the heterogeneous case, it is assumed that the cell consists of the fuel rod

surrounded by moderator. Slowing-down is effective only in the moderator and

outside the resonances. Therefore, the asymptotic flux is evaluated as follows,

where M is the index for the moderator:

Ψ r; uð Þ ¼ Q

ξΣs,MVM

Q is the volume integral of the slowing-down density over the cell. As for the

homogeneous case, the effective integral is defined by integration over lethargy and

fuel volume VU:ð
VU

d3r

ð
resonance

NUσ
eff
a uð Þ Ψ uð Þdu ¼ NUVUIeff , resΨ

�
ð
VU

d3r

ð
resonance

NUσa uð ÞΦ r; uð Þdu
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giving: Ieff , res � 1
VU

Ð
VU

d3r
Ð

resonance

σa uð Þ Φ r;uð Þ
Ψ uð Þ du, Ieff ¼

P
res

Ieff , res and the heteroge-

neous escape probability is thus:

p ¼ e
�

VUNUIeff
VmNm ξσSð ÞM

5.4 Slowing-Down Through Resonances

Let us consider a medium consisting of a mixture of a resonant nuclide (termed c for
fuel) and a light nuclide (termed m for moderator). The slowing-down equation is

given by the neutron balance at lethargy u without the fission spectrum:

Arrivals

Rc uð Þ ¼ Rc Σ c
sΦ

� � ¼ Ð uu�εc
Σ c
s u0 ! uð Þ Φ u0ð Þ du0 Neutrons arriving from energy u0 < u

and scattered at lethargy u by collision

over the heavy nuclides. This is

expressed by the notation [] which

introduces the concept of the operator.

Rm uð Þ ¼ Rm Σ m
s Φ

� � ¼ Ð uu�εm
Σ m
s u0 ! uð Þ Φ u0ð Þ du0 Idem for the light moderator.

Departures

Σ c
t uð ÞΦ uð Þ þ Σm

t uð ÞΦ uð Þ Neutrons lost either by absorption or by

scattering at another lethargy value

Hence, the slowing-down equation is:

Slowing-down equation : Rc uð Þ þ Rm uð Þ ¼ Σt uð ÞΦ uð Þ ð5:7Þ

where

Σt ¼ Σ c
t þ Σ m

t Total cross section of the medium

Ri uð Þ ¼ Ri Σ i
sΦ

� � ¼ Ð uu�εi
Σ i
s u0 ! uð ÞΦ u0ð Þdu0 Arrival density due to scattering

(slowing down) for material i

εi ¼ Log 1
αi

� �
Maximum gain in lethargy per collision on isotope i of material i

αi ¼ Ai�1
Aiþ1

� �2
Minimum ratio of energy per collision with A—ratio of the mass of

isotope i to that of the neutron

Σs(u
0 ! u)¼Σs(u

0)P(u0 ! u) Differential scattering cross section for isotope i

P u0 ! uð Þ ¼ e� u�u0ð Þ
1�α Scattering cross section from u’ to u if the collision is elastic

and isotropic in the center of mass

Physically, it makes sense to consider that Rc(u)<<Rm(u) since light nuclides

are more efficient for slowing-down. The slowing-down operator for the moderator

is said to be “long-range” (lethargy-wise).
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Further, it may be assumed that ρ1(u) varies slowly with lethargy since the

maximum gain in lethargy ε1, which is very high for light nuclides, is greater

than the width of the resonances of heavy isotopes Γ.
It may thus be concluded that Σt(u)Φ(u) varies very slowly with lethargy (Fig. 5.6),

thus implying that the flux is strongly depressed in the resonance since it follows a

1/Σt(u) law. This flux is called the Bondarenko11 spectrum, which characterizes the

Φ

Σt

u

Fig. 5.6 Variation of

Σt(u) and Φ(u)

11Igor Illich Bondarenko (1926–1964) was a Soviet physicist. After reading physics at the University

of Moscow in 1950, he worked for the Institute of Physics and Energy in Obninsk. He studied the

measurement of cross sections in the fast reactor framework. He finished his career as the Vice-

Director of the Institute of Physics and Energy of the State Committee for the Control of Soviet

Nuclear Energy. He was awarded the Lenin Prize in 1960. He was at the origin of the idea of the Fast
Pulse Reactor which was built at Dubna. This reactor produced power peaks for a short time interval

for experimental purposes. His work on cross sections was published in 1958 and was widely read in

the west. It led to allowed comparison of calculations using the American evaluations. His cross

sections were weighted in the resonance zone by self-shielding factors. Furthermore, his 26-group

energy structure was used at EDF for the computation of power reactors.

(Public domain)
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flux shape in the resonance. Self-shielding is thus important only if the concentration of

the heavy nuclide is not too small (i.e. where dilution is not infinite). Two numerical

considerations are possible: either with a very refined energy mesh taking exact

account of the variations of Σ, and thus of Φ, as a function of u, which leads to

thousands of groups and thus involves long calculation times in daily use; or else a

simplified model can be set up to allow the use of a coarser energy mesh for precise

calculation. The latter12 is used in the Livolant-Jeanpierre formalism (1969).13

12This formalism is described in many references, but the work of Alain Santamarina is most suited

for its clarity: Calcul de l’absorption résonnante des neutrons par les isotopes de l’Uranium et du
Plutonium dans un réacteur nucléaire[‘Calculation of the resonant absorption of neutrons by

isotopes of uranium and plutonium in a nuclear reactor’], PhD., Orsay, 1973. Alain Santamarina

(b. 1948) spent his entire career at the CEA after obtaining his Masters in reactor physics in 1971,

followed by his PhD. A world-renowned specialist in nuclear data evaluations and neutron calcu-

lation schemes, he was at the head of the EOLE andMINERVE experimental reactors from 1984 to

1988. He subsequently became director of research at CEA. His recent works at Cadarache (France)
led to the set-up of a new energy mesh structure with 281 groups for APOLLO2.

Alain Santamarina in 2011 (Courtesy Santamarina)
13Michel Livolant (b. 1938). After his studies at the Ecole Polytechnique, he completed the second

Master’s degree course in reactor physics to be given at Saclay in 1963. His original theoretical

works are on self-shielding theory. His rapid career path at CEA saw him nominated head of the

“Institut de Protection et de Sûreté Nucléaire”, which would later become the IRSN.
Françoise Jeanpierre-Gantenbein (b. 1944) obtained her PhD in physics in 1969 after a BSc in

physics at University of Orsay (1966) and a Master’s in reactor physics in 1967. She began her

career at the CEA/Service de Physique Mathématique at Saclay from 1967 to 1971. Later, she

worked on seismic mechanics. From 1988 to 1995, she was head of the Seismic Studies laboratory

where the European TAMARIS facility is located. She became a senior expert in seismic questions

at CEA. She coordinated research programs in safety from 1998 until retiring in 2007.
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5.5 The Livolant-Jeanpierre Formalism

5.5.1 Homogeneous Medium

Let us consider the simple case of a homogeneous medium consisting of a resonant

isotope (c is the fuel index, stands for combustible in French) of concentration Nc

with total macroscopic cross section Σ c
t and a moderator of total cross section

Σ m
t (Σ m

a � 0). Assuming that Σ m
t is constant or varies slowly with energy,14 the

neutron slowing-down balance at lethargy u is written as:

Photo 5.3 Michel Livolant

(b. 1938) (Courtesy

Livolant)

Photo 5.4 Françoise

Jeanpierre (b. 1944)

(Courtesy Jeanpierre)

14Historically, the notation was 0 for the resonant nucleus and 1 for the light moderator. We

preferred to use uniform notations with c for fuel (combustible), composed of U for the heavy

resonant nucleus (referring to Uranium, the main fuel component), and m for mixed moderator and

fuel, which is surrounded by an external moderator M.
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ð u
u�εc

Σ c
s u0 ! uð Þ Φ u0ð Þ du0 þ

ð u
u�εm

Σ m
s u0 ! uð Þ Φ u0ð Þ du0

¼ Σ c
t uð ÞΦ uð Þ þ Σ m

t uð ÞΦ uð Þ

The technical report CEA-R-4533 (1974) which stems from the original works of Livolant-

Jeanpierre (The Marguet collection) (Photo 5.3)
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Jules Horowitz’s personal copy of Françoise Jeanpierre’s doctoral thesis (September 1969)

(The Marguet collection) (Photo 5.4)

Let R be the slowing-down operator (in brackets), applied to the flux:

R½ � ¼
ð u
u�ε

Σs u
0 ! uð Þ ½ � du0

The equation is then written in the following form:

Rc Φ½ � þ Rm Φ½ � ¼ Σ c
t uð Þ þ Σm

t uð Þ� �
Φ uð Þ � Σ c

t uð Þ þ Σm
s

� �
Φ uð Þ
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From now on, the reader should be aware that R is an operator and that R[Φ] is
not a multiplication but the application of the operator to the flux inside the

brackets. Since the flux varies as 1/E, it should be noted that it is constant in

lethargy as prescribed in the Wigner model (without absorption). The true flux

varies slowly with lethargy owing to absorptions. Some approximations are applied

to solve the slowing-down equation with “large” energy groups (since few energy

groups are used in industrial calculations). The real flux,Φ, is factorized in an

asymptotic macroscopic term Ψ (which has the unit dimensions of the flux) and a

second component, called fine structure,φ (dimensionless, usually called fine flux),
which is constant outside the resonances: Φ¼Ψ φ (Fig. 5.7).

5.5.2 Fine Structure Equation

The slowing-down operator for a heavy nuclide is applied over a very small

lethargy range, εc (about 0.02 for 238U ). It is assumed that Ψ does not vary

significantly over εc.

Rc Φ½ � ¼ Rc Ψφ½ � � Ψ Rc φ½ �

The narrow resonance approximation is applied to the slowing-down operator

for the moderator, i.e. Rm Φ½ � � Σ m
s Ψ . The term cancels out on both sides of the

slowing-down equation, and the resulting equation is the fine structure equation,

which describes the energy coupling:

Homogeneous fine structure equation :
1

Nc
Rc φ½ � þΣ m

s

Nc
¼ σ c

t uð Þ þΣ m
t

Nc


 �
φ uð Þ

ð5:8Þ

The microscopic operator is defined as rc[ ]�Rc[ ]/Nc (using the analogy with

microscopic cross sections). The equivalent microscopic cross section
σe � Σm

s =Nc, also called the dilution cross section or simply dilution, is more or

u

Φ(u)

u

ϕ

Ψ=

Fig. 5.7 Decomposition of flux into macroscopic flux and fine structure flux
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less independent of lethargy, but depends on the moderator via Σ m
s and on the

resonant isotope via Nc. The fine structure equation φ is independent of Σ c
t and Nm:

rc φ½ � � σ c
t uð Þ þ σe

� �
φ uð Þ þ σe ¼ 0

In this expression, φ is a function of σe, which depends on the total macroscopic

cross section of the slowing-down (moderator) isotope and the concentration of the

resonant isotope. The equivalent cross section in a homogeneous medium can hence

be assumed to be independent of lethargy. Therefore, in a homogeneous medium,

the fine structure equation can be solved accurately for a few values of σe and

temperature T using a refined energy mesh (several thousand groups). In France,

this resolution is done historically using a dedicated software called AUTOSECOL,

which solves a purely slowing-down problem. The effective cross sections per

energy group g for a reaction r and the resonant isotope are given by:

σc,gr,eff ¼
1Ð ugþΔug

ug
φ uð Þdu

ðugþΔug

ug

σ c
r uð Þ φ uð Þ du

¼ 1

Δug

ðugþΔug

ug

σ c
r uð Þ φ uð Þ du

since φ(u)¼ 1 except in the resonances. The cross sections σc,gr,eff are tabulated as a

function of the dilution σe (effective absorption, scattering, and production cross

sections) and of T. Applying the Narrow Resonance (NR) hypothesis (which is

described in the next paragraph15) to the slowing-down operator for heavy nuclides

enables analytical calculation of the fine structure using:

rc φNR½ � ¼ σp

φNR uð Þ ¼ σp þ σe
σ c
t uð Þ þ σe

8<:
Using the Wide Resonance (WR) hypothesis, the fine structure is:

rc Σ c
s φ

WR
� �¼Σ c

s uð ÞφWR uð Þ hence 1

Nc
Σ c
s uð ÞφWR uð ÞþΣ m

s

Nc
¼ σ c

t uð ÞþΣ m
t

Nc


 �
φWR uð Þ

φWR uð Þ¼
Σm
s

Nc

σ c
a uð ÞþΣm

t

Nc

¼ σe

σ c
a uð ÞþΣ m

t

Σ m
s

σe

8>>>>>><>>>>>>:

15For the sake of clarity, the models for the slowing-down operator are grouped in a later section so

as to introduce the Livolant-Jeanpierre model first, along with the relevant notations.
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5.5.3 Tabulating Effective Cross Sections

The reaction rate over the lethargy range [ug, ug+ 1] is defined as:

Tr ¼
ðugþ1

ug

σr uð ÞΦ uð Þdu ¼ Φg σ
g
r Δug

where g lethargy group corresponding to [ug, ug+ 1]
σr microscopic cross section for reaction r

The flux is factorized as Φ(u)¼Ψ (u)ϕ(u). Supposing that the macroscopic

component Ψ (u) decays slowly over the interval [ug, ug+ 1] (which is the case for

heavy nuclides in thermal reactors when using energy meshes with approximately

200 groups as used by APOLLO2 spectral code), the calculation of the reaction

rate:

Tr ¼ Ψ

ðugþ1

ug

σr uð Þφ uð Þdu with Ψ ¼ Ψ
ug þ ugþ1

2


 �

The effective cross section is described as:

σ g
eff �

1

ugþ1 � ug

ðugþ1

ug

σr uð Þφ uð Þ du

This cross section takes into account variation in fine structure φ(u) for the cross
section σ over the interval [ug, ug+ 1]. Integrating over a group g of lethargy width

Δug¼ ug+ 1� ug, the following is obtained:

T g
r ¼ Ψ g σ

g
eff Δug

T g
r ¼ Φg σ g

r Δug

�
with

σ g
eff ¼ σ g

r φg

Φg σ g
r ¼ Ψ g σ

g
eff

(

Thus, the effective cross section enables computation of the correct reaction rate

where variation in the macroscopic component of the flux alone is taken into

account. This parameter is tabulated in a homogeneous medium. The effective

integral Ieff is hence defined as:

Ieff �
ðuth
u0

σr uð Þφ uð Þdu �
X

g2 u0;uth½ �
Δug σ g

r,eff

where:

u0:lethargy corresponding to the maximum useful energy (10 MeV);

uth:lethargy corresponding to a given thermal cut-off.
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Henceforth, for a given homogeneous problem, only the dilution of the problem

σe � Σm
s =Nc is required. The effective cross sections by group are obtained directly

by interpolation from the table computed for a very fine energy mesh. The fine

structure equation is discretized over the multi-group energy mesh of the transport

code so as to determine φg for each group. It should be noted that at the

boundaries, the fine structure is constant (equal to 1), and there is thus no leakage:

X
g0

σc,g
0!g

s φg0 þ σe ¼ σc,gt þ σeð Þ φgX
g0

σc,g
0!g

s,eff þ σe ¼ σc,gt þ σeð Þ φg

φg ¼ 1� σc,gt,eff

σe
þ

X
g0

σc,g
0!g

s,eff

σe

with σc,g
0!g

s,eff ¼ σc,g
0!g

s φg0

with σc,gt,eff ¼ σc,gt φg

8>>>>>>>>>>>><>>>>>>>>>>>>:
Hence, the multi-group self-shielded cross sections for reaction r and the reso-

nant isotope (c) are obtained by computing the fine structure of the coarse energy

mesh:

σc,gr ¼ σc,gr,eff

φg

Figure 5.8 sums up the resolution process for a homogeneous problem.

Tabulation in 

homogeneous medium

)(σfσ e
gc

effr, =,

g
gc

effr,
gc

r σσ ϕ/,, =
c

m
s

e N
Σσ =

“fine” structure mesh of 

the “coarse” mesh

c

m
m
s

c

m
s

e N
Nσ

N
Σσ == depends on the medium:

• via the moderator m
m
s Nσ ;

• via the heavy nuclide cN

Tabulation done once only 

for a very fine energy mesh 

for several dilutions

Homogeneous problem

Fine energy group = ~a 

few 1000 groups

Homogeneous problem

“coarse” energy mesh = 

~a few 100 groups

Fig. 5.8 Interpolating as a function of the dilution of the effective cross sections
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5.6 Modeling the Slowing-Down Operator Using

the Resonant Isotope

5.6.1 Narrow Resonance Approximation

The slowing-down term
Ð u
u�ε Σs u

0 ! uð ÞΦ u0ð Þ du0 can be approximated using a

simplified slowing-down model: the narrow resonance (NR) approximation (Stacey

2001, p. 118) (Fig. 5.9).

Where the resonance width Γ is small compared to the maximum lethargy gain

per collision ε, the most important factor in slowing-down is the lethargies, u0,
which are very small compared to lethargy u. In this case, the scattering cross

section Σs tends towards the potential cross section of the mixture Σp while the flux

is equal to its asymptotic value Φas (assuming that the resonances are sufficiently

spaced in energy so that the flux between two resonances is asymptotic).ð u
u�ε

Σs u
0 ! uð Þ Φ u0ð Þ du0 ¼

ð u
u�ε

Σs u
0ð Þ P u0 ! uð Þ Φ u0ð Þ du0

�
ð u
u�ε

ΣpP u0 ! uð ÞΦas du0

¼ Σp Φas

ð u
u�ε

e u0�uð Þ

1� α
du0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

1

thus: R[ΦNR]�ΣpΦas

It should be noted that the slowing-down operator becomes independent of the

arrival lethargy. The NR approximation is applied to the slowing-down operator:

Rm ΦNR
� � ¼ Σ m

s Ψ � Σp Φas

Σ(u)
Φ

Σt
σs′ Φ

Φasymp

Σp

u′
ε >> Γ

ε

Γ

u
u

Fig. 5.9 NR approximation
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since φ¼ 1 outside the resonances and Ψ ¼Φas. Expressed in lethargy, Φas is

constant (Φepi), though in energy, Φas is inversely proportional to energy

(Φepi/E). The cross section Σ m
s has a slow variation as well as Rm[Φ] since the

lethargy range εm on which integration is carried out is large compared to the

resonance widths. The long-energy-range operator Rm smoothens the fine structure.

Hence, the slowing down due to the light nuclide is not considered. This hypothesis

is justified for a homogeneous mixture of water and uranium, where slowing down

is caused mainly by the hydrogen in the water. In this case, the maximum gain in

lethargy is much more significant than for uranium, except in the unresolved range

of 238U, where the resonances are very close.

However, this hypothesis should be applied cautiously for heavy nuclides, as

well as for intermediate-mass nuclides such as oxygen in UO2.

5.6.2 Wide Resonance Approximation

The wide resonance (WR) approximation assumes that the maximum gain in

lethargy is small compared to the width of the resonance, in which case it may be

assumed that the quantities Σs and Φ vary weakly over that interval (Stacey 2001,

p. 119):

R ΦWR
� � � Σs uð ÞΦ uð Þ

Σt

u
u′

Γ

ε

u

The slowing-down operator depends only on the arrival lethargy via the scatter-

ing cross section and the flux. The coupling in energy is no longer present.
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5.6.3 Statistical Approach

The statistical approach of Mireille Coste16 (2003) consists in supposing that the

resonances of the resonant isotope are narrow and statistically distributed within an

energy group. Their spacing, D, is considered to be small with respect to the

maximum gain in lethargy for the resonant isotope εc. The slowing-down operator

for the heavy nuclide can be substituted by a mean value for the energy group.

Rc ΦST
� � ¼ ðu

u�εc

Σs u
0ð ÞΦ u0ð Þ P u0 ! uð Þdu0 �

αc�1

1

εc

ðu
u�εc

Σs u
0ð ÞΦ u0ð Þdu0

�
εc << 1

1

Δug

ðugþ1

ug

Σs u
0ð ÞΦ u0ð Þ du0

In fact, the collision law approaches a uniform law where αc� 1 and where

εc<< 1, in which case e� u�u0ð Þ � 1 si u� u0ð Þ < εc.

Σt
u

u′

cε

u

The slowing-down operator no longer depends on the arrival lethargy but on a

mean value dependent on the energy group. The STmodel also works correctly both

in the unresolved range and in the high end of the resolved range, where resonances,

though narrow, are widespread within an energy group.

16Mireille Coste-Delclaux (b. 1956). After her studies in the mathematics section of the most

famous “Ecole Normale Supérieure” in Fontenay (France), she passed the French “aggrégation”

examination in mathematics, minoring in numerical analysis. She worked at the CISI Company,

where she was involved in scientific programming languages. She later joined CEA/SERMA,

specializing in problems dealing with nuclear data and self-shielding. Her PhD thesis at the

CNAM: “Modélisation du phénomène d’autoprotection dans le code de transport multigroupe
APOLLO2” [‘Modelling of self-shielding using APOLLO2 multi-group transport code’] (2006) is
the most complete reference on self-shielding in French, and it is a masterpiece of scientific work

that would merit to be published in a textbook form. She has been a senior expert at CEA since

2005 and teaches neutronics at ENSTA, a French engineer school.
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5.6.4 All Resonance Model (TR)

Mireille Coste’s All Resonance model (developped in 1997) is a generalization of

the STmodel that seeks to remove all potential constraints on the shape and position

of resonances so as to obtain a “universal” model (Photo 5.5). An energy group is

sub-divided into g subgroups defined by (Fig. 5.10):

W g0; g
� � u 2 g=u� εc 2 g0f g� �

By construction, g0 cannot be larger than g (the groups are numbered along

increasing lethargies). The integration range of the slowing-down operator for

heavy nuclides (its “reach” or “range”) may be expanded as follows:

u� εc; u½ � ¼ u� εc; umax g0ð Þ½ � [ umin g0 þ 1ð Þ; umax g0 þ 1ð Þ½ �
� [ umin g0 þ 2ð Þ; umax g0 þ 2ð Þ½ � [ . . . [ umin g� 1ð Þ; umax g� 1ð Þ½ �
� [ umin gð Þ; u½ �

where umin(g
0) and umax(g

0) are the lower and upper lethargies of group g0. The
slowing down of the resonant operator can be computed as:

Rc ΦTR
� � ¼ 1

εc

ðu
u�εc

Σs u
0ð ÞΦ u0ð Þdu0

¼ 1

εc

ðumax g0ð Þ

u�εc

Σs u
0ð ÞΦ u0ð Þdu0 þ

Xg00¼g�1

g00¼g0þ1

ðumax g00ð Þ

umin g00ð Þ

Σs u
0ð ÞΦ u0ð Þdu0

þ
ðu

umin gð Þ

Σs u
0ð ÞΦ u0ð Þdu0

266666664

377777775

Photo 5.5 Mireille Coste-

Delclaux is France’s
foremost specialist on self-

shielding, a field in which

the French CEA have

always produced notable

experts (Courtesy Coste)
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The integrals can now be substituted by the average value of the scattering rate

multiplied by the lethargy range:

ðumax g00ð Þ

umin g00ð Þ

Σs u
0ð ÞΦ u0ð Þdu0 ¼ Σs Φg00 umax g00ð Þ � umin g00ð Þð Þ

or:

Rc ΦTR
� �¼ 1

εc
ΣsΦg0 umax g0ð Þ� u�εcð Þð Þþ

Xg00¼g�1

g00¼g0þ1

ΣsΦg00 umax g00ð Þ�umin g00ð Þð Þ
"

þΣsΦg u�umin gð Þð Þ
#

The microscopic operator may be deduced directly by replacing the flux by the

fine structure φ. Analysis of the last equation demonstrates that the weighting of the

scattering rates, which is proportional to the difference in lethargy (divided by the

maximum gain in lethargy), is in fact the mean probability of reaching group g from
g’, i.e.:

rc φTR½ � ¼ 1

εc
Σsφg0 umax g0ð Þ� u�εcð Þð Þþ

Xg00¼g�1

g00¼g0þ1

Σsφg00 umax g00ð Þ�umin g00ð Þð Þ
"

þΣsφg u�umin gð Þð Þ� ¼
X
g0�g

p g0!gð ÞΣsφg0

The TR model converges towards the exact slowing-down operator of the heavy

nuclide as the number of groups increases.

g1

cε

42 3

5

W (2.5)

W (3.5)

W (4.5)

W (5.5)Fig. 5.10 Example of

group subdivision: group

5 is divided into

4 subgroups W(2 to 5.5).

Note that some neutrons in

group 2 (with low lethargy)

cannot reach group 5
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5.7 Heterogeneous Medium

(Dresner 1960, p. 61)

5.7.1 Two-Media Problem

In the computation of industrial cores, the problems generally involve heteroge-

neous lattices. Can the same process be used as for homogeneous media?

Let us consider two media:

– A fuel medium of index c (for combustible) with one resonant isotope (Σ c
t ,Nc);

– An external moderator medium of index M with one light isotope such that

ΣM
t � ΣM

s varies slowly.

Postulating flat flux in each medium and isotropic collisions in the center of

mass, the neutron balance, written in a notation first proposed by J. Chernick

(1955)17 (Fig. 5.11), is:

0E )(238 EUσ

thE

( )0r,EΦ waterfuel

( )thr,EΦ

Fig. 5.11 Depression of flux as a function of resonances: the spatial flux in the fuel rod and that in

the moderator are presented at different energies (arbitrary ordinates axis). The flux is depressed

for energies corresponding to the resonances of uranium 238. At the fission energy, the fast flux is

prevalent in the fuel. The thermal flux is more significant in the moderator than in the fuel. See also
(Duderstadt and Hamilton 1976, p. 400)

17J. Chernick: The theory of uranium water lattices, Proceedings of the U.N. Conference on

Peaceful Uses of Atomic Energy, Geneva, P603 (1955).
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VcΣ c
t Φc ¼ Vc Pcc Rc Φc½ � þ VM PMc RM ΦM½ � for the resonant medium

VMΣM
t ΦM ¼ Vc PcM Rc Φc½ � þ VM PMM RM ΦM½ � for the moderator

�
where:

Vi the volume of medium i;
Φi the flux in this medium;

Pij the first-collision probability18 in medium j for a neutron emitted in medium i.

c
tΣ

M
sΣ

M  external moderator

c    resonant isotope medium

Let us consider the phenomena occurring in the fuel medium and use the same

approximations as those applied to the homogeneous case:

RM[ΦM]�ΣMΨΦc¼Ψ φcRc[Φc]�Ψ Rc[φc]

with the hypothesis of a uniform spatial macroscopic flux. Using the reciprocity

properties and conserving the collision probabilities (leakage of neutrons is

assumed to be zero):

VMPMcΣM
s ¼ VcPcMΣ c

t reciprocity property

PcM ¼ 1� Pcc

X
j

Pij ¼ 1

 !8><>:
The balance over the resonant isotope is written as:

VcΣ
c
t Ψφc ¼ Vc PccΨ Rc φc½ � þ VM PMcΣ

M
s Ψ

or: Vc Pcc Rc φc½ � þ VM PMcΣ
M
s|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Vc PcM Σ c
t

�VcΣ c
t φc ¼ 0

18This concept will be described in more details in the chapter on the Boltzmann equation, and

extended in the chapter on the heterogeneous reactor. The calculation is not detailed here. It is

presented thoroughly in Wolfgang Rothenstein: Collision probabilities and resonance integrals
for lattices, Nuclear Science and Engineering, 7, pp. 162–171 (1960).
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Giving:

1

Nc
Rc φc½ � � σ c

t

Pcc
φc þ

1� Pcc

Pcc
σ c
t ¼ 0

Defining the equivalent cross section: σe � σ c
t
1�Pcc

Pcc
and the operator

rc½ � � 1
Nc
Rc½ �

yields the fine structure equation for the homogeneous medium:

Heterogeneous fine structure equation : rc φc½ �� σ c
t uð Þþσe uð Þ� �

φc uð Þþσe uð Þ¼ 0

ð5:9Þ

Only the dilution σe(u) is modified due to the heterogeneous effect. It depends

on the resonant isotope and the moderator via the first collision probability P00 in

the fuel. The fine structure equation for lethargy was solved in a homogeneous

medium using a homogeneous dilution cross section σe ¼ ΣM
s =Nc, which is con-

stant whereΣM
s is practically constant. This is not true of the heterogeneous medium

since σe(u) depends on lethargy through the termσ c
t uð Þ. To obtain a similar equation

to the homogeneous case and utilize the same resolution process, the problem must

be characterized by a parameter that does not depend on energy, σe, the equivalent
homogeneous cross section, or true equivalent cross section. The correct averaging
method consists not in averaging σe(u) over the lethargy range, but rather in

conserving the effective resonance integral for the reaction in question.

The evolution of σe as a function of σ c
t shows that the equivalent cross section does

not vary significantly where the variationσ c
t varies by several decades. Hence, with little

loss of precision in calculating the fine structure, the value of σe(u) can be approximated

on a lethargy interval by σe ¼ aBell σe,1, where the coefficient aBell is the Bell factor
19

(Reuss 2008, p. 243), and σe,1 ¼ lim
σ0!þ1 σe σ0ð Þ (Figs. 5.12 and 5.13; Photo 5.6).

Figure 5.14 gives σe=σe,1 as a function of the product RcylΣ c
t (Rcyl being the

radius of the fuel rod). A mean value of 1.16 for the Bell factor accurately

represents the geometry of both rods and slabs (Stamm’ler and Abbate 1983,

p. 297). Therefore, to be able to use in any situation the tabulated effective cross

sections as a function of σe, which have been established in homogeneous cases, the

homogenous equivalent of the heterogeneous case is required. To this end, σe is

19George Irving Bell (1926–2000) was an American physicist. After obtaining his BSc in physics

at Harvard University, he studied theoretical physics with Hans Bethe and obtained his PhD in

1951. He then worked for the theoretical physics division of Los Alamos in New Mexico. As a

member of the T division, he worked on neutron transport and on the first thermonuclear bomb. In

the 1960s, he worked on biology and immunology and indeed founded the theoretical biology and

biophysics group in 1974. Similarly, in 1988, he was pivotal in the setting up of the Center for

Human Genome Studies. In addition, he was very keen on mountaineering, and attempted the first

ascent of the famous K2 (the attempt was thwarted by terrible weather conditions). However, in

1960, he took part in the first ascent of Mount Masherbrum.
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determined using an average constant which, in the homogeneous case, gives the

same effective integral as that computed in heterogeneous geometry, namely:

I
homogeneous g
eff σeð Þ � I

g
eff σe uð Þð Þ

For example, for an absorption reaction and using the NR approximation:

∞e

e

σ
σ

Case of a fuel 
rod cylR

c
tcyl ΣR~ 0.12

1.5

1

~ 1.54

Bell

factor

Fig. 5.12 Evolution of the Bell factor for a cylindrical fuel rod

Tabulation in a

homogeneous medium

)(,

, e
gc

effr f σσ =

g

gc
effrgc

rg
gc
effr ϕ

σ
σϕσ

,

,,,

, =⇒⇒
ee u σσ ⇒)(

Homogeneous problem

“Fine” energetic mesh

Heterogeneous problem

“Broad” energetic mesh

Fig. 5.13 Heterogeneous/homogeneous equivalence

Photo 5.6 George Irving Bell (circa 1960, Public domain)
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Ia
NR
eff ¼

ð
u

σa uð ÞφNR uð Þ du ¼
ð
u

σa uð Þ σp þ σe uð Þ
σ c
t uð Þ þ σe uð Þ du �

ð
u

σa uð Þ σp þ σe
σ c
t uð Þ þ σe

du

Once the equivalent cross section is obtained, the problem is reduced to a

homogeneous case and through interpolations in the homogeneous tables from a

refined energy mesh (Fig. 5.13):

In the initial versions of the French APOLLO1 code, which incorporated the

Livolant-Jeanpierre model, several approximations have been set up:

– Equivalence is performed globally (rather than group by group) for the complete

domain G in which the large resonances of the nuclide are found. The effective

absorption integral is conserved:

I
homogeneous G
a,eff σeð Þ ¼ I Ga,eff σeð Þ

– Calculation of the effective integrals is performed using the NR approximation

for the slowing-down component.

Using the fine structure term in the NR hypothesis:

rc φc½ � � σ c
t uð Þ þ σe uð Þ� �

φc uð Þ þ σe ¼ 0

rc φc � σp φasymp � 1

φc �
σp þ σe uð Þ

σ c
t uð Þ þ σe uð Þ

ð
G

σa uð Þ σp þ σe
σ c
t uð Þ þ σe

du ¼
ð
G

σa uð Þ σp þ σe uð Þ
σ c
t uð Þ þ σe uð Þ du

8>>>><>>>>:

5.7.2 Accounting for Spatial Interaction

If the resonant isotope is distributed homogeneously in the same medium, the

equivalent cross section σe is a function of Pcc, i.e. the probability that a neutron

emitted in a medium containing the resonant isotope will undergo its first collision

with a nuclide of the same type. Where the resonant isotope is found in several

geometrical zones in which concentrations are not the same, the probability Pcc

cannot fully characterize what actually takes place in the fuel.

Indeed, from Fig. 5.14, it may be deduced that the probability of a neutron

undergoing its first collision with the resonant nuclide in any of the fuel regions

(1, 2 or 3) will differ according to whether it is emitted in 3 or 1 (at the center of

1, its chances of escaping the resonances of the isotope are obviously lower). To

allow for this phenomenon, the self-shielding of the heavy nuclide is calculated

using the PIC formalism. Let N be the number of resonant fuel regions (containing

only the resonant isotope) and L (stands for Light nuclides) the number of pure

moderator regions (with only moderating nuclides (M )). For each “resonant”

region, i ¼ 1, N:
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Vi Σc, i
t Φc, i ¼

XN
j¼1

Vj Pji Rcj Φc, j

� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
fuel regions

þ
XL
k¼1

Vk Pki RMk ΦM,k½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
moderator regions

where:

Σc, i
t is the total cross section of the resonant isotope in region i (not to be confused

with the total cross section of medium i, since it is the sole nuclide in this

region);

ΣM,k
t is the total cross section of the moderator in region k.

The corresponding fine structure equation with the same hypotheses discussed in

the two-media heterogeneous medium is written as:

Vi Σc, i
t φc, i ¼

XN
j¼1

Vj Pji Rc φc, j

� �þXL
k¼1

Vk Pki ΣM,k
t for each cell i

The slowing-down operator in the fuel is the same in all fuel regions since there

is only one resonant isotope. First, using the reciprocity principle between region

i and the other resonant regions j;

PjiVjΣ
c, j
t ¼ PijViΣ

c, i
t

Further, between region i and the moderator regions:

PkiVkΣ
M,k
t ¼ PikViΣ

c, i
t

The N equations system gives:

Total cross section of the resonant 

isotope in the j –th cross section 

of the resonant isotope.
Fuel

Moderator

3
2

3c
tΣ

1

2c
tΣ

1c
tΣ

cj
tΣ

Fig. 5.14 Zoning of fuel
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Σc, i
t φc, i ¼

XN
j¼1

Pij
Σc, i
t

Σc, j
t

Rc φc, j

� �þ Σc, i
t

XL
k¼1

Pik where i ¼ 1,N ð5:10Þ

The PIC method hinges on the hypothesis that the slowing-down operator is

proportional to the resonant nuclide cross section:

PIC hypothesis :
Rc φc, i

� �
Σc, i
t

� Rc ϕc, j

� �
Σc, j
t

ð5:11Þ

This hypothesis is exact in the NR approximation. The normalization closure for

the first collision probabilities without leakage is written as:

XN
j¼1

Pij þ
XL
k¼1

Pik ¼ 1

Under these assumptions, Eq. (5.10) is simplified by using the PIC hypothesis

and factorizing by the constant term:

φc, i ¼
Rc φc, i

� �
Σc, i
t

XN
j¼1

Pij þ 1�
XN
j¼1

Pij

 !

The new probability of leakage inside the fuel is:

Pic ¼
XN
j¼1

Pij

Hence the term PIC method. It accounts for a neutron emitted in region i and
undergoing a collision with the resonant isotope in the fuel regions j. Thus:

Rc φc, i

� �� Σc, i
t

Pic
φ0i þ

1� Pic

Pic
Σc, i
t ¼ 0,

which, when divided by Nc , i leads to:

Fine structure equation in zone i :
Rc

Nc, i
φc, i

� �� σe, i þ σ c
t, i

� �
φc, i þ σe, i ¼ 0

ð5:12Þ

with: σe, i ¼ σ c
t, i

1�Pic

Pic
, σ c

t, i ¼
Σ c
t, i
Nc, i

and Nc , i is the concentration of the resonant isotope in the medium i. For each

region i, the solution to the equation Iheterogeneous,Ga eff σe, ið Þ ¼ I Ga eff σe, ið Þ leads to the
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true equivalent cross section σe, i in a scheme similar to that of the two-region

heterogeneous model. Thus:

σG
e, i ! σe, i ! σ g

eff , i

The heterogeneous problem for N+L regions is thus transformed into

N heterogeneous two-region problems, one the fuel and the other the moderator.

This method allows the calculation of N fine structures, where, if one is known, the

others may be deduced using the PIC model.

5.7.3 Generalization to Several Self-Shielding Regions

For a heterogeneous geometry where the N media all comprise the same resonant

isotope, U, and the moderator nuclide m (there may be several moderators, but only

one term is employed), the balance is written as:

Vi Σ i
t Φi ¼

XN
j¼1

Vj Pji Rcj Φj

� �þ Rmj Φj

� �� �
As with the infinite homogeneous medium, the flux is developed as macroscopic

flux Ψ and microscopic φ flux, although these quantities are now space-dependent:

Φi¼Ψ iφi. The resonant isotope slowing-down operator (which is short-range) is

written as:

Rcj Φj

� � � ΨiRcj φj

� �
As with the homogeneous case, we may also write: Rmj [Φj]¼Σm , jΨ j, where

Σm , j is the scattering cross section for all moderator isotopes m in region j. The
problem may be simplified using an important supplementary hypothesis: the

macroscopic flux does not depend on space. This hypothesis, which appears strong,

has in fact been experimentally confirmed. The equation then simplifies to:

Vi Σ i
t φi ¼

XN
j¼1

Vj Pji Rcj φj

� �þ Σm, j

� �
A self-shielded region, denoted α, is conventionally defined by grouping the

computation regions containing the resonant isotope U at a given temperature. The

summation over all the media i belonging to region α gives:
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X
i2α

Vi Σ i
t φi ¼

X
i2α

XN
j¼1

Vj Pji Rcj φj

� �þ Σm, j

� �
¼
X
i2α

XB
β¼1

X
j2β

Vj Pji Rcj φj

� �þ Σm, j

� �

þ
X
i2α

X
j=2β, 8β

Vj Pji Rcj φj

� �|fflfflfflffl{zfflfflfflffl}
0

þΣm, j

0B@
1CA

The geometry is decomposed into B self-shielding options. These regions do not

necessarily cover the entire geometry, leaving L media that are purely moderating,

and which may be defined as j =2 β , 8 β. In these media without resonant isotopes,

the fine structure is zero, hence 8j =2 β , 8 β , Rcj [φj]¼ 0. By definition, all the

constituent isotopes of a self-shielded region have the same microscopic cross

sections, and thus the same microscopic slowing-down operator, rcj [φj]. The last

step consists in assigning each medium to a self-shielded region having the same

flux, φα, which is the average flux of the concordant mean flux over all considered

media. The fine structure equation, which is in fact a linear system, is written as:

Heterogeneous fine structure equations :X
i2α

Vi Σ i
t

 !
φα ¼

X
i2α

XB
β¼1

X
j2β

Vj Pji NU, j rβ φβ

� �þX
i2α

X
j

Vj Pji Σm, j

ð5:13Þ

The PIC formalism, seen above, artificially leads to a diagonal term, which is the

heavy slowing-down term, although recent studies by Mireille Coste (1997) allow

Eq. (5.13) to be solved using the Direct method. Leaving aside the details, this

method consists in choosing one of the resonant isotope models seen earlier (NR,
WR, ST or TF) and solving the linear system for all Eq. (5.13) for each self-shielded

zone (in the case of the NR andWR models, a matrix must be inverted for each fuel

zone20).

20The complete work of Mireille Coste-Delclaux on self-shielding is found in her PhD thesis:

Modélisation du phénomène d’autoprotection dans le code de transport multigroupe APOLLO2
[‘Modelling of self-shielding using the APOLLO2 multi-group transport code’], University of

Orsay, (2006), edited by the CEA under reference number CEA-R-6114, 667 pages, which is the

most complete French-language reference work on self-shielding.
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5.8 Accounting for Energy Interactions: Self-Shielding

of Mixtures

In the last examples, for simplicity, we considered a medium with only one fuel

(usual index c), and one resonant nuclide. Absorption from the heavy nuclide is

modified by the presence in fuel c of the other isotopes with resonances. There is

thus overlapping of resonances, which in practice means that a neutron absorbed by

the resonant medium cannot be absorbed by another heavy nuclide. Assuming that

the fuel is now constituted of nuclides α and β (only two isotopes are considered,

but generalization to any number of isotopes is possible), the neutron balance

equations are written with the slowing down for both resonant isotopes:

VcΣ c
t Φc ¼ VcPcc Rα Φc½ � þ Rβ Φc½ �� �þ VMPMc RM ΦM½ � for the fuel medium

VMΣM
t ΦM ¼ VcPcM Rα Φc½ � þ Rβ Φc½ �� �þ VMPMMRM ΦM½ � for the moderator

�
As for the previous approaches, the effects for the fuel and the moderator are

written as:

RM ΦM½ � ¼ ΣM
s ψ Φc ¼ φc ψ

Rα Φc½ � ¼ ψRα Φc½ � Rβ Φc½ � ¼ ψRβ Φc½ �
�

The simplest way of considering the problem is that each resonant isotope is

treated separately from the other nuclides, with the latter being taken as

non-absorbing moderators (which is not a valid hypothesis if the heavy nuclides

are highly absorbing) and with slowly-varying total cross sections

(i.e. Rβ[φc]�Σβ), which are added to the initial moderator. The problem is thus

transformed into the earlier case, and using the reciprocity principle (VM PMc ΣM
s

¼ Vc PcM Σ α
t uð Þ þ Σ β

t

� �
) for the collision probabilities, the following equations

are obtained using VM PMc ΣM
s ¼ Vc PcM Σ α

t uð Þ þ Σ β
t

� �
:

Rα φc½ � �
Σ α
t uð Þ þ Σ β

t

� �
Pcc

φc uð Þ þ Σ β
t þ 1� Pcc

Pcc
Σ α
t uð Þ þ Σ β

t

� � ¼ 0

by setting the equivalent cross section for two regions as Σe uð Þ �
1� Pccð Þ Σα

t uð Þ þ Σ β
t

� �
=Pcc. If a new equivalent cross section for the mixture of

nuclides α + β is defined as:

eΣ e uð Þ � Σ β
t þ 1� Pcc

Pcc
Σα
t uð Þ þ Σ β

t

� �
The exact heterogeneous equation for two regions is obtained:
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Rα φc½ � � Σ α
t uð Þ þ eΣ e uð Þ� �

φc uð Þ þ eΣ e uð Þ ¼ 0

This result calls for several remarks. First, the extension to several heavy

nuclides is obtained directly as:

Σ c
t ¼ Σα

t þ
X
x

Σx

substituting Σ β
t by

P
x
Σx in the previous formulae. Further, the fine flux resulting

from the computation of self-shielded cross sections of a nuclide α can be used to

compute the self-shielded cross sections of another nuclide β. However, the result
will differ depending on the order in which the nuclides are self-shielded. The latter

remark is unsatisfactory from a scientific perspective. The mutual interaction of

nuclides is accounted for in the computation of σewith the use of self-shielded cross
sections of nuclides already being considered for Σx. Thus, the order of self-

shielding is important and the process should start with the most important isotopes

such asΣa
238
92U
� �

, followed byΣa
235
92U

� �
andΣa

239
94Pu

� �
so as to reduce the impact of

the methodology. An iterative procedure in collision probabilities is used to carry

out the self-shielding process. However, this can be quite onerous since the iterative

process depends on the cross sections, which must be recomputed at each iteration.

The iteration continues up to convergence of the self-shielded cross sections.

Temperature effects will be discussed at the end of the chapter when discussing

the resonant absorption integral after the Doppler effect has been introduced.

5.9 Intermediate Resonance Model in Flux Calculations

(Stamm’ler and Abbate 1983, p. 305)

In all of the foregoing models, the NR hypothesis was widely employed to

represent not just the slowing-down operator for the moderator, which is warranted,

but in some cases for the fuel also. Unfortunately, this hypothesis cannot be used in

all cases. In this section, the Intermediate Resonance (IR) model will be considered

for slowing-down operators. Let us consider that the fuel consists of resonant heavy

nuclides U with moderator m, surrounded by an external moderator M (Fig. 5.15):

Starting from the neutron balance in the fuel and the moderator:

VcΣ c
t Φc ¼ Vc 1� PcMð Þ Rc Σ c

s Φc

� �þ VM PMc RM ΣM
s ΦM

� �
VM ΣM

t ΦM ¼ Vc PcM Rc Σ c
s Φc

� �þ VM 1� PMcð Þ RM ΣM
s ΦM

� ��
Here we shall use the Wigner rational approximation (Weinberg and Wigner

1958; Dresner 1960, p. 60) for the escape probability from the rod as a function of

the leakage cross section
$
Σ e (not to be confused with the equivalent cross section,
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hence the symbol $), while conserving all generality. For a clear understanding,

the probability is expressed in terms of energy rather than in lethargy:

Wigner rational approximation : PcM ¼
$
Σ e

Σ c
t Eð Þ þ $

Σ e

ð5:14Þ

In this formula,
$
Σ e represents the fact that a neutron can leak from the geometry

and that the escape probability can still be written as the ratio of leakage to total

absorption and leakage (Stamm’ler et Abbate 1983, p. 299). The reciprocity

principle of probabilities leads to:

PcMVcΣ
c
t Eð Þ ¼ PcMVc Σ U

t Eð Þ þ Σ m
s

� � ¼ PMc VM ΣM
t � PMc VM ΣM

s

These two relations are inserted in the balance after simplifying the slowing-

down operators in similar fashion:

RM ΣM
s ΦM

� � ¼ ΣM
s

E
NR hypothesis

ΣM
s ΦM Eð Þ WR hypothesis

8<:
Rc Σ c

s Φc

� � ¼ RU Σ U
s Φc

� �þ Rm Σm
s Φc

� � ¼ RU ΣU
s Φc

� �þ Σ m
s Rm Φc½ �

and using the following equations obtained after some mathematical

simplifications:

c=m+U

M

Fig. 5.15 Geometry of two regions and three media
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Σt Eð Þ ¼ Σe 1� PcM Eð Þð Þ
PcM Eð Þ ¼ Σt Eð Þ þ $

Σ e

� �
1� PcM Eð Þð Þ

1� PcM Eð Þ ¼ Σt Eð Þ
Σt Eð Þ þ $

Σ e

1� PMc Eð Þ ¼ 1� VcΣ c
t Σe

VM ΣM
s Σt Eð Þ þ $

Σ e

� �

8>>>>>>><>>>>>>>:
The following equations are obtained:

Σt Eð Þ þ $
Σ e

� �
Φc ¼ RU Σ U

s Φc

� �þ Σ m
s Rm Φc½ � þ $

Σ eRM ΦM½ �
Σt Eð Þ þ $

Σ e

� �
ΦM ¼ VcΣe

VM ΣM
s

RU Σ U
s Φc

� �þ Σ m
s Rm Φc½ �� �

þ Σt Eð Þ þ $
Σ e

� �� VcΣt Eð ÞΣe

VMΣM
s


 �
RM ΦM½ �

8>>>><>>>>:
The IR hypothesis consists in expressing the moderator slowing-down operator

in the form of a “linear interpolation” between wide and narrow resonances:

RM ΣM
s ΦM

� � ¼ λ
ΣM
s

E
þ 1� λð ÞΣM

s ΦM Eð Þ

Thus, the flux can be computed analytically in the moderator M as a function of

the flux in the fuel:

ΦM Eð Þ ¼ K Φc Eð Þ þ λ
1� β

βE


 �
with :

K ¼ β

λþ 1� λð Þβ
β ¼ VcΣe

VM ΣM
s

8>><>>:
Substituting the M moderator flux in the first neutron balance, the integral

equation for Φc(E) is obtained:

Σt Eð Þ þ $
Σ e

� �
Φc Eð Þ ¼ RU Σ U

s Φc

� �þ Σm
s Rm Φc½ �

þ Σe λ
ΣM
s

E
þ 1� λð ÞΣM

s K Φc Eð Þ þ λ
1� β

βE


 �
 �
which can be shortened to:

Flux equation for fuel in the IRapproximation : Σt Eð Þ þ eΣ e

� �
Φc Eð Þ

¼ RU ΣU
s Eð ÞΦc Eð Þ� �þ Σm

s Rm Φc Eð Þ½ � þ λ
1� β

β


 �
K
eΣ e

E
ð5:15Þ
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where: eΣ e ¼ $
Σ e 1� 1� λð ÞKð Þ. Similarly, a flux equation could be written for

M showing the uncoupling of the two fluxes via the IR hypothesis and the rational

approximation. Evaluation of the parameter λwill be discussed in the chapter on the
Doppler effect.

5.10 The Probability Table Method

In 1970, a Russian team (Nicolaevand Khokhlov) proposed21 a method to take

account of resonances called the subgroup method, but popularly referred to as

probability tables.22,23 This method was developed in France by Pierre Ribon

(CEA/Saclay),24 A. Khairallah and J. Recolin (CEA/Cadarache). Ribon signifi-

cantly improved the precision of the method through the use of optimal quadrature.

It consisted in discretizing cross sections using discretely-occurring line density

21M.N. Nicolaev, V.F. Khokhlov: A system of subgroup constants, Atomizdat, 1967
22A. Hébert, M. Coste: Computing moment-based probability tables for self-shielding calculations
in lattice codes, Nuclear Science and Engineering, 142, pp. 245–257 (2002)
23T. Ushio, T. Takeda: The characteristics and subgroup methods in square light water reactor
cell calculations, Nuclear Science and Engineering, 143, pp. 61–80 (2003)
24O.K. Bouhelal and P. Ribon: Tables de probabilités non statistiques, description des effets du
ralentissement [‘Non-statistical tables: description of the effect of slowing’], Proc. Physor, Mar-

seille, France, pIX-1 �a IX-13, 1990. Pierre Ribon (b. 1932) graduated with an engineering degree

from Arts et Métiers and ESE. After joining the CEA in 1956, in 1969 he defended his doctoral

thesis,“L’étude de quelques propriétés des noyaux excités des noyaux composés, formés par
l’interaction de neutrons lents avec le rhodium 103, le xénon, le gadolinium et le thorium 232”
[‘The study of certain properties of excited nuclei of composite nuclei formed through the

interaction of slow neutrons with rhodium 103, xenon, gadolinium and thorium 232’]. He is a

renowned expert on nuclear data applied to reactor physics and although retired, he still maintains

the CALENDF code package, the French equivalent of the American NJOY code.

(Courtesy Ribon)
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distributions rather than the more natural energy variable. To illustrate this

discretization, let us consider a cross section (Fig. 5.16). For a given value of the

cross section between σmin and σmax, the occurrence rate, π(σ), also known as the

distribution function, is computed and normalized either to the energy range,

Emax�Emin, or to the lethargy range.

Using this approach, the occurrence rate for the minimum value of the cross

section is π(σmin)¼ 1. The probability density p(σ)dσ is defined as the derivative of

the distribution function. The distribution25 obtained is then discretized using

discrete lines (3 in this example). Instead of the position of the resonances, a

table of discrete values for the cross sections σi with the weights πi is employed

(Fig. 5.17).

u
minE maxE

σ
maxσ

minσ

∑
i

segments

1σ

2σ
3σ

1p
2p

3p
discretep

)(σπ )(σp1

Fig. 5.16 Construction of the distribution function
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Fig. 5.17 Probability table p(σ) (from Alain Hébert and Mireille Coste, Courtesy Coste)

25Vladimirov (1979) is a good reference work on distribution theory.
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These weights can be normalized to obtain a probability density p(σ) such that:

ðmax σð Þ

0

p σð Þdσ ¼ 1

π σð Þ ¼
P
i

Eiþ1 � Eið Þ
Emax � Emin

for
σt Eiþ1ð Þ ¼ σ
σt Eið Þ ¼ σ
8E 2 Ei;Eiþ1½ � σt Eð Þ > σ

8<:
This change in variable enables the calculation of any integral of a function of

variable σ by a discrete sum over the discrete rays using the Lebesgue method [see

(Diu et al. 2001, p. 55)] for change in variables for probability densities):

I ¼
ðumax

umin

f σ uð Þð Þ du ¼
ðσmax

σmin

f σð Þp σð Þdσ �
X
i

f σið Þ pi

and again, using the normalized probability density:

1

umax � umin

ðumax

umin

f σ uð Þð Þ du ¼
ðσmax

0

f σð Þp σð Þ dσ

The integral can also be computed in the form of a quadrature. In 1990, Ribon

proposed the use of a Gaussian quadrature, which conserves the moments of the

total cross section (the quadrature is exact at order n for any polynomial of degree

lower or equal to 2n–1). The moment k of the total cross section is given by:

ðumax

umin

σk uð Þ du ¼
Xn
i¼1

σ k
i pi

The LHS of this expression is the exact moment computed with the exact form of

the cross section obtained from nuclear libraries with a refined energy grid, while

the RHS is its representation with a quadrature. Instead of varying k from 0 to

2n� 1, Ribon prefers to use k from �n+ 1 to n, resulting in better modeling of

negative moments. Writing the previous equations for �n + 1� k� n produces a

system of 2n� 1 equations that are linear in pi but non-linear in σi. This system
enables calculation of the optimal couples for the required integrals. These are

always positive and may be made temperature-dependent to take into account the

Doppler effect, but it must be borne in mind that the integrals are not linear with

respect to σi for high order moments (mathematically, interpolations over

328 5 Resonant Absorption



temperature cannot be carried out for σi). Use of the quadrature formulae greatly

simplifies the integral calculations. However, partial cross sections (e.g. σ(n, γ)) are
slightly more complicated. In neutronics, they are always in linear forms such as:

Ix ¼
ðumax

umin

f σt uð Þð Þ σx uð Þ du with, e:g:, f σt uð Þð Þ ¼ Φ uð Þ

In this case, the following can be written:

Ix ¼
ðσt,max

σt,min

f σtð Þ dσt

ðσx,max

σx,min

ω σt; σxð Þ σxdσx ¼
ðσt,max

σt,min

f σtð Þ p σtð Þ σx σtð Þ dσt

where σx σtð Þ ¼ Ðσx,max

σx,min

ω σt;σxð Þ
p σtð Þ σxdσx and q(σx|σt)�ω(σt, σx)/p(σt) is the conditional

probability of obtaining σx where σt is known. With quadratures, the integral value

is:

Ix ¼
X
i

pi f σt, ið Þσx, i

The couples (σx , i, pi) are obtained by equating the first n moments:

X
i

piσ
k
t, iσx, i ¼

ð
σ k
t uð Þσx uð Þ du

As seen earlier, it is more reasonable to vary k from�n/2 to +n/2. Such a method

for partial cross sections verifies that for each line σt, i ¼
P
x
σx, i. Hence, the

probability table formalism can be applied to multi-group cross sections:

σx,g �

Ð
Δug

σx uð ÞΦ uð ÞduÐ
Δug

Φ uð Þdu

with Φ(u)¼R(u)/(σt(u) + σe) where R(u) is the collision density. The integral at the
numerator is computed using the method encountered earlier:

Ix ¼
ð
Δug

σx uð ÞΦ uð Þdu

¼
ð
Δug

σx uð Þ 1

σt uð Þ þ σe
R uð Þdu ¼

ð
Δσt

1

σt þ σe
dσt

ð
Δσx

σx dσx

ð
ΔR

Rω σt; σx;Rð ÞdR
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With ω(σt, σx,R)� p(σt) q(σx|σt) r(R|σx|σt), r(R|σx|σt) being the probability of

obtaining R where σx and σt are known. Therefore:

Ix ¼
ð
Δσt

1

σt þ σe
p σtð Þdσt

ð
Δσx

σxq σxjσtð Þdσx
ð
ΔR

Rr Rjσxjσtð ÞdR

This expression can be simplified if we assume r(R|σx|σt) to be independent of σx
and σt; this is the statistical hypothesis. In simple terms, the statistical hypothesis

implies that the result is not influenced by the permutation of resonances in the

energy range being considered.26 In this case, the last integral is simply the mean

value of the collision density:ð
ΔR

R r Rjσxjσtð ÞdR ¼
ð
ΔR

R r Rð ÞdR ¼ R

Thus: Ix ¼ R
Ð
Δσt

1
σtþσe

p σtð Þ σx dσt ¼ R
Pn
i¼1

1
σt, iþσe

pi σx, i

Let the cross section in the group be:

σx,g �
Pn
i¼1

1
σt, iþσe

pi σx, iPn
i¼1

1
σt, iþσe

pi

The non-statistical hypothesis supposes that r(R|σx|σt) does not depend solely on
σt. The integral is written as:

Ix ¼
ð
Δσt

1

σt þ σe
p σtð Þdσt

ð
Δσx

σxq σxjσtð Þdσx
ð
ΔR

Rr Rjσxð ÞdR

¼
ð
Δσt

1

σt þ σe
p σtð Þσx σtð ÞR σtð Þdσt ¼

Xn
i¼1

1

σt, i þ σe
pi σx, i Ri

with σx, i ¼ σx σt, ið Þ and Ri ¼ R σt, ið Þ. Finally:

26Alain Aggery: Calculs de référence avec un maillage multigroupe fin sur des assemblages
critiques par APOLLO2[‘Reference calculations with fine multi-group mesh for critical assem-

blies using APOLLO2’], PhD thesis at the University of Aix-Marseille (1999). A detailed

description of the probability table method is presented in this thesis.
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σx,g �
Pn
i¼1

Ri

σt, iþσe
pi σx, iPn

i¼1

Ri

σt, iþσe
pi

The statistical hypothesis is obtained if all Ri are supposed to be equal to one

another. The probability table method allows the conservation of data from the fine

structure of cross sections and their fine condensation spectrum related to their

condensation into groups. The Ribon moments method allows the same calculation

with fewer energy groups than the initial subgroup method. It produces greater

precision for effective reaction rates of important isotopes such as 23892U and the self-

shielding of complex cells.27

In conclusion, it should be kept in mind that the French school of neutronics is

rich on the subject of self-shielding. Following the important founding concepts of

Livolant and Jeanpierre, several novel works (Reuss, Tellier, Santamarina, Ribon,

Coste) have brought the French spectral code into the international limelight.

Reference studies28 have shown the discrepancies concerning the radiative capture

rate of 238
92U between APOLLO2 and a hyperfine quasi-exact slowing-down calcu-

lation (TRAMP code, 32,256 energy groups between 7466 and 4 eV) to be less than

1%, leading to reactivity discrepancies of 100 pcm for a PWR cell. It should be

reminded that APOLLO2 is a crucial element in industrial chains of both French

companies: Electricité de France and AREVA.

27A. Khairallah, J. Recolin: Calcul de l’autoprotection résonnante dans les cellules complexes par
la méthode des sous-groupes[‘Calculation of resonant self-shielding for complex cells using the

subgroup method’], Proceedings of a seminar on numerical reactor calculations held in Vienna by

the AIEA, 17–21 January 1972, pp. 305–317 (1972).
28Olivier Bouland: Amélioration du calcul de l’autoprotection des résonances résolues par un
traitement quasi-exact du ralentissement des neutrons [‘Improved calculation of self-shielding of

resonances solved by quasi-exact approach of the slowing-down of neutrons’], PhD thesis,

University of d’Orsay (1994).
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Chapter 6

Doppler Effect

The classical Doppler was discovered by the Austrian physicist, Christian Doppler

(1803–1853), who in 1842 published an article describing the frequency shift for a

wave emitted by a source in motion. Three years later, an experiment confirmed this

theory: 15 trumpeters were placed on board a train and some music-lovers exper-

imenters on a train station platform. When the train arrived, the trumpeters contin-

ued to play and the emitted sound had a lower pitch after train had passed, as

predicted by Doppler. This effect is frequently observed in acoustics, as shown by

train and the trumpeters, as well as in electromagnetism, by the “red-shift” mea-

sured by astrophysicists, and it is utilized in speed radars. This effect may be used to

enable a stationary observer to deduce significant data about a moving target such

as its speed and whether it is approaching or receding (Photo 6.1).

However, another so-called nuclear Doppler effect, although less spectacular, is

observable in nuclear reactors at the atomic scale, and concerns the relative speed

between a neutron and its target nucleus, generally a heavy nuclide. In this case,

there is no shift in optical or acoustic frequency, but rather a modification of the

resonant cross sections of the target nuclei. This modification is due to the high

temperature, and thus, the thermal motion of the target nuclei.

6.1 An Intuitive Analysis of the Doppler Effect

As seen previously, the probability of neutron interaction with matter is a function

of the total energy of the neutron-target nuclide pair, expressed in the center-of-

mass reference frame. Nuclear data libraries generally provide cross sections at a

temperature of 0 Kelvin. At that temperature, the target nuclei are “fixed” and the

resonance of a given cross section may be represented by a Breit-Wigner formula as

a function of the neutron energy E in the center-of-mass reference frame (E¼mv2/2,
where v is the relative velocity of the neutron in the center-of-mass reference frame,

m is the reduced mass of the neutron-target system, i.e. m¼mnM/(mn +M ),

© Springer International Publishing AG 2017
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vr ¼ ~v� ~V
�� �� where ~v is the neutron velocity in the laboratory frame and ~V that of

the target nuclide). If ~V ¼ 0 (theoretical case where the target nuclides are fixed),

then vr ¼ ~vj j. Supposing that the target nuclei have a speed of V ¼ ~V
�� ��, there is

a speed shift, and the relative approaching velocity is also shifted and given by

vr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ V2 � 2vV cos θ

p
(in the example given here, vr> v). The resonance is

thus shifted by a constant term. Finally, in the more general and realistic case where

each target nucleus has a different velocity, the Maxwell velocity distribution is

applied and the resonance widens as the velocity spectrum increases (i.e. as the

temperature increases in the case of Brownian motion). Intuitively, the decrease in

interaction probability at the resonance energy value stems from the increase in the

velocity spectrum of the target nuclei. In the following sections, this intuition will

be confirmed by calculating the Doppler broadening. To this end, let us consider a

theoretical situation in which all the target nuclei are at 0 K, and each atom thus has

the same cross section as a function of energy. Let us next suppose that all of these

atoms move in the same direction at the same speed. The cross section, which

depends on the total energy of the system, is shifted by the impact of the relative

velocity. The resulting cross section is the mean value of the cross sections of all

atoms with the same velocity (speed and direction), with each group f atoms having

a different shift in speed (Fig. 6.1).

Thus, the effective cross section corresponds to the average that integrates the

number of atoms having a given speed. If the temperature increases, the potential

speed spectrum widens, resulting in broadening. Furthermore, there are fewer

atoms with an energy corresponding exactly to the resonance peak value, which

thus decreases.

6.2 Effective Interaction Cross Section with “Hot” Matter

(Barjon 1993; Bussac and Reuss 1985; Duderstadt and Hamilton 1976; Ferziger and

Zweifel 1966, p. 106; Weinberg and Wigner 1958)

Photo 6.1 Christian

Andreas Doppler

(1803–1853) (Public

domain)
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We have now seen in previous chapter several models representing the neutron-

matter interaction cross section σ(E) as a function of neutron energy E. The best-

known formalism is the Breit-Wigner formalism, which describes the shape of the

cross section at 0 K as a function of the nuclear properties of the target nucleus and

the incident particle (here, the neutron). In realistic situations, the target nuclei are

at a temperature above 0 K and in some cases, the thermal agitation of matter (e.g.
Brownian motion in gases) cannot be ignored for the cross section; it should be

noted that the cross section is given in terms of the incident neutron energy within

the center-of-mass reference frame.

6.2.1 Distribution of the Target Nuclei Velocities in Matter:
The Free Gas Model

At thermal equilibrium, the distribution of N atoms of a free gas at velocity ~V up to

d~V and at temperature T in Kelvin is given by the Maxwell-Boltzmann distribution

v�

σ

E

The target nuclei are fixed, KT 0= All of the isotopes have the same apparent 

effective cross section

v�

V

σ

E

The target nuclei have a uniform 

velocity

The cross section is shifted in energy according 

to the relative speed

v�

σ

E

The target nuclei each have a 

different velocity

The apparent effective cross section results from 

the weighted average of all atoms with the same 

relative speed. The shift has different values and 

its direction depends on the sign of the relative 

speed

Fig. 6.1 Empirical analysis of Doppler broadening
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(which is not strictly valid for a crystal, where chemical bonding must be taken into

account since it reduces the degree of freedom of atoms compared to a gas—this

situation will be discussed later):

Maxwell-Boltzmann distribution: N ~V
� �

d~V ¼ N
M

2π kT

� �3
2

e�
M
2 kTV

2

d~V ð6:1Þ

Note thatd~V is a vector differential element, hence a velocity “volume” centered

on ~V, denoted in some publications as d3~V. In spherical coordinates, the differential
volume element is given by: d~V ¼ V2dV sin θ dθ dφ (Fig. 6.2).

6.2.2 Definition of the Effective Cross Section

The interaction rate of n(v) neutrons of speed v (in the laboratory frame) with N(V)
target nuclei of speed V (in the laboratory frame) is given by:

R ~v, ~VÞ ¼ n ~vð Þ σ ~v� ~V
�� ��� �

N
�
~V
��

The relative speed term is used because the cross section depends on the relative

speed of the neutron in the center-of-mass frame. Thus, the total reaction rate for

neutrons with speed v, given by integration over the target atoms with speed V, is:

R ~vð Þ ¼ n ~vð Þ
ð
~V

~v � ~V j σ ~v� ~V j�� �
N ~V
� �

d~V
���

The reaction rate can also be written as:

R ~vð Þ ¼ n ~vð Þv σ vð ÞN

V

ϕ

θ

z

x

y

Fig. 6.2 Definition of the

differential velocity

element in spherical

coordinates
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Where N is the number of target nuclei and σ vð Þ is the effective cross section for
a neutron with speed v. The effective cross section is thus:

Effective cross section: σ ¼ 1

Nv

ð
~V

~v� ~V
�� �� σ ~v� ~V

�� ��� �
N ~V
� �

d~V ð6:2Þ

6.2.3 Cross Section Inversely Proportional to Velocity

Let us consider the special case of a microscopic cross section varying as 1/v:

σ ~v� ~V
�� ��� � ¼ σ0

v0
v� Vð Þ

By substitution in the previous equation, the velocities cancel out in the integral:

1=v cross section broadened by Doppler effect:

σ ¼ 1

Nv

ð
~V

σ0 v0 N ~V
� �

d~V ¼ σ0
v0
v

ð6:3Þ

Hence, a pure 1/v cross section is not temperature-dependent and displays no

Doppler effect. The particular case of the 10B cross section, which varies as 1/v
throughout the entire spectrum (Fig. 6.3), provides a good example.

6.2.4 Constant Cross Section

The broadening of a constant cross section (as is the case for the scattering cross

section of several light isotopes such as hydrogen or carbon over a large energy

range) is particularly interesting. Let us begin with the definition of the effective

cross section:

σ� 1

Nv

ð
~V

~v� ~V
�� �� σ ~v� ~V

�� ��� �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
σ0

N ~V
� �

d~V¼ σ0
v

ðV¼þ1

V¼0

~v� ~V
�� �� M

2πkT

� �3
2

e�
M
2 kTV

2

d~V

The vector differential element of velocity is given by:

d~V ¼ V2dV sin θ dθ dφ. Defining θ as the angle between the velocities of the

neutron and the target nucleus, and choosing the z axis as the direction of the

incident neutron, we get:
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~v� ~V
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ V2 � 2vV cos θ
p

The standard integration variable used is μ¼ cos θ (Barjon 1993, p. 72):

σ ¼ σ0
v

M

2π kT

� �3
2
ðV¼þ1

V¼0

ð2π
0

dφ

ðθ¼π

θ¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ V2 � 2vV cos θ

p
e�

M
2 kTV

2

V2dV sin θ dθ

¼ σ0
v

M

2π kT

� �3
2

2π

ðV¼þ1

V¼0

ðμ¼þ1

μ¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ V2 � 2vVμ

q
e�

M
2 kTV

2

V2dV dμ

¼ σ0
v

M

2π kT

� �3
2

2π

ðV¼þ1

V¼0

e�
M
2 kTV

2

V2dV �2

3

1

2vV
v2 þ V2 � 2vVμ
� �3

2

h iþ1

�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V�vð Þ

6
2� Vþvð Þ

6
2

0
BBBB@

1
CCCCA

The integrated term depends on the sign of the V� v difference:

v2 þ V2 � 2vVμ
� �3

2 ¼ V � vð Þ3 � V þ vð Þ3 ¼ �2v V2 þ 3v2
� �

if V > v

v� Vð Þ3 � V þ vð Þ3 ¼ �2V v2 þ 3V2
� �

if V < v
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Fig. 6.3 Doppler broadening of the (n, α) cross section of 10
5B (adapted from the NJOY

documentation)
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Thus:

σ¼ σ0
v

M

2πkT

� � 3
2

2π

ðV¼v

V¼0

e�
M
2 kTV

2

V2 2vþ2V2

3v

� �
dVþ

ðV¼þ1

V¼v

e�
M
2 kTV

2

V2 2Vþ2v2

3V

� �
dV

With a few algebraic operations, the different moments 〈Vn〉 may be evalu-

ated and weighted by the function exp(�MV2/(2kT)) using the following change in

variable MV2/(2kT)� α2V2¼ x, and defining α � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M= 2kTð Þp

to simplify the

expressions:

Vnh i �
ðV¼þ1

V¼0

e�
M
2 kTV

2

VndV ¼
ðx¼þ1

x¼0

e�x x
n
2

αn
1

2α
x�

1
2dx ¼ 1

2αnþ1
Γ

nþ 1

2

� �

As for the partial integrals, the error function erf xð Þ ¼ 2ffiffi
π

p
Ðþ1

0

e�t2dt is sought for

using the variable change MV2/(2kT)� α2V2¼ y2

IEn vð Þ �
ðV¼v

V¼0

e�
M
2 kTV

2

VndV ¼
ðy¼αv

y¼0

e�y2 yn

αnþ1
dy

which, when integrated by parts, leads to a recurrence relation that couples the

integral terms n and n + 2:

IEn vð Þ �
ðy¼αv

y¼0

e�y2 yn

αnþ1
dy ¼ 1

αnþ1
e�y2 y

nþ1

nþ 1

	 
αv
0

�
ðy¼αv

y¼0

� 2ye�y2 y
nþ1

nþ 1
dy

0
B@

1
CA

¼ vnþ1

nþ 1ð Þe
�α2v2 þ 2

α2

nþ 1
IEnþ2 vð Þ

and the recurrence is initialized by:

IE0 vð Þ�
ðy¼αv

y¼0

e�y2 1

α
dy¼

ffiffiffi
π

p
2α

erf αvð Þ and IE1 vð Þ�
ðy¼αv

y¼0

e�y2 y

α2
dy¼ 1

2α2
1� e�α2v2
� �

Hence:

IE2 vð Þ ¼
ffiffiffi
π

p
4α3

erf αvð Þ � v

2α2
e�α2v2

IE3 vð Þ � 1

2α4
1� e�α2v2
� �

� v2

2α2
e�α2v2

IE4 vð Þ ¼ 3
ffiffiffi
π

p
8α5

erf αvð Þ � 3v

4α4
e�α2v2 � v3

2α2
e�α2v2

8>>>>><
>>>>>:
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The integrals between [v, +1[ are obtained by the difference:

IFn vð Þ �
ðV¼þ1

V¼v

ve�
M
2 kTV

2

VndV ¼ Vnh i � IEn vð Þ

These terms may be combined to give:

σ ¼ σ0
v

M

2π kT

� �3
2

2π 2v IE2 vð Þ þ 2

3v
IE4 vð Þ þ 2IF3 vð Þ þ 2v2

3
IF1 vð Þ

	 


σ ¼ σ0
v

M

2π kT

� �3
2

2π

2v

ffiffiffi
π

p
4α3

erf αvð Þ � v

2α2
e�α2v2

� �
þ 2

3v

3
ffiffiffi
π

p
8α5

erf αvð Þ � 3v

4α4
e�α2v2 � v3

2α2
e�α2v2

� �
þ2

1

2α4
Γ 2ð Þ � 1

2α4
1� e�α2v2
� �

þ v2

2α2
e�α2v2

� �
þ 2v2

3

1

2α2
Γ 1ð Þ � 1

2α2
1� e�α2v2
� �� �

2
666666666664

3
777777777775

which can be simplified algebraically as:

σ vð Þ ¼ σ0 1þ 1

2α2v2

� �
erf αvð Þ þ 1

αv

1ffiffiffi
π

p e�α2v2
	 


The expression is then written in terms of energy using the incident neutron

kinetic energy E¼mv2/2, i.e. αv �½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mv= 2kTð Þp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AE= kTð Þp
with A¼M/m:

Constant cross section broadened by the Doppler effect:

σ Eð Þ barn½ � ¼ σ0 barn½ � 1þ kT

2AE

� �
erf

ffiffiffiffiffiffi
AE

kT

r !
þ

ffiffiffiffiffiffi
kT

AE

r
1ffiffiffi
π

p e�
AE
kT

" #
ð6:4Þ

It is observed that when x�AE/(kT)> > 1, since lim
x!þ1 erf xð Þ ¼ 1 and the

exponential term tends to 0, the cross section tends to the original constant cross

section σ0 when varying with energy. However, when x< < 1, then erf xð Þ � 2x=ffiffiffi
π

p
and the exponential tends to 1.

σ Eð Þ � σ0
2ffiffiffi
π

p
ffiffiffiffiffiffi
kT

AE

r
¼ σ0

2ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffi
2kT

Mv2

r
¼ σ0

�V

v

where �V ¼ 2ffiffi
π

p
ffiffiffiffiffiffi
2kT
M

q
¼ 2ffiffi

π
p VT is the mean speed of the target nuclei at temperature

T and with VT being the most probable speed. At low energy, a 1/v shape is observed
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and this characteristic becomes more prominent as temperature increases (126C case,

Fig. 6.4).

6.3 Generalized Doppler Broadening: Bethe-Placzek

Formula

By introducing the speed distribution of the target nuclei into the effective cross

section expression, the following is obtained:

σ ¼ 1

v

M

2π kT

� �3
2
ð
~V

~v� ~V
�� ��σ ~v� ~V

�� ��� �
e�

M
2 kT V

2

d~V

Let the relative velocity vector be~vr ¼ ~V �~v, enabling the target velocity to be
computed in terms of the relative velocity: ~V ¼ ~vþ~vr with the differential element

d~vr ¼ d~V since ~v is constant in the integral (Fig. 6.5).

The effective cross section is then expressed in terms of the relative velocity,

which becomes the sole remaining integration variable after efficient vector

simplification:
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Fig. 6.4 Doppler broadening of the total cross section of 12
6C (from the NJOY documentation)
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σ ¼ 1

v

M

2π kT

� �3
2
ð
~vR

vrσ vrð Þ e�
M
2 kT ~vþ~vrj j2 d~vr

By composition of vectors: ~vþ~vrj j2 ¼ v2 þ v2r þ 2vvr cos ~v,~vrð Þ ¼
v2 þ v2r þ 2vvr cos θ

Hence σ ¼ 1
v

M
2π kT

� �3
2
Ð
~vr

vr σ vrð Þ e�
M
2 kT v2þv2rð Þ e� M

2 kT 2 v vr cos θ d~vr

In spherical coordinates, with the z axis in the ~v direction, the relative velocity
differential element is written as d~vr ¼ vr

2 dvr sin θ dθ dφ, leading to:

σ ¼ 1

v

M

2π kT

� �3
2
ð2π
0

dφ

ðþ1

0

v3r σ vrð Þe� M
2 kT v2þv2rð Þ

ðπ
0

e�
M
2 kT 2 v vr cos θ sin θdθdvr

The integration over φ is obvious, while that over θ requires a change of variable
such that μ¼ cos θ, i.e. dμ¼ � sin θ dθ giving the following:

σ ¼ 1

v

M

kT

� �3
2 1ffiffiffiffiffi

2π
p

ðþ1

0

v3r σ vrð Þe� M
2 kT v2þv2rð Þ

ðþ1

�1

e�
M
2 kT 2v vr μdμdvr

After computation of the integral term with respect to dμ:

σ ¼ 1

v

M

kT

� �3
2 1ffiffiffiffiffi

2π
p

ðþ1

0

v3r σ vrð Þe� M
2 kT v2þv2rð Þ e�

M
2 kT 2 v vr � e

M
2 kT 2 v vr

� M
2 kT 2vvr

" #
dvr

It may be seen that the resulting expression is composed of perfect squares, and

by simplifying it, the Bethe-Placzek equation in velocity is obtained:

Bethe-Placzek equation in velocity:

σ ¼ 1

v2

ffiffiffiffiffiffiffiffiffiffiffi
M

2π kT

r ðþ1

0

v2r σ vrð Þ e�
M
2 kT v�vrð Þ2 � e�

M
2 kT vþvrð Þ2

" #
dvr ð6:5Þ

v

V
vVv r −=

ψ

z

θ

Fig. 6.5 Velocity vector

triangle
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Hans Bethe (left) and George Placzek (right) (Public domain)

This equation is also presented in certain publications by introducing a velocity

corresponding to twice the thermal energy kT: vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kT=M

p
, thus giving the form:

σ ¼ 1ffiffiffiffiffi
2π

p
vthv2

ðþ1

0

v2r σ vrð Þ e
� 1

2 vth
2 v�vrð Þ2 � e

� 1

2 vth
2 vþvrð Þ2

" #
dvr

At this stage, there is no simplifying approximation and the equation is exact

under the hypothesis that the distribution of target nuclei is a Maxwellian distribu-

tion. The latter implies a free gas model with no interaction, save for elastic

collisions. This equation is transformed to obtain energy as a variable. Let E be

the neutron energy in the laboratory frame (E¼mv2/2) and ε the neutron energy in

the center-of-mass frame (ε ¼ mv2r=2), which gives:

σ ¼ m

2E

� � ffiffiffiffiffiffiffiffiffiffiffi
M

2π kT

r ðþ1

0

2ε

m
σ εð Þ e�

M
2 kT

ffiffiffi
2E
m

p
�
ffiffiffi
2ε
m

p� �2
� e�

M
2 kT

ffiffiffi
2E
m

p
þ
ffiffiffi
2ε
m

p� �2" #
dεffiffiffiffiffiffiffiffiffi
2εm

p

For a free gas, the Bethe-Placzek equation in energy is obtained with A¼M/m
(Fig. 6.6):

Bethe-Placzek equation in energy:

σ ¼ 1

E

ffiffiffiffiffiffiffiffiffiffiffi
A

4π kT

r ðþ1

0

ffiffiffi
ε

p
σ εð Þ e�

A
kT

ffiffiffi
E

p � ffiffi
ε

pð Þ2 � e�
A
kT

ffiffiffi
E

p þ ffiffi
ε

pð Þ2
" #

dε ð6:6Þ
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In the case of a cubic crystal lattice in which atoms are bounded by the lattice

energy, Willis Lamb1 (in 1939) established that the previous form was still valid

using an effective temperature Teff instead of T. This temperature is given by

(Fr€ohner 2000, p. 72):

Teff ¼ T
T

θD

� �3
3

2

ð θD
T

0

x3coth
x

2

� �
dx � T 1þ 1

20

θD
T

� �2

� . . .

 !

where θD is the Debye2 temperature of the crystal (Dresner 1960, p. 33; Mazenko

2000, p. 488). For power reactors with uranium fuel, the true temperature is much

higher than the Debye temperature, and is taken as the effective temperature of the
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Fig. 6.6 Doppler broadening of the (n, γ) cross section of 240
94Pu (from the NJOY documentation)

1Willis Eugene Lamb Jr (1913–2008) was an American physicist. He obtained his PhD on neutron

scattering in 1938 at Berkeley under the supervision of Robert Oppenheimer, and published an

original work in his own name on the effective temperature: Capture of neutrons by atoms in a
crystal, Phys. Rev. 55, 190–197 (1939). He later taught at several faculties. He was awarded the

Nobel Prize in 1955 for studies he performed in 1947 on the fine structure of the hydrogen atom

concerning the doubling of hydrogen rays induced by virtual fluctuations of the electromagnetic

field (second quantization). This effect is known as the Lamb shift.
2Peter Debye (1884–1966) was a Dutch chemist and physicist. He read electro-technics at Aachen

under the supervision of Arnold Sommerfeld. In 1912, he derived the equations of the dipole

moment in terms of temperature and developed a specific heat theory for very low temperatures by

introducing the notion of phonons. In 1936, he was awarded the Nobel Prize in chemistry for

“contributing to the study of the molecular structure through research on the dipolar moment and
X-ray diffraction in gases.” In 1938, he refused the insistent treaties of the Nazis to take German

nationality and fled to the United States, where he worked at Cornell University and became head

of the chemistry department. The Debye is the unit of the dipole moment of molecules
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medium. This approximation is not justified for carbon structures as in French

Uranium Naturel Graphite Gaz (UNGG) reactors. The effective temperature will be

discussed later.

6.4 Doppler Broadening of a Breit-Wigner Cross Section

6.4.1 Overview of the Breit-Wigner Formalism

The Breit-Wigner formalism is based on understanding of the decay of the inter-

mediate nucleus. The latter is formed during the interaction of an incident particle

with a target nucleus. The neutron energy from the Breit-Wigner equation is

expressed in the center-of-mass frame ε ¼ mv2r=2. Breit and Wigner described the

behavior of the cross section in the vicinity of a resonance using a first-level

formula for neutrons with zero angular momentum:

σn, γ εð Þ ¼ 4π�λ2gΓnΓγ

Γ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
σn, γ 0

1

1þ 2 ε�E0ð Þ
Γ

� �2 ¼ σn, γ0
1

1þ x2

with σn, γ 0 ¼ σt 0 εð ÞΓγ

Γ ¼ 4π�λ2g ΓnΓγ

Γ2

Peter Debye (Public domain).
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The neutron width of resonant scattering Γn, of radiative capture Γγ and of

fission Γf are defined. Experiments have shown that Γn depends on energy ε
according to the following equation (Fig. 6.7):

Γn εð Þ ¼ Γn E0ð Þ
ffiffiffiffiffi
ε

E0

r

The sum of the partial widths amounts to Γ, the width of the total resonance.

Close to the resonance, this equation is simplified by assuming that σ0 is constant.
Nevertheless, for the rest of this chapter, the term with a square root in energy is

kept as it translates the fact that the cross section has a 1/v form at low energies.

Thus:

σ n;γð Þ εð Þ ¼ σ0
Γi

Γ

ffiffiffiffiffi
E0

ε

r
1

1þ 2 ε�E0ð Þ
Γ

� �2
The term

ffiffiffiffiffiffiffiffiffiffi
E0=ε

p
shows the 1/v tendency of the cross section far from the

resonance at low energy:

σt 0 εð Þ ¼ 4π�λ2g
Γn E0ð Þ

ffiffiffiffi
ε
E0

q
Γ

¼ 4π
�h2
2με

g

ffiffiffiffiffi
ε

E0

r
¼ 2π

�h2
μE0

g Γn E0ð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
σ 0

ffiffiffiffiffi
E0

ε

r
¼ σ 0

ffiffiffiffiffi
E0

ε

r

hence: σn, γ 0 ¼ σt 0 εð ÞΓγ

Γ ¼ σ 0

ffiffiffiffi
E0

ε

q
Γγ

Γ

For an energy much greater than that of the resonance (ε> >E0), the asymptotic

behavior of a resonance can be induced as the inverse of the energy variable to the

power of 5=2:

Γ Width of resonance

at mid-height 

E0

E

σ

Fig. 6.7 A Breit-Wigner

cross section in the vicinity

of a resonance
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σ n;γð Þ εð Þ ¼ σ0
Γi

Γ

ffiffiffiffiffi
E0

ε

r
1

1þ 2 ε�E0ð Þ
Γ

� �2 � σ0
ΓiΓ

ffiffiffiffiffi
E0

p

4ε
5
2

6.4.2 Voigt’s Formula

The Bethe-Placzek equation in energy is transformed by introducing the Breit-

Wigner model:

σ � σ0ffiffiffi
π

p Γi

Γ

E0

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

4 kT E0

r ðþ1

0

e�
A
kT

ffiffi
ε

p � ffiffiffi
E

pð Þ2 � e�
A
kT

ffiffi
ε

p þ ffiffiffi
E

pð Þ2

4 ε�E0

Γ

� �2 þ 1
dε

The following is a simplification based on physical considerations: the neutrons

are generally at energy values higher than the thermal energy, i.e. E> > kT and

E� ε. This hypothesis leads to three simplifications: in the second exponential

term, the following can be written:

ffiffiffi
E

p
þ ffiffiffi

ε
p� �2

� 4E >> kT

that is, a very small exponential term. On the other hand, in the first exponential,ffiffiffi
E

p � ffiffiffi
ε

p� �2 � 0, i.e. an exponential value close to 1. The second exponential

term can be neglected compared to the first. Furthermore, with a Taylor

expansion:

ffiffiffi
ε

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ ε� Eð Þ

p
¼

ffiffiffi
E

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε� E

E

r
�

ffiffiffi
E

p
1þ ε� E

2E

� �

thereby leading to a simplification of the first exponential term: e�
A
kT

ε�Eð Þ2
4E . Finally, in

the integral term,
ffiffiffi
ε

p
=E � 1=

ffiffiffiffiffi
E0

p
, which equates to the fact that ε is very close to E,

this is the very hypothesis which was used in the previous expansion. Hence, only

energy values close to E0 contribute to the integral term. On moving away from E0,

the Breit-Wigner model is obviously no longer appropriate since either there is the

influence of another resonance (of energy E1), the cross section is constant (poten-

tial cross section), or at very low energies there is a 1/v tendency. The general form
of the cross section is the sum of the different resonances of Breit-Wigner cross

sections (with an interference term between resonances) and the potential cross

section (4πR2). Finally, the cross section is defined with an improper integral over
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energy called the Voigt formula,3 which derives from his work on the broadening of

Gaussian distribution and is widely tabulated in the literature (Stacey 2001, p. 115;

Barjon 1993, p. 81; Foderaro 1971, p. 515); see also.4

Voigt’s formula: σ � σ0
Γi

Γ

1ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

4kT E0

r ðþ1

0

e
�1

4
A

kT E0
ε�Eð Þ2

4 ε�E0

Γ

� �2 þ 1
dε ð6:7Þ

It should be noted that the physical hypotheses applied earlier render the

foregoing formula inappropriate for resonances at low energies (in the thermal

energy range).

These hypotheses are too often overlooked and Voigt’s formula is applied to all

the resonances, even those at low energies (e.g. for certain even isotopes of

Photo 6.2 Woldemar

Voigt (1850–1919): A

precursor in the field of

relativity theory (Public

domain)

3WoldemarVoigt (1850–1919)was aGerman physicist (Photo 6.2). At theUniversity ofGottingen, his

interests centered on crystallography and thermodynamics. In 1887, he published ‘ €Uber das
Doppler’sche princip’ (On the Principles of the Doppler Effect) in G€ottinger Nachrichten (7),

pp. 41–61 (1887), which was in fact one of the first theories involving non-varying speed of light,

and thus prefigured the theory of relativity. In the same paper, he postulated the invariance of laws of

physics in the translation frames. He suggested that the Michelson-Morley experiment in 1881

(showing that the Earth’s motion had no effect on the speed of light) was due to Doppler effect within

the absolute space-time frame, without nevertheless, although he did not challenge the principle of the

ether—amediumwith “magical” properties (harder thandiamond, thinner than air!) thatwaspostulated

to explain the propagation of electromagnetic waves. Furthermore, he proposed a transformation of

coordinates of a frame of reference that was also developed completely by Lorentz independently of

Voigt. The name of Lorentz is still associated with this transformation. The work of Andreas Ernst and

Jong-Ping Hsu on the history of sciences, First Proposal of the Universal Speed of Light by Voigt in
1887, Chinese Journal of Physics, vol. 39(3) pp. 211–230 (2001), shows the importance and Voigt’s
innovative work in its context, without diminishing the contributions of Lorentz or Einstein. For the

record, it was Voigt who invented the word “tensor” in the mathematical sense in 1899.
4Beynon and Grant: Evaluation of the Doppler-Broadened Single-Level and Interference Func-
tions, Nuclear Science and Engineering, 17, p. 545 (1963).
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plutonium). (Duderstatd and Hamilton 1976) gives the example of the 0.296 eV

resonance of 239
94Pu where applying Voigt’s formula at 2000�C leads to a discrep-

ancy of 50% compared to the exact formula. Let us set the following:

Doppler width: Δ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kT E0

A

r
ð6:8Þ

widely called the Doppler width. The cross section is written using the previous

variable:

σ � σ0
Γi

Γ

1ffiffiffi
π

p 1

Δ

ðþ1

0

e�
1

4Δ2
ε�Eð Þ2

4 ε�E0

Γ

� �2 þ 1
dε

The dimensionless energy variable is then set as: x¼ 2(E�E0)/Γ, i.e.
E ¼ E0 þ xΓ

2
:

σ � σ0
Γi

Γ

1ffiffiffi
π

p 1

Δ

ðþ1

0

e�
1
4

Γ
Δð Þ2 2

ε�E0
Γ �xð Þ2

4 ε�E0

Γ

� �2 þ 1
dε

Finally, the reduced variable for integration is set as: y ¼ 2 ε�E0

Γ , i.e. dε ¼ Γ
2
dy

which varies from �2E0

Γ to +1.

Hence, the effective cross section is expressed as:

σ � σ0
Γi

Γ

1

2
ffiffiffi
π

p Γ

Δ

ðþ1

�2
E0
Γ

e�
1
4

Γ
Δð Þ2 y�xð Þ2

y2 þ 1
dy

Let us now examine a narrow resonance, with the Narrow Resonance
approximation, i.e. E0> >Γ. This hypothesis allows integration to be extended

up to �1. Finally, the dimensionless number ξ¼Γ/Δ is used to deduce the first
Voigt function Ψ :

σ � σ0
Γi

Γ
Ψ x; ξð Þ ¼ σ0

Γi

Γ

ξ

2
ffiffiffi
π

p
ðþ1

�1

e�
ξ2

4
x�yð Þ2

y2 þ 1
dy

2
4

3
5

The Voigt function Ψ is defined as:

First Voigt function: Ψ x; ξð Þ ¼ ξ

2
ffiffiffi
π

p
ðþ1

�1

e�
ξ2

4
x�yð Þ2

y2 þ 1
dy ð6:9Þ
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The equation is independent of the target nucleus thanks to the use of dimen-

sionless parameters. This function is the convolution of a Breit-Wigner function by

a Gaussian distribution. This integral cannot be computed analytically and has been

calculated by numerical methods since the 1940s, and by computer as soon as

feasible. The results have been tabulated for a wide range of values of x and ξ.
As temperature T tends towards 0, the target nuclei are no longer in motion, and

~vR ¼ ~V �~v tends towards v. Hence, ε tends towards E and y tends towards x. We

may thus write:

lim
T! 0K

Ψ ξ; xð Þð Þ ¼ lim
T! 0K

ξ

2
ffiffiffi
π

p 1

1þ x2

ðþ1

�1
e�

ξ2

4
x�yð Þ2dy

0
@

1
A

¼ 1ffiffiffi
π

p 1

1þ x2

ðþ1

�1
e�u2 du

However, the integral of a Gauss distribution from �1 to +1 is equal to

Γ 1=2Þ ¼ ffiffiffi
π

pð . Thus, the following is deduced:

lim
T! 0K

σ xð Þ ¼ σ0
Γi

Γ

1

1þ x2

To conclude, the Voigt cross section, although the simplification, tends towards

the Breit-Wigner cross section for very low temperature values, which was to be

expected from a physics point of view and based on the Breit-Wigner model. High

temperatures correspond to cases where ξ is close to 0. Therefore, the exponential is
close to 1 and almost constant, equal to exp(�ξ2x2/4 ). This term is removed from

the integration term:

lim
T!1

Ψ ξ; xð Þð Þ ¼ lim
ξ!0

ξ

2
ffiffiffi
π

p e�
ξ2

4
x2
ðþ1

�1

1

1þ y2
dy

0
@

1
A

¼
ðþ1

�1

1

1þ y2
dy

0
@

1
A lim

ξ!0

ξ

2
ffiffiffi
π

p e�
ξ2

4
x2

� �

Using x ¼ 2 E�E0

Γ , ξ ¼ Γ
Δ and finally,

Ðþ1

�1
1

1þy2 dy ¼ π, we obtain the following:

σ ¼ σ0

ffiffiffi
π

p
2

Γi

Δ
e�

E�E0ð Þ2
Δ2
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At high temperatures, the Voigt cross section tends to a Gauss distribution

centered on E0 and of width Δ. Hence, the term natural Doppler width for Δ. It
should be noted that this width does not depend on Γ (Fig. 6.8).

It can immediately be seen that the function Ψ is strictly positive since it is the

integral of strictly positive functions for any value of x. Furthermore, it is even with

respect to x and has an extremum (peak value) at x¼ 0. At infinity it tends towards 0.

lim
x!1 Ψ ξ; xð Þð Þ ¼ lim

x!1
ξ

2
ffiffiffi
π

p
ðþ1

�1

e�
ξ2

4
x�yð Þ2

1þ y2
dy

0
@

1
A

¼ ξ

2
ffiffiffi
π

p
ðþ1

�1

1

1þ y2
lim
x!1 e�

ξ2

4
x�yð Þ2

� �
dy ¼ 0

The Voigt function has an interesting property: its integral is conserved

with respect to energy. Indeed, it can be seen that Area Tð Þ ¼ Ðþ1

�1
σ x; Tð ÞdE

simplifies to:

Area Tð Þ ¼
ðþ1

�1
σ0

Γi

Γ

ξ

2
ffiffiffi
π

p
ðþ1

�1

e�
ξ2
4
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y2 þ 1
dy
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Fig. 6.8 Doppler broadening at very high temperature for the (n, γ) resonance of 24094Pu at 20 MeV

(adapted from the NJOY documentation)
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The two integrals are interchanged and then, using the reduced energy,

x¼ 2(E�E0)/Γ, i.e. dE¼Γ dx/2, we obtain the following:

Area Tð Þ ¼ σ0
Γi

Γ

ξ

2
ffiffiffi
π

p
ðþ1

�1

1

y2 þ 1

ðþ1

�1
e�

ξ2

4
y�xð Þ2Γ

2
dx

0
@

1
Ady

¼ σ0Γi
ξ

4
ffiffiffi
π

p
ðþ1

�1

1

y2 þ 1

ðþ1

�1
e�u2 2

ξ
du

0
@

1
Ady

It may then be seen that the integral A is constant and independent of temper-

ature, which is not evident on first grounds a priori (Fig. 6.9).

Area ¼ σ0Γi

2

ðþ1

�1

1

y2 þ 1
dy ¼ σ0Γi

2
Arctg yð Þ
h iþ1

�1
¼ π

2
σ0Γi

To conclude, the area under the cross section curve is conserved when temper-

ature varies. Hence, if the maximum of the resonance decreases, its width will tend
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4
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to increase, as predicted by the Doppler effect, which was described in its intuitive

mode at the beginning of this chapter. In fact, due to self-shielding for an absorbing

material, and given that σ0 is not strictly constant, the area under the Voigt curve is
weakly dependent on temperature. This dependence, which can be neglected for

reactor physics applications, should not be forgotten in astrophysics, where the

temperatures reached in the cores of stars are of the order of millions of Kelvin. A

similar calculation shows that the resonance integral at infinite dilution I1 is

constant:

I1 ¼
ð1
0

σ Eð Þ dE

E
¼ σ0Γγ

Γ E0

ð1
0

dE

E�E0

Γ=2

� �2
þ 1

Using the same reasoning as earlier, dE/E is approximated by dE/E0 since the

contribution of neutrons with energy around is dominant in the integral term close

to the resonance.

I1 ¼ σ0Γγ

ΓE0

ð1
0

dE
Γ=2 � Γ

2

1þ E�E0

Γ=2

� �2 ¼ σ0Γγ

ΓE0

ðþ1

�E0
Γ=2

Γ
2

1þ x2
dx

¼ σ0Γγ

2E0

ðþ1

�E0
Γ=2

1

1þ x2
dx � σ0Γγ

2E0

ðþ1

�1

1

1þ x2
dx

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
π

Therefore, the resonance integral is equal to (Dresner 1960, p. 32):

Resonance integral of a sole capture resonance: I1 ¼ σ0π:Γγ

2E0

ð6:10Þ

6.4.3 Interference Function

For the specific case of scattering, there is an interference term in the Breit-Wigner

formalism, which is of the following form:

σs Eð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σs 0 Eð Þ σp g

q Γn

Γ

2x

1þ x2
¼ σt 0

R

�λ
Γn

Γ

2x

1þ x2

with: σp¼ 4π R2, σt 0 Eð Þ ¼ 4π�λ2g Γn Eð Þ
Γ and σs 0 Eð Þ ¼ σt 0 Eð ÞΓn

Γ ¼ 4π�λ2gΓ2
n

Γ2
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A calculation very similar to that for the first Voigt function leads to:

σ interference ¼ σ0
RΓn

�λΓ χ x; ξð Þ ¼ σ0
RΓn

�λΓ
ξ

2
ffiffiffi
π

p
ðþ1

�1

2y

y2 þ 1
e�

ξ2

4
x�yð Þ2 dy

2
4

3
5

The second Voigt function (also called the interference function) is defined by:

Second Voigt function: χ x; ξð Þ � ξ

2
ffiffiffi
π

p
ðþ1

�1

2y

y2 þ 1
e�

ξ2

4
x�yð Þ2 dy ð6:11Þ

Using the same logic as for the ψ function, at low temperatures, the following is

obtained:

σ xð Þ T!0K ¼ σ0
RΓn

λ0Γ

2x

1þ x2

which is the interference term of the Breit-Wigner model. At high temperatures,

similar to ψ , the exponential term can be assumed constant when ξ, which is

inversely proportional to
ffiffiffi
T

p
, is close to 0. Hence, it can be taken out of the integral

in y by setting y¼ 0. It can be seen that 2y/(y2 + 1) is an even function in y and

hence, its integral from �1 to +1 is equal to zero for all values of x. Hence, χ
tends to the zero function at high temperatures and the interferences disappear. The

function χ(x) is odd and has two symmetrical extrema (Fig. 6.10).

6.5 Application to the Large Resonance of Uranium 238

Let us consider the resonance situated at E0 ¼ 6.64 eV in the center-of-mass frame.

This is a very important resonance for water reactors as it contributes significantly

to resonant absorption.

Using Γ¼ 0.0265 eV, Γγ¼ 0.025 eV, σt 0¼ 21 956 barns

ξ¼ Γ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M

μE0kT

s
¼ 0:0265 1:6 � 10�19

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
238

238�1
238þ1

6:64 1:6 � 10�19 1:38 � 10�23T

s
� 8:56ffiffiffi

T
p

Thus

σ n;γð Þ ξ; xð Þ ¼ σt 0:Γγ

Γ Ψ ξ; xð Þ ¼ 21956 0:025
0:0265 Ψ ξ; xð Þ ¼ 20713:2 Ψ ξ; xð Þ barn½ �

The radius of the nucleus is given approximately by the empirical formula

(Evans 1955):
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R � 1:3 10�15A1=3 ¼ 1:3 10�15 2381=3 ¼ 8:056 10�15m

The reduced wavelength is expressed in terms of the Planck constant, the

neutron mass and the energy of the resonance:

�λ ¼ h

π
ffiffiffiffiffiffiffiffiffiffiffi
8mE0

p ¼ 6:62 10�34

3:14
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 1:67 10�27 6:64 1:6 10�19

p ¼ 1:768 10�12 m

Hence:

σt x; Tð Þ ¼ σt 0 Ψ ξ; xð Þ þ σt 0R

D
χ ξ; xð Þ þ 4πR2

¼ 21956 Ψ ξ; xð Þ þ 100 χ ξ; xð Þ þ 8:156 barn½ �

The plot in Fig. 6.11 shows that the interference term decreases the cross section

for E < E0, and increases it for E > E0. Furthermore, it can be noted that the higher

the temperature, the lower is the interference term. Its impact is zero at the position

of the resonance, although it modifies the wings of the latter: the left wing (before

the resonance) is narrowed, while the right wing (after the resonance) is widened.

x
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0.3
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0.5
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0
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1

1.5

-40 -30 -20 -10 0 10 20 30 40

Voigt's Interference Term 

Fig. 6.10 Representation of the second Voigt function χ x; ξð Þ ¼ ξ
2
ffiffi
π

p
Ðþ1

�1
2y

y2þ1
e�

ξ2

4
x�yð Þ2 dy
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Nevertheless, this interference effect is quite weak for this particular resonance.

The calculation of resonant absorption for the uranium 238 isotope must be carried

out with extreme precision for PWR. On the other hand, HTR with thorium are

greatly impacted by the resonances of thorium 232, which is a fertile isotope with a

large initial resonance at 21.8 eV.5

6.6 Temperature Effect on Cross Sections

Computing the Doppler feedback on a cross section eventually leads to the calcu-

lation of the derivatives of the Voigt functions with respect to temperature. Simi-

larly, sensitivity analyses, which are usually carried out using perturbation models,

use the analytical calculation of the Doppler effect, which is simpler than an

experimental design method or using tabulated values. In a future chapter, we

will return to the global effect of temperature on the reactivity of realistic fuel.

0

5000

10000

15000

20000

25000

-40 -30 -20 -10 0 10 20 30 40

σ(
T,

E)

x

Total cross section of U238 with interference around the 
resonance at 6.64 eV

31400 K
7850 K
3500 K
2000 K
1250 K
870 K
640 K
490 K
390 K
310 K
0 K (Breit-Wigner)

Fig. 6.11 Total cross section of 238
92U

5Dominique Grenèche: Physique des réacteurs �a haute température, évaluation des sections
efficaces résonnantes du Thorium 232, interprétation d’expériences critiques américaines [Phys-
ics of high-temperature reactors, evaluation of resonant cross sections of Thorium 232, interpreta-

tion of critical US experiments.], PhD thesis, University of Orsay (1973).
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6.6.1 First Voigt Function ψ

We wish to calculate the derivative ∂Ψ
∂T x; Tð Þ:

Ψ x; ξð Þ ¼ ξ

2
ffiffiffi
π

p
ðþ1

�1

e�
ξ2

4
: x�yð Þ2

1þ y2
dy and ξ ¼ Γffiffiffiffiffiffiffiffi

4π kT
M

q ¼ ξ0

ffiffiffiffiffi
T0

T

r

by defining the reference value of ξ0 at T0: ξ0 ¼ Γ=
ffiffiffiffiffiffiffiffiffiffi
4π:kT0

M

q
.

Using the chain rule: ∂Ψ
∂T x; Tð Þ ¼ ∂Ψ

∂ξ
∂ξ
∂T x; Tð Þ with ∂ξ

∂T Tð Þ ¼ �ξ0
2

ffiffiffiffi
T0

p

T
3
2

¼ � ξ
2 T

The term ∂Ψ
∂ξ is the derivative of the product of

ξ
2
ffiffi
π

p and f x; ξð Þ ¼ Ðþ1

�1
e�

ξ2

4
: x�yð Þ2

1þy2 dy,

i.e.:

∂Ψ
∂ξ

x; ξð Þ ¼ ξ

2
ffiffiffi
π

p ∂f
∂ξ

x; ξð Þ þ 1

2
ffiffiffi
π

p f x; ξð Þ ¼ ξ

2
ffiffiffi
π

p ∂f
∂ξ

x; ξð Þ þ Ψ x; ξð Þ
ξ

Only the derivative of f(x, ξ) is now required. To calculate it, we use the theorem

that allows differentiation under the integral sign, which states that if the function

and its derivative can be integrated, then ∂
∂x

Ð
f x; tð Þdt ¼ Ð ∂f x;tð Þ

∂x dt.

So: ∂
∂ξ e�

x�yð Þ2
4

ξ2
� �

¼ �x2ξ
2
e�

x�yð Þ2
4

ξ2 � ξ
2
y2e�

x�yð Þ2
4

ξ2 þ xξ
2
2y:e�

x�yð Þ2
4

ξ2

i.e.:

∂f
∂ξ

x;ξð Þ ¼ �x2
ξ

2

ðþ1

�1

e�
x�yð Þ2
4

ξ2

1þ y2
dy� ξ

2

ðþ1

�1

y2

1þ y2
e�

x�yð Þ2
4

ξ2dyþ x
ξ

2

ðþ1

�1

2y

1þ y2
e�

x�yð Þ2
4

ξ2dy

In this expression, we find the functions
ffiffiffi
π

p
Ψ andffiffiffi

π
p

χ ¼ ξ
2

Ðþ1

�1
2y

1þy2 e
� x�yð Þ2

4
ξ2dy, therefore:

∂f
∂ξ

x; ξð Þ ¼ �x2
ffiffiffi
π

p
Ψ x; ξð Þ � ξ

2

ðþ1

�1

y2

1þ y2
:e�

x�yð Þ2
4

ξ2dyþ x
ffiffiffi
π

p
χ x; ξð Þ

Only the integral term in the middle remains. We find that y2¼ (y2 + 1)� 1,

which separates the integral into two parts:

ξ

2

ðþ1

�1

y2

1þ y2
e�

x�yð Þ2
4

ξ2dy ¼ ξ

2

2:
ffiffiffi
π

p
ξ

� ffiffiffi
π

p
Ψ x; ξð Þ

thus: ∂f
∂ξ x; ξð Þ ¼ ffiffiffi

π
p

1� x2ð ÞΨ x; ξð Þ � ffiffiffi
π

p þ x
ffiffiffi
π

p
χ x; ξð Þ
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Finally, in the final steps, the Voigt functions are themselves found in the

derivative:

∂Ψ
∂ξ

x; ξð Þ ¼ ξ

2
1� x2 þ 2

ξ2

� �
Ψ
�
x; ξ
�� 1þ x χ

�
x; ξ
�	 


With the temperature variable, the following expression is obtained:

Temperature feedback on the first Voigt function:

∂Ψ
∂T

x; Tð Þ ¼ �ξ2

4T
1� x2 þ 2

ξ2

� �
Ψ
�
x; ξ
�� 1þ xχ

�
x; ξ
�	 


ð6:12Þ

6.6.2 Interference Function

The same procedure is applied to the interference function:

∂χ
∂T

x; Tð Þ ¼ ∂χ
∂ξ

∂ξ
∂T

x; Tð Þ with
∂ξ
∂T

Tð Þ ¼ �ξ0
2

ffiffiffiffiffi
T0

p

T
3
2

¼� ξ

2T

By setting g x; ξð Þ ¼ Ðþ1
�1 2ye

�ξ2

4
: x�yð Þ2

1þy2 dy, we get the following:

∂χ
∂ξ

x; ξð Þ ¼ ξ

2
ffiffiffi
π

p ∂g
∂ξ

x; ξð Þ þ 1

2
ffiffiffi
π

p g x; ξð Þ ¼ ξ

2
ffiffiffi
π

p ∂g
∂ξ

x; ξð Þ þ χ x; ξð Þ
ξ

After some mathematical transformations:

∂g
∂ξ

x; ξð Þ ¼ �x2
ffiffiffi
π

p
χ x; ξð Þ � ξ

2

ðþ1

�1
2y:e�

x�yð Þ2
4 ξ2dyþ ffiffiffi

π
p

χ x; ξð Þ

þ4x
ξ

2

ðþ1

�1
e�

ξ2

4
: x�yð Þ2dy

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
2
ξ

ffiffi
π

p

� 4x
ffiffiffi
π

p
ψ x; ξð Þ

The term ξ
2

Ðþ1

�1
2ye�

x�yð Þ2
4

ξ2dy can be computed by noticing that:
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2y e�
x�yð Þ2
4

ξ2 ¼ 2x e�
x�yð Þ2
4

ξ2 � 4

ξ2

d e�
x�yð Þ2
4

ξ2
� �

dy

Thus: ξ
2

Ðþ1

�1
2ye�

x�yð Þ2
4

ξ2dy ¼ 2xξ
2

ðþ1

�1
e�

ξ2

4
: x�yð Þ2dy|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

2
ξ

ffiffi
π

p

� 2
ξ e�

x�yð Þ2
4

ξ2
	 
þ1

�1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

¼ 2x
ffiffiffi
π

p

Finally:

∂g
∂ξ

x; ξð Þ ¼ ffiffiffi
π

p
2x� x2 χ x; ξð Þ þ χðx; ξÞ � 4xψðx; ξÞ
� �

and:

Temperature feedback on the second Voigt function:

∂χ
∂T

x; ξð Þ ¼ � ξ

2T
ξxþ ξ

2
1� x2
� �þ 1

ξ

� �
χ x; ξð Þ � 2ξxψ

�
x; ξ
�	 


ð6:13Þ

For x¼ 0:∂χ(0, ξ)/∂T¼ 0, which is consistent with the fact that the interference

term is zero for any temperature (hence, for any value of ξ). For x¼ 0,

T ∂Ψ
∂T 0; ξð Þ ¼ �ξ2

4
1þ 2

ξ2

� �
Ψ
�
0; ξ
�� 1

� �
. This coefficient is always negative as

shown in Table 6.1. Therefore, for any temperature, the Voigt function is a

decreasing function with temperature, and this phenomenon is exacerbated if the

temperature rises. The result is the same for the second Voigt function.

6.6.3 Asymptotic Numeric Evaluation

Let the complex number z be defined as z¼ ξ(x+ i)/2; the Voigt functions can be

written as functions of integral of the complex probability density W(z):

ψ x; ξð Þ þ iχ x; ξð Þ ¼
ffiffiffi
π

p
2

ξ W zð Þ

with: W zð Þ ¼ e�z2erfc �izð Þ ¼ ez
2

1þ 2iffiffi
π

p
Ðþ1

0

e�y2dy

� �
¼ 1

iπ

Ðþ1

�1
e�y2

y�z dy

For large values of |z|> 6 (outside those of Tables 6.2 and 6.3), the following

approximation can be used:
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W zð Þ ¼ iffiffiffi
π

p α1
zj j2 �z� 3α2z

zj j4 � 6α2 Re z2ð Þ þ 9α22
þ α2

zj j2 �z� 3α1z

zj j4 � 6α1 Re z2ð Þ þ 9α21

" #

with α1 ¼ 1þ
ffiffi
2
3

p
2

and α2 ¼ 1�
ffiffi
2
3

p
2

.

6.6.4 Derivatives of the Voigt Functions with Respect
to Energy

The derivatives of the Voigt functions with respect to energy, via the reduced

energy variable x, can also be useful in certain applications:

∂Ψ x; ξð Þ
∂x

¼ ξ

2
ffiffiffi
π

p
ðþ1

�1

∂
∂x

e�
ξ2

4
: x�yð Þ2

1þ y2

 !
dy ¼ ξ

2
ffiffiffi
π

p
ðþ1

�1
�ξ2

2
x� yð Þe

�ξ2

4
: x�yð Þ2

1þ y2
dy

∂Ψ x; ξð Þ
∂x

¼ ξ2

4

ξ

2
ffiffiffi
π

p
ðþ1

�1
2y
e�

ξ2

4
: x�yð Þ2

1þ y2
dy� ξ2

2
x

ξ

2
ffiffiffi
π

p
ðþ1

�1

e�
ξ2

4
: x�yð Þ2

1þ y2
dy

¼ ξ2

2

1

2
χ x; ξð Þ � xψ

�
x; ξ
�� �

Similarly:
∂χ x;ξð Þ

∂x ¼ ξ2

2
ξ

2
ffiffi
π

p
Ðþ1
�1

2y2

y2þ1
e�

ξ2

4
: x�yð Þ2dy� ξ2

2
x χ x; ξð Þ

By noting that:

ξ

2
ffiffiffi
π

p
ðþ1

�1

2y2

y2 þ 1
e�

ξ2

4
: x� yð Þ2dy¼ ξ

2
ffiffiffi
π

p
ðþ1

�1

2 y2 þ 1ð Þ � 2

y2 þ 1
e�

ξ2

4
: x� yð Þ2dy

¼ ξffiffiffi
π

p
ðþ1

�1
e�

ξ2

4
: x� yð Þ2dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2

ξ

ffiffiffi
π

p

� ξ

2
ffiffiffi
π

p
ðþ1

�1

2

y2 þ 1
e�

ξ2

4
: x� yð Þ2dy¼ 2� 2Ψ x;ξð Þ

The following equation can be written:

∂χ x; ξð Þ
∂x

¼ ξ2

2
2� 2Ψ x; ξð Þð Þ � ξ2

2
x χ x; ξð Þ ¼ ξ2 1� Ψ x; ξð Þ � x

2
χ x; ξð Þ

� �
To sum up, the derivatives with respect to reduced energy are given by:
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Derivatives of the Voigt functions with respect to energy:

∂Ψ x; ξð Þ
∂x

¼ ξ2

2

1

2
χ x; ξð Þ � xψ

�
x; ξ
�� �

∂χ x; ξð Þ
∂x

¼ ξ2 1� Ψ x; ξð Þ � x

2
χ x; ξð Þ

� �
8>><
>>: ð6:14Þ

In days when computers were less powerful, this system of coupled first-order

differential equations allowed the calculation of the Voigt functions with analog

circuits for a given temperature, i.e.with an imposed ξ. Historically, the functions ψ
and χ were studied under the following forms:

Ψ x; βð Þ ¼ 1

β
ffiffiffi
π

p
ðþ1

�1

e
�:

x�yð Þ
β2

2

1þ y2
dy and Χ x; βð Þ ¼ 1

β
ffiffiffi
π

p
ðþ1

�1

y

1þ y2
e
� x�yð Þ

β2

2

dy

with the same definition of x¼ (E�E0)/2 but β¼ 2Δ/Γ¼ 2/ξ. Another difference is
the coefficient value of 2 under the integral sign, which disappears when changing

from χ( x, ξ ) to Χ( x, β ) since Χ( x, β ) ¼ χ(x, ξ)/2. The Voigt functions will be

denoted as Ψ(x, β ) and Χ( x, β ) , or “Voigt profiles” (Dresner 1960, p. 35), to

distinguish between these different functions.

6.6.5 Some Mathematical Properties of Voigt Profiles

These profiles are well suited to calculating the Doppler effect analytically. Their

value at x¼ 0 is given by:

Ψ 0; βð Þ ¼
ffiffiffi
π

p
β

e
1

β2 erfc
1

β

� �
Χ 0; βð Þ ¼ 0

8<
:

Similarly, for a temperature of zero:

Ψ x; 0ð Þ ¼ 1

1þ x2

Χ x; 0ð Þ ¼ x

1þ x2

8><
>:

The first profile is even, just like the first Voigt function. Similarly, the second

profile is odd. The Voigt profiles can be expanded in converging series:
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Series expansion of the Voigt profiles:

Ψ x; βð Þ ¼ 1

β
e

1�x2ð Þ
β2
X1
n¼0

1

n!

x

β2

� �2n

Γ �nþ 1

2
;
1

β2

� �

Χ x; βð Þ ¼ 1

β
e

1�x2ð Þ
β2
X1
n¼0

1

n!

x

β2

� �2nþ1

Γ �n� 1

2
;
1

β2

� �
8>>>><
>>>>:

ð6:15Þ

where Γ(a, t) is the incomplete gamma function defined by:

Γ aþ 1; tð Þ ¼ aΓ a; tð Þ þ etta ¼
ð1
t

xae�xdx and Γ
1

2
; t

� �
¼ ffiffiffi

π
p

erfc
ffiffi
t

p� �
The properties of the integral and derivatives of the Voigt profiles are given

below:

Ðþ1
�1 Ψ x; βð Þdx ¼ πÐþ1
�1 Χ x; βð Þdx ¼ 0

(
and

∂Ψ x; βð Þ
∂x

¼ 2

β2
Χ x; βð Þ � Ψ ðx; β Þ� �

∂Χ x; βð Þ
∂x

¼ 2

β2
1� Ψ x; βð Þ � Χ x; βð Þ� �

8>><
>>:

The differential equations obtained previously can be found for the Voigt

functions using the transforms Ψ(x, β)¼Ψ (x, ξ ) and Χ( x, β ) ¼ χ(x, ξ)/2.

6.7 Effective Resonance Integral

6.7.1 Homogeneous Medium

Calculation of the effective resonance integral, especially that of uranium 238, is

important for evaluating the escape factor (Duderstadt and Hamilton 1976, p. 334).

For a homogeneous medium of resonant nuclei (uranium) and scattering nuclei

(hydrogen and oxygen), the resonance integral for one situated at energy E0, with

the NR approximation, is written as follows (using the equations obtained from the

previous chapter):

I0 ¼
ð
σa uð Þ σp

σt uð Þ du

The self-shielding coefficient σp/σt(u) uses the potential scattering cross section,

which is the sum of these cross sections for the resonant nuclei (uranium) and for

the scattering nuclei of the mixture, normalized to one uranium atom: this cross

section is sometimes called the dilution cross section σM. Since the medium is
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homogeneous, the scattering cross section ΣM contains contributions from both the

moderator and light nuclei of the fuel (e.g. oxygen in UO2):

σp ¼ σU
p þ ΣM

NU
¼ σU

p þ σM

Introducing the Doppler-broadened total cross section into the integral gives:

σt xð Þ ¼ σp þ σt 0ψ x; ξð Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σt 0 σp g

p
ffiffiffiffiffiffi
Γn

Γ

r
χ x; ξð Þ

σa xð Þ ¼ σt 0
Γa

Γ
ψ x; ξð Þ ¼ σt 0

Γγ þ Γf

� �
Γ

ψ x; ξð Þ

8>><
>>:

with the usual notations6:

β � σp
σt 0

¼ σU
p þ σm

σt 0
and ζ � σU

p

σp

Γn

Γ

the following equation is obtained since du ¼ Γ
2E0

dx:

I0 ¼
Γγ þ Γf

� �
2E0

σp

ðþ1

�1

ψ x; ξð Þ
ψ x; ξð Þ þ ffiffiffiffiffi

ζβ
p

χ x; ξð Þ þ β
dx

2
4

3
5

For pins of small radii, the interference term is weak. In 1958, Adler, Hinmanand

Nordheim tabulated the integral in the preceding formula. Let us set (Dresner 1960,

p. 37; Duderstadt and Hamilton 1976, p. 336; Bussac and Reuss 1985, p. 127;

Ferziger and Zweifel 1966, p. 109; Progress in nuclear energy Vol 2, 1958, p. 235):

J ξ; βð Þ ¼
ðþ1

0

ψ x; ξð Þ
ψ x; ξð Þ þ β

dx

so as to be able to write the effective resonance integral as:

I0 �
Γγ þ Γf

� �
E0

σpJ ξ; βð Þ ¼ Γγ þ Γf

� �
E0

σt0 β J ξ; βð Þ

The function J(ξ, β) was initially studied by Dancoff and Ginsburg in 1944. It

was calculated precisely by Lawrence Dresner in 1956 (Dresner 1960, p. 37) and

since then it has borne his name. For calculation codes, Keshavamurhty and Harish

6Historically, the quantity ζ was noted i, but the confusion with the complex number struck us as

most unfortunate.
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proposed7 the use of the Padé approximation to perform the pseudo-analytical

calculation quickly and accurately. It uses the first Voigt function. When the

temperature tends to 0 K (ξ! +1), the behavior of ψ(x, ξ) is well known since

the Breit-Wigner formalism is obtained, with a 1/(1 + x2)function. Thus, (Dresner
1960, p. 37):

lim
T!0K

J ξ;βð Þ¼J 1;βð Þ¼
ðþ1

0

1

1þβþβx2
dx¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þβð Þβp Arctg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þβð Þβp
1þβ

x

 !" #þ1

0

¼ π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þβð Þβp

If the dilution cross section tends to infinity, e.g. by decreasing the concentration
of resonant isotopes, then, β> > 1	ψ(x, ξ):

lim
σm!0

J ξ; βð Þ ¼
ðþ1

0

ψ x; ξð Þ
β

dx ¼ π

2β

This can be interpreted as follows: if β> > 1	ψ(x, ξ), only the area under the

curve ψ(x, ξ) contributes significantly to the integral. Hence, the resonance integral

at infinite dilution is:

I10 ¼ Γγ þ Γf

� �
E0

σp
π

2β
¼ Γγ þ Γf

� �
E0

σt0
π

2

Applying this equation only to capture, the result from Eq. (6.10) is obtained.

The mathematical analysis of the function J(ξ, β) shows that it decreases with ξ.
This is due to the fact that a rise in temperature causes an increase in J(ξ, β), and
hence in the absorption integral. Indeed:

∂J ξ; βð Þ
∂ξ

¼ β

ðþ1

0

∂ψ x;ξð Þ
∂ξ

ψ x; ξð Þ þ βð Þ2 dx

Since
∂2ψ x;ξð Þ

∂ξ2
¼ �ξ3

2

∂ψ x;ξð Þ
∂ξ , using integration by parts:

7R. S. Keshavamurthy, R. Harish:Use of Padé approximations of the analytical evaluation of the J
(ξ, β) function and its temperature derivative, Nuclear Science and Engineering, Vol. 115, pp.

81–88 (1993).
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∂J ξ; βð Þ
∂ξ

¼ � 2β

ξ3

ðþ1

0

∂2ψ x;ξð Þ
∂ξ2

ψ x; ξð Þ þ βð Þ2 dx ¼ � 2β

ξ3

∂ψ x;ξð Þ
∂ξ

ψ x; ξð Þ þ βð Þ2
" #þ1

0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

� 4β

ξ3

ðþ1

0

∂ψ x;ξð Þ
∂ξ

� �2
ψ x; ξð Þ þ βð Þ3 dx < 0

Hence, the Dresner integral increases with temperature (Dresner 1960, p. 39).

Substituting (Γγ +Γf) by Γγ immediately shows that the capture integral also

increases. This is a very important result for reactor safety since it shows that the

Doppler effect compensates inserted reactivity during power excursions because of

the increase of the fuel temperature. Moreover, the Doppler effect is more efficient

if the fuel is a poor heat conductor, as is the case with oxide fuel. In realistic cases

where ξ
ffiffiffi
π

p
=2=β >> 1, then (Dresner 1960, 40):

J ξ; βð Þ � 2

ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

ffiffiffi
π

p
2

ξ

β

� �s

Expansion into converging series8 allows precise calculation of the Dresner

integral for other situations:

J ξ; βð Þ ¼ π

2β

X1
n¼0

Bnu
n with : u � v

1þ v
, v �

ffiffiffi
π

p
2β

ξe
ξ2

4 erfc
ξ

2

� �

And Bn �
A0Xn
m¼1

Cn�1
m�1Am m 	 1

8<
: with: Am � �1ð Þmffiffiffiffiffiffiffi

1þm
p (Fig. 6.12, Photo 6.3).

6.7.2 Heterogeneous Medium

(Ferziger and Zweifel 1966, p. 110)

In the 1950s, the influence of the heterogeneous nature of the medium on the

effective resonance integral was rapidly observed. Empirical formulae were largely

8Arthur Ginsberg, Martin Becker: An improved series representation of Doppler-broadened
resonance absorption, Nuclear Science and Engineering, Vol. 56, No. 1 pp. 106–107 (1975).

The reader should pay careful attention to a small typing mistake in Am � �1ð Þm= ffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

p
and

change the coefficient sign, since the equation should not be Am � �1ð Þ2= ffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

p
.
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Photo 6.3 Lawrence

Dresner (Courtesy Dresner)
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set up (Lamarsh and Barrata 2001, p. 371; Bussac and Reuss 1985, p. 308; Progress

in Nuclear Energy, Vol 2, 1958, pp. 249–250):

I barn½ � ¼ aþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ g=cm3½ �R cm½ �

p or I barn½ � ¼ cþ d

ffiffiffiffiffiffiffiffiffiffiffi
S cm2½ �
M g½ �

s

where R is the radius of the fuel pin, ρ is its density and, a and b are constants which
are fitted experimentally (for UO2, a¼ 3, b¼ 39.6, ρ¼ 10.95 g/cm3), or alterna-

tively S is the effective resonance surface,9 which coincides with the outer surface

of the pin where the cell contains only one pin, andM is its mass (for UO2, c¼ 5.35,

d¼ 26.6). In the meantime, the analytical calculation of Ieff was being developed. In
the case of a lattice of fuel pins in a moderator, among neutrons undergoing

collisions in the fuel, those which undergo their final collision in the moderator

are distinguished from those having their final collision in the fuel. Neutrons

coming from water are characterized by the probability PMc since they come

from the moderator M outside the fuel pin to interact with the resonant isotope in

the fuel (Fig. 6.13).

For the time being, it is assumed that the resonances are well separated and an

asymptotic 1/E flux shape may be used outside the resonances. Using the Narrow
Resonance approximation, it is considered that any scattering collision removes the

neutron from the resonance zone. To ensure that the NR approximation is applica-

ble, we shall compare the resonance width Γp ¼ Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σt0=σp

p
(i.e. the energy range

where the cross section is twice the potential cross section) with the maximum

energy loss per collision at the resonance energy, i.e. E0(1� α). The neutron

M

PMc

P

c =U + m

cc

PcM

Fig. 6.13 Definition of

probabilities for the

resonance integral

9R. Bonalumi: Some Remarks about the Surface Resonance Absorption in Heterogeneous Reac-
tors, Energia Nucleare, Vol. 12, No. 4, pp.189–204 (April 1965). In this work, Bonalumi develops

the calculation of the effective area by taking into account the lattice effects. His approach uses the

Dancoff effect and he proposes the use of correction coefficients for different moderators (water,

heavy water, air).
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balance is obtained from the slowing-down equation of a non-leaking medium,

written such that the usual slowing-down operators (with brackets) for the fuel

Rc[] and moderator RM[] are:

VcΣ c
t Eð ÞΦc Eð Þ ¼ Vc 1� PcMð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Pcc

ðEαc
E

Σ c
s E0ð ÞΦc E0ð Þ
1� αcð ÞE0 þ VMPMc

ðEαM
E

ΣM
s E0ð ÞΦM E0ð Þ
1� αMð ÞE0

¼ Vc 1� PcMð Þ Rc Σ c
sΦc

 �þ VMPMc RM ΣM
s ΦM

 �
The first term on the RHS is the contribution of neutrons scattering in the fuel,

without emerging from it (with a probability (1�PcM) where PcM is the probability

of leaking out of the fuel without any collision). In the same time, the second term

represents the contribution of neutrons which scatter in the moderator and reach the

fuel without undergoing any collision, with a probability of PMc. The leakage

probabilities are related to one another by the reciprocity theorem which will be

studied in more detail in the chapter on the Boltzmann equation:

Vc PcM Σ c
t ¼ VM PMcΣ

M
t � VM PMcΣ

M
s

Moreover, as we saw in the previous chapter on resonant absorption, in the NR
approximation, the moderator flux has a 1/E shape when normalizing to an asymp-

totic flux. Hence, by assuming that the moderator scattering cross section ΣM
s

depends weakly on energy, leading to a simplification of the slowing-down operator

in the moderator, we obtain:

RM ΣM
s ΦM

 � � ΣM
s

E

Furthermore, it can also be assumed that only potential scattering contributes to

neutron scattering in the fuel (by neglecting for the time being the fuel moderator

m scattering resonances in the pin and the scattering resonances of uranium). Thus:

Rc Σ c
sΦc

 � � Σ c
p

E

Using these slowing-down operator simplifications and the reciprocity theorem,

the flux in the fuel and in the moderator can be uncoupled in the balance equation:

NR flux with two zones: ΦNR
c Eð Þ ¼ 1� PcMð ÞΣ c

p þ PcM Σ c
t

EΣ c
t Eð Þ ð6:16Þ

If PcM can be computed, the flux can be computed analytically in the fuel. By

writing the balance equation in the moderator, the flux in the latter is:
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VmΣ
m
t Φm Eð Þ ¼ VcPcM Rc Σ c

sΦc

 �þ VM 1� PMcð Þ RM ΣM
s ΦM

 �
The effective absorption integral in lethargy for a resonance located at E0 is then

obtained as follows (given that du¼ dE/E)10:

I NR0 ¼ Ð σa uð ÞΦNR
c uð Þdu ¼ Ð σa uð Þ 1� PcMð Þ σp

σt uð Þ þ PcM

	 

du

¼
ð
σa Eð Þ σp

σt uð Þdu|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Volume integral

þ
ð
σa uð Þ σt uð Þ � σp

σt uð Þ PcMdu|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Surface integral

In this expression, the potential cross section is the sum of:

– the potential cross section of the heavy nucleus (uranium), hence without its

resonant contribution,

– the fuel potential dilution cross section, not to be confused with the moderator

dilution cross section, which is the potential cross section corresponding to

non-resonant moderator nuclei in the fuel (oxygen in UO2), given for one

uranium atom. The latter is calculated as:

σp ¼ σU
p þ Σ m

p

NU

σp is assimilated to an equivalent (non-resonant) potential cross section for the

fuel. The resonance integral is written in the form of a volume integral, which

characterizes neutrons scattering from the fuel, and a surface integral, which takes

into account the contribution of neutrons scattering from the moderator at the fuel

surface (the reader should note that the integral is computed on the energy vari-

able!). If a fuel pin is assumed to be independent of the other surrounding pins, the

escape probability without scattering, PcM, is computed by the formula on the chord

length as will be seen in the chapter on the Boltzmann equation:

PcM ¼

Ð1
0

p Rð Þ 1� e�NUσtRð Þ dR

NU σt Rh i

where hRi¼ 4V/S is the mean chord length and (Cauchy theorem) and p(R)dR is the

probability of obtaining a chord of length R up to dR. For coupled pins, the neutrons
can come directly from a surrounding pin. This is called the shadowing effect or

Dancoff effect, which complicates the integral. It will be computed later on in

10Jean Mougey, Roberto Solanolla: Intégrale de résonance effective de l’uranium 238 [Effective

resonance integral of Uranium-238], Note CEA-N 503 (1965).
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Chap. 14. To simplify calculations, an escape cross section σe is defined to express

the escape probability without scattering in a rational form:

PcM � σe
σe þ σ c

t Eð Þ i:e: : σe � PcM

1� PcM
σ c
t Eð Þ

This cross section depends weakly on energy. Using a constant leakage value in

energy σe¼ 1/(NUhRi), Eugen Wigner approximated the probability PcM as (Wein-

berg and Wigner 1958; Dresner 1960, p. 60):

P
Wigner
cM � 1

1þ NU < R > σt
¼ 1

1þ z σt
σp

� 1

1þ z ψ x;ξð Þ
β þ 1

� �
by introducing the following notations:

β � σp
σt 0

¼ σU
p þ Σm

NU

σt 0
� σU

p þ σm

σt 0
, τ � σU

p

σp

Γn

Γ
and z � NUσp Rh i

and by neglecting the interference function in the total cross section. The rational
approximation is sufficient for most resonances. It can be noted that for

NU<R> σt> > 1, PWigner
cM / 1= < R > Σtð Þ, and for NU<R> σt<< 1,

P
Wigner
cM � 1, which is logical in the case of weakly absorbing media or very small

media for example. This approximation can be bettered by introducing a constant

value n between 2 and 3, even if the limit of n at infinity is around n¼ 3/4:

PcM � 1

1þ NU Rh iσt � NU Rh i σt
NU Rh i σtþn

A similar approach has been proposed by Carlvik in 1964 to compute the

resonance integral (it will be described in Chap. 14 as it employs the concept of

multicells). Using a similar mathematical formalism as for homogeneous calcula-

tions, the resonance integral is written as:

I0 ¼
Γγ þ Γf

� �
2E0

σp

ðþ1

�1

ψ x; ξð Þ
ψ x; ξð Þ þ ffiffiffiffiffi

τβ
p

χ x; ξð Þ þ β
dx

þ
ðþ1

�1
ψ x; ξð Þ ψ x; ξð Þ þ ffiffiffiffiffi

τβ
p

χ x; ξð Þ
ψ x; ξð Þ þ ffiffiffiffiffi

τβ
p

χ x; ξð Þ þ β
PcMdu

2
6666664

3
7777775

where PcM is a function of z
β

�
ψ x; ξð Þ þ ffiffiffiffiffi

τβ
p

χ
�
x; ξ
�þ β

�� �
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The following functions are thus defined (Silvennoinen 1976, p. 167):

J ξ; βð Þ ¼
ðþ1

0

ψ x; ξð Þ
ψ x; ξð Þ þ ffiffiffiffiffi

τβ
p

χ x; ξð Þ þ β
dx

α ξ; β; zð Þ ¼
ðþ1

0

ψ x; ξð Þ ψ x; ξð Þ þ ffiffiffiffiffi
τβ

p
χ x; ξð Þ

ψ x; ξð Þ þ ffiffiffiffiffi
τβ

p
χ x; ξð Þ þ β

PcM x; ξ; zð Þ dx

8>>>>>><
>>>>>>:

to simplify the expression of the absorption integral as follows (using the fact that all

terms in the integrals are even, thus cancelling the two and integrating over [0, +1[

only):

I0 ¼
Γγ þ Γf

� �
E0

σp J ξ; βð Þ þ 1

β
α
�
ξ; β; z

�	 


When the interference function is neglected, the function simplifies to

L ξ; β; zð Þ ¼ Ðþ1

0

ψ2 x;ξð Þ
ψ x;ξð ÞþβPcM x; ξ; zð Þ dx, which was calculated by Adler and

Nordheim at the end of the 1950s for different geometries.

In the unresolved range, a statistical approach can be used to compute the

contribution of the resonances to the effective absorption integral. Assuming that

the scattering widths have a Porter-Thomas distribution11 (Foderaro 1971, p. 283)

such that:

Γ0
n ¼ y < Γ0

n >

Γn ¼ Γ0
n

ffiffiffi
E

p

p yð Þdy ¼ 1ffiffiffiffiffi
2π

p e�
y
2ffiffiffi
y

p dy

8>>>>><
>>>>>:

The mean integral resonance in a range dE with resonance spacing D can be

defined as:

I Eð Þ ¼ I Eð ÞdE
D

The contribution to the resonance integral above E is written as:

11Porter and Thomas, Physical Review No 104, 483 (1956).
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I Eð Þ ¼
ðþ1

E

σeffectivea

dE0

E0 ¼ 1

D

ðþ1

E

dE0
ðþ1

0

I E0ð Þ p yð Þdy

If the NR hypothesis is not acceptable for a resonance, e.g. for fuel with slowing-
down nuclides, as in the case of oxygen in oxide fuel, a dilution factor σm¼Σm/NU

should be taken into account and the volume and surface integrals will consequently

be modified:

Iv0 ¼
Ð
σa uð Þ σm

σa uð Þ þ σm
du

IS0 ¼
Ð
σa uð Þ σa uð Þ

σa uð Þ þ σm
P du

8><
>:

with: P ¼ PcM NU Rh iσtð Þ
1� 1�σaþσm

σt
½ �PMc NU Rh iσtð Þ

6.7.3 Analytical Calculation of a Broadened Resonance: The
Campos-Martinez Model

The resonance integral for an isolated resonance can be derived analytically in

heterogeneous geometries. In the previous chapter on resonant absorption, the

Livolant-Jeanpierre model and its extension to a fuel pin surrounded by moderator

was described. Using the Dresner functions, the approach for narrow resonances

has been set up. Yet, it does not take into account any moderating nuclides in the

fuel. Campos and Martinez12 worked out an approach based on the analytical

calculation of Pcc for a cylindrical geometry, which is precise enough for many

applications. The same notations as for the resonant absorption description will be

used here. Given a fuel pin containing a heavy resonant isotope (indexed U )

combined with a light moderating isotope (indexed m), in a moderator channel

(indexed M ) (Fig. 6.14):

The neutron balance equations using the first-collision probabilities are:

VcΣ c
t Φc ¼ Vc 1� PcMð Þ Rc Σ c

s Φc

h i
þ VM PMc RM ΣM

s ΦM

h i
VM ΣM

t ΦM ¼ Vc PcM Rc Σ c
s Φc

h i
þ VM 1� PMcð Þ RM ΣM

s ΦM

h i
8<
:

12T.P. Ribeiro de Campos, A.S. Martinez: Approximate calculation of the resonance integral for
isolated resonances, Nuclear Engineering and Design, 102, 211–238 (1989).
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where Rj ΣsΦ½ � ¼ Ð
E
αj

E

ΣsΦ E0ð Þ
1�αjð ÞE0 dE

0 is the operator for slowing-down by collision with

an isotope characterized by αj¼ (Aj� 1)2/(Aj+ 1)
2. The cross sections are modeled

using a Breit-Wigner formalism with Doppler broadening at temperature using the

Voigt functions described previously:

σn, γ Eð Þ ¼ σ0
Γγ

Γ
ψ x; ξð Þ

σs Eð Þ ¼ σp þ σ0
Γn

Γ
ψ x; ξð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0σp

Γn

Γ

r
χ x; ξð Þ

8><
>:

From now on, we will ignore the effect of the interference function χ(x, ξ) on the
scattering cross section. The Campos-Martinez model does not use the Wigner

rational approximation but rather a model for the escape probability from the rod

PcM, using an approximation based on the mean chord length h‘i (obtained by

expanding the non-interacting probability up to order three close to the mean

chord):

PcM ¼ 1

1þ Σ c
t : ‘h i þ A1

Σ c
t : ‘h i

1þ Σ c
t : ‘h i� �3 þ A2

Σ c
t : ‘h i� �2

1þ Σ c
t : ‘h i� �4

In this equation, the total cross section of the fuel is:

Σ c
t ¼ ΣU

t þ Σ m
t � NU σ c

n, γ þ σ c
s þ

Σ m
s

NU

� �
� NU σ

c
t

which thus gives the definition for the microscopic cross section σ c
t , brought to NU,

the number of resonant isotope nuclides. Henceforth, σm � Σm
s =NU denotes the

scattering cross section for the moderator mixed with heavy nuclides in the fuel, and

brought to the amount of absorbing heavy nuclides (worth around 8 barns for

c=m+U

M

Fig. 6.14 The geometry

considered in the Campos-

Martinez model

6.7 Effective Resonance Integral 375



oxygen in uranium oxide). By substituting the equations for Doppler-broadened

cross sections, a polynomial form is obtained for the escape probability:

PcM ¼ sþ A1 þ A2ð Þs2 þ A1 þ 2A2ð Þs3 þ A2s
4 s ¼ σg

ψ þ βc

βc ¼
σm þ σU

p

σ0 þ σg
σg ¼ σe

σ0

σe ¼ 1

NU: ‘h i σU
p ¼ potential section of the resonant isotope

8>>>>>><
>>>>>>:
The neutron balance equations are simplified using the reciprocity relations

of Pij:

PcMVcΣ
c
t ¼ PMc VM ΣM

t

and by computing the slowing down term for the moderator in the fuel cell using the

narrow resonance approximation. It is thus assumed that the flux has a 1/E shape

outside the resonance (this assumption is equivalent to normalizing the asymptotic

flux which has a Cst= ξΣsE
� �

shape Duderstadt and Hamilton 1976, p. 429):

RM ΣsΦ½ � ¼
ðEαM
E

ΣM
s Φ E0ð Þ

1� αMð ÞE0 dE
0 � ΣM

s

ðEαM
E

1

1� αMð ÞE02 dE
0 ¼ ΣM

s

E

Hence:

VcΣ
c
t Φc ¼ Vc 1� PcMð Þ Rc Σ c

s Φc

 �
þ VMPMc

ΣM
s

E
¼ Vc 1� PcMð Þ Rc Σ c

s Φc

 �þ PcMVcΣ c
t

ΣM
t

ΣM
s

E

The slowing-down kernel is developed into two terms. The first one is the

slowing-down kernel for the resonant isotope, which can be modeled by the narrow
resonance (NR), intermediate resonance (IR), or wide resonance (WR) approxima-

tion, according to the given resonance. The second term is that for the moderator for

which the narrow resonance is a satisfactory approximation:

Rc Σ c
s Φc

 � ¼ RU ΣU
s Φc

 �þ Rm Σ m
s Φc

 � ¼ λ
Σ U
p

E
þ 1� λð ÞΣ U

s Φc þ Σm
s

E

Here, the slowing-down kernel for a heavy nucleus is modeled by the interpo-

lation between the NR and WR models using the intermediate resonance parameter

λ. Introduced in 1962 by Rubin Goldstein and Cohen (Stamm’ler and Abbate 1983,
p. 306; Silvennoinen 1976, p. 156; Reactor Physics 1966, p. 37), these parameters
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play an important role. They are sensitive to temperature variations only for heavy

nuclei and are difficult to evaluate.13 In particular, they can be negative or greater

than 1 (!), a much unlikely fact given their definition. These simplifications allow

the computation of the flux in the fuel:

Φc ¼
σm þ λσU

p þ PcM σU
n, γ þ λσU

s,R�e s

� �
þ PcM 1� λð ÞσU

s

σm þ σU
n, γ þ λσU

s þ PcM 1� λð ÞσU
s

1

E

In this equation, in the denominator, the term μ ¼ PcM 1� τð ÞσU
s is negligible

compared to the resonant cross section σU
n, γ . In the numerator, only the term for the

resonant scattering cross section is retained. Thus:

Φc �
σm þ λσU

p þ PcM σU
n, γ þ σU

s,R�e s

� �
σm þ σU

n, γ þ λσU
s

1

E

In the wide resonance approximation, or even in the intermediate resonancemodel,

the infinitely-heavy nucleus approximation results in assuming that a collision with a

heavy nucleus leads to a very low energy loss such that the neutron remains within the

resonance. The potential cross section of the heavy nucleus may thus be ignored using

the term PcMσU
p . Introducing the Voigt function, the following is found:

Φc � βR
ψ þ βR

þ 1þ G λð Þð ÞPcM
ψ

ψ þ βR

� �
1

E
, G λð Þ ¼ 1� λð Þ Γn

ΓR

βR ¼ σ R
p

σ R
0

, σ R
p ¼ σm þ λσU

p , σ R
0 ¼ σ0

ΓR

Γ
, ΓR ¼ Γγ þ λΓn

8>>><
>>>:
Using this equation for flux in the fuel, the resonance integral is computed as:

I ¼
ð
E0

σn, γ Eð ÞΦc Eð ÞdE ¼
ðþ1

�1
σ0Γγ Φc

dE

Γ

¼ σ0Γγ

E0

βR

ð1
0

ψ

ψ þ βR
dxþ 1þ G λð Þð Þ

ð1
0

PcM
ψ2

ψ þ βR
dx

2
4

3
5

using dx¼ 2dE/Γ and the fact that the functions in the integral sign are even

(thereby, cancelling the 2 by integrating over [0, +1] only), and by removing

from the integral the dominant term in energy at resonance energy E0. The leakage

13A. Sanchez, A. Dos Santos: The intermediate resonance parameters for the multi-group for-
malism, Nuclear Engineering and Design, 387–400 (1999).
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probability PcM is substituted by its polynomial form, thereby introducing the

Dresner function:

J ξ; βð Þ ¼
ð1
0

ψ x; ξð Þ
ψ x; ξð Þ þ β

dx

I ¼ σ0Γγ

E0

βR

ð1
0

ψ

ψ þ βR
dxþ 1þ G λð Þð Þ

ð1
0

σg
ψ þ βc

þ A1 þ A2ð Þ σg
ψ þ βc

� �2
"

þ A1 þ 2A2ð Þ σg
ψ þ βc

� �3

þ A2

σg
ψ þ βc

� �4
#

ψ2

ψ þ βR
dx

The second integral term can be modified to introduce the successive derivatives

of the Dresner function up to order 3. Besides, several analytical approximations to

the Dresner function are available (the Steen formula14 for instance). The Campos-

Martinez model can then be employed to calculate the contribution of a resonance to

the heterogeneous resonant absorption analytically (save for the evaluation of the

Dresner function) with a precision of 2%. The degree of freedom λ is still the fraction
which encompasses the intermediate character of the resonance. Campos and Mar-

tinez propose compares the practical resonance width (depending on the tempera-

ture, and such that the cross section is twice larger than the potential cross section)

Γp(T) to the energy loss per collision ΔE. For a narrow resonance ΔE=Γp Tð Þ >> 1,

while for a wide resonance the converse is obtained, giving an exponential equation:

λ ¼ 1� e
�κ ΔE

Γp Tð Þ

κ is an empirical parameter which depends on the pin geometry. It should be

noted that this formalism cannot account for negative values of λ or those larger

than 1, as discussed earlier.

6.8 Effective Doppler Temperature

(Meghreblian and Holmes 1960, p. 135)

6.8.1 Lattice Bonding Effects

For a solid, the velocity distribution of atoms is not strictly a Maxwellian distribu-

tion as for a gas, due to the lattice bonds. For instance, the uranium atoms in a UO2

14N.M. Steen, Nuclear Science and Engineering, 38, 244 (1969).
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crystal vibrate at a mean kinetic energy higher than that of a gas of free uranium

atoms. These vibrations are quantized since the atoms in the lattice can be consid-

ered as being bonded by linear elastic forces. Thus, this quantization is similar to

the harmonic oscillator (Born 1971, p. 244). Willis Lamb showed that for weakly-

bonded atoms, for neutron capture, the latter behave as a free gas with an effective
temperature higher than the actual crystal temperature. If the crystal has a group of

atoms vibrating at frequency ν (also known as phonons Egelstaff 1965, p. 28), the
quantized state of the crystal shifts by creation or absorption of a phonon when

neutrons scatter inelastically (Kittel 1967, p. 137; Born 1971, p. 246). The mean

kinetic energy, used to define the effective Doppler temperature, is obtained by

integration over all the phonons:

kTeff ¼
ð1
0

g νð Þhν
2

coth
hν

2kT

� �
dν

where g(ν) is the phonon distribution. Using the Debye distribution, the following is
obtained15:

Teff ¼ 3

2
θDebye

ð1
0

x3 coth
xθDebye
2T

� �
dx

θDebye is the Debye temperature of the crystal. Using the change of variable

y¼ xθDebye/(2T ), the following equation is reached:

Teff ¼ 24
T4

θ3Debye

ðθDebye2T

0

y3coth yð Þ dy whence :
Teff

T
� 1þ 1

20

θDebye
T

� �2

þO
θDebye
T

� �4

The Debye temperature for uranium oxide UO2 was measured precisely by

Serizawa et al.,16 and leads to the cubic empirical formula between 900 K and

1600 K:

θUO2

Debye K½ � ¼ 1:89 10�6 T3
K½ � � 6:67 10�3T2

K½ � þ 7:79T K½ � � 2640:

15D. Neberejnev, C. Mounier, R. Sanchez: The influence of crystalline binding on resonance
absorption and reaction rates, Nuclear Science and Engineering 131, pp. 222–229 (1999).
16H. Serizawa, K. Fukuda, T. Shiratori. T. Fujino, N. Sato and K. Yamada: Unusual variation of
temperature factor of uranium dioxide at high temperature, Journal of Alloys and Compounds,

Vol. 271–273, 1998, pp. 386–390.
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Below 1300 K, the Debye temperature is assumed as being constant:

θUO2

Debye ¼ 377 K. However, an equivalence for reaction rates leads to effective

temperature values far above the Debye temperature, of the order of 620 K.17

This disagreement is due to the fact that the weakly-bonded model is not consistent

with reality. Recent studies at CEA18 have given the following empirical formula:

Santamarina-Meister formula:
Tcrystal

Teff
¼ 1þ 8, 6

Teff K½ �
þ 3100

T2
eff K½ �

ð6:17Þ

This formula accounts for crystalline effects in the UO2 lattice on the Doppler

effect. If the fuel temperature is not uniform, the following geometric correction

should be used:

Teff ¼ Tfuel þ 1

18
Tcenter � Tsurface

� �
whereTfuel is the mean fuel temperature over its volume, Tcenter that at its center and
Tsurface that at its surface. From the last formula, Teff is defined as an “optical”

temperature that takes account of temperature variations along the neutron

optical path.

6.8.2 Heterogeneity Effects of the Temperature Field

Historically, resonance integral calculations took account of only one temperature

in the region containing resonant nuclei. However, temperature has an approxi-

mately parabolic variation in the fuel rod. Thus, the temperature to be used as the

effective temperature must be chosen properly. It might be trivially supposed that

the average medium temperature should be used. The influence of the fuel temper-

ature profile on resonant absorption was studied in 1954 by Roe.19 His idea was to

model the resonance integral by a unique Breit-Wigner resonance in slab geometry.

Roe defined the geometric mean of the first Voigt function as:

17This is the value in the American codeMICBURN-E or deduced from the measurements made in

the MINERVE reactor by H. Tellier.
18A. Meister, A. Santamarina: The effective temperature for Doppler broadening of neutron
resonances in UO2, International Conference on the Physics of Nuclear Science and Technology,

Long Island, USA, October 1998, pp. 233–239.
19G.M. Roe: The Absorption of Neutrons by Doppler Broadened Resonances, General Electric
Company, Knolls Atomic Power Laboratory, KAPL-1241, New York, 1954.
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ψ ¼ 1

a

ðz¼a

z¼0

ψ x; ξ zð Þð Þdz

where z is the spatial coordinate along a slab of thickness a. Roe then defined the

effective temperature as follows:

ðx¼þ1

x¼�1
ψ2 x; ξeff
� �

dx ¼
ðx¼þ1

x¼�1
ψ2dx

where ξeff� ξ(Teff). He deduced that the effective temperature is approximated for a

unique resonance with width Γ at energy E0 by the formula:

θeff ¼ θ � 3

2

θ2 � θ2
� �
1þ 4θ

where θ zð Þ � 1

ξ2
¼ 4E0 kT zð Þ

AΓ2

In 1958, A. Keane20 studied the same slab problem, considering only neutrons

that are normally incident to the slab and assuming a parabolic fuel temperature

profile. He then worked on the following function:

χ ξmax; x;
Tsurface

Tcentre � Tsurface

� �
¼ 1

a

ðz¼a

z¼0

ψ x; ξ zð Þð Þdz

The absorption probability in the slab at reduced energy x is given by the

complementary of the non-leakage probability:

Pabs xð Þ ¼ 1� e
� N σ0

Ðz¼a

z¼0

ψ x;ξ zð Þð Þ dz

For a resonance with high absorption, characterized by Nσ0a, Keane showed that
the geometric mean of the fuel temperature �T ¼ Ts þ 2Tcð Þ=3 qualifies correctly as
the effective temperature. For low values of Nσ0a, Keane found the same results

as Roe.

In 1961, Reichel and Keane studied21 this problem for a cylindrical geometry

and a parabolic temperature profile:

20A. Keane: Resonance absorption in a slab with a parabolic temperature distribution, Atomic

Energy Research Establishment, AERE R/M 198, Harwell, UK, 1958.
21A. Reichel, A. Keane: Resonance absorption in a cylindrical fuel rod with radial temperature
variation, Proceedings of the Royal Society, NSW 94, pp. 215–225, 1961.
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T rð Þ ¼ Tsurface þ
R2 � r2
� �

R2
Tcentre � Tsurface

� �

r

O

L

dℓ

Y

R

θ

A neutron entering the cylinder by the point O and moving along a chord L with

curvilinear coordinate ‘ experiences the temperature:

T ‘ð Þ ¼ Tsurface þ
R2 � r2
� �

Y2

R2
Tcenter � Tsurface

� � ‘

L
� ‘2

L2

� �

It can be pointed out that the profile remains parabolic and has a maximum

value of:

Tmax Yð Þ ¼ Tsurface þ
R2 � r2
� �

Y2

4R2

For a slab of thickness a, the parabolic temperature field has the following form:

T zð Þ ¼ Tsurface þ 4

a2
Tcentre � Tsurface

� �
az� z2
� �

Therefore, a neutron entering the cylinder along the chord L is considered as

being perpendicular to a slab of thickness L and with maximum temperature

Tmax(Y ), which allows the definition of an effective temperature of the projected

chord Y by analogy:
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Teff Yð Þ ¼ 1

3
Tsurface þ 2

3
Tmax Yð Þ ¼ Tsurface þ Y2

6R2
Tcentre � Tsurface

� �
The distribution of the projected chord Y is such that:

p Yð ÞdY ¼ cos θdθ

p(Y)dY is the probability of having a projected chord length Y up to dY for an

angleθ 2 0; π
2

 �
.

In 1962, G. Rowlands22 proposed that thermalized neutrons have the highest

probability of being absorbed in the fuel rod and hence, their spectrum is thermalized.

He noticed that if the neutron is not scattered, then it is not influenced by the order of

the fuel layers at different temperatures. In this case, an “optical temperature” can be

defined by averaging the real temperature crossed for the different chords:

Teff ¼
ð
L

Ð‘¼L

‘¼0

T ‘ð Þd‘
L

p Lð ÞdL

For a slab of thickness a, this calculation is extremely simplified provided the

temperature field remains parabolic along the chord with a maximum always at the

slab center.

L

θ

z

ℓ

a

22G. Rowlands: Resonance absorption and non-uniform temperature distributions, Journal of

Nuclear energy, parts A/B, 16, 235–236 (1962). After completing his PhD in theoretical physics

on magnetism at the University of Leeds, George Rowlands (1932- ) joined Harwell in 1957, where

he worked on fission first then on fusion. In 1966, he joined the University of Warwick where he

taught non-linear physics problems and plasma physics until his retirement in 2000. He wrote a book

on the latter subject: Nonlinear Waves, Solitons and Chaos, Cambridge University Press, 1990.
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T ‘ð Þ ¼ Tsurface þ 4

L2sin 2θ
Tcenter � Tsurface

� �
L‘sin 2θ � ‘2sin 2θ
� �

¼ Tsurface þ 4

L2
Tcenter � Tsurface

� �
L‘� ‘2
� �

Thus, the mean geometric temperature for any chord L is always given by:

Teff Lð Þ ¼ 1

3
Tsurface þ 2

3
Tcenter

The probability of having a chord L in a slab of thickness a is given by:

p Lð ÞdL ¼ 2a2

L3
dL

where:

Teff ¼
ð
L

Ð‘¼L

‘¼0

T ‘ð Þd‘
L

p Lð ÞdL ¼
ðL¼þ1

L¼a

1

3
Tsurface þ 2

3
Tcenter

� �
p Lð ÞdL

¼ 1

3
Tsurface þ 2

3
Tcenter

The optical temperature coincides with the mean geometrical temperature for

a slab.

Assuming that Rowlands’ idea that any temperature distribution with a well-

chosen order can be reduced to a parabola is equivalent to this very parabola, and

that the effective temperature along the chord is reduced to the computation of the

optical temperature, an analytical calculation can be carried out for a cylinder:

Teff �
ðY¼2R

Y¼0

T Yð Þ p Yð ÞdY ¼ 5

9
Tsurface þ 4

9
Tcenter

It can be seen that for a cylinder, the mean geometric temperature

(Tsurface + Tcenter)/2 is no longer obtained.

In 1979, based on numerical considerations, Basiuk, Reuss, Tellier and Van der

Gucht from CEA calculated the coefficients to be applied to the temperatures at the

center and at the surface of the fuel rod so as to correctly compute absorption rates,

assuming a parabolic temperature profile (Table 6.4). It should be noted that a

parabolic temperature profile in the fuel rod means that the heat equation has been

integrated with a constant power per unit volume term. Actually, this never occurs

in practice since the production of 239
94Pu at the fuel rod surface due to preferential
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absorption by 238
92U leads to a pronounced depression within the rod, known as a rim

effect. This phenomenon worsens with burnup.

After working on the matter, Paul Reuss estimated that the error induced by

assuming a parabolic temperature profile is much greater than the discrepancy due

to the different formulations. Hence, Rowlands’ formula continues to be widely

used for industrial applications.

Table 6.4 Effective weighting of surface and center temperatures for the Doppler effect

Geometry Volume average Rowlands

Basiuk-Reuss-Tellier-

Van der Gucht

Cylinder 1
2
Ts þ 1

2
Tc

5
9
Ts þ 4

9
Tc 0.549 Ts+ 0.451 Tc

Slab 1
3
Ts þ 2

3
Tc

1
3
Ts þ 2

3
Tc 0.235 Ts+ 0.765 Tc

Sphere 3
5
Ts þ 2

5
Tc

2
3
Ts þ 1

3
Tc 0.662 Ts+ 0.318 Tc
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Chapter 7

Thermalization of Neutrons

Neutrons reach thermal energy following successive collisions with moderator

nuclides provided they are neither absorbed nor leak out of the reactor. At this

point, they can either lose energy by collision or gain energy if the target nucleus is

itself in thermal motion, and can thus transfer momentum to the neutrons. Hence, an

equilibrium state is obtained whereby neutrons may be assimilated as a gas of weak

density, in which velocities are characterized by the moderator temperature.

(Reactor Physics 1966, volume 1)

7.1 Historical Background

The apparently disorderly motion of molecules in a gas at a given temperature is

amplified as the temperature increases. The word gas was itself coined around 1643
by Flemish alchemist doctor, Jan Baptist Van Helmont, from a Latin word meaning

“chaos”. The agitated motion was first described in scientific terms by botanist

Robert Brown (1773–1858), director of the British Museum in 1827. He described

the intense and disorderly Brownian motion of pollen grains in suspension in a

closed room, before examining them closely in solution under a microscope (Bloch

1958, p93). He soon concluded that the motion was not due to fluid currents or

progressive evaporation, but that it came from the particles themselves. But what

was the cause? The phenomenon became known by his name: Brownian motion. In

1860, the kinetic theory of gases described by James Clerk Maxwell1 provided an

explanation for this phenomenon (Génie de la science n�24 2005) (Photo 7.1).

1James Clerk Maxwell (1831–1879) was a Scottish physicist. He studied at the University of

Edinburgh and took an early interest in the polarization of light. He completed his studies at

Cambridge and taught as of 1860 at Aberdeen, then London, at King’s College, where he

developed a theory of electromagnetism for which he is world famous. His measurements of the

speed of electromagnetic waves—which he noted was very close to that of light—led him to
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It describes the behavior of a large number of gas molecules. Maxwell was

familiar with statistics and used that powerful mathematical tool to determine the

speed distribution of molecules around the mean speed. His calculations led to a

microscopic explanation for the ideal gas equation PV¼ nRT (it should be pointed

out that at that time, the hypothesis of the existence of molecules was not widely

accepted).

7.2 Boltzmann Theory of Gases

(Boltzmann 1902; Vassiliev 1985)

In 1872, Ludwig Boltzmann2 statistically demonstrated the distribution law for

the velocities of gas molecules discovered in 1860 by Maxwell, and he interpreted

the notion of entropy by linking it to probability (the probabilistic approach of

Photo 7.1 James Clerk

Maxwell (1831–1879)

produced major works on

electromagnetism, heat

theory and kinetic theory of

gases during his 48 years

(Public domain)

postulate that light is a wave. The Maxwell equations are founding postulates of electromagnetism

and relate electricity and magnetism, thereby constituting the first step towards unification of the

various forces in physics. He died at 48 leaving behind him a significant body of work.
2Ludwig Eduard Boltzmann (1844–1906) was an Austrian physicist and a key figure in modern

physics thanks to his work on statistical physics. After obtaining his PhD in 1866 on the kinetic

theory of gases under the supervision of Jozef Stefan, he studied in Germany and then obtained the

chair of physics at Graz. He established the famous equation of entropy in statistical thermody-

namics S¼ k LogΩ. A staunch defender of the atomic theory, he suffered from the misunderstand-

ing of his theories. He suffered from depression and committed suicide in 1906. His name is

associated with the Stefan-Boltzmann law for the power emitted by a surface as well as the

Boltzmann integro-differential equation in the kinetic theory of gases, which may be applied to

neutrons. His name is immortalized in the Boltzmann constant k, one of the rare constants

governing the behavior of the Universe.
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thermodynamics in 1877). The Boltzmann distribution (1896) showed that the

number of particles of energy E in an elementary volume d3r of a total volume

V is proportional to the volume and varies as a negative exponential function with

energy (Born 1971, p21; Jouguet 1964, p91]:

n E;~rð Þdr3 ¼ αe�βE d
3r

V

For an ideal monatomic gas (i.e. the potential interaction energy between the

molecules themselves is negligible compared to their kinetic energy, given by

E¼mv2/2), the coefficients α and β are obtained by normalizing with respect to

the total number of molecules n in the total volume and the average total energy of

the system Etot. It is thus necessary to first define the elementary integration volume

in the phase space [Diu et al. 2001, p82 and p239]. The integration with respect to

energy E ¼ m v2x þ v2y þ v2z

� �
=2 is equivalent to integrating over the differential

speed elements dvx dvy dvz):

ntot ¼
ðvx¼þ1

vx¼�1

ðvy¼þ1

vy¼�1

ðvz¼þ1

vz¼�1

ð
V

n E;~rð Þd3r

¼
ðvx¼þ1

vx¼�1
dvx

ðvy¼þ1

vy¼�1
dvy

ðvz¼þ1

vz¼�1
dvz

ð
x

ð
y

ð
z

αe
�β1

2
m v2x þ v2y þ v2z

� �
dxdydz

V

Integration over the volume is obtained directly. Integration with respect to

velocities can be carried out either by an integral on the sphere of velocities

(where v is the radius for the polar integral term), or by noticing that the variables

vx , vy and vz are independent, hence leading to computation of the integral by

breaking it down into three integrals through the exponential term, as shown

below:

ntot ¼ α

ðvx¼þ1

vx¼�1
dvxe

�β1
2
mv2x

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}ffiffiffi
2π
βm

p
ðvy¼þ1

vy¼�1
dvye

�β1
2
mv2y

ðvz¼þ1

vz¼�1
dvze

�β1
2
mv2z ¼ α

2π

βm

� �3
2

The average total energy is computed using integration over the sphere of

velocities for didactic purposes:
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Etot ¼
ðvx¼þ1

vx¼�1

ðvy¼þ1

vy¼�1

ðvz¼þ1

vz¼�1

ð
V

1

2
mv2 n E;~rð Þd3r ¼

ðv¼þ1

v¼0

dv 4πv2 α
1

2
mv2e�β1

2
mv2

¼ 2πmα

ðv¼þ1

v¼0

dv v4e�β1
2
mv2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

2
Γ

5

2

� �
=

βm

2

� �5
2

where:

Etot ¼ 3

4
mα

ffiffiffiffiffiffiffiffiffiffiffi
π3

βm
2

� 	5
s

¼ 3

2

ntot
β

Statistical thermodynamics indicates that, on average, each degree of freedom

for a single molecule has an energy of kT/2. A free molecule has three degrees of

freedom in space, i.e. 3kT/2 of average total energy (Bloch 1958, p95). Therefore,

we have:

β ¼ 1

kT
and α ¼ n

m

2π kT

� �3
2

The speed distribution is called the Maxwell distribution. For a gas of identical
molecules of mass m at temperature T, it is written as (Diu et al. 2001; Stacey 2001,
p104; Vassiliev 1985, p80):

n vð Þ dv ¼ 4π
m

2π kT

� �3=2

v2 e�
mv2

2kT dv

where:

n vð Þdv ¼ 4ffiffiffi
π

p v2

2kT
m

� 	3
2

e�
1
2
mv2

kT dv ¼ 4ffiffiffi
π

p v2

v3T
e
� v2

v2
T dv

where k¼ 1.38054� 10�23 J K�1 is the Boltzmann constant (Photo 7.2).

vT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT=m

p
is the most probable speed at energy kT. Since kinetic energy is

equal to E¼mv2/2, where dE¼mv dv, n(E) dE can be computed by substituting

v by
ffiffiffiffiffiffiffiffiffiffiffiffi
2E=m

p
. The equation for the distribution of velocities should be compared

with the classical mathematical equation for a Maxwell distribution:
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mσ xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p e�
x�mð Þ2
2σ2

where the mean value is m, the standard deviation is σ and the variance is σ2. The
distribution in terms of speed is transformed into distribution in terms of energy

(Jouguet 1964, p100):

n vð Þ dv ¼ 4π
m

2π kT

� �3=2

v2 e�
E
kT

dE

mv
¼ 4π

m

2π kT

� �3=2
ffiffiffiffiffiffi
2E

m3

r
e�

E
kT dE

Which leads to distribution in molecular energy, denoted n(E)3:

n Eð ÞdE ¼ 4π
m

2π kT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2π kT

r ffiffiffiffiffiffi
2E

m

r
1

m
e�

E
kT dE ¼ 2ffiffiffi

π
p

ffiffiffiffiffiffi
E

kT

r
e�

E
kT

dE

kT

with normalization to unity verified through calculation as:ð1
0

n vð Þdv ¼
ð1
0

n Eð ÞdE ¼
ð1
0

2ffiffiffi
π

p
ffiffiffiffiffiffi
E

kT

r
e�

E
kT

dE

kT
¼ 2ffiffiffi

π
p Γ

3

2

� �
¼ 1

Sometimes, neutron density is expressed using the reduced speed x¼ v/vT,
giving the following expression:

Photo 7.2 Ludwig

Boltzmann was a great

though very tormented

physicist. In 1906, he

committed suicide since his

theories were not widely

understood (Public domain)

3Mathematically, functional n(E) is different from n(v), but for the sake of clarity, the same

terminology n is used. Its units are defined according to the context in which it is used.
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Distribution of thermal neutrons : n vð Þdv

¼ 4ffiffiffi
π

p v2

v3T
e
� v2

v2
T dv ¼ 4ffiffiffi

π
p x2e� x2dx ¼ n xð Þdx ð7:1Þ

7.3 Application to Neutrons

(Neutron fluence measurements 1970, p45; Progress in nuclear energy Vol 2 1958,

p91)

As the neutron slows down, the kinetic energy of target nuclides due to thermal

agitation at temperature T for the non-absorbing moderating medium cannot be

neglected anymore. Neutrons will thus ultimately have the same speed spectrum as

the medium in which they propagate. As the number of neutrons in a reactor is very

small,4 collision between neutrons may be disregarded. At equilibrium, it is

assumed that neutrons have the same speed field as the target nuclides they collide.

Hence, the mean gain in lethargy per collision is zero, while during slowing-down,

it was ξ ¼ 1� α

1� α
Log

1

α
. A continuous link describes transit from the purely

slowing-down zone to the so-called thermalization zone (Fig. 7.1).

0=u

Number of collisions

Neutron lethargy

Discontinous slowing-down

Discontinuous thermalization

Infographie Marguet

Continuous slowing down

αα
αξ 1

1
1 Log

−
−=

0=ξ

Fig. 7.1 Link between the slowing-down and thermalization zones

4The density of thermal neutrons is of the order of 107 to 108 neutrons per cm3, which is negligible

compared to the number of molecules per unit volume of the current moderator, even in

gaseous form.
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This would be accurate if no neutron absorption occurred. Absorption can in fact

be viewed as a leakage term that leads to loss of neutrons at certain velocities only,

mostly due to resonances. If absorption is weak, and by analogy with a gas, the

neutron density distribution in terms of energy is given by:

n Eð ÞdE ¼ nth
2ffiffiffi
π

p
ffiffiffiffiffiffi
E

kT

r
e�

E
kT

dE

kT

where:

n(E) is the number of neutrons at energy E per unit volume and energy [neutrons/

cm3/eV].
nth is the normalization coefficient [neutrons/cm3].
T is the moderator temperature [K]: by analogy with a gas, it will be called the

neutron temperature with great caution in order to avoid all potential confusion.

This is theMaxwell distribution orMaxwell spectrum. In theory, this distribution
is valid only for a non-absorbing medium. For slightly absorbing moderators, the

thermal spectrum is shifted towards higher energies since absorption increases at

low energy. This effect is often neglected in light water reactors. Distribution can be

readily expressed in terms of speed by denoting n(E)dE¼ n(v)dv:

n Eð Þ dE ¼ 2ffiffiffi
π

p nth

ffiffiffiffiffiffiffiffiffiffiffi
1
2
mv2

kT

s
e�

1
2
m v2

kT
mvdv

kT
¼ nth

4ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffi
m

2 kT

r
1
2

mv2

kT
e�

1
2
m v2

kT dv

where:

n vð Þ ¼ nth
4ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffi
m

2 kT

r
1
2
mv2

kT
e�

1
2
m v2

kT ¼ nth
4ffiffiffi
π

p v2

v3T
e
� v2

v2
T

The normalization factor is such that
Ð1
0

n vð Þ dv ¼ nth since:ð1
0

x2 e�x2dx ¼
ffiffiffi
π

p
4

et

ð1
0

ffiffiffi
x

p
e�x dx ¼

ffiffiffi
π

p
2

¼ Γ
3

2

� �
where Γ is the real factorial (Erdélyi et al. 1953, p1). The most probable neutron

speed vT (of mass m¼ 1.6749286� 10�17 kg) for the Maxwell distribution at

temperature T corresponds to the maximum value of n(v) (i.e. where the derivative
of n(v) is zero):

1

2
m v2T ¼ kT i:e: vT ¼

ffiffiffiffiffiffiffiffiffiffi
2 kT

m

r
¼

ffiffiffiffiffi
T

T0

r
v0
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For T ¼ 579:15 K 306
�
C

� 	
v579K ¼ 3090m � s�1 E579K ¼ 0:05eV

For T¼T0¼293:59K 20:44
�
C

� 	
v293K¼v0¼2200 m �s�1 E293K¼E0¼0:0253eV

For T ¼ 273:15K 0
�
C

� 	
v273K ¼ 2122m � s�1 E273K ¼ 0:0235eV

It should be pointed out that the conventional notations v0 and E0 correspond to a

temperature not of 0
�
C but rather of 20.44

�
C. A particularly useful Maxwell

distribution is that for water temperature in the vessel of a PWR, i.e. 306
�
C, certain

values of which are given in Table 7.1 and plotted in Fig. 7.2.

The average speed of distribution v, not to be confused with the most probable

speed vT, is given by:

v �
Ð1
0

v n vð Þ dvÐ1
0

n vð Þ dv
¼

ffiffiffiffiffiffiffiffiffiffi
8 kT

πm

r
¼ 2ffiffiffi

π
p vT ¼ 1

0:886
vT

For T ¼ T0 ¼ 20:44
�
C laboratory referenceð Þ, v ¼ 2 482:4 ms�1:

For T ¼ 306
�
C PWRð Þ, v ¼ 3487:6ms�1:

This result is obtained using the neutron density distribution with speed:

v ¼
Ð1
0

vn vð ÞdvÐ1
0

n vð Þdv ¼

Ð1
0

vnth
4ffiffiffi
π

p v2

v3T
e
� v2

v2T dv

nth
¼ 4ffiffiffi

π
p
ð1
0

v3

v3T
e
� v2

v2T dv

¼ 4ffiffiffi
π

p vT

ð1
0

x
3
2 e� x dx

2
ffiffiffi
x

p

thus:

Table 7.1 Maxwell distribution of velocities T¼ 579.15K¼ 306
�
C

v ms�1½ � 0 1000 2200 3090 4000 6000 10,000 20,000

m vð Þ neutron= ms�1ð Þ½ � 0 6.889� 10�5 2.230� 10�4 2.687� 10�4 2.291� 10�4 6.344� 10�5 2.161� 10�7 1.950� 10�20
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Fig. 7.2 Plot of Maxwell speed distribution for T¼ 579.15K¼ 306
�
C
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Mean speed for a Maxwell distribution: v ¼ 2ffiffiffi
π

p vT Γ 2ð Þ|ffl{zffl}
1

¼ 2ffiffiffi
π

p vT ð7:2Þ

The most probable speed vT and the average speed are related by the following

formula:v ¼ 2vT=
ffiffiffi
π

p
.

Most probable speed: vT ¼
ffiffiffi
π

p
2

v ¼
ffiffiffiffiffiffiffiffiffi
T

T0

v0

r
ð7:3Þ

The most probable energy occurs for the largest neutron density n(E). It is worth
E¼ kT/2 for a Maxwell distribution. The mean energy of the distribution is equal to

E ¼ 3 kT=2 ¼ 3 ET=2 with ET ¼ kT ¼ m v2T=2.

7.4 Neutron Flux Spectrum

The flux spectrum is the product of the neutron density with the speed of these

neutrons:

Φ Eð Þ ¼ m Eð Þ v Eð Þ ¼ m Eð Þ
ffiffiffiffiffiffi
2E

m

r
or : Φ Eð Þ ¼ nth

ffiffiffiffiffiffiffiffiffiffi
8 kT

πm

r
E

kTð Þ2 e�
E
kT

TheMaxwell function or Maxwell distribution of the function m(E) is such that:

Maxwell function in terms of energy: m Eð Þ � E

kTð Þ2 e�
E
kT in eV�1


 � ð7:4Þ

The function verifies the following normalization
Ð1
0

m Eð Þ dE ¼ 1 sinceÐ1
0

ye�y dy ¼ 1, by adopting the change in variable given by y¼E/kT. Using the

reduced variable x� v/vT, the result is:

Maxwell function with reduced speed: m xð Þdx ¼ 4ffiffiffi
π

p x2e�x2dx ð7:5Þ

The integrated thermal flux is the quantity given by:

Thermal neutron flux: Φth ¼
ð1
0

Φ Eð ÞdE

¼
ffiffiffiffiffiffiffiffi
8kT

πm

r
nth

ð1
0

m Eð ÞdE|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1

¼ nth

ffiffiffiffiffiffiffiffi
8kT

πm

r
¼ nthv ð7:6Þ
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The units are those for a flux that is the product of neutron density and speed.

WithΦth� 3� 1013 n.cm�2.s�1,TH2O ¼ 300
�
C ¼ 573:15K, k¼ 1.38054� 10�23

J.K�1, mneutron¼ 1.67� 10�27 kg, the following value is obtained: nth¼ 8.63� 107

neutrons cm�3

If this neutron density is compared to that of an ideal gas for instance, 1 mole of

the latter at a pressure of 1 atmosphere and a temperature of 293 K has a volume of

22.4 i.e. 22.4 � 103 cm3, equivalent to a molecular density of:

6:022� 1023

22:4� 103
¼ 2:7� 1019molecule=cm3

It may be seen that thermal neutrons form a gas of very low density: the notion of

an ideal gas applied to neutrons is therefore valid, as is the notion that collision

between two neutrons is highly unlikely. The latter point is very important since a

neutron gas is at thermal equilibrium, with a Maxwell distribution of speeds, due to

the collision of neutrons with “hot” matter, and not with other neutrons, as is the

case for a gas with collisions between molecules.

In a thermal reactor, the matter referred to earlier is the moderator since the

(heavy) fuel contributes weakly to the slowing down of neutrons. Contrary to

common belief, very few neutrons are present in a reactor at any given time. It

should be noted that the maximum flux spectrum in energy occurs at E¼ kT, which
is the most probable energy, whereas the maximum of the neutron spectrum occurs

at E¼ kT/2 (Fig. 7.3 and Table 7.2)

dΦ Eð Þ
dE

¼ Φth
1

kTð Þ2 �
E

kTð Þ3
 !

e�
E
kT

dn Eð Þ
dE

¼ nth
2ffiffiffi
π

p
ffiffiffiffiffiffi
1

kT

r
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1

2
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p �
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Fig. 7.3 Comparison of neutron density and flux spectrum as a function of energy
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7.5 Neutron Thermalization Equation

(Neutron thermalization 1962)

When neutrons reach thermal energy, they may either lose or gain energy

through collision. The thermalization equation is very similar to the slowing-

down equation, the difference being that integration over energy is done over [0,

+1[ rather than limiting the range of the scattering rate to E.ð1
0

Σs E
0 ! Eð Þ Φ E0ð Þ dE0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1ð Þ Neutrons which arrive
at energy E up to dE from E0

¼ Σt Eð Þ Φ Eð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2ð Þ Neutrons

which disappear

It may be seen that there is no fission source term since the neutrons are always

emitted in the fast energy range. If there is no absorption and the medium has no

leakage, the Maxwell function m(E) is in fact the solution to the thermalization

equation (7.7) (Fig. 7.4).

The scattering cross section can be introduced into the neutron loss term on the

RHS of the equation:

Thermalization equation:
Ð1
0

ΣS E0 ! Eð Þ Φ E0ð Þ dE0 ¼ Σa Eð Þ Φ Eð Þ
þ ΣS Eð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}Ð1

0
ΣS E!E0ð Þ dE0

Φ Eð Þ

ð7:7Þ

Furthermore, application of the micro-reversibility principle of Tolman5 and the

detailed balance (after Fowler and Milne,6 which lead to the Onsager reciprocity

equations in thermodynamics) to the neutron gas at equilibrium relates at thermal

Table 7.2 Maxwell distribution in energy for T¼ 579.15K¼ 306
�
C

v m s�1½ � 0 1000 2200 3090 4000 6000 10000 20,000

E/kT[�] 0 0.1 0.5 1 1.68 3.77 10.50 41.90

n Eð Þ
neutron J�1½ � � 1019 0 5.4 6.1 5.2 3.4 0.63 0.0013 5.8 � 10�17

Φ Eð Þ
neutron cm�2 s�1 J�1½ � � 1019 0 2.3 3.8 4.6 3.9 1.1 0.0037 3.3 � 10�16

5R.C. Tolman, Proc. Natl. Acad. Am. 11 (1925), 436.
6R.H. Fowler, E.A. Milne, Proc. Nat. Acad. Am. 22 (1925), 400.
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equilibrium the probabilities of scattering from energy E to E0 and vice versa

(Squires 1996, p68; Decoster et al. 1998, p142):

Number of collisions (E) P(E ! E0) ¼ Number of collisions(E0) P(E0 ! E).
From which:

n Eð Þv Eð ÞΣs E ! E0ð Þ ¼ n E0ð Þv E0ð ÞΣs E
0 ! Eð Þ

This approach also enables proper definition of thermal energy by stating that at

that particular energy, a neutron has an equal probability of gaining energy or of

losing energy. Ideal thermalization implicitly means that there is no absorption,

which is not the case in true physical media. A thermalization operator H is

introduced, such that:

H Φ Eð Þ½ � ¼
ð1
0

ΣS E0;Eð Þ Φ E0ð Þ dE0 � Φ Eð Þ
ð1
0

ΣS E;E0ð Þ dE0

The thermalization equation is hence written as:

H Φ Eð Þ½ � ¼ Σa Eð ÞΦ Eð Þ

V.V. Smelov, cited in (Marchuk 1959), proposed7 expansion of the scattering

cross section in terms of the relative velocity between the neutron (~v) and its target

(~V):

Σs vr ¼ j~v� ~V j
!

¼
X
i

Σi e
�αi v2r

 

This form allows analytical integration of the scattering probability for a mon-

atomic gas of target particles:

�

�

dEE

E’

�

�

Fig. 7.4 Neutron balance at

energy E

7V.V. Smelov, On the question of neutron thermalisation, Journal of Atomic Energy (USSR),

10, 1957.
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gð~Ω ! ~Ω0 ;~v ! ~v0 Þ ¼ 1

4π

ð2π
0

dϕ

ðþ1

�1

dμ

ð1
0

dvrm Vð Þ pð~v ! ~v0 ; ~VÞ

where m(V ) is the Maxwell distribution of the speeds of the target nuclides,

p ~v ! ~v0 ; ~VÞ
�

, the probability of reaching velocity ~v0 after a collision at velocity

~v with a target (velocity ~V) and μ is the cosine of the angle between the velocity

before collision and the velocity of the target, while μ0 is that between the velocity

after collision and the velocity of the center of mass.

vmin ¼ A

1þ A
vr � vcom

���� ���� the minimum velocity that can be reached after collision,

vmax ¼ A

1þ A
vr þ vcom the maximum velocity that can be reached after collision,

~vcom ¼~vþA~V

1þA
is the velocity of the center of mass before collision, κ¼ A

1þA

vr
vcom

Scattering probability in velocity :

pð~v!~v0 ;~VÞ¼
0 if v0<vmin

1

2π

2v0

v2max�v2min

δ
κþ1

2

v

vmin

�κþ1

2

vmin

v
�μ0

� �
0 if v0>vmax

8>><>>: if vmin	v0 	vmax

ð7:8Þ

The Kronecker delta indicates that only the angle defined by the cosine μ0 may

be reached after collision (up to an azimuthal symmetry around the velocity vector

of the center of mass). Integration of the previous equation was carried out by

Maiorov and Smelov for any mass number and leads to:

gð~Ω ! ~Ω0 ;~v ! ~v0 Þ ¼ 1þ Að Þ2
4A

βffiffiffiffiffiffiffiffi
Aπ3

p v02

~v0 �~v
��� ���

X
i

Σi τ2i e
�θi

with :θi�αiτ
2
i v

02� αiþAβ2
� 	

4

j~v0 �~v j
A

λi�τ2i
v2�v02

~v0 �~v
��� ���

375
2

, β� 1ffiffiffiffiffiffiffiffi
2kT

p , τ2i �
Aβ2

αiþAβ2

264
λi � 1þ A 1� τ2i

� 	
The scattering probability appears directly in the thermalization equation written

as follows:
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1

v

∂Φ ~r; ~Ω; v; t
� 	

∂t
þ ~Ω:grad

!
Φ ~r; ~Ω; v; t
� 	þ ΣtΦ ~r; ~Ω; v; t

� 	
¼
ðvthres
0

dv0
ð
d ~Ω0 Φð~r; ~Ω0 ; v0; tÞ gð ~Ω0 ! ~Ω; ~v0 ! ~vÞ

v0
þ S ~r; ~Ω; v; t
� 	

vthres is the speed corresponding to the threshold energy Ethres below which the

collisions are assumed to be elastic, since this approach is not valid for inelastic

collisions. The integral term thus represents the contribution of those neutrons

undergoing elastic scattering out of the total scattering. In the thermalization

zone, the fission source term can legitimately be disregarded, unlike the slowing-

down source S ~r; ~Ω;E; t
� 	

for neutrons that are slowed down at energy E below the

threshold energy. The integral of the slowing-down source S ~r; ~Ω; t
� 	

over [0,Ethres]

corresponds to the total number of neutrons scattering above the threshold value,

i.e. the angular slowing-down density at the threshold:

S ~r; ~Ω;E; t
� 	 ¼ ðþ1

Ethres

dE0Σs ~r; ~Ω;E0 ! E; t
� 	

Φ ~r; ~Ω;E0; t
� 	

S ~r; ~Ω; t
� 	 ¼ ðEthres

0

S ~r; ~Ω;E; t
� 	

dE ¼ q ~r; ~Ω;Ethres; t
� 	

¼
ðþ1

Ethres

dE0
ðEcoup

0

dE00 Σs ~r; ~Ω;E0 ! E00; t
� 	

Φ ~r; ~Ω;E0; t
� 	

:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
Integration of the previous differential equation for speeds lower than the

threshold speed gives the following equation:

Transport equation at thermal energy:

1

vT

∂Φ ~r; ~Ω; t
� 	
∂t

þ ~Ω:grad
!

Φ ~r; ~Ω; t
� 	þ Σt,TΦ ~r; ~Ω; v; t

� 	 ¼ ð d ~Ω0Σs,TΦ ~r; ~Ω0 ; tÞg ~Ω0 ! ~ΩÞ þ S ~r; ~Ω; t
� 	��
ð7:9Þ

using the fact that for no absorption and leakage, the flux spectrum has a Maxwell

distribution similar to the targets with which it is in equilibrium:

400 7 Thermalization of Neutrons



Φ ~r; ~Ω0 ; v0; tÞ ¼ Φ ~r; ~Ω0 ; tÞm v0ð Þ
��

taking the thermal scattering reaction rate as:

Σs,T gð ~Ω0 ! ~ΩÞ �
ðvthres
0

dv

ðvthres
0

dv0 m v0ð Þ gð ~Ω0 ! ~Ω; ~v0 ! ~vÞ
v0

and the average speed at the temperature T as: vT � Ðvthres
0

dv m vð Þ
v

� ��1

Equation (7.9) is simply the neutron transport equation condensed on the thermal

energy group, and which will be discussed in detail in the chapter on the Bolzmann

equation.

7.6 Wigner-Wilkins Model: Free Proton Gas

E.P. Wigner and J.E. Wilkins proposed a thermalization model resulting from the

collision of neutrons with protons of same mass, without any chemical bonding, and

with an absorption cross section inversely proportional to speed. The authors were

manifestly seeking to model slowing-down in water while neglecting oxygen,

hence the notion of a proton gas. As early as 1944, Wigner and Wilkins8 computed9

this scattering probability in the case of a hydrogen target. In the particular case of

A¼ 1, the flux spectrum is the solution to a second-order linear differential

8Ernest Wilkins Jr (1923–2011) was an African-American mathematician who was extremely

precocious (he attended the University of Chicago at the age of 13). In 1942, he obtained his PhD

in mathematics at the age of 19. He is in fact the 7th African-American to receive this distin-

guished title. At the same time, he obtained his Bachelor of Mechanical Engineering in 1942 at the
University of New-York, which was followed by a Masters in the same field in 1960. He taught

mathematics at the Tuskegee Institute from 1943 to 1944. Wilkins was associated with the

Manhattan Project from 1944 to 1946. He taught mathematics and carried out his research at the

renowned Metallurgical Laboratory of the University of Chicago under the supervision of Enrico

Fermi. From 1946 to 1950, Wilkins was in charge of mathematical studies for the American
Optical Company; from 1950 to 1955, he was Senior Mathematician for the Nuclear Development
Corporation of America. Furthermore, he was also responsible of the department of physics and

mathematics (1958–1959), before becoming its director (1960–1965). Dr. Wilkins also worked for

the department of theoretical physics at General Atomic from 1960 to 1970. In 1970, he was

Distinguished Professor of Applied Mathematical Physics at Howard University. From 1974 to

1975, he served as President of ANS. In 1976, he was elected to the National Academy of
Engineering of the USA. Besides his work in pure mathematics, he also worked in the 1940s to

1950s on the slowing-down and thermalization of neutrons, and then on photon transport and

radiation protection.
9Eugène Paul Wigner, J. Ernest Wilkins Jr: Effect of the temperature of the moderator on the speed
distribution of neutrons with numerical calculations for H as a moderator, AECD 2275 (1944).
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equation. By assuming that scattering is isotropic in the center of mass, the speed

scattering probability g(v! v0) is obtained by integrating Eq. (7.8) over 2π (Bekurts
and Wirtz 1964, p182), without considering the scattering angle, and for scattering

from speed v to v0:

gð~v ! ~v0 ; ~VÞ ¼

0 si v0 < vmin ¼ vcdm � A

Aþ 1
vr

2v0

v2max � v2min

si vmin 	 v0 	 vmax

0 si v0 > vmax ¼ vcdm þ A

Aþ 1
vr

8>>>>><>>>>>:

Eugène Wigner (left, Public domain) and J. Ernest Wilkins Jr (right, courtesy Wilkins, photograph

unknown)

The Maxwell speed distribution of the target atoms is given by:

m Vð Þ dV ¼ 4π
m

2π kT

� �3=2

V2 e�
mV2

2kT dV

In the chapter on “neutron interaction”, the relative speed characterizing the

neutron-target collision is given by:

v2r ¼ v2 þ V2 � 2vV cos θ

where θ is the angle between the speeds before collision. If all post-collision

directions have equal probabilities, the probability of collision occurring between
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angle θ and θ + dθ is equal to d(cosθ)/2� dμ/2. The number of collisions per cm3

and per second in this solid angle for a differential element dV of the target velocity

for a single neutron is:

dR μ;Vð Þ ¼ ΣsΦ
dμ

2
¼ Nσ vr p Vð ÞdV dμ

2
� vN dσ v ! v0;Vð Þ

using the differential element for the differential scattering cross section. The total

differential scattering cross section is obtained by integrating over the possible

speeds V of the target and for all the incident directions:

σ v ! v0ð Þ ¼
ðμ¼þ1

μ¼�1

dμ

ðþ1

V¼0

dσ v ! v0;Vð Þ
dμ

¼ 1

2v

ðμ¼þ1

μ¼�1

dμ

ðþ1

V¼0

vr σsp Vð Þg v ! v0ð Þ

Given that vcom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ A2V2 þ 2Avμ

p
Aþ 1

, after some algebraic calculations, the

following equation is finally obtained:

σ v! v0ð Þ ¼ σs
v0

v2
ϑ2 erf

ϑv0 � ςv

vT

� �

 erf

ϑv0 þ ςv

vT

� �
þ e

v2�v02
v2
th erf

ϑv� ςv0

vT

� �
� erf

ϑvþ ςv0

vT

� �� �( )

where ϑ � Aþ1

2
ffiffiffi
A

p , ς � A�1

2
ffiffiffi
A

p , vT �
ffiffiffiffiffiffiffiffiffiffiffi
2kT

mneutron

q
and the “+” sign implies that v> v0 while the

“�” sign that v< v0. Expressed in terms of energy, the differential cross section may

be written as (Progress in nuclear energy Vol 2 1958, p96):

σ E ! E0ð Þ

¼ σs
e

E
kT

E

ϑ2

2

e�
E0
kTerf ϑ

ffiffiffiffiffiffi
E

kT

r
� ς

ffiffiffiffiffiffi
E0

kT

r !
þ e�

E
kTerf ϑ

ffiffiffiffiffiffi
E0

kT

r
� ς

ffiffiffiffiffiffi
E

kT

r !

� e�
E0
kTerf ϑ

ffiffiffiffiffiffi
E

kT

r
þ ς

ffiffiffiffiffiffi
E0

kT

r !
� e�

E
kTerf ϑ

ffiffiffiffiffiffi
E

kT

r
þ ς

ffiffiffiffiffiffi
E0

kT

r !�����
�����

8>>>><>>>>:

9>>>>=>>>>;
noting carefully that the last two terms in the equation are within absolute values

sign. In the case of a proton gas (A¼ 1), the differential scattering cross section,

which encompasses the probability of energy transfer, is simplified to (Duderstadt

and Hamilton 1976):
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Σs E
0 ! Eð Þ ¼

Σ H
s

E0 erf

ffiffiffiffiffiffi
E

kT

r !
E0 > E slowing down

ΣH
s

E0 erf

ffiffiffiffiffiffi
E0

kT

r !
e�

E�E0ð Þ
kT

E0 < E upscattering in energy

8>>>><>>>>:
In this formula, Σ H

s is the macroscopic scattering cross section of free hydrogen,

which is constant in terms of energy. These formulae may be compared to the pure

slowing-down cross section Σs E
0 ! Eð Þ ¼ ΣH

s = 1� αHð ÞE0½ � ¼ Σ H
s =E

0 since

αH¼ 0. Defining the reduced speed x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E= kTð Þp

, the total scattering cross section

can be computed in terms of energy by integration over the departing energy values

E0, i.e.:

Σs Eð Þ ¼ ΣH
sffiffiffiffi
2E
m

q ffiffiffiffiffiffiffiffi
2kT

m

r
xþ 1

2x

� �
erfxþ 1ffiffiffi

π
p e�x2

� �
¼ Σ H

s

x
xþ 1

2x

� �
erfxþ 1ffiffiffi

π
p e�x2

� �

By inserting this scattering cross section and a 1/v absorption term in the

thermalization equation, the resulting spectrum is slightly harder compared to a

Maxwell distribution. A coarse approximation for a mixture of moderating nuclides

consists in substituting ΣH
s by ξΣs in the formulae. Neglecting the crystal or

molecular lattice bonding, as in the free gas model, tends to decrease the slowing-

down density, especially near the thermal energy range. Slowing-down is less

effective, or in other terms, the target seems heavier, resulting in a decrease in ξ
in terms of the number of collisions, and hence a decrease in neutron energy. In the

case of zero absorption, this decrease in moderating power increases the migration

area, resulting in increased leakage for a finite reactor.

7.7 Asymptotic Spectrum

D.S. Selengut in (Yeater 1962, p166; Neutron fluence measurements 1970, p78;

Progress in nuclear energy Vol 2 1958, p100)

For an asymptotic flux in a uniform medium far removed from a source of

thermal neutrons, the homogeneous balance equation is:

Balance equation: �divðDgrad!
Φ ~r;Eð ÞÞ þ ΣaΦ ~r;Eð Þ ¼ ∂q

∂E
ð7:10Þ

where q is the slowing-down density as explained earlier. A classical method to

solve this problem consists in expanding the flux by separating the energy and space

variables as such (for a plane geometry):
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Φ ~r;Eð Þ ¼
Xþ1

n¼0

ϕnφn Eð Þe� x
Ln

The coefficients ϕn must be defined with the boundary conditions at the source.

The energy spectrum must verify the eigenvalue equation:

Moment equation: �D

L2n
þ Σa

� �
φn Eð Þ ¼ ∂qn

∂E
ð7:11Þ

where qn is the nth order moment obtained by substituting the flux expansion in the

definition of the slowing-down density:

Slowing-down density:

q ~r;Eð Þ�
ðE
0

dE
00
ðþ1

E

dE0 ΣS E
00 !E0

� �
Φ
�
~r;E

00	
dE0 �ΣS E0 !E

00
� �

Φ
�
~r;E0	� �

ð7:12Þ

The smallest eigenvalue, L0, represents the asymptotic scattering length, and the

associated eigenfunction, the asymptotic spectrum far from the source. The higher

modes are of significant importance close to the source only. The next eigenvalue,

L1, corresponds to re-thermalization of the initial source spectrum, which was not at

equilibrium. Historically, a number of attempts have been made to represent the

energy spectrum. The first involved expansion of the thermalization kernel of the

heavy gas on the eigenfunctions using Laguerre polynomials of order 1, Ln(E), the
latter being a complete basis for polynomials:

φ Eð Þ � Ee
� E

kTm
XN
n¼0

ψnLn Eð Þ

with Tm being the moderator temperature. Precision is improved by increasing the

order of the expansion N. Another approach consists in expanding the spectrum

using a set of Maxwell distributions:

φ Eð Þ �
XN
n¼0

ψn

E

kTnð Þ2 e
� E

kTn

given that a spectrum at an intermediate temperature is fairly well represented by a

linear combination of two spectra at the extreme temperatures. A third option

consists in defining an effective temperature Teff for which a unique Maxwell

distribution is computed:
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φ Eð Þ � ψ
E

kTeff

� 	2 e� E
kTeff

This last approach is widely used in industrial calculation codes but there is a

drawback in that the effective temperature depends on the absorption in the

medium. To quantify a small difference with respect to an equilibrium Maxwell

distribution at T0 using an effective temperature model such that:

Teff ¼ T0 þ εT0

and that the perturbation is sufficiently low for ε to be small enough, the following

may be written as a first-order approximation:

φ Eð Þ ¼ m kTeff

� 	 � m kT0ð Þ þ ∂m kTð Þ
∂T

Teff � T0

� 	
with m kTð Þ � E

kTð Þ2 e
� E

kT

to give:

φ Eð Þ � 1� 2εð Þ þ E

kT0

ε

� �
E

kT0ð Þ2 e
� E

kT0 ¼ 1� 2εð Þ þ E

kT0

ε

� �
m kT0ð Þ

The moment of the cross section with respect to the Maxwell distribution is

defined as:

Σn �
ðþ1

0

m Eð Þ E

kT0

� �n

Σ Eð ÞdE

In the special case where the cross section varies according to an exponential

term β in energy (Σ(E)/Eβ), the moment can be computed analytically as:

Σ0¼
ðþ1

0

E

kT0ð Þ2e
� E
kT0CEβdE¼

ðþ1

0

C kT0ð Þβe�
E
kT0

E

kT0

� �βþ1

dE¼C kT0ð ÞβΓ βþ2ð Þ

¼Γ βþ2ð ÞΣ kT0ð Þ

Σn¼
ðþ1

0

E

kT0ð Þ2e
� E
kT0

E

kT0

� �n

CEβdE¼C kT0ð ÞβΓ nþβþ2ð Þ¼Γ nþβþ2ð Þ
Γ βþ2ð Þ Σ0

¼Γ nþβþ2ð ÞΣ kT0ð Þ

8>>>>>>>>>><>>>>>>>>>>:
By multiplying the slowing-down density [Eq. (7.12)] by E and integrating over

all the possible energy values, the rate of energy transfer per unit volume transmit-

ted from the moderator to the neutrons or conversely depending on the thermaliza-

tion level is:
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ðþ1

0

E
∂q
∂E

dE ¼
ðþ1

0

dEφ Eð Þ
ðþ1

0

E0 � Eð ÞΣs E ! E0ð ÞdE0 �
ðþ1

0

φ Eð Þμ1 Eð ÞdE

This equation allows the definition of the first moment for the energy transfer

μ1(E). The global energy transfer rate is computed by averaging this first moment

with the flux. Once the calculations have been done, at first order, the following is

obtained:

ðþ1

0

E
∂q
∂E

dE � 1

2
kT0 � kTeff

� 	 1

kT0ð Þ2
ðþ1

0

dEm0 Eð Þ
ðþ1

0

E0 � Eð Þ2Σs E ! E0ð ÞdE0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
μ2 Eð Þ

The second moment is the average of the first energy transfer moment by a

Maxwell distribution:

m2 � 1

kT0ð Þ2
ðþ1

0

dEm Eð Þ
ðþ1

0

E0 � Eð Þ2Σs E ! E0ð ÞdE0

It depends only on the moderator temperature T0. The equations for neutron

balance and energy balance are obtained by integrating Eq. (7.10) over energy:

ðþ1

0

�D

L2
þ Σa

� �
m kTeff

� 	
dE ¼

ðþ1

0

∂q
∂E

dE ¼ 0

ðþ1

0

�D

L2
þ Σa

� �
m kTeff

� 	
EdE ¼

ðþ1

0

E
∂q
∂E

dE ¼ �εkT0

m2

2

8>>>>>><>>>>>>:
Using the expansion m kTeff

� 	 � 1� 2εð Þ þ E

kT0

ε

� �
m kT0ð Þ, the moments of

the cross sections are inserted:

� 1� 2εð ÞD0 þ εD1

L2
þ 1� 2εð ÞΣa, 0 þ εΣa, 1 ¼ 0

� 1� 2εð ÞD1 þ εD2

L2
þ 1� 2εð ÞΣa, 1 þ εΣa, 2 ¼ �ε

m2

2

8><>:
The quantities ε (or L2) can be removed from this equation system, resulting in a

quadratic equation which relates the other averaged quantities to the Maxwell

distribution. At first order in ε, the asymptotic scattering length L0 can be obtained

using:
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L20 ¼
D0

Σa, 0
1þ 2

D1

D0

� Σa, 1

Σa, 0

� �2Σa, 0

m2

 !

It can be seen that D0/Σa , 0 is simply the square of the diffusion length computed

using neutron constants averaged with a thermal spectrum at T0. Expressing ε as a
function of L2, the shift in temperature can be obtained:

Teff

T0

� 1þ 2
D1

D0

� Σa, 1

Σa, 0

� �
Σa, 0

m2

This equation can be simplified for the case whereΣa Eð Þ / Eβa andD Eð Þ / EβD:

Teff

T0

� 1þ 2 βD � βa½ �Σa, 0

m2

In the usual case where the diffusion coefficient is constant with energy and

where the absorption cross section has a 1/v (βa¼ � 1/2) form, we obtain:

Teff

T0

� 1þ
ffiffiffi
π

p
2

Σa kT0ð Þ
m2

and, for the heavy gas approximation(A> > 1), the second moment, which is

proportional to the slowing-down power m2¼ 4 ξΣs, may be computed. Hence,

the higher the absorption of the medium, the more significant is the correction due

to the hardening of the spectrum. For light water reactors, the assumption that the

thermal spectrum may be computed using a Maxwell distribution at the moderator

temperature leads only to a small error, as will be shown in the next paragraph.

7.8 Simplified Solution to Thermalization with Absorption

Theory predicts that in the absence of absorption, thermal neutrons are distributed

according to a Maxwell-distributed flux distribution and slowing-down

(epithermal) neutrons obey a flux that is inversely proportional to energy. Hence,

we may imagine a function linking both asymptotic spectra. In a real absorbing

moderator, the solution to the slowing-down equation with an absorption term is a

flux spectrum, which deviates from the pure Maxwell distribution. It may be useful

to model the flux by a difference function, which measures the deviation from the

Maxwell distribution (possibly shifted to the effective temperature as seen earlier),

which tends towards an asymptotic 1/E slowing-down spectrum by construction.

Assuming that the thermal zone is modeled by a Maxwell distribution despite

absorption, the difference function retains its properties as the connecting function

between the two asymptotic spectra:
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Φ Eð Þ ¼
"

E

kTð Þ2e
� E

kT|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m Eð Þ

þ λ Δ E=kTð Þ � 1
E|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Connection function

#
Φth

Figure 7.5 represents a comparison between the spectrum of a UOX 3.70%

assembly (as calculated by the French spectral code APOLLO2) and the recon-

struction of the spectrum with a Maxwell distribution and a 1/E epithermal flux.

Visually, it can be found that the reconstruction matches well the calculated flux

over a large portion of the spectrum. The fast spectrum has not been modeled, thus

explaining the significant difference at high energy. In the thermal energy zone, the

real spectrum is slightly harder, i.e. shifted towards higher energies, than the pure

Maxwell spectrum due to absorption.

The function Δ (E/kT) is dimensionless [-] and is globally equal to 0 in the

thermalization zone and to 1 in the epithermal zone (Duderstadt and Hamilton

1976, p382; Bekurts and Wirtz 1964, p206). λ is a dimensionless normalization

coefficient [-],Φth is the level of the thermal neutron flux [neutron/cm2/s], andΦ(E)
is the flux spectrum [neutron/cm2/s/eV]. As we move further from the thermal

energy zone, the Maxwell spectrum tends to zero and the junction function Δ (E/kT)
tends to 1 (Fig. 7.6). The value at which the junction function becomes different

from 0 (at about 4 for a PWR) is denoted μ by C.H. Westcott (Neutron fluence

measurements 1970, p48), whose formalism will be detailed later on.

The flux tends towards the epithermal flux which, for a source Q[n.s-1], assuming

that slowing-down occurs in a weakly absorbing medium Σa< < ξΣs, is written as:

10–8
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100

102
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10–6 10–4 10–2 100

Energie (MeV)

φ(
E

)

APOLLO2 99g

UOX 3.70% 40 GWj/t

Flux Maxw
Flux 1/E

Fig. 7.5 Comparison of a real spectrum with a Maxwell distribution
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Φepithermal Eð Þ ¼ Q

ξ Σs E
� λ Φth

E
with Δ

E

kT

� �
� 1

� �
i.e.: Q� λ ξ Σs Φth

By definition of a medium without leakage, any neutron emitted by the source

Q is absorbed between [0,Emax], with the neutrons being emitted at Emax:

Q ¼
ðEmax

0

Σa Eð Þ Φ Eð Þ dE ¼
ð1
0

Σa Eð Þ Φ Eð Þ dE

with: Σa Eð Þ en 1
v , Σa Eð Þ ¼ Σa kTð Þ vT

v
¼ Σa kTð Þ

ffiffiffiffiffiffi
kT

E

r
.

where:

Q ¼ Σa kTð Þ Φth

ð1
0

ffiffiffiffiffiffi
E

kT

r
e�

E
kT

kT
dE|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Γ 3=2ð Þ ¼ ffiffiffi
π

p
=2

þ λ Σa kTð Þ Φth

ð1
0

Δ
E

kT

� �
kT

E

� �3=2 dE

kT

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
� λ Φth Σa kTð Þ

Effectively:
Ð1
0

Δ
E

kT

� �
kT

E

� �3=2 dE

kT
¼
ð1
0

Δ xð Þ 1

x3=2
dx

With Δ(x)� 0 for x	 μ¼ 4, and Δ(x)� 1 for x� μ¼ 4 (assuming that Δ(x) has
the shape of a step function that is non-zero towards x¼ μ):ð1

0

Δ xð Þ 1

x3=2
dx � � 2ffiffiffi

x
p

� �þ1

4

¼ 1

Hence: λ ξ ΣsΦth ¼ Q � Σa kTð Þ
ffiffiffi
π

p
2

Φth þ λ Σa kTð Þ Φth

Hence the junction constant: λ �
ffiffiffi
π

p
2

Σa kTð Þ
ξ Σs � Σa kTð Þð Þ
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Φ(E)�Φth

"
E

kTð Þ2 e� E
kT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m eð Þ

þ
ffiffiffi
π

p
2

Σa kTð Þ
ξ Σs � Σa kTð Þð Þ

Δ E=kTð Þ
E|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

#

Maxwell or “thermal” part at

moderator temperature T
Epithermal part

This formulation for the flux is only valid under various assumptions employed

to obtain this result, especially the fact that absorption must be negligible where

there is no leakage and the junction function has a special form. These limitations

have led some authors to propose other more precise approaches. In particular,

C. H. Westcott proposed a formulation writing the neutron density in the reduced

form (with x¼ v/vT):

n xð Þ ¼ 4ffiffiffi
π

p 1� brð Þx2 e�x2 þ r
Δ xð Þ
x2

� �
This form inherently includes the Maxwell distribution m xð Þ ¼ 4x2e� x2=

ffiffiffi
π

p
,

as well as the junction function meeting the following two conditions:

lim
x!0

Δ xð Þ
x2

¼ 0 and lim
x!þ1Δ xð Þ ¼ 1

so that there is a connecting point in the thermal zone and that the flux is of the 1/E
shape (neutron density in 1/x2) in the epithermal zone. Coefficient b satisfies the

normalization condition
Ð1
0

n xð Þdx ¼ 1, i.e.:

b ¼ 4ffiffiffi
π

p
ð1
0

1

x2
Δ xð Þdx

Westcott proposed several empirical cut-off functions Δ(x) of the form:

Δ xð Þ ¼ 1þ μ

x2

� �mh i�1

where m is of order 7

The Westcott formalism hinges on several hypotheses. Absorption is assumed to

be negligible compared to slowing-down in order to compute the r index (i.e. a low
value of r). This is not true, especially if the medium has epithermal absorbers,

which is the case for a reactor with uranium 238 in a thermal spectrum. Thus,

Westcott was forced to introduce a neutron temperature that is no longer the

temperature of the Maxwell spectrum of the moderator, and that deviates even

more from the latter when absorption is significant. This temperature is often given

by empirical laws such as:
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T ¼ 1þ α rð Þ Tmoderator where α is a parametric coefficient depending on the moderator:

It has no physical meaning other than to shift the thermal Maxwell distribution

so as to better fit the true spectrum. Very often, the Westcott model is applied taking

T as the moderator temperature. The strength of this model is its relatively simple

calculation of the effective cross sections for the reconstruction of the reaction rate.

It also relies on the fact that coefficients g(T ) and s(T ), used to calculate these

effective cross sections, depend only on temperature and not on the nature of the

moderator (i.e. the same coefficients are obtained for liquid water or solid carbon at

a given temperature). A second point is the fact that the medium is assumed to be

homogeneous and without leakage (enabling use of the slowing-down model).

Once more, depending on the size of the pile, this hypothesis may not be valid.

The Westcott model will be discussed in depth later.

7.9 Horowitz-Tretiakoff Model

(Neutron fluence measurements 1970, p51)

7.9.1 Principle

As early as November 1960, Jules Horowitz10 (Photo 7.3) and Oleg Tretiakoff11

proposed12 a more complex but more precise model that accounts for leakage and

heterogeneity. The goal was to eliminate the absorption problem, which empirically

modifies the Westcott junction function. In this model, neutron density is written as:

10Jules Horowitz (1921–1995) is considered by many as the father of reactor physics in France. A

brilliant physicist, he joined theCEA in 1946 after graduating from Ecole Polytechnique, where his

studies were interrupted by the war. He joined CEA at the same time as Michel Trocheris, Claude

Bloch and Anatole Abragam, with the group being known collectively as the “Three Musketeers”

(Lefebvre 2002, p33). He laid down the founding elements of reactor physics by calculating the

Zoé pile on the advice of Lew Kowarski. During his work on experimental reactors as director of

the atomic piles, his requirements led to the introduction of the first scientific computers in France

at the department of mathematical physics, where they were developed by Albert Amouyal

(Lefebvre 2002, p116). His scientific work has been re-edited in the collection of important actors

at the CEA. The new materials test reactor presently being built at Cadarache bears his name.
11Oleg Tretiakoff, a former student at the Ecole Polytechnique (1950–1952), was an engineer in

the Armaments Corps at the French Defense Ministry. He remained at the CEA throughout his

whole career (1955–1981), retiring as Chief Weapons Engineer. In 1975, with his wife he invented

a piezo-electric system that allows the decoding of text printed in Braille for the blind. He applied

for a patent in 1977. Nowadays, he lives in Florida where he heads a company working on these

concepts.
12J. Horowitz, O. Tretiakoff: Effective cross sections for thermal reactors, European American

Nuclear Data Committee, EANDC (E) 14, 1960, referred to in the work of Jules Horowitz. See

also Francis Vitton: Mesures d’indices de spectre �a César [Measurement of the Cesar spectrum

indices]. His PhD thesis at the University of Orsay (1967) describes the complete model.
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A rare historical photograph of an adolescent Jules Horowitz (second row, center) in 1936 during

the visit to Metz of the Jewish youth movement Brith Hanoar Hamizra’hat (Courtesy Horowitz

family)

n xð Þ ¼ m xð Þ þ 2rHTe xð Þ

with the following normalization:
Ð1
0

n xð Þdx¼ 1 ,
Ð1
0

m xð Þdx¼ Ð1
0

4ffiffiffi
π

p x2e�x2dx ¼ 1

and
Ð1
0

e xð Þdx¼ 0.

e(x) is a junction function with a zero integral value (Bekurts and Wirtz 1964,

p208). The quantity rHT is the Horowitz-Tretiakoff spectrum index, and it will be

later seen that it differs from the Westcott spectrum index, hence the HT index

which differentiates between them. If it is compared to the slowing-down theory as

for the Westcott model, it is found that for large values of x, n(x)� 2rHT (1/x2)
which is compared to:

n xð Þ ¼ Q

vTξΣs

2

x2
¼ Σ

_

anv0
vTξΣs

2

x2
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Thus, the Horowitz-Tretiakoff spectrum index: rHT ¼
ffiffiffiffiffi
T0

T

r
Σ
_

a

ξΣs
¼

ffiffiffiffiffiffiffi
4

π
r

r
Coefficients r and rHT are found to differ only by a multiplicative constant

(Photo 7.3). For high energies, the Maxwell distribution is almost zero, thus:

e xð Þ e 1

x2

The epithermal junction function e(x) is such that it tends towards 1/x2 as x tends
towards infinity. For a calculation with two energy groups defined by a cut-off

Photo 7.3 The works of Jules Horowitz (CEA, courtesy Horowitz family)
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energy Ec corresponding to a speed vc and a reduced speed xc¼ vc/vT, the ratio of

speed at 2200 m/s to average thermal speed is:

v ¼
ðxc
0

vxn xð Þ dx

Historically, this ratio is called the UNITA parameter in the CEA code

APOLLO1:

UNITA ¼ v0
v
¼ v0

vT

Ðxc
0

n xð Þ dx

Ðxc
0

x n xð Þ dx

¼ v0
vT

Ðxc
0

m xð Þ þ 2 rHT e xð Þ½ � dx

Ðxc
0

x m xð Þ þ 2 rHT e xð Þ½ � dx

For a cut-off (usually used in light water reactors) at 0.625 eV, xc� 3.6 and

m(xc)� 9� 10�5, meaning that the following approximation on the upper bound of

the integral can be made:

ðxc
0

m xð Þ dx �
ð1
0

m xð Þ dx ¼ 1

and also:

ðxc
0

x m xð Þ dx �
ð1
0

x m xð Þ dx ¼ 2ffiffiffi
π

p

These approximations allow calculation of the UNITA parameter:

UNITA ¼ v0
v
�

ffiffiffiffiffiffiffiffi
T0

T

r
1þ 2 rHT e
2ffiffi
π

p þ 2 rHT xe

with: e ¼ Ðxc
0

e xð Þ dx et xe ¼
Ðxc
0

x e xð Þ dx.

For a cross section of the 1/v form, the UNITA parameter links the effective cross

sections and the average cross sections over the thermal group as follows:

bΣ
Σ
¼

Ðvc
0

φ vð Þdv

v0
Ðvc
0

n vð Þdv
¼

Ðvc
0

v n vð Þ dv

v0
Ðvc
0

n vð Þ dv
¼ v

v0
¼ 1

UNITA
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If the neutron density is a pure Maxwell distribution, the UNITA parameter can

be computed analytically as:

UNITAMaxwell ¼
ffiffiffiffiffi
T0

T

r ffiffiffi
π

p
2

For a non-Maxwell distribution,

e ¼
ðxc
0

e xð Þ dx ¼
ð1
0

e xð Þ dx

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0

�
ð1
xc

e xð Þ|{z}
1=x2

dx � � 1

xc
¼ �vT

vc
¼ �

ffiffiffiffiffi
T

Tc

r

To compute xe , the notion of a reference temperature Tref is introduced. It

corresponds to the temperature at which the reference cross sections are computed

and defines a reference reduced speed at the cut-off xrefc ¼ vc=vTref
:

xe ¼
ðxc
0

x e xð Þ dx ¼
ðx ref
c

0

x e xð Þ dxþ
ðxc
x ref
c

x e xð Þ|{z}
�1=x2

dx

thus:

xe ¼ xe
ref � 1

2
ln

T

Tref

� �
Calculation of the spectrum index rHT requires evaluation of the slowing-down

density at the cut-off. As seen earlier, the asymptotic solution to the slowing-down

equation is:

φas uð Þ ¼ q uð Þ
ξΣs uð Þ

Similarly, the expressions for flux and neutron densitywith reduced speed x¼ v/vT
are:

φas xð Þ ¼ 2q xð Þ
ξΣs xð Þ

1

x
n xð Þ ¼ φas xð Þ

xvT
¼ 2q xð Þ

vT ξΣs xð Þ
1

x2

The spectrum index rHT (characteristic of the junction between the two domains)

is written:

rHT ¼ q xð Þ
vT ξΣs xð Þ
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Since any neutron arriving in the thermal domain is eventually absorbed (in the

absence of leakage), the slowing-down density is equal to integration over the total

absorption:

q xð Þ ¼
ðx
0

Σa x0ð Þ Φ x0ð Þ dx0

The flux expression is thus written as follows, using v¼ vT x and Φ(x)¼ v n(x):

Φ xð Þ ¼ vT xm xð Þ þ 2xe xð Þ
ðx
0

Σa x0ð Þx0 n x0ð Þ
ξΣs

dx0

To compute the reaction rate, effective cross sections are usually used (this will

be discussed further in the chapter on thermalized absorption). These cross sections

vary very weakly with the operational conditions and are defined as:

bΣa ¼

Ðxc
0

Σa xð ÞΦ xð Þdx

v0
Ðxc
0

n xð Þdx
¼

Ðxc
0

Σa xð Þxn xð Þdx

v0
Ðxc
0

n xð Þdx

thereby leading to the expression of the slowing-down current in terms of the

effective absorption cross section:

q xcð Þ ¼
ðxc
0

Σa xð ÞΦ xð Þdx ¼ v0 bΣa

ðxc
0

n xð Þdx ¼ v0 bΣa 1þ 2 r eð Þ

At cut-off, the following equations are obtained:

q xcð Þ ¼ v0bΣa 1þ 2reð Þ ¼ ξΣsvTx
2
crHTe xð Þ with : e xcð Þ e 1

x2c

thus: rHT ¼ v0 bΣa

ξΣs vT � 2v0 bΣa e

Yet: v0 ¼
ffiffiffiffiffiffiffiffiffiffi
2kT0

m

r
and vT ¼

ffiffiffiffiffiffiffiffi
2kT

m

r
, hence: rHT ¼

ffiffiffiffiffi
T0

T

r
ξΣsbΣa

� 2

ffiffiffiffiffi
T0

T

r
e

with e ¼ �
ffiffiffiffiffi
T

Tc

r
resulting finally in the expression of the Horowitz-Tretiakoff spectrum index:
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Horowitz-Tretiakoff spectrum index : rHT ¼

ffiffiffiffiffi
T0

T

r
ξΣsbΣa

þ 2

ffiffiffiffiffi
T0

Tc

r ð7:13Þ

These calculations for two energy groups allow transition from an effective to an

average cross section by accounting for moderator temperature variations. In the

chapter on neutron feedback, we will describe the full potential value of this

approach. The thermalization equation, described previously, introduces the ther-

malization operator H []:

H Φ Eð Þ½ � ¼
ð1
0

ΣS E0;Eð Þ Φ E0ð Þ dE0 � Φ Eð Þ
ð1
0

ΣS E;E0ð Þ dE0

The thermalization equation can thus be written as:

H Φ Eð Þ½ � ¼ Σa Eð ÞΦ�E	
The thermalization operator is linear and describes the energy transfers between

the neutron gas and the moderator. Using the reduced speed x and the neutron

lifetime ‘0, defined by the formula ‘0(x)¼ 1/[xΣa(x)], the slowing-down equation in
terms of neutron density is:

H � 1

‘0 xð Þ
� �

n xð Þ½ � ¼ 0

where, thanks to the change invariable Σa(v)dv¼Σa(v(x))vTx¼Σa(x)dx, the fol-

lowing expression may be deduced: ‘0(x)¼ 1/[xΣa(x)]. In the case of weak absorp-

tion, Horowitz and Tretiakoff use a first-order expansion of n(x) in terms of rHT:
n(x)¼m(x) + 2rHTe1(x) where e1(x) tends towards e(x) as x tends towards 0. At first
order, the following may be written:

1

‘
¼
ð1
0

m xð Þ
‘ xð Þ dx

which is simply the weighting of 1/‘(x) by a Maxwell distribution. Since m(x) is the
solution of the thermalization equation without absorption, H [m(x)]¼ 0,

H � 1

‘ xð Þ
� �

n xð Þ½ � ¼ H � 1

‘ xð Þ
� �

m xð Þ þ 2rHTe1 xð Þ½ �

� �m xð Þ
‘ xð Þ þ H 2

ffiffiffiffiffi
T0

T

r
Σ
_

a

ξΣs

e1 xð Þ
" #

¼ 0
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thus:
1

ξΣs

H e1 xð Þ½ � ¼ m xð Þ
2

ffiffiffiffi
T0

T

q
Σ
_

a‘ xð Þ
¼ ‘m xð Þ

2‘ xð Þ with ‘ ¼ 1

x0Σ
_

a

It should be noted that use of the weakly-absorbing heavy gas model (Duderstadt

and Hamilton 1976, p388) to compute rHT is not inherent to the model, and the

calculation may be kept very general, allowing any slowing-down model to be used.

The solution to the equation:

1

ξΣs
H e1 xð Þ½ � ¼ ‘m xð Þ

2‘ xð Þ

determines the function e1(x), which is characteristic of the moderator and depends

solely on temperature. The effective cross section is then given by:

σ
_ ¼ σ0 m Tð Þ þ 2rHT e1 Tð Þð Þ

with:

m Tð Þ ¼ 1

σ0v0

ð1
0

σ xð Þvm xð Þdx which is a function independent of the moderator

e1 Tð Þ ¼ 1

σ0v0

ð1
0

σ xð Þve1 xð Þdx which depends on the moderator

8>>>>>><>>>>>>:

7.9.2 Case of Absorption Inversely Proportional to Speed

In the case where absorption varies as 1/v, the following equations are obtained:

rHT ¼
ffiffiffiffiffi
T0

T

r
Σ
_

a

ξΣs

¼ v0
vT

Σ
_

a

ξΣs

¼ v

vT

Σa

ξΣs

¼
ffiffiffiffiffi
T0

T

r
Σa

0

ξΣs

¼ Σa Tð Þ
ξΣs

1

‘
¼ Ð1

0

m xð Þ
‘ xð Þ dx¼

ð1
0

m xð Þ
1

xΣa xð Þ
dx¼

ð1
0

m xð Þ
1

x
Σ0
ax0
x

dx¼ 1

‘0

ð1
0

m xð Þdx¼ 1

‘0
, ‘ xð Þ ¼ 1

x
Σ0
ax0
x

¼ ‘0

8>>>>>>><>>>>>>>:
where:

1

ξΣs
H e1 xð Þ½ � ¼ ‘m xð Þ

2‘ xð Þ ¼ 1

2
m xð Þ

7.9.3 Case of a Finite Reactor (with Leakage)

In the case of leakage, neutrons may either be denoted as being absorbed or as

leaking from the reactor, i.e.:
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Q n:cm3=s½ � ¼
ð1
0

Σanvdvþ
ð1
0

DaB
2nvdv ¼

ð1
0

Σanvdv 1þ
Ð1
0

DaB
2nvdvÐ1

0
Σanvdv

 !

¼ v0bΣa 1þM2B2
� 	

where M2 ¼ Ð1
0

Danvdv=
Ð1
0

Σanvdv is the migration area. The Horowitz-Tretiakoff

model is thus corrected using the leakage term:

rHT ¼
ffiffiffiffiffi
T0

T

r
Σ
_

a

ξΣs
1þM2B2
� 	

and that of Westcott by r ¼
ffiffiffi
π

p
2

ffiffiffiffiffi
T0

T

r
Σ
_

a

ξΣs
1þM2B2
� 	

7.9.4 Thermalization Equation for a Homogeneous Medium

Given that the neutron density is represented in the Horowitz-Tretiakoff model by:

n xð Þ ¼ m xð Þ þ 2 rHT e xð Þ

the thermalization operator H applied to the neutron density is written as follows,

with P(x0 ! x)n(x0) the number of neutrons scattering from the reduced speed x’ to x:

H n xð Þ½ � ¼
ð1
0

P x0 ! xð Þn x0ð Þdx0 � n xð Þ
ð1
0

P x ! x0ð Þdx0

By disregarding the leakage term, the equilibrium condition leads to equating

this term to the number of neutrons absorbed:

H n xð Þ½ � ¼ Σa xð Þxn xð Þ

By definition of the Maxwell distribution, i.e. solution to the thermalization

equation without absorption, H[m(x)]� 0. Further, assuming that absorption is

proportional to 1/v, the following equation can be written:

Σa xð Þx ¼ Σa 1ð Þ

Since : rHT ¼ 2ffiffiffi
π

p r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0

T

Σ
_

a

ξΣs

¼ Σa 1ð Þ
ξΣs

s

by substituting n(x) by m(x) + 2 rHT e(x) in the slowing-down equation, the equation
of the function e(x) is obtained:
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1

ξΣs

H � rHT

� �
e xð Þ½ � ¼ 1

2
m xð Þ

Since rHT appears in the operator, the solution e(x) also depends on rHT and since

s xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

T0

ð1
0

σ xð Þ
σ0

e xð Þ2xdx
s

so does the function s(x), which minimizes use of the Westcott formalism under the

form bσ ¼ σ0 gþ rsð Þ. It is only in the case of weak capture that bσ can be assumed as

varying linearly with r. In the more general case, if the capture term does not have a

1/v shape, the value of rHT is given by:

rHT ¼ 1

ξΣs

ð1
0

Σa xð Þxn xð Þdx

7.10 Heavy Gas Model

In certain specific cases, the reduced speed transfer probability P(x0 ! x) may be

computed, especially for an elastic collision between a neutron and a target nuclide of

mass A, as shown in slowing-down theory. The theoretical case of an infinitely heavy

target (A tends to infinity) but with amoderating power ξΣs, that is finite at high energy,

is called the heavy gas model, and is used to model the behavior of uranium. The

thermalization operator degenerates into a differential operator of order two and

simplifies as follows [see also, with different notations (Bekurts andWirtz 1964, p218)]:

H½ � � ξΣs

4
x
d2

dx2
þ 2x2 � 1
� 	

dx
d

dx
þ 4x

� �
Under this assumption, the function e(x), which is equal to zero when x¼ 0, and

behaves as 1/x2 at infinity, verifies the following differential equation:

x
d2e xð Þ
dx2

þ 2x2 � 1
� 	 de xð Þ

dx
þ 4 x� rHTð Þe xð Þ ¼ 8ffiffiffi

π
p x2e�x2

The expression for e(x) is hence:

Function e xð Þfor a gas of infinite mass: e xð Þ � 1

x2
�2rHT

x3
þ2 1� r2HT
� 	

x4
þ . . . ð7:14Þ

In more realistic complex cases, allowance must be made for the chemical bonding

of heavy atoms in an oxide, in a metal, or, for fluids, among molecules. In these cases,

the slowing-down calculation cannot be done analytically and only the use of com-

puters can help to resolve the slowing-down operator in a more general situation.
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7.11 Cadilhac, Horowitz and Soulé Differential Model

In 1962, Cadilhac,13 Horowitz and Soulé proposed14 [see also (Reactor Physics

1966, volume 1, p311–330)] an extension of the previous model to more general

cases where reduced energy, y, is used as the independent variable:

13MichelCadilhac:Méthodes théoriques pour l’étude de la thermalisation des neutrons dans lesmilieux
infinis et homogènes [Theoretical methods for the study of neutron thermalization in infinite and

homogeneous absorbingmedia], PhD thesis at the Faculty of Science of Paris (1964) andCEA technical

report referenced as CEAR 2368.Michel Cadilhac (1934–) studied at the Ecole Normale Supérieure in

Saint-Cloud before passing his aggrégation (competitive examination to become a lecturer). He joined

theCEA, where he developed several theoretical notions related to thermalization (diffusion coefficient,

spectrum, etc.). His thesis on the subject was presided by Jacques Yvon, assisted by Jules Horowitz and

Austin Blaquière as examiners. It contained highly innovative ideas for the time and improved the

Wigner-Wilkinsmodel, making it one of themost important theses in French neutron physics. Hiswork

has been translated into English (Theoretical methods for the study of neutron thermalization in infinite
and homogeneous absorbing media, Euratom translation EURAEC-1203, 1963). As a professor at the

University of Marseille, he focused on the diffraction of electromagnetic waves in crystals.

(The Marguet collection)

14M. Cadilhac, J. Horowitz, J.L. Soulé: Some mathematical and physical remarks on neutron thermali-
zation in infinite homogeneous systems, Conference on neutron thermalization, Brookhaven (April 1962).
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y ¼ x2 ¼ E

kT

Using this variable, the Maxwell distribution is written as:

m yð Þ ¼ ye�y

The slowing-down density with up-scattering in energy is given by:

q yð Þ ¼
ð y
0

dz0
ð1
y

Σs z ! z0ð ÞΦ zð Þdz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
slowing�down

�
ð1
y

dz0
ð y
0

Σs z ! z0ð ÞΦ zð Þdz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
up�scattering

In a medium without leakage, neutrons slowed down under reduced energy y are
absorbed (Fig. 7.7):

q yð Þ ¼
ð y
0

Σa zð ÞΦ zð Þdz

The micro-reversibility principle allows definition of the differential scattering

cross sections by stipulating that thermal equilibrium is reached when the proba-

bility energy gain is the same as that of energy loss (principle derived from

statistical mechanics):

Σs y
0 ! yð Þm y0ð Þ ¼ Σs y ! y0ð Þm yð Þ

It can thus be shown that a solution q(y) exists with the integral form:

y q(y)

dz

0

∞

dz’

dzΦ(z)z')(zΣ s →

''' dz)Φ(zz)(zΣ s →

Fig. 7.7 Slowing-down

density with reduced

energy y
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q yð Þ ¼
ð1
0

L y; y0ð Þ d

dy0
Φ y0ð Þ
m y0ð Þ
� �

dy0 ¼
ð1
0

L y; y0ð ÞC y0ð Þdy0

with L y; y; 0ð Þ ¼ Ðmin y;y0ð Þ
0

Ð1
max y;y0ð Þ m zð ÞΣs z ! z0ð Þdzdz0 being the solution to the

balance equation on q(y). The function d
dy

Φ yð Þ
m yð Þ
� �

can be interpreted as a deviation

function with respect to the equilibrium state, with the deviation being due to

absorption. For analytical solutions, we will assume that the scattering differential

cross section can be factorized in terms of departure and arrival energies:

Σs y ! y0ð Þm yð Þ ¼ α yð Þβ y0ð Þ for y0 > y
Σs y ! y0ð Þm yð Þ ¼ α y0ð Þβ yð Þ for y0 < y

�
meaning that the ratio of differential cross sections to reach energy y1 or y2 does not
depend on energy y if y1 and y2 are greater than y. This factorization allows

computation of L(y, y0):

L y; y;0ð Þ ¼
ðmin y;y0ð Þ

0

ð1
max y;y0ð Þ

α zð Þβ z0ð Þdzdz0 ¼
ðmin y;y0ð Þ

0

α zð Þdz|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
f min y;y;0ð Þð Þ

:

ð1
max y;y0ð Þ

β zð Þdz|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
g max y;y;0ð Þð Þ

The slowing-down density may thus be calculated by separating the integral into

two parts:

q yð Þ ¼
ð y
0

L y; y; 0ð Þ|fflfflfflffl{zfflfflfflffl}
f y0ð Þg yð Þ

C y0ð Þdy0 þ
ð1
y

L y; y; 0ð Þ|fflfflfflffl{zfflfflfflffl}
f yð Þg y0ð Þ

C y0ð Þdy0

¼ g yð Þ
ð y
0

f y0ð ÞC y0ð Þdy0 þ f yð Þ
ð1
y

g y0ð ÞC y0ð Þdy0

Deriving this integral equation twice leads to a differential equation that can be

more easily be treated numerically:

dq yð Þ
dy

¼ g0
ð y
0

f y0ð ÞC y0ð Þdy0 þ g yð Þf yð ÞC yð Þ þ f 0
ð1
y

g y0ð ÞC y0ð Þdy0 � f yð Þg yð ÞC yð Þ

d2q yð Þ
dy2

¼ g00
ð y
0

f y0ð ÞC y0ð Þdy0 þ g0f � f 0g½ � C yð Þ þ f 00
ð1
y

g y0ð ÞC y0ð Þdy0

which can be written as follows:

j yð Þq yð Þ � d

dy
k yð Þ dq yð Þ

dy

� �
¼ C yð Þ

with:
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j yð Þ ¼ 1

f

d

dy

f 0

m yð ÞΣs yð Þ
� �

¼ 1

g

d

dy

g0

m yð ÞΣs yð Þ
� �

k yð Þ ¼ 1

f 0g� fg0
¼ 1

m yð ÞΣs yð Þ

8>><>>:
The Cadilhac operator J q yð Þ½ � � j yð Þ � d

dy k yð Þ ddy
� �n o

q yð Þ½ � is a Hermitian oper-

ator that is positive definite and becomes a second-order differential operator in the

Cadilhac model. Historically, this model was dubbed the Cadilhac secondary
model. This operator is exact for a gas of monatomic hydrogen and for a free gas

of heavy atoms. Furthermore, it is a good approximation for all common modera-

tors [P. R. Haubert and N. R. Meyvaert in (Reactor Physics 1966, volume 1, p334)].

Given that:

f 0g� fg0 ¼ α yð Þ
ð1
y

β y0ð Þdy0 þ β yð Þ
ð y
0

α y0ð Þdy0 ¼
ð1
0

m yð ÞΣs y ! y0ð Þdy0

¼ m yð ÞΣs yð Þ

the following functions are of more practical use:

F yð Þ ¼ Σs 1ð Þye�yk yð Þ and G yð Þ ¼ ξΣs 1ð Þy2e�yj yð Þ

and are set up as follows:

lim
y!1F yð Þ ¼ 1 and lim

y!1G yð Þ ¼ 1

Assuming that, for the particular case where α(y)¼ β(y), which is equivalent to

the fact that the energy distribution after collision does not depend on the energy

before, i.e. the neutron is not aware of its history, then j(y)¼ 0. This is the case for

an ideal moderator, characterized only by F(y)¼Σs(1)ye�yk(y)¼Σs(1)/Σs(y).
Conversely, where ξΣs remains finite, a collision changes the energy distribution

and an infinite number of collisions is required to thermalize the neutrons, hence, k
(y)¼ 0 and Σs is infinite. Furthermore, if G(y)¼ 1, the infinitely heavy gas model is

obtained. The Cadilhac, Horowitz and Soulé differential model is thus an interme-

diate between the ideal moderator and a heavy gas, and leads to these two extreme

cases. For example, the slowing-down functions for hydrogen (A¼ 1), whose

slowing-down differential cross section verifies the factorizing principle for y and
y’, are written as:

1

F yð Þ ¼ 1þ 1

2y

� �
erf

ffiffiffi
y

p þ e�yffiffiffiffiffi
πy

p

G yð Þ ¼ F yð Þ � y
dF yð Þ
dy

¼ erf
ffiffiffi
y

p þ e�yffiffiffiffiffi
πy

p
� �

F2 yð Þ

8>><>>:
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The model transforms the computation of a thermalized spectrum to solving a

second-order differential equation. This resolution became one of the first applica-

tions of computers to neutron physics in the Department of Applied Mathematics at

Saclay (Reuss 2007, p60). Cadilhac’s differential secondary model of thermaliza-

tion, besides being one of the most advanced models, starts with the neutron

balance with the reduced speed x:

S xð Þ þ H n xð Þ½ � ¼ n xð Þx Σa xð Þ þ D xð ÞB2
� 	

The term on the left corresponds to the sources (fission) and to slowing-down (H
[n(x)] operator), the second term corresponds to the sum of the absorptions and

leakage. The equation to be solved is hence (Fuel burn-up predictions 1968, p37):

1

4

d

dx

1

G xð Þ x
dy

dx
þ 2 x2 � 1
� 	

y

� �
¼ xΣ xð Þnm xð Þ

with y(x)¼ (1 +Σ(x)H(x) ) nm(x), Σ xð Þ ¼ VcΣa,c xð Þ
VmξΣs

nc xð Þ
nm xð Þ þ

Σa,m xð Þ
ξΣs

þ D xð ÞB2

ξΣs

.

nc(x) (resp. nm(x)) is the mean density of neutrons in the fuel (respectively in the

moderator). Their ratio can be computed using the theory developed by Amouyal-

Benoist-Horowitz, which will be described in greater detail in Chap. 14. The

functions G(x) and H(x) describe the thermalizing medium and are adjusted once

and for all, to account for bonding energy, both interatomic and intermolecular.

Several models are available: the Egelstaff model for graphite, the Nelkin model for

light water, and the Butler model for heavy water.

7.12 Application of the Cadilhac Model to Heterogeneous

Media

Extension of the Cadilhac model to heterogeneous cells was first proposed in 1966

by Jean-Pierre de Brion15. At that time, the heterogeneous cell to which the model

was to be applied was the French UNGG reactor, which was the CEA reference at

that time.

15Jean-Pierre de Brion: Application du modèle secondaire �a la thermalisation en milieu hété
rogène [Application of the secondary model to thermalization in heterogeneous media], PhD thesis

at the University of Paris, 1966.

Jean-Pierre de Brion (1936–1998). After his studies at Polytechnique (entry year 1957), he

completed his military service in Algeria before joining the CEA around 1961–1962. In November

1964, he authored technical report SPM No 306: “Calcul de la densité neutronique dans une
cellule hétérogène [Calculation of neutron density in a heterogeneous cell]”. He defended his

thesis on March 2, 1966 with a jury composed of Jules Horowitz, and Austin Blaquière and Oleg

Tretiakoff as examiners and Michel Livolant as an invited member. In 1970, he married Monique
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The slowing-down density, q, is related to the non-equilibrium function

C through the secondary thermalization operator J, given by the following formula:

C yð Þ � d

dy

Φ yð Þ
m yð Þ
� �

J q yð Þ½ � � j yð Þ � d

dy
k yð Þ d

dy

� �� �
q yð Þ½ �

C ¼ J q½ �

Using these notations, the thermalization equation in a finite medium, and in the

framework of the diffusion approximation (which will be explored later), is written

as:

C yð Þ ¼ J

ðz¼y

z¼0

�DΔΦ r; zð Þ þ Σa zð ÞΦ�r; z	� 	
dz

24 35 ¼ j yð Þ � d

dy
k yð Þ d

dy

� �� �
q yð Þ½ �

The Fermi asymptotic form of the flux generated by a source S is written as:

Φ yð Þ ¼ S

ξΣs y

de Masfrand, with whom he had three children. He defended a higher doctorate in May 1973. He

then left reactor physics for particle physics, in which he pursued an international career. After

2 years at Rochester in the United States, then at Brookhaven National Laboratory on Long Island,

he joined CERN with Carlo Rubbia, and published several papers in the field of particle physics.

Around 1985, he left particle physics and joined the Direction of Military Applications at Bruyères

le Châtel for a more confidential career at BIII/PTN Service (work on the ELSA electron

accelerator), before retiring in 1997. He died on August 18, 1998.

(Courtesy De Brion family)
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If the thermalization model were true, the following would be obtained:

k yð Þ ¼ 1

Σs yð Þm yð Þ

When reduced energy y tends to infinity, it may be approximated by:

C yð Þ ¼ J q½ � � S j yð Þ

Thus leading to the equation j(y):

j yð Þ �
y!þ1

ey

ξΣs y2

The following equations are obtained by accounting for the asymptotic nature of

functions j(y) and k(y), and by introducing the reduced speed:

j yð Þ ¼ ey

ξΣs y2
G xð Þ

k yð Þ ¼ ey

ξΣs y
H xð Þ

8>><>>: y ¼ x2

Instead of using the flux Φ(y), the neutron density n(x) is used, since
Ðy¼þ1

y¼0

Φ yð Þ

dy is a divergent integral, which is not the case of
Ðx¼þ1

x¼0

n xð Þdx. Since y¼ x2, and

Φ(y)dy¼ xn(x)dx, then Φ(y)¼ n(x)/2.
The thermalization equation in a finite medium is written as F yð Þ ¼ Σs 1ð Þx2

e�x2k xð Þ as defined in the previous paragraph:

Thermalization equation expressed in terms of neutron density:

d 1þ F xð Þ �DΔ þΣa xð Þ
ξΣs

� �
dx

n xð Þ
x2e�x2

� �
¼ 4G xð Þ

ξΣs x3e�x2

ðz¼x

z¼0

�DΔþ Σa zð Þð Þ zn zð Þ½ �dz

ð7:15Þ

Hence, the thermalization equation can be written as the second-order homoge-

neous differential equation for the speed and space variables. Thus, two boundary

conditions on the speed and two others on space are required to define a completely

new solution. At the origin of speeds, the slowing-down density must be zero.
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q xð Þ ¼
ðz¼x

z¼0

�DΔþ Σa zð Þð Þ zn zð Þ½ �dz

n r; xð Þ � 1

2

d2n r; 0ð Þ
dx2

x2

8>>>><>>>>:
In this case, the equations can be integrated with respect to the reduced energy:

1þ F xð Þ�DΔ þ Σa xð Þ
ξΣs

� �
n r; xð Þ½ �

� 1

2
x2e�x2 d

2n r; 0ð Þ
dx2

¼ 4x2e�x2

ξΣs x3e�x2

ðx0¼x

x0¼0

G x0ð Þ
x03e�x02

q x0ð Þdx0

As for the boundary condition at infinity, the Fermi asymptotic flux model may

be used (it may also be rendered more complex using the Greuling-Goertzel

model):

Φ yð Þ ¼ S

ξΣsy
hence : n xð Þ ¼ 2S

ξΣsx2

The dominant term for the neutron density population in the epithermal range

thus varies as 1/x2.
As for the spatial aspects, we will consider a cell comprising a fuel cylinder of

radius a, surrounded by a cylinder of moderator of external radius b. In a multi-cell

approach where a cell is repeated radially to form a lattice, symmetric boundary

conditions for the flux at the edges may be applied. At the fuel/moderator interface,

an extrapolation length is used that is inverse to the logarithmic derivative of the flux

λ¼Φ(a)/Φ0(a). J. P. de Brion expressed flux in a cell as the superposition of two

fluxes. The first fluxΦ1(r) is the source in the cell while assuming that the fuel rod is a

black body for neutrons (absorption of the infinite rod, i.e. that no neutrons entering

the rod can escape).Φ2(r) corresponds to the neutron current entering the moderator.

a b

n(r)
fuel

moderator

λ
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The fluxes in these groups satisfy the following equations:

�DΔΦ1 r; xð Þ ¼ S xð Þ with ∂Φ1 r;xð Þ
∂r

� �
b
¼ 0

ΔΦ2 rð Þ ¼ 0 with Φ2 að Þ ¼ 4Jþ að Þ ¼ 4 1� PSVð ÞJ� að Þ

(

S(x) is taken as the source of neutrons from the black-body radiation problem

and is independent of r. PSV is the probability that a neutron entering the fuel in a

uniform and isotropic fashion via its surface S will be captured in volume V of the

fuel (here, the same notations are used as in Chap. 8).

Integration of the system of differential equations leads to:

Φ1 r;xð Þ¼�S xð Þ
4

r2�a2
� 	þS xð Þ

2
b2 ln

r

a
þ λblackbody

S xð Þ
2

b2

a
�a

� �� �
Φ2 xð Þ¼ 4 1�PSVð Þ

PSV

D

λ
Φ a;xð Þ to the extent that PScJ� að Þ¼ S

∂Φ r;xð Þ
∂r

� �
a

¼D
Φ a;xð Þ

λ

8>><>>:
The first equation is the well-known solution to the Milne problem, which will be

discussed in the chapter on the transport equation. The second equation leads to a

spatially flat flux in the moderator. Since the true flux has the same shape asΦ1(r, x),
using the extrapolated length from the real problem, the following equations are

obtained:

Φ r; xð Þ ¼ � S xð Þ
4

r2 � a2
� 	þ S xð Þ

2
b2ln

r

a
þ λblackbody

S xð Þ
2

b2

a
� a

� �� �
¼ Φ1 r; xð Þ þΦ2 xð Þ

In the particular case of r ¼ a, this equation is written as:

Φ a; xð Þ ¼ λ
S xð Þb2
2a

� S xð Þa
2

� �
¼ λblackbody

S xð Þ
2

b2

a
� a

� �� �
þ 4 1� PSVð Þ

PSV

D

λ
Φ a; xð Þ

from which the following may be deduced:

λ ¼ λblack body þ 4 1� PSVð Þ
PSV

D

Several authors since Chandrasekhar have studied the behavior of λblack body.

The following expression is obtained from the literature (in units of mean free path

1/Σt):

λblack body � 0:7104Σtaþ 0:545

Σtaþ 0:409
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When radius a tends towards infinity, the limit to the slab problem is obtained, i.e.
0.7104. When the radius tends towards 0, since J�¼DΦ0 !Φ/4 and D¼ 1/(3Σt) in

the diffusion approximation, the following expressions are obtained:

λblackbody cm½ � ¼ Φ
Φ0 ¼

a!0

4

3Σt
hence λblackbody ¼

a!0

4

3
� 0:545

0:409
in units of mean free path

The capture probability in the cylindrical rod is related to the leakage probability

without collision in this same rod by the reciprocity theorem for collision proba-

bilities, with the mean chord 〈R〉; its calculation will be discussed in detail in

Chap. 8:

PSV ¼ Rh iΣt PVS ¼ 2aΣt PVS

The leakage probability without collision PVS , 0 for a cylinder includes the

Bessel functions. It is given by (Duderstadt and Martin 1979):

PVS,0 ¼ 2ΣtR

3

2 ΣtRK1 ΣtRð ÞI1 ΣtRð ÞþK0 ΣtRð ÞI0 ΣtRð Þ� 1½ �
þK1 ΣtRð ÞI0 ΣtRð Þ�K0 ΣtRð ÞI1 ΣtRð ÞþK1 ΣtRð ÞI1 ΣtRð Þ

ΣtR

0@ 1A
The leakage probability with multiple collisions PVS can be computed as a

function of PVS,0 using a method that will be described in Chap. 8.

The numerical resolution of Eq. (7.15) can be carried out by projecting the

neutron density on a basis of orthogonal eigenfunctions of the Laplace operator in

cylindrical geometry (Bessel functions). This mathematical shortcut eliminates the

space variable in the equations and helps to deal with the Laplace operator in the

differential equation. The boundary conditions of the problem (in space and energy)

are those seen earlier.

This example of the heterogeneous treatment for two media shows that it is

possible using the secondary thermalization model to deal with more complex

problems than the infinite lattice problem by adopting ingenious techniques. More-

over, the problem can be extended to several zones at the cost of introducing

balance equations on neutron densities, in media coupled by collision probabilities.

7.13 Graphical Representation of Flux over the Energy

Spectrum

Obtaining the shape of the flux spectrum in the thermal and epithermal domains was

described earlier. In the fast zone, the fission spectrum is the dominant term, and

can be described for instance by the formalism proposed by Watt (Neutron fluence

measurements 1970, p141):
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Φfast Eð Þ ¼ nfast
ffiffiffi
E

p
e
� E

E0

ffiffiffiffiffiffi
2E

m

r
This fast neutron shape is added to the previous spectrum using a new junction

function. In the end, the flux spectrum in terms of energy may be plotted (Fig. 7.8)

using a classical representation with EΦ(E) on the ordinates axis, as a function of a
logarithmic scale with decreasing energy (i.e. increasing lethargy).

7.14 True Moderators

(Neutron fluence measurements 1970, p24)

In the case of a true moderator (e.g. water), the thermal spectrum is shifted to the

close epithermal range due to absorption (an effect known as a “spectrum harden-

ing”). For a moderator of infinite size, this hardening can be approximated using a

“neutron” temperature that is higher than the temperature of the moderator which

depends on the slowing-down power ξ Σs
16.
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Fig. 7.8 Plot of
Ð Eg�1

Eg
Φ Eð Þ dE ¼ f Eg

� 	
for 3.7% fuel at 42,500 MWd/ton

16REMARK—For heavy nuclides, ξ� 2/A.
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Tneutronic|fflfflfflffl{zfflfflfflffl}
Neutron effective

temperature

¼ T 1þ a
Σa kTð Þ
ξ Σs

� �

see (Table 7.3) for values of a.
For a moderator of finite size and with leakage DB2 (Barjon 1993, p247), from

De Sobrino and Clark, gives the following equation [also in (Bekurts and Wirtz

1964, p210)]:

T ¼ T0 1þ 0:73 A
Σa kT0ð Þ

Σs
þ 0:70 A

DB2

Σs

� �
This formula implies that the spectrum becomes harder as leakage increases. It is

valid not only for positive leakage, but also when the leakage balance is negative

(neutrons are introduced into the core, i.e. B2< 0).

Spectrum in the moderator of a PWR type 

reactor

EΣξ
(kT)ΣπΦ

s

a
epi

2
≈ thus

constant≈(E)ΦE epithermal

Maxwell spectrum

kT
E

e
kT
Eem

−
=

2)(
)(

10 MeV 1 MeV 100 keV 10 keV 1 keV 100 eV 10 eV 1 eV 100 meV 10 meV 1 meV

At T = 20 °C

v0 = 2 200 m/s

eVeVE 0253.0
40

1
0 =≈

Fission spectrum of 235U

Φ(E)E

Table 7.3 Some values of

the neutron temperature

coefficient

Moderator a

Light water 5.3

Heavy water 5.4

Graphite 7.4
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In the literature17, the following is also found:

T ¼ T0 1þ 0:45

2A Σa Eð Þ
ffiffiffiffiffiffiffi
E

kT0

r
Σs

0BB@
1CCA ¼ T0 1þ 0:90A

Σa kT0ð Þ
Σs

� �

7.15 Heating and Cooling by Scattering

Let us consider the thermalization equation in the permanent state for a scattering

and absorbing medium:

�D Eð ÞΔΦ ~r;Eð Þ þ Σt Eð ÞΦ ~r;Eð Þ ¼
ðE0¼þ1

E0¼0

Σs E
0 ! Eð ÞΦ ~r;E0ð ÞdE0

Supposing that the flux is expressed in a factorized form with a space-dependent

function and an energy-dependent function Φ ~r;Eð Þ ¼ ϕ Eð Þφ�~r	 where ϕ(E) is a
spectrum normalized to one. This equation is expressed in energy density using the

quantity En ~r;Eð Þ ¼ EΦ ~r;Eð Þ=v by multiplying the previous equation by the

energy and then integrating with respect to E:

ðE¼þ1

E¼0

�ED Eð ÞΔΦ�~r;E	þ EΣt Eð ÞΦ�~r;E	� 	
dE

¼
ðE¼þ1

E¼0

dEE

ðE0¼þ1

E0¼0

Σs E
0 ! Eð ÞΦ ~r;E0ð ÞdE0

By substituting the total collision rate by an absorption and scattering term

Σt(E)¼Σa(E) +Σs(E) and noting that Σs Eð Þ ¼ ÐE0¼þ1

E0¼0

Σs E
0 ! Eð ÞdE0, this equa-

tion may be re-written as follows (Bekurts and Wirtz 1964, p213):

�EDDΔφ ~rð ÞþEΣa
Σaφ ~rð Þ¼φ ~rð Þ

ðE¼þ1

E¼0

dE

ðE0¼þ1

E0¼0

E�E0½ �Σs E
0 !Eð Þϕ E0ð ÞdE0

where ED is the mean energy weighted by the diffusion coefficient and EΣa
is the

energy weighted by the absorption cross section:

17Coveyou, Bate and Osborn, in Reactor Physics Constants ANL-5800, p89, obtained from the

Monte Carlo calculations for moderators of different masses.
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ED �

ÐE¼þ1

E¼0

ED Eð Þφ Eð ÞdE
ÐE¼þ1

E¼0

D Eð Þφ Eð ÞdE
and EΣa

�

ÐE¼þ1

E¼0

EΣa Eð Þφ Eð ÞdE
ÐE¼þ1

E¼0

Σa Eð Þφ Eð ÞdE

D �

ÐE¼þ1

E¼0

D Eð Þφ Eð ÞdE
ÐE¼þ1

E¼0

φ Eð ÞdE
and Σa �

ÐE¼þ1

E¼0

Σa Eð Þφ Eð ÞdE
ÐE¼þ1

E¼0

φ Eð ÞdE

Assuming that absorption is inversely proportional to speed, by definition,

EΣa
¼ E ¼ 3kT=2. Integrating the thermalization equation directly with respect to

energy (without first multiplying by E as done previously), the following balance

equation is obtained:

ðE¼þ1

E¼0

� D Eð ÞΔΦ ~r;Eð ÞdEþ
ðE¼þ1

E¼0

Σt Eð ÞΦ ~r;Eð ÞdE

¼
ðE¼þ1

E¼0

dE

ðE0¼þ1

E0¼0

Σs E
0 ! Eð ÞΦ ~r;E0ð ÞdE0 ¼

ðE¼þ1

E¼0

Σs Eð ÞΦ ~r;Eð ÞdE

which simplifies to: �DΔφ ~rð Þ þ Σa φ ~rð Þ ¼ 0 .

By combining this equation with the balance equation on energy to eliminate

Σa φ ~rð Þ, the integrated thermalization equation may be obtained in the form:

Scattering heating=cooling equation:

D E� ED

� 	Δϕ ~rð Þ
ϕ ~rð Þ ¼

ðE¼þ1

E¼0

dE

ðE0¼þ1

E0¼0

E� E0ð ÞΣs E
0 ! Eð Þφ E0ð ÞdE0 ð7:16Þ

Since ED cannot be equal to E (otherwise the diffusion coefficient would be

proportional to 1/v!), the sign of the double integral term depends on the LHS term.

If the spatial shape of the flux verifiesΔφ ~rð Þ=φ ~rð Þ ¼ 0, i.e. in the absence of spatial
scattering, the RHS term becomes zero if the spectrum is equal to a Maxwell

distribution that leads to perfect equilibrium. Otherwise, depending on the sign of

the LHS term, a given volume would gain or lose energy owing to scattering

collisions. This is called heating or cooling by scattering and may be measured

by inserting a neutron pulse into a non-multiplying medium so as to characterize its

properties. For instance, the effect due to a small temperature variation close to a

reference temperature T0 may be quantified this way. Differentiation of D with

respect to T leads to:
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dD

dT
¼

d
ÐE¼þ1

E¼0

D Eð Þ E
kTð Þ2e

� E
kTdE

� �
dT

¼ � 2D

T
þ EDD

kT2

where : ED ¼ 2kT þ kT2 d lnD

dT

based on the fact that dLogD ¼ dD=D. A first-order Taylor expansion of the

Maxwell distribution with respect to temperature leads to:

ϕ Eð Þ ¼ E

kTð Þ2 e
� E

kT � E

kT0ð Þ2 e
� E

kT0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
mT0

Eð Þ

1þ T � T0

T0

E

kT0

� 2

� �� �

By inserting this equation in the double thermalization integral, the following

equation is reached:

ðE¼þ1

E¼0

dE

ðE0¼þ1

E0¼0

E� E0½ �Σs E
0 ! Eð Þϕ E0ð ÞdE0

� T � T0

T0

ðE¼þ1

E¼0

dE

ðE0¼þ1

E0¼0

E0 E� E0½ �Σs E
0 ! Eð ÞmT0

E0ð ÞdE0

noting that the double integral applied to a Maxwell distribution gives zero (perfect

equilibrium state), the second-order moment, denoted m2, is defined as:

m2 � 1

kT0ð Þ2
ðE¼þ1

E¼0

dE

ðE0¼þ1

E0¼0

E� E0½ �2Σs E
0 ! Eð ÞmT0

E0ð ÞdE0

¼ 2

kT0ð Þ2
ðE¼þ1

E¼0

dE

ðE0¼þ1

E0¼0

E0Σs E
0 ! Eð ÞmT0

E0ð ÞdE0

These results are introduced into Eq. (7.15) and using E ¼ 3kT=2 and

d ln T¼ dT/T, finally, we obtain:

D
Δϕ ~rð Þ
ϕ ~rð Þ

kT

2
1þ 2

d lnD

d ln T

� �
¼ 1

2
k T � T0ð Þm2
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Supposing that the spatial flux follows an attenuation law (this will be discussed

further in the section on diffusion theory):

Δϕ ~rð Þ � 1

M2
ϕ ~rð Þ ¼ 0

WhereM2 ¼ D=Σa is the migration area. The previous equation is then inserted

in the heating/cooling equation, and assuming that T� T0 in the LHS term:

T � T0

T0

� Σa

1þ 2 d lnD
d lnT

m2

 !

Given that the diffusion coefficient increases experimentally with temperature

(e.g. in water, decreasing the density allows neutrons to scatter further), it may be

seen that heating occurs when more neutrons are brought in a given volume by

scattering than are lost through absorption. This conclusion holds true only for

non-multiplying moderators. For a multiplicating medium where Δϕ ~rð Þ=ϕ ~rð Þ < 0 ,

no conclusions should be drawn concerning the subsequent cooling of the medium.

7.16 Thermalized Absorption

(Neutron fluence measurements 1970, p48)

The problem of calculating absorption in a thermalized spectrum was outlined at

the very start of thermal piles, whether the moderator was of graphite—as in the

case of Fermi’s pile—or in experimental reactors with heavy or light water, as with

the Hanford pile. The need to compute fuel depletion using the Bateman equation

implies a good knowledge of the absorption and fission cross sections of the main

fuel nuclides. Further, calculation of the activation of a detector or of the absorption

of a cadmium sheet requires knowledge of the cross section in the spectrum

considered. C. H. Westcott18 of Atomic Energy of Canada Ltd (Chalk River,

Ontario, Canada) proposed a formalism in the 1950s to characterize thermal

spectra.

He suggested a simple method to compute the absorption of nuclides by calcu-

lating an “effective” cross section in a thermal spectrum using basic data (cross

18Carl H. Westcott (1912–1977) graduated from Cambridge in 1933 and started his career at the

Cavendish Laboratory. He worked from 1937 to 1940 at the University of Aberdeen, then

specialized in radar technology during the war. He co-authored a book on the subject in 1948.

In 1944, he immigrated to Canada and became a professor at the McGill Institute at Montreal in

1949. In 1954, he joined the Chalk River center where he specialized in the processing of cross

sections. Other than the formalism that bears his name, he was at the origin of the idea that a linear

accelerator can simultaneously accelerate positive and negative ions, thereby significantly increas-

ing the potential value of such machines.
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section at 2200 m/s and the excess resonance integral). This technique, called the

Westcott formalism, is used in codes for fuel cycles that do not have a refined

neutron spectrum calculation to condense multi-group cross sections. The initial

Westcott model provided coefficients g(T ) and s(T ) for some nuclides, and these

were pre-computed in terms of temperature T of the neutron spectrum:

Westcott model : σeffective ¼ σ0 g Tð Þ þ r:s Tð Þ
� �

ð7:17Þ

The coefficient g(T ) measures the difference from the real cross section of the

nuclide with respect to a 1/v law while s(T ) is the contribution to the reaction rate of
the epithermal part of the spectrum from which the Maxwell distribution is

In this photograph from 1934 with Ernest Rutherford in the foreground, Carl Westcott is the young

man walking by in the background. (Public Domain)
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subtracted (Photo 7.4). The parameter r normalizes the relative contributions from

the epithermal and Maxwell distributions. It can be evaluated experimentally in a

reactor using a fine sheet coated with cadmium. The activity is measured with and

without cadmium Neutron fluence measurements (1970, p47). It can also be

computed with a lattice code such as APOLLO using the method described at the

end of this chapter. Westcott tabulated s(T ) and g(T ) for the absorption and fission

cross sections of 235
92 U, 239

94 Pu, 240
94 Pu and 241

94 Pu, which allowed the calculation of
isotopic depletion in water reactors at a time when the calculation of neutron spectra

was not so precise but very costly (no computers, approximate knowledge of cross

Photo 7.4 The work of Westcott et al. on cross sections at 2200 m/s (IAEA, 1965) (The Marguet

collection)
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sections with energy, etc.). The significant advantage of the Westcott model is that

it provides the order of magnitude of one-group cross sections with sufficient

precision to perform relevant engineering calculations for fuel depletion.

7.16.1 Calculation of Reaction Rate in a Pure Thermal
Spectrum

Westcott defined the effective microscopic cross section bσ such that:ð1
0

n vð Þ σ vð Þv dv ¼ bσ v0

ð1
0

n vð Þ dv

where:

v0 is the reference speed at thermal energy, i.e. 2200 m/s, for which the cross section

σ0 is given; the latter can be obtained in any nuclear cross section data bank;

n(v) is the distribution of the neutron density per unit speed. The choice of

distribution n(v) will be discussed later. The normalization of n(v) is given by:Ð1
0

n vð Þ dv ¼ n.

By definition, the reaction rate is: R ¼ Ð1
0

Φ vð Þ Σ vð Þ dv with Φ(v)¼ n(v) v

where:

R ¼
ð1
0

n vð Þ v N σ vð Þ dv ¼ N

ð1
0

n vð Þ σ vð Þ v dv

¼ N bσ v0

ð1
0

n vð Þ dv|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n

¼ N bσ v0 n

with N being the concentration of the nuclide for which the reaction rate is

computed. The effective macroscopic cross section is used, bΣ ¼ Nbσ , by analogy

to Σ¼Nσ.

R ¼ bΣ v0 n

where n is the total number of neutrons per unit volume. These notations are those

proposed by C.H. Westcott, W.H. Walker and T.K. Alexander in 1959 to standard-

ize presentations on the subject matter. We saw earlier in this chapter that the flux

spectrum may be written as:
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Φ Eð Þ ¼ Φth
E

kTð Þ2 e�
E
kT|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

m Eð Þ

þ
ffiffiffi
π

p
2

Σa kTð Þ
ξ Σs � Σa kTð Þð Þ

Δ E=
kTð Þ

E|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Epithermal part

266664
377775

It should be noted that
Ð1
0

m Eð Þ dE ¼ 1. Assuming a pure thermal spectrum,

this turns out to be equivalent to conserving the Maxwell distribution of the flux

only (i.e. Δ E kT= Þ¼0
�

):

Φ Eð Þ ¼ Φth m Eð Þ

The flux spectrum Φ(E) can also be defined using the neutron density with:

v Eð Þ ¼
ffiffiffiffiffiffi
2E

m

r
n Eð Þ ¼ 2ffiffiffi

π
p

ffiffiffiffiffiffi
E

kT

r
e�

E
kT

kT

8>>><>>>:
1

2
mv2 ¼ E

� �

Since Φth ¼
ffiffiffiffiffiffiffiffi
8kT

πm

r
nth ¼ v nth ¼ 2ffiffiffi

π
p

ffiffiffiffiffi
T

T0

r
v0 nth, the following may be

written:

nth n Eð Þ v Eð Þ ¼ nth
2ffiffiffi
π

p
ffiffiffiffiffiffiffiffi
E

kT

r ffiffiffiffiffiffi
2E

m

r
e�

E
kt

kT
¼ Φthffiffiffiffiffiffiffiffi

8kT

πm

r 2ffiffiffi
π

p
ffiffiffiffiffiffi
E

kT

r ffiffiffiffiffiffi
2E

m

r
e�

E
kT

kT

where: nth n Eð Þ v Eð Þ ¼ Φth
E

kTð Þ2 e�
E
kT

The pure thermal flux can be written indifferently under the form of neutron

energy:

Φ(E)¼Φth m(E) Φth ¼ v nth m Eð Þ ¼ E

kTð Þ2 e�
E
kT

Ð1
0

m Eð Þ dE ¼ 1

or speed:

Φ(E)¼ nth n(E) v(E)
n Eð Þ ¼ 2ffiffiffi

π
p

ffiffiffiffiffiffi
E

kT

r
1

kT
e�

E
kT

Ð1
0

n Eð Þ dE ¼ 1
v Eð Þ ¼

ffiffiffiffiffiffi
2E

m

r

7.16.2 Definition of the Westcott Coefficient g(T )

The reaction rate is written as:
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Rth ¼
ð1
0

Φ Eð Þ Σ Eð Þ dE ¼
ð1
0

nth n Eð Þ v Eð Þ Σ Eð Þ dE

The first Westcott coefficient g(T ) is such that:

bΣ ¼ Σ0 g Tð Þ and Rth ¼ bΣ v0 nth

The notation g(T ) indicates that this coefficient depends on the moderator

temperature, but not on the nature of the moderator itself (i.e. for uranium, the

same coefficient g(T ) is obtained for a reactor moderated by light water, heavy water

or carbon). Hence the simplicity of this model. The definition of bΣ isRth � bΣ v0 n,
but in the present case, n¼ nth for a pure thermal spectrum. The thermal reaction

rate is then given by:

Rth ¼ nth N

ð1
0

n Eð Þ v Eð Þ σ Eð Þ dE ¼ Σ0 g Tð Þ v0 nth

with Σ0 ¼ N σ0, v Eð Þ ¼
ffiffiffiffiffiffi
2E

m

r
, v0 ¼

ffiffiffiffiffiffiffiffi
2E0

m

r
.

Thus giving the exact analytical formula of the coefficient g(T ):

g Tð Þ ¼
Ð1
0

n Eð Þ σ Eð Þ ffiffiffi
E

p
dE

σ0
ffiffiffiffiffi
E0

p

The previous expression allows the calculation of g(T ) when the fine descrip-

tion of the cross section σ(E) with energy (point wise) is known. At low

energy (< 0.1 eV), thanks to precise measurements of the fission cross sections

of 233
92 U, 235

92 U, 239
94 Pu and 241

94 Pu carried out in the GELINA accelerator

(GEel LINear Accelerator) at GEEL by C. Wagemans et al., g(T0 ¼ 20.44 �C)
19 was

recalculated (Table 7.4) for the main fissile isotopes of uranium and plutonium. It

Table 7.4 Comparison of g(20.44 �C) for the main fissile nuclides

Reference g(20.44 �C)
233
92U

235
92U

239
94Pu

241
94Pu

ENDF/B5 0.9966 0.9775 1.0582 1.0452

ENDF/B6 0.9955 0.9771 1.0563 1.0450

Wagemans et al. (1990) 0.9940 0.9760 1.0550 1.036

19C. Wagemans, P. Schillebeeckx, A.J. Deruytter and R. Barthélémy: The Subthermal neutron
induced fission cross sections of the common fissile isotopes and their impact on the Westcott
g-factor, Nuclear data for science and technology (1988 Mito), 91–95 (1988).
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should be pointed out that the value of g(T ) is completely determined by the shape of

the cross section σ(E) under 1 eV and that the part below 20 meV accounts for 30%.

Extrapolation by a quadratic polynomial below 2 meV has further refined the

results of g(T ) in a part for which no measurement was previously available (the

contribution of the shape of the cross section below 2 meV being 1.5%) (Fig. 7.9).

Westcott proposed the following values for g(T ) and s(T ), which will be computed

later, but which was introduced in Eq. (7.16) (Table 7.5):

The particular case of an isotope with a cross section having a 1/v shape (e.g.
boron) can be obtained analytically:

Σa Eð Þ ¼ Σa E0ð Þ v0
v
¼ Σa E0ð Þ

ffiffiffiffiffiffiffi
kT0

p ffiffiffi
E

p , E0 ¼ 0:0253 eV ¼ kT0 ¼ 1

2
m v20

The Maxwell-distributed flux spectrum, of level Φth, is given by:

Φ Eð Þ ¼ Φth
E

kTð Þ2 e�
E
kT

The reaction rate is then computed as:

Thermal reaction rate : Rthermal ¼ Σa v0ð Þ
ffiffiffi
π

p
2

ffiffiffiffiffi
T0

T

r
Φth ð7:18Þ
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Fig. 7.9 Value of the Westcott factor in terms of temperature, obtained by numerical integration

for 233
92 U, 235

92 U, 239
94 Pu et 241

94 Pu, from C. Wagemans et al.
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Using Φth ¼
ffiffiffiffiffiffiffiffiffiffi
8 kT

πm

r
nth and vo ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2 kTo

m

r
the following is deduced:

Rthermal ¼ Σa v0ð Þ v0 nth

Defining the effective cross section bΣa such that R ¼ bΣaΦth, the following

equation is obtained:

Westcott effective cross section : bΣa ¼
ffiffiffi
π

p
2

ffiffiffiffiffi
T0

T

r
Σa v0ð Þ ð7:19Þ

For example, the macroscopic cross section of graphite in the experimental

Marius cold pile at the Marcoule (France) site was computed in 1959 as follows20:

Σgraphite
n;γð Þ ¼ Ngraphite

ffiffiffi
π

p
2

ffiffiffiffiffi
T0

T

r
σgraphiten;γð Þ þ NNitrogen

Ngraphite

VNitrogen

Vgraphite
σNitrogenn;γð Þ

� �
with:

Ngraphite ¼ N ρgraphite
12:01

the number of atoms in a mole of graphite

NNitrogen ¼ N 1

11:20

p

p0

273:16

T

number of nitrogen atoms at pressure p and

temperature T

ρgraphite¼ 1.7 g/cm3 density of porous graphite (of reference density

ρ ref
graphite ¼ 2:5 g=cm3)

p0¼ 760 mm Hg reference pressure

T¼ 19
�
C¼ 291 K room temperature of graphite

VNitrogen volume of nitrogen corresponding to the porosities

of graphite of volume Vgraphite

This calculation takes into account the capture of nitrogen in air (79% of air is

composed of nitrogen) which fills up the porosities of graphite (α¼ 0.875). The

macroscopic cross section of nitrogen is far greater than that of graphite, and thus

modifies the apparent cross section of graphite by taking into account the number of

moles of air present:

VNitrogen

Vgraphite
¼ α

ρ ref
graphite � ρgraphite

ρ ref
graphite

79%

20P. Cogné: Etude des caractéristiques nucléaires de l’empilement critique MARIUS [Study of the
nuclear characteristics of the Marius critical pile], technical report CEA/SPM No 567, August

1959. For the general properties of graphite, see (Reynolds 1968).
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Using a microscopic cross section of graphite at 2200 m/s of σgraphiten;γð Þ ¼ 3:93

mbarn and with the corresponding value for nitrogen under the same conditions

being σnitrogenn;γð Þ ¼ 1:88 barn, the thermal cross section at room temperature

( p¼ 760mmHg) is:

Σgraphite
n;γð Þ ¼ 3:12� 10�4 cm�1 i:e: normalized to an atom, σgraphiten;γð Þ ¼ 4:13 mbarn

This calculation uses an overrated value of the Avogadro number N ¼ 6:024
�1023mol�1 that was prevalent at that time. The slowing-down cross section is

evaluated using the formula:

Σgraphite
r ¼ ξΣs

uth � u0
¼ ξΣs

ln
E0

Eth

� 0:0634cm�1

18:2
¼ 0:003483cm�1

The thermal scattering area is computed as follows:

L2th ¼
1

3Σgraphite
n;γð Þ Σgraphite

t

¼ 1

33:12 10�4 0:416
� 2568cm2

The slowing-down area has been determined from a slowing-down area of

376 cm2 for graphite of density1.6 g/cm3, i.e.:

L2r ¼ 376
1,6

ρgraphite

 !2

� 333cm2

Since the migration area is the sum of the previous two areas, we find:

M2 ¼ L2th þ L2r � 2900cm2

The thermal diffusion coefficient is given by:

D2 ¼ Σgraphite
n;γð Þ L2th � 0:802cm

while the fast component is:

D1 ¼ Σgraphite
r L2r � 1:16cm

7.17 Calculation of the Reaction Rate in a True Thermal

Spectrum

In this case, the flux is not a pure Maxwell distribution but has an epithermal

component:
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True thermal spectrum : Φ Eð Þ ¼ Φth m Eð Þ þΦepithermal Eð ÞΔ E

kT

� �
ð7:20Þ

where: ΔðE kT= Þ is the junction function between a Maxwell-distributed flux and the

epithermal flux Φepithermal(E)
Let us consider a Maxwell-distributed flux completed by a junction function to

the epithermal flux with a 1/E shape.

Φ Eð Þ ¼ Φth
E

kTð Þ2 e
� E

kT þ Φth

ffiffiffi
π

p
2

Σa kTð Þ
ξ ΣS � Σa kTð Þ

Δ E
kT

� 	
E

where:

λ is a dimensionless coefficient of the junction function �
ffiffi
π

p
2

Σa kTð Þ
ξ ΣS�Σa kTð Þ

Φepi is the epithermal flux level in [neutrons/cm2/s], i.e. Φth

ffiffi
π

p
2

Σa kTð Þ
ξ ΣS�Σa kTð Þ. Care

must be taken to avoid confusion between Φepi in [neutrons/cm2/s] and the

spectrum Φepithermal(E)¼Φepi/E in [neutrons/cm2/s/eV]

Φthis the thermal flux level: Φth ¼ nth
ffiffiffiffiffiffiffiffiffiffiffiffi
8kT

πmneutron

q
The absorption rate associated with the corresponding cross section is:

R ¼
ð1
0

Σa Eð Þ Φ Eð Þ dE

The neutron density per unit speed is given by:

Neutron density : n vð Þ ¼ n 1� fð Þ ρm vð Þ þ nf ρe vð Þ ð7:21Þ

where: ρm(v) is the Maxwell distribution of neutron density;

ρm vð Þ ¼ 4ffiffiffi
π

p v2

v3T
e
� v

vT

� �2

already encountered in the Boltzmann theory of gases under the term “distribution

of speeds p(v)”. By construction
Ð1
0

ρm vð Þ dv ¼ 1;

ρe(v) is the distribution of the epithermal neutron density.

Fraction f is the fraction of epithermal neutrons by (Bekurts and Wirtz 1964,

p280): f � nepi
n thus 1� f � nth

n

The junction function Δ (E/kT) is simplified as a unit step function that is worth

zero below E/kT¼ μ[�], and equal to unity above. In reactor calculations at two

energy groups, the thermal cut-off between the fast and thermal groups is chosen

close to this value μ, which gives an additional meaning to this value (Fig. 7.10).

The value of μ is around 5 for light water reactors. Initially, a value of 4 was chosen
to simplify the following integral calculation:
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ð1
0

Δ
E

kT

� �
kT

E

� �3
2 dE

kT
�
ð1
4

Δ xð Þ 1

x
3
2

dx ¼ 1

Under this hypothesis of the form Δ E
kT

� 	
, the epithermal density is computed as:

ρe vð Þ ¼ vT
v2

ffiffiffi
μ

p
Δ

E

kT

� �
meaning that the epithermal flux is of the shape 1/E:ð1

0

ρe vð Þ dv ¼
ð1
μ

vT
v2

ffiffiffi
μ

p
dv and

ð1
0

ρe vð Þ dv ¼ 1

Indeed:
Ð1
0

ρe vð Þ dv ¼ Ð1v μð Þ

vT
ffiffiffi
μ

p
v2

dv ¼ vT
ffiffiffi
μ

p �1

v

� �1
v μð Þ

¼ vT
ffiffiffi
μ

p
v μð Þ

v(μ) is defined by 1
2

m v2μð Þ ¼ μ kT, thus: v μð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 μ kT=m

p
hence, the epithermal normalization is equal to:

Ð1
0

ρe vð Þ dv ¼ vTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 μ kT=m

p .

Since: vT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 kT=m

p
, the normalization verifies

Ð1
0

ρe vð Þ dv ¼ 1. Therefore,

the following normalization equation is:ð1
0

n vð Þ dv ¼
ð1
0

n 1� fð Þ ρm vð Þ þ n f ρe vð Þ½ � dv ¼ n

Since, by definition n(v)¼ nth(v) + nepi(v) with nth(v)¼ nthρm(v) and nepi(v)¼
nepiρe(v), it can be induced that nth¼ n(1� f ) and that nepi¼ nf, thus, the coherence
of the notation system.

0

1

⎟
⎠
⎞

⎜
⎝
⎛

kT

E
Δ

μ kTE /

Fig. 7.10 Step junction

function between the

thermal and epithermal

zones
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7.17.1 Westcott Formalism: Introduction of the Coefficients
r and s

The goal is to compute the absorption rate:

R ¼
ð1
0

Σa Eð Þ Φ Eð Þ dE

By substituting Φ(E) by its expression developed as Φth m Eð Þ þ ΦepiΔ E
kT

� 	
=E,

we obtain:

R ¼
ð1
0

Σa Eð Þ Φth m Eð Þ dE|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}ffiffi
π

p
2

ffiffiffi
T0
T

p
Σ0 T0ð Þ g Tð Þ Φth

þ
ð1
0

Σa Eð Þ Φepi

Δ E
kT

� 	
E

dE

Reaction rate R is written as bΣav0nwhere n¼ nth + nepi to introduce the effective
cross section formulation after some algebraic calculations:

nth ¼ Φth

v
¼

ffiffiffi
π

p
2

Φth

vT
¼

ffiffiffi
π

p
2

ffiffiffiffiffi
T0

T

r
Φth

v0

The goal is to express nepi as a function of Φepi: Φepi vð Þ ¼ nepi ρe vð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nepi vð Þ

�v

where :

ð1
0

nepi vð Þdv¼
ð1
0

nepiρe vð Þ dv¼nepi¼
ð1
0

Φepi Eð Þ
v

dE¼
ð1
0

Φepi Δ E
kT

� 	
v E

dE

Since:
Ð1
0

Δ E
kTð Þ

vE dE ¼ Ð1μ kT
1
vE dE ¼ ffiffiffi

m
2

p � 2ffiffiffi
E

p
h i1

μ kT
¼ ffiffiffi

m
2

p
2ffiffiffiffiffiffiffiffi
μ kT

p ¼ 2ffiffi
μ

p 1
vT

This calculation allows the evaluation of the number of epithermal neutrons:

nepi ¼ Φepi

ð1
0

Δ E
kT

� 	
vE

dE ¼ 2ffiffiffi
μ

p Φepi

vT

Thus: bΣa ¼ R

vo n
¼

ffiffiffi
π

p
2

ffiffiffiffi
To

T

q
Σa Toð Þ g Tð ÞΦth

vo n
þ Φepi

vo n

ð1
0

Σa Tð Þ
Δ E

kT

� 	
E

dE

Since Φth ¼ v nth and Φepi ¼
ffiffiffi
μ

p
vT nepi

2
, and by introducing the fraction f, the

following is obtained:
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bΣa ¼ 1� fð Þg Tð ÞΣa Toð Þ

ffiffiffi
π

p
2

ffiffiffiffiffi
To

T

r
v

vo|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
1

þf

ffiffiffi
μ

p
2

vT
vo

ð1
0

Σa Tð Þ
Δ E

kT

� 	
E

dE

In the next equation, the following equations are used: vT ¼ 2ffiffiffi
π

p vT and vT

¼
ffiffiffiffi
T
To

q
vo:

bΣa ¼ 1� fð Þg Tð ÞΣa Toð Þ þ f

ffiffiffi
μ

p
2

vT
vo

ð1
0

Σa Tð Þ
Δ E

kT

� 	
E

dE

Yet by construction,
Ð1
0

Δ E
kT

� 	
vE

dE ¼ 2ffiffiffi
μ

p 1

vT
from the definition of μ, hence:

voΣa Toð Þ

ffiffiffi
μ

p
2vo

vO

ffiffiffiffiffi
T

To

r
|fflfflfflffl{zfflfflfflffl}

vT

ð1
0

Δ E
kT

� 	
vE

dE ¼ Σa Toð Þ

thus, by multiplying by f g(T ) on both sides of the equation:

f g Tð ÞΣa Toð Þ ¼ f g Tð Þ

ffiffiffi
μ

p
2

vT
vo

ð1
0

vo Σa Toð ÞΔ E
kT

� 	
vE

dE

which is substituted in the expression of bΣa:

bΣa ¼ g Tð ÞΣa Toð Þ þ f

ffiffiffi
μ

p
vT

2vo

ð1
0

Σa Tð Þ � g Tð Þ
Σa oð Þ vo

v

� �
Δ E

kT

� 	
E

dE

Let Na be the number of absorbing nuclides (Bekurts and Wirtz 1964, p280):

bΣa ¼ g Tð Þ Σa oð Þ þ f

ffiffiffi
μ

p
2

vT
vo

NaI
0

defining the excess resonance integral as:

Excess resonance integral : I0 �
ð1
0

σa � g Tð Þ
σa oð Þ vo

v

h i Δ E
kT

� 	
E

dE ð7:22Þ

The excess resonance integral counts as positive the areas above the line 1/v
(in logarithmic scale) and as negative the areas below, hence its name. Defining the

second Westcott coefficient and the spectrum index by:
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s Tð Þ �½ � � 1

σa voð Þ

2ffiffiffi
π

p
ffiffiffiffiffi
T

To

r
I0 and r �½ � � f

ffiffiffiffiffiffi
πμ

p
4

Since f � nepi
n ¼ nepi

nepiþnth
, the Westcott spectrum index is given by:

Westcott spectrum index : r ¼
ffiffiffiffi
πμ

p
4

1þ
ffiffiffiffi
πμ

p
4

Φth

Φ�e pi

ð7:23Þ

In the case of water reactors, the epithermal flux is small compared to the

thermal flux, hence the simplification of the spectrum index as:

Φepi << Φth ) r � Φepi

Φth
¼ λ ¼

ffiffiffi
π

p
2

Σa Tð Þ
ξ ΣS � Σa Tð Þ

Since homogeneous absorption is insignificant compared to the slowing-down

power of well-thermalized media:

Σa << ξΣs ) r �
ffiffiffi
π

p
2

Σa kTð Þ
ξ ΣS

� λ

There is approximate equality between the epithermal ratio r and the junction

fraction λ. By mathematical manipulation of equations, the spectrum index is

introduced in the formula of the effective cross section:

bΣa ¼ g Tð Þ Na σa oð Þ þ f

ffiffiffi
μ

p
2

vT
v

Na I0

bΣa ¼ Na σa oð Þ g Tð Þ þ
ffiffiffi
π

p
2

ffiffiffiffiffi
To

T

r
σa Toð Þ

1

σa Toð Þ

2ffiffiffi
π

p
ffiffiffiffiffi
T

To

r
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

s Tð Þ

I0
ffiffiffiffi
πμ

p
4

1þ
ffiffiffiffi
πμ

p
4

Φth

Φ�e pi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
r

266664
377775

Or even: bΣa ¼ g Tð Þ Na σa oð Þ þ 2ffiffiffi
π

p r
vT
v0

I0

Since vT =v0 ¼
ffiffiffiffiffiffiffiffi
T T0=

p
, the calculation of the effective cross section is simplified to:

bΣa ¼ g Tð ÞNa σa oð Þ þ Na σa oð Þ r s Tð Þ

Hence, the conventional Westcott formula:
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Westcott formula: bΣa ¼ Naσa oð Þ g Tð Þ þ r s Tð Þ
h i

and R ¼ bΣavon ð7:24Þ

Since: vo ¼
ffiffiffi
π

p
2

ffiffiffiffiffi
To

T

r
v and Φth ¼ nth v, the following equation can also be

written:

R ¼ Na σa oð Þ

ffiffiffi
π

p
2

ffiffiffiffiffi
To

T

r
g Tð Þ þ r s
h i

Φth
n

nth

Since: f ¼ 1

1þ nth
nepi

and
nepi
nth

¼ 1þ
2ffiffi
μ

p Φepi
vTffiffi

π
p
2

ffiffiffi
T0
T

p
Φth
v0

¼ 4ffiffiffiffiffi
π μ

p Φepi

Φth
,

n

nth
¼ nepi þ nth

nth
¼ 1þ nepi

nth
¼ 1þ 4ffiffiffiffiffiffi

π μ
p Φepi

Φth

The absorption rate is expressed as:

R ¼ Na σa oð Þ

ffiffiffi
π

p
2

ffiffiffiffiffi
To

T

r
g Tð Þ þ rI0

" #
Φth 1þ 4ffiffiffiffiffiffi

π μ
p Φ�e pi

Φth

� �

In a PWR with 3.7% U235,

Φepi

Φth
� 0:3, n

nth
� 1, R � Na σa oð Þ

ffiffi
π

p
2

ffiffiffiffi
To

T

q
g Tð Þ þ rs Tð Þ
h i

Φth

Since s Tð Þ ¼ 1

σa voð Þ

2ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffi
T

To
I0

r
:

Simplified Westcott formula for a thermal spectrum:

R � Na σa oð Þ

ffiffiffi
π

p
2

ffiffiffiffiffi
To

T

r
g Tð Þ þ rI0

" #
Φth ð7:25Þ

with the approximation:
4ffiffiffiffiffiffi
π μ

p Φepi

Φth
<< 1 and r ¼

ffiffiffi
πμ

p
4

1þ
ffiffiffi
πμ

p
4

Φth
Φepi

� Φepi

Φth

The excess resonance integral I0 must not be confused with the usual resonance

integral I:

I0 � I � g Tð Þ

ð1
Ec

σa v0ð Þvo
v

� �
1

E
dE I �

ð1
0

σa uð Þdu ¼
ð1
0

σa Eð ÞdE
E
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which is found in nuclear data libraries or compilations (books) of nuclear data,

and which is usually given as between 0.5 eV and 100 keV (I ¼ Ð 100 keV
0:5 eV σa uð Þ du).

Indeed, the excess resonance can be negative for nuclides for which the cross

section is well below the line σa(v0) vo/v (on a logarithmic energy scale). For a

cross section which is a pure 1/v cross section, the excess resonance integral is zero.
In a PWR, Δ (Ec/kT)¼ 0 when μ¼Ec/kT	 4 or 5. Using the Boltzmann constant

k ¼ 1.38065810�23 J K�1 and for a moderator temperature of Tmod ¼ 306 �C ¼
579.15 K i.e. kT� 0.05 eV, the epithermal component is zero below 0.2 eV. It

should be noted that the Westcott formalism is valid not only for computing the

capture cross section of fission products but also the fission cross section of heavy

nuclides.

7.17.2 Extension of the Model to Other Nuclides: The Linear
Logarithmic Model

The Westcott formalism proposes tabulated values for the coefficients g(T ) and

s(T ) for U
fission
235 , Uabsorption

235 , Pu fission
239 , Puabsorption239 , Pu fission

241 and Puabsorption241 . How-

ever, few coefficients are available for fission products, particularly for those with

resonances. A more general formalism was sought, such that it might be applied to

all nuclides not verifying the 1/v law. In general, the absorber cross sections do not

verify this 1/v law, even though the ln(σ/σ0) law with respect to In(v/v0) is a line at
low energy (except for nuclides with resonances in the thermal zone). Assuming

that the ln(σ/σ0) law has a deviation from the 1/v law with an angle dα (cf.
Fig. 7.11), if σ obeys a 1/v law, then: σ¼ σ0 v0/v, hence:
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Fig. 7.11 Deviation from

the 1/v law
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ln
σ

σ0

� �
¼ � ln

v

v0

� �

Let Y � ln
σ

σ0

� �
and X � ln

v

v0

� �
. Using the properties of the tangent of an

angle:

tan α ¼ �1 ¼ �X

Y
and tan αþ dαð Þ ¼ Y

X

Therefore: tan αþ dαð Þ � tan α ¼ YþX
X

By differentiating:
d tan αð Þ

dα ¼ 1þ tan 2α ¼ tan αþdαð Þ� tan α
dα if dα is small.

Moreover: tan α¼ tan(�45
�
)¼ � 1, 1þ tan 2αð Þ dα ¼ YþX

X thus: 2Xdα¼ Y +X

Furthermore: Y¼ ln (σ/σ0) and X¼ ln (v/v0), we obtain:

ln
σ

σ0

� �
¼ 2 dα� 1ð Þ ln v

v0

thus, when dα is small (and in any case, much smaller than 0.5 radian):

Shape of the linear cross section with a logarithmic scale : σ ¼ σ0
v0
v

� �1�2 dα

ð7:26Þ

The reaction rate corresponding to such a cross section is computed as follows:

R ¼
ð1
0

Σa vð Þ Φth m Eð Þ dE ¼
ð1
0

Σa 0ð Þ v0
v

� �1�2 dα
Φth

E

kTð Þ2 e�
E
kT dE

Since:
v0
v
¼

ffiffiffiffiffi
E0

E

r
¼

ffiffiffiffiffiffiffi
kT0

E

r
, we obtain:

R ¼ Σa 0ð ÞΦth

ð1
0

kT0

E

� �1�2dα
2 E

kTð Þ2 e
� E

kTdE

¼ Σa 0ð ÞΦth

ffiffiffiffiffi
T0

T

r ð1
0

T

T0

� �dα E

kT

� �1
2
þdα

e�
E
kT
dE

kT

We wish to introduce
ffiffiffiffiffiffiffiffiffiffiffi
T0=T

p
in front of the integral term, just as in the simple

Westcott formalism in the thermal spectrum. By identifying the integral with the

real factorial Γ xð Þ ¼ Ð1
0

tx�1 e�t dt term, with the variable substitution x¼E/kT,

the following equation is reached:
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R ¼ Σa 0ð ÞΦth

ffiffiffiffiffi
T0

T

r
T

T0

� �dα

Γ
3

2
þ dα

� �
Since Γ 3=2ð Þ ¼ ffiffiffi

π
p

=2, the Westcott reaction rate for a 1/v cross section in

thermal spectrum can be introduced:

R ¼ Σa 0ð Þ
ffiffiffi
π

p
2

ffiffiffiffiffi
T0

T

r
Φth

T

T0

� �dα Γ 3
2
þ dα

� 	
Γ 3

2

� 	
Hence, an analytical formula for the Westcott coefficient g(T ) is obtained under

the assumption of a deviation dα characteristic of the nuclide being considered

(Marguet, 2002):

g
W�M Tð Þ ¼

T

T0

� �dα Γ 3
2
þ dα

� 	
Γ 3

2

� 	
This model may be extended to the general case when the curve for the cross

section can be approximated by successive lines of variable gradients. It is the case

for giant resonances such as that at 0.067 eV for 135Xe, which are characterized by a
1/v gradient on the left of the resonance and 1/v5 on the right. The calculation of the
capture rate of this particular resonance is of the utmost importance in PWR. Since
this resonance is also large, it is not subject to the Doppler effect, and the capture

rate of 135Xe may be computed analytically using the approach described

previously.

The work of Cohen et al. further showed21 that the epithermal spectrum may be

modeled empirically using the following form:

Φepithermal Eð Þ ¼ Φ 1eVð Þ 1eVð Þ1þβ

E1þβ

This model leads to the calculation of the resonance integral under the form

given below, with Ecut� off� 0.1 to 0.2 eV being the thermal/epithermal cut-off:

I βð Þ ¼
ð1

Ecut�off

σ Eð Þ 1eVð Þ1þβ

E1þβ dE

The use of our form of the cross section, σ ¼ σ0 E0=Eð Þ1�2 dα
2 , leads to an

analytical calculation of I(β).

21I.M. Cohen, M. Arrondo, M.A. Arribère, M.C. Fornaciari Iljadica: A method for fast determi-
nation of the α parameter in nuclear reactors, Nuclear Science and Engineering, 154, p110–117

(2006).
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7.17.3 Progressive Junction at Epithermal Energy

Assuming that the junction function ΔðE kT= Þ is more complex than a step function,

for instance a linear junction function (Fig. 7.12). Thus:

nepi ¼
ð1
0

Φepi Δ E
kT

� 	
vE

dE

Since :

ð1
0

Δ E
kT

� 	
vE

dE ¼
ðμ2 kT
μ1 kT

E
kT � μ1
μ2 � μ1
vE

dEþ
ð1
μ2 kT

1

vE
dE

from which:
Ð1
0

Δ E
kT

� 	
vE

dE ¼ 2ffiffiffiffiffi
μ1

p þ ffiffiffiffiffi
μ2

p 2

vT
¼ 1

Kμ

2

vT
In the standard Westcott model with a step junction function, the following is

obtained:

Φepi ¼ n�epiÐ1
0

Δ E
kT

� 	
vE

dE

¼
ffiffiffi
μ

p
vT

2
nepi

i.e. a particular value of Kμ: Kμ ¼ ffiffiffi
μ

p
. The Westcott equations can be generalized

by setting:

r ¼ f

ffiffiffi
π

p
Kμ

4
¼

ffiffiffi
π

p
4

Kμ

1þ
ffiffiffi
π

p
4

Kμ
Φth

Φepi

with Kμ ¼
ffiffiffiffiffi
μ1

p þ ffiffiffiffiffi
μ2

p
2

and μ1 ¼ μ2

for a step junction. Such an approach is limited by the fact that in practice, the

junction function depends on the thermal absorption level: thus, the junction is

different depending on the boron level in the moderator of a PWR.

0

1

⎟
⎠
⎞

⎜
⎝
⎛

kT

E
Δ

μ1
kT
E

μ2
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1

μμ
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μ
kT
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α

Fig. 7.12 Progressive

junction at the

epithermal zone
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7.17.4 Westcott Junction

In 1960, Westcott proposed22 an epithermal junction given under the following

form:

Westcott neutron density: n vð Þ

¼ n
4ffiffiffi
π

p 1� 4rffiffiffi
π

p
ð1
0

vT
v2
Δ vð Þ dv

� �
v2

v3T
e
�v2

v3
T þ r

vT
v2
Δ vð Þ

� �
ð7:27Þ

where vT ¼ ffiffiffiffiffiffiffiffiffiffiffi
T=T0

p
v0 is the most probable speed of the Maxwell spectrum, Δ(v) is

the cut-off function encountered earlier and r is the usual epithermal spectrum

index. The condition
Ð1
0

n vð Þdv ¼ n gives the normalization of the function Δ(v).
In the above formula, we have the pure Maxwell part:

m vð Þ ¼ n
4ffiffiffi
π

p v2

v3T
e
�v2

v3
T

as well as the neutron density junction function that includes the cut-off function

Δ(v). Introduction of the reduced speed x[�]� v/vT (hence, dx[�]¼ dv/vT) leads to
the following equation:

n vð Þdv ¼ n
4ffiffiffi
π

p 1� 4rffiffiffi
π

p
ð1
0

1

x2
Δdx

� �
x2

vT
e�x2 þ r

vT
v2
Δ

� �
vTdx

¼ n
4ffiffiffi
π

p 1� 4rffiffiffi
π

p
ð1
0

1

x2
Δdx

� �
x2e�x2 þ r

1

x2
Δ

� �
dx ¼ n xð Þdx

thereby:

n xð Þ¼ n
4ffiffiffi
π

p 1� 4rffiffiffi
π

p
ð1
0

1

x2
Δdx

� �
x2e�x2 þ r

1

x2
Δ

� �
¼ n

4ffiffiffi
π

p 1� rbð Þx2e�x2 þ r
1

x2
Δ

� �
with b ¼ 4ffiffiffi

π
p

ð1
0

1

x2
Δdx

The junction function satisfies the following conditions:

lim
x!0

1

x2
Δ xð Þ

� �
¼ 0 and lim

x!1
1

x2
Δ xð Þ

� �
¼ 1

The integral calculated over the complete spectrum results in:

22C.H. Westcott: Effective cross section values for well-moderated thermal reactor spectra (3rd

edition, corrected), CCRP-960, November 1960.
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ð1
0

n xð Þdx ¼
ð1
0

n
4ffiffiffi
π

p 1� rbð Þx2e�x2 þ r
1

x2
Δ

� �

¼ n 1� rbð Þ 4ffiffiffi
π

p
ð1
0

x2e�x2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Γ 3

2ð Þ
2

¼
ffiffi
π

p
4

þnr
4ffiffiffi
π

p
ð1
0

1

x2
Δdx|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

b

¼ n

Westcott proposed several empirical cut-off functions that lead to different

values of s(T ):

Δ1 vð Þ ¼ 1

1þ 3:5
v2T
v2

� �7 hence b1 ¼ 1:216414
0:000001

Δ2 vð Þ ¼ 1

1þ 4:95
v2T
v2

� �7 hence b2 ¼ 1:022876
 0:000001

Δ3 vð Þ ¼ 1

1� 0,26

1þ 2:131:Eð Þ5

1

1þ 4:95
v2T
v2

� �7
hence b3 depends on T

Δ4 vð Þ ¼ 1

1� 0,26

1þ E

16:4kT

� �5

1

1þ 4:75
v2T
v2

� �7
hence b4 ¼ 1:176246
0:000001

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
The value of b enables calculation of the equivalent reduced cut-off energy μ for

which the junction function is a step function. Since b ¼ 4=
ffiffiffiffiffiffi
π μ

p
in this latter case,

we obtain μ1¼ 3.442, μ2¼ 4.848 and μ4¼ 3.681. μ3 varies from 3.600 at 20 �C up

to 4.478 at 606 �C. The order of magnitude corresponding to 4 or 5 used in previous

sections to simplify the integral calculations is thus explained. The empirical

formulae for Δ(v) may be summarized as:

Δ xð Þ ¼ 1

1þ μx�2ð Þm where m is approximately equal to 7

7.17.5 Determination of Cut-Off Function

Earlier, it was stated that in slowing-down theory without absorption, the flux is

equal to:
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Φ Eð Þ n=cm2=s=eV½ � ¼ n Eð Þv Eð Þ ¼ Q n=cm3=s½ �
ξΣs cm�1½ �E eV½ �

Using E ¼ mv2=2 ¼ mv2Tx
2=2 and the fact that n(E)dE¼ n(x)dx, the neutron

density in terms of the reduced speed is:

n xð Þ ¼ Q

vTξΣs

2

x2

When the reduced speed is sufficiently great, the neutron density is:

n xð Þ ¼ n
4ffiffiffi
π

p 1� rbð Þx2e�x2 þ r
1

x2
Δ

� �

and tends towards n xð Þ ¼ n
4ffiffiffi
π

p r
1

x2

� �
dx.

Thus, the expression of r obtained by identification is: r ¼
ffiffiffi
π

p
2

Q

vT ξΣs
(Fig. 7.13).
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Fig. 7.13 Junction functions from Westcott
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In the steady state, it can be assumed that all neutrons emitted are absorbed

during slowing-down and thermalization (supposing that leakage is disregarded, i.e.
in infinite medium):

Q n=cm3=s½ � ¼ Σa cm-1½ � nvð Þ n=cm2=s½ � ¼ Σ
_

anv0

Thereby: r ¼
ffiffiffi
π

p
2

Σ
_

anv0
nvTξΣs

¼
ffiffiffi
π

p
2

ffiffiffiffiffiffiffiffiffiffiffiffi
T0

T

Σ
_

a

ξΣs

s
This result was previously demonstrated for the junction coefficient of the

epithermal function. Finally, the Westcott formalism is written in shorthand form:

σ
_¼σ0 g Tð Þ þr s Tð Þ

� �
with r¼

ffiffiffi
π

p
2

ffiffiffiffiffi
T0

T

r
Σ
_

a

ξΣs

g Tð Þ ¼
ffiffiffiffiffi
T0

T

r
1

σ0

ð1
O

σ xð Þ 4ffiffiffi
π

p x2e�x2xdx s Tð Þ ¼ 2ffiffiffi
π

p
ffiffiffiffiffi
T

T0

r
1

σ0

ð1
O

σ xð ÞΔ xð Þ 2
x2
xdx�bg Tð Þ

8>>><>>>:

7.17.6 Limits of the Westcott Formalism

One of the main qualities of the Westcott formalism is its relative simplicity. The

coefficients g(T ) and s(T ) depend solely on the temperature and the fissile nuclides,

and not on the nature of the moderator. However, it has been pointed out that it

requires that absorption be negligible compared to slowing-down such that the

thermal spectrum has a Maxwell distribution. In practice, the deviation from this

absorption-induced Maxwell distribution requires the use of a correction term on

the temperature of the spectrum, a term that will depend on the moderator, thus

rendering the model more limited. Historically, the Westcott model was largely

employed to compute the absorption rate of nuclides for which the absorption cross

section was not well known but the resonance integral and the value of σ0 were.
Today’s updated and refined nuclear data banks have led to the use of multi-group

calculations of reaction rate rather than recourse to the Westcott model. The

one-group cross sections are thus obtained by:

X
g

Φg

 !
σ ¼

X
g

σgΦg
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7.18 Application of the Westcott Formalism

The epithermal ratio r and the Maxwell-distributed flux Φth can be computed fairly

easily with the Westcott formalism using results from the French transport code

APOLLO1 for 99 energy groups condensed into four energy groups (macro-groups)

that cover the thermal zone, epithermal domain and two fast groups. The bounds of

the groups (in decreasing energy value) are:

Group 1: [10 MeV, 0.907 MeV] Or in lethargy [0–2.4] Groups [1,12]

Group 2: [0.907 MeV, 2.248 keV] Or in lethargy [2.4–8.4] Groups [13,27]

Group 3: [2.248 keV, 0.625 eV] Or in lethargy [8.4–16.59] Groups [27,75]

Group 4: [0.625 eV, 1.1 � 10�4 eV] Or in lethargy [16.59–25.23] Groups [76,99]

Historically, this approach was used in depletion codes in France for calculating

the cross sections of fission products for which only the cross sections at 2200 m/s

and the resonance integral were known. By the mid-1990s, with improved knowl-

edge of the cross sections of fission products with energy, this method was super-

seded by a more precise condensation of multi-group cross sections from the flux

spectrum of an assembly calculation. The cut-off of the 4th energy group

(0.625 eV) is the usual cut-off as that for two-group calculations for PWR, also
called the cadmium cut-off (assuming that a cadmium sheet can absorb all neutrons

under this threshold in a cadmium detector, which historically helped in character-

izing the spectrum). The level of thermal flux is computed by expressing conser-

vation of the fission rate of 235
92 U in the last energy macro-group (the last thermal

macro-group in the example given) and the reaction rate of the thermal Maxwell-

distributed flux Φth:

σmaxw
235
92 U

� 	
:Φth ¼ σ fission

4 apollo 235
92 U

� 	 �Φ4

The Maxwell cross section is defined by:σmaxw
235
92 U

� 	 ¼ σ0
235
92 U

� 	 ffiffi
π

p
2

ffiffiffiffiffiffiffiffiffiffiffi
T0=T

p
.

Consequently, an expression for the thermal flux is obtained:

Φth ¼
σ fission
4 apollo 235

92 U
� 	

Φ4

σ0
235
92 U

� 	 ffiffi
π

p
2

ffiffiffiffiffiffiffiffiffiffiffi
T0=T

p
where Φ4 is the average APOLLO2 flux in macro-group 4 and

P
g¼1, 4

Φg is the sum of

the APOLLO2 flux over the 4 energy macro-groups.

Numerical example: σ0(
235
92 U) ¼ 583.2 barns (fission, JEF2), T0 ¼ 293.15 K,

For water temperature: T ¼ TH20 ¼ 578.45 K. Thus:
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σmaxw
235
92 U

� 	 ¼ σ0
235
92 U

� 	 ffiffiffi
π

p
2

ffiffiffiffiffiffiffiffiffiffiffi
T0=T

p
¼ 368:06barns

Table 7.6 gives the flux values for 1, 2 and 4 groups and the fission cross sections

of 235
92 U at 4 energy groups:

At 0 MWd=ton:
Φth

Φtotal
¼ σapollo

235
92 U

� 	
σ0

235
92 U

� 	 � ffiffiπp
2

ffiffiffiffiffiffiffiffiffiffiffi
T0=T

p Φ4P
g¼1, 4

Φg
¼ 270:96

368:06

0:36662� 1014

2:8995� 1014
¼ 0:093

At 42; 500 MWd=ton:
Φth

Φtotal
¼ σapollo

235
92 U

� 	
σ0

235
92 U

� 	 � ffiffiπp
2

ffiffiffiffiffiffiffiffiffiffiffi
T0=T

p Φ4P
g¼1, 4

Φg
¼ 281:54

368:06

0:4571� 1014

3:9652� 1014
¼ 0:088

The Maxwell thermal flux is worth slightly less than 10% of the total flux. The

epithermal flux spectrum r is obtained using the formula:

r ¼ Φepi

Φth
¼ E Φ Eð Þ

Φth

where E Φ(E) is the flux per unit of lethargy in epithermal macro-group 3 of

APOLLO—calculated by dividing the integrated flux in this group by the differ-

ence in lethargy. Φth is the Maxwell-distributed flux. The flux is integrated over

macro-group 3 (epithermal) to calculate Φepi.

Table 7.6 4-group data for a 3.7% enriched fuel

Φg [neutron/cm
2/s] 1 2 3 4

Energy bounds

10

MeV

0.90718

MeV

0.90718

MeV

2.10�03

MeV

2.10�03

MeV

0.625

eV

0.625

eV

1.1� 10�04

eV

0 MWd/ton 0.7507 1014 1.1368 1014 0.6429 1014 0.3661 1014

42,500 MWd/ton 1.0263 1014 1.5700 1014 0.9309 1014 0.4571 1014

Two-groups flux
Φ1 ¼

P
g¼1, 3

Φg Φ2¼Φ4

0 MWd/ton 2.5328 1014 0.3662 1014

42,500 MWd/ton 3.5081 1014 0.4571 1014

One-group flux

P
g¼1, 4

Φg

0 MWd/ton 2.8990 1014

42,500 MWd/ton 3.9652 1014

σfission(23592U) [barn] 1 2 3 4

0 MWd/ton 1.2166 1.8537 27.130 270.96

42,500 MWd/ton 1.2173 1.8804 27.099 281.54

462 7 Thermalization of Neutrons



Φ3 ¼
ð
group 3

Φ Eð ÞdE

¼
ð
group 3

Φthermal
E

kTð Þ2 e
� E

kT þ Φthermal

ffiffiffi
π

p
2

Σa kTð Þ
ξΣS � Σa kTð Þ

Δ E= kTð Þð Þ
E

 !
dE

The thermal component is equal to 0 in the epithermal group, where:

Φ3 ¼
ð

group 3

Φ Eð ÞdE ¼
ð

group 3

Φepi
Δ E= kTð Þð Þ

E
dE

In macro-group 3, Δ (E/(kT)) ¼ 1, hence: Φ3 ¼
Ð

group 3

Φ Eð ÞdE ¼ ΦepiÐ
group 3

1
E dEΦepiΔu3

Finally, r ¼ Φepi

Φth
¼

Φ3

Δu3

Φ4

σ fission
4

235
92U

� 	
σ fission
0

235
92U

� 	 ffiffi
π

p
2

ffiffiffiffiffiffiffiffiffiffiffi
T0=T

p ¼ Φ3 σ
fission
0

235
92U

� 	 ffiffi
π

p
2

ffiffiffiffiffiffiffiffiffiffiffi
T0=T

p
Δu3Φ4 σ

fission
4

235
92U

� 	

r ¼ 0:54291014:368:06

16:588� 8:4ð Þ 0:36621014 270:96
¼ 0:291 at 0MWd=ton

r ¼ 0:93091014:368:06

16:588� 8:4ð Þ 0:45711014 281:54
¼ 0:325 at 42, 500MWd=ton

8>>><>>>:
This method enables calculation of capture rates of fission products with suffi-

cient precision for engineering applications.
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Chapter 8

The Boltzmann Equation

In 1879, Ludwig Boltzmann established the equation governing the behavior of

particles in a gas of molecules, without interaction except for collisions between the

said molecules. A parallel can in fact be drawn between the behavior of neutrons in

matter and that of a ideal gas whose molecules would “disappear” as a result of

some collisions, similar to what happens in some chemical reactions. Under this

assumption, it is indeed the Boltzmann equation that governs the behavior of

neutrons.

8.1 Setting Up the Boltzmann Equation

(Barjon 1993; Bellman et al. 1969; Blaquière 1962; Bussac and Reuss 1985; Case

et al. 1953; Davison 1957; Duderstadt and Hamilton 1976; Duderstadt and Martin

1979; Lewis and Miller 1993; Tait 1964; Weinberg and Wigner 1958; Wing 1962)

The equation governing the behavior of the molecules of a free gas was

established by Ludwig Boltzmann1 (1844–1906) in 1879 (Photo 8.1). His

1Ludwig Eduard Boltzmann (1844–1906) was an Austrian physicist born in Vienna. He is the

father of Statistical Physics and stoutly defended the atomic theory of matter. After a PhD in 1866

on the kinetic theory of gases under the supervision of Josef Stefan (another brilliant scientist in the

field of thermodynamics), he became the Chair of theoretical physics, then Mathematics, in

Vienna, before moving to become the Chair of experimental physics in Graz—a town that had a

special place in his heart. He approached thermodynamics from a revolutionary point of view by

establishing the entropy law S¼ k Logω, which was named after him. Having an intense person-

ality, the turbulent discussions brought about by his work submerged him in various bouts of

depression. Well ahead of his time but having a tortured personality, Boltzmann took his life in

1906 in Duino, near Trieste, maybe owing to the indifference or lack of understanding that had

followed his theories. History, however, will prove him right with the amazing progress of atomic

science in the first 40 years of the twentieth century. And while he had never even fathomed the

existence of the neutron, the neutronics field owes him much through his contribution of the very

© Springer International Publishing AG 2017
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substantial works in statistical physics and thermodynamics had a deep impact on

modern science. He showed that, statistically, the states of matter with the highest

entropy were the most likely, on a large scale. Hence, a gas contained in a half-

volume separated by a partition from another empty half-volume, would always

spread into the empty half-volume if the partition was removed, giving sense to the

aphorism of Aristotle “Nature abhors a vacuum”. The inverse case of a gas

containing itself “on its own” in a smaller volume is impossible, whereas at the

microscopic scale, all phenomena are reversible (Jeans 1925).

The neutron density in a reactor being very low, similar to a gas, a parallel can be

drawn between the neutron scattering collisions on matter and the collisions

between the molecules of a gas, while neglecting the very unlikely neutron–neutron

collisions.

The application to neutrons and the standardization of the current notations

owe much to the theoretical work developed within the framework of the

Manhattan project (for the atomic bomb) at Los Alamos. This was between

1942 and 1945, particularly through the works (Photo 8.2) of K.M. Case,2

Photo 8.1 Ludwig

Boltzmann (1844–1906)

(Public domain)

important equation governing the behavior of neutrons. The scientific community, recognising his

substantial contribution, gave his name to the fundamental constant, k, which occurs in the

entropy law.
2Kenneth M. Case (1923–2006), after his studies at Harvard, contributed to the Manhattan project,

before defending his PhD in 1948. Professor of chemistry from 1952 to 1967 at the University of

Michigan, he was then appointed Professor of Applied Physics at the Rockefeller University of

New York in 1967 where he stayed until the end of his career. Member of the National Academy of

Sciences in 1975, Case was an expert in non-linear equations and contributed significantly to the

neutronics field as well as in fluid mechanics (Burger equations) or in quantum mechanics

(Benjamin-Ono equations). On a more anecdotal note, his name was associated in the 70’s with
the Jason project—a group of scientists working for the government on top-secret projects (UFOs

and so on), something which still fuels the imagination of the general American public.
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F. de Hoffmann3 and G. Placzek (whom we have already talked about). The

50’s saw an important development in the methods of solving the Boltzmann

equation, which were then explored in the 60’s with the rise of computer

science. Transport theory covers at the same times kinematic models in

gases, transport of photons or neutrons or charged particles (including

plasmas). It became common parlance in the scientific community to use the

term transport for elementary particles such as the neutron, while the term

radiative transfer is associated with photons and the terms kinetic theory or gas

dynamics are applied for molecules (Photo 8.2).

In its most general form, the density of neutrons at a point in space depends on

the neutron speed (which is equivalent to its energy), the direction ~Ω of this speed,

time and of course the point ~r of the considered space, n ~r; v; ~Ω; t
� �

.

Kenneth Case (Public domain)
3Frederic de Hoffmann (1924–1989) is a physicist of Czech origin who immigrated to the USA in

1941 to complete his scientific studies at Harvard, then worked on the Manhattan project as from

1944. He assisted E. Teller at the beginning of the 50’s on the Hydrogen bomb project. As from

1955, thanks to his management skills, he became the president of General Atomics, a company

that builds reactors. He then redirected his career towards biomedical research by becoming the

president of the Salt Institute in 1970. He died of AIDS which he contracted from an infected blood

transfusion. His legacy includes important theoretical works in particle physics, where his name is

often associated with that of H. Bethe.

Frederic de Hoffmann (Public domain)
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8.1.1 Concept of Flux

(Mayo 1998, p119)

The angular flux is defined by:

Angular Flux: Φ ~r; v; ~Ω; t
� � � n ~r; v; ~Ω; t

� �
v ð8:1Þ

Photo 8.2 The work of Case, de Hoffmann and Placzek (1953) is a real cornerstone in the world

of neutron transport: indeed, it is the first book published in this field. Its paper cover and glued

binding are the reasons few copies survived to this day. However, there is no reactor physics

department in the world that does not have at least one copy. A second volume was planned but

never published (The Marguet collection)

468 8 The Boltzmann Equation



n ~r; v; ~Ω; t
� �

d3r dvdΩ represents the number of neutrons at point ~r within an

interval d3r, having speed v within an interval dv, going in the direction ~Ω within a

solid angle interval dΩ, and at time t. This notion, by definition, is considered

within a volume. Hence, the concept of angular flux is also based on a volume

intensive property. In this approach, point particles are assumed and it can be easily

imagined how the flux does not have any meaning below a certain scale because of

neutron shape (Fig. 8.1).

The integral of the angular flux over 4π steradians defines the flux spectrum at a

point in space (here, in terms of the speed but the energy variable can also be used)

(Baur 1985, p22),

Flux spectrum: Φ ~r; v; tð Þ � n ~r; v; tð Þ:v ¼
ð
4π
Φ ~r; v; ~Ω; t
� �

dΩ ð8:2Þ

The flux Φ ~r; v; tð Þ accounts for all the neutrons of speed v (whichever their

direction) which are found in the volume element d3r. Its unit, the number of
neutrons (of speed v) per cm2 per second might lead to believe that only the

neutrons going through a given surface are counted. This is not true since all

neutrons in the volume element contribute to the flux (Fig. 8.2).

It will be noted that such an approach is meaningful only for a sufficiently large

volume compared to the volume occupied on average by a neutron (� 4:10�39cm3).

The angular fluxΦ ~r; v; ~Ω; t
� �

accounts only for the neutrons of speed v going in the

direction ~Ω. The angular neutron current is a vector quantity that depends on space,
speed (or energy), direction and time in the transient regime (Baur 1985, p28):

Angular neutron current: ~J ~r; v; ~Ω; t
� � � ~Ω � Φ ~r; v; ~Ω; t

� � ð8:3Þ

It will be noted that the dimensions of the vector components of the neutron

current are the same as that of a flux—from which stems a certain amount of

confusion. If we consider a surface element dS with a normal ~n, the quantity

r

Ω

v dΩ

Fig. 8.1 Neutron flux

density
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~J ~r; v; ~Ω; t
� � � ~ndSdv is the number of neutrons with a speed v within a dv interval,

that cross the surface dS at time t (Fig. 8.3).
If the surface element is perpendicular to the direction of motion of the

monokinetic and mono-directional (in direction ~Ω) neutrons, i.e., if ~n ¼ ~Ω, the

number of neutrons with speed v within a dv interval that crosses the surface is

equal toΦ ~r; v; ~Ω; t
� �

dSdv. In this specific case, the notions of current and flux blur

together. However, generally, the number of neutrons that cross the surface is given

by Φ ~r; v; ~Ω; t
� �

dSdv~n:~Ω. The net current is defined as the integral over all

directions and all speeds of the current density:

Neutron current: ~J ~r; tð Þ¼
ð
Ω

dΩ

ð
v

dv~J ~r;v; ~Ω; t
� �¼ ð

Ω

dΩ

ð
v

dvΦ ~r;v; ~Ω; t
� �

~Ω

¼
ð
Ω

dΩΦ ~r; ~Ω; t
� �

~Ω ð8:4Þ

The quantity ~J ~r; tð Þ � ~ndS represents the number of neutrons that cross the

surface element dS. Physically, this corresponds to a net current density (Goldstein
1959, p9). This is just called current in neutronics. It will be noted that neutrons

r
n

Ωvv =

Fig. 8.3 Neutron current

density

r

v

v
v

Fig. 8.2 Neutron flux
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whose velocity make an acute angle (~v � ~n > 0 ) with the normal are counted

positively. Those which make an obtuse angle (~v � ~n < 0) are counted negatively,

and counterbalance in the net current the neutrons going in the “positive” direction.

Those that are perpendicular are not counted, since they do not really cross the

surface. The concept of current and flux applies to particles other than neutrons, as

well as other properties. Hence, the energy current density corresponds to the net

energy that crosses a unit surface per unit time (Goldstein 1959, p9). This will be

illustrated with a simple example. Consider the neutron balance in Fig. 8.4:

In this simple example, it is assumed that 3 neutrons per second cross the unit

surface dx dy along the positive ~z axis with the unit speed v¼ 1 cm/s, while one

neutron per second crosses from top to bottom. In this case, the net current is

2 neutrons per cm2 per second. It can be seen that a positive partial scalar current,
also called outgoing current, can be defined such that:

Jþ ~r; tð Þ ¼
ð

~Ω:~n>0

~J ~r; tð Þ:~n

which is equal to 3 neutrons/cm2/s in the given example. Similarly, a negative
partial current, also called an incoming current, can be defined (Baur 1985, p30),

J� ~r; tð Þ ¼
ð

~Ω:~n<0

~J ~r; tð Þ:~n

which is equal to �1 neutros/cm2/s in this example. This current is negative to

the extent that it was defined with ~n ¼ þ~z. The sum of the positive and negative

currents yield the net current projected in the considered direction:

~J ~r; tð Þ:~z ¼ Jþ ~r; tð Þ þ J� ~r; tð Þ

With such an orientation of the normal, the negative current is always negative

by construction, since only neutrons with ~Ω � ~n < 0 are considered. Some authors

n
yvv =

zvv =

yvv −=

zvv −=

z

y
x

Fig. 8.4 Example of

current and flux
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such as Kenneth Shultis4 and Richard Faw (Shultis and Faw 2000, p19), prefer

using as negative current the absolute value of our definition (so as to deal with

physically positive values), in which case the net current is obtained by the

difference between the positive and negative currents. If we add to the given

example a neutron per second that goes from left to right (~v ¼ v~y) and a neutron

per second that goes from right to left (~v ¼ �v~y), this does not change the net

current across the surface dx dy but these neutrons will contribute to the flux which

will be 6 neutrons/cm2/s. The net current in the~y direction is zero since the positive
and negative currents along this axis are equal in magnitude (1 neutrons/cm2/s), and

cancel each other out. Since there are no neutrons along the~x-axis, both partial and
net currents are zero along that axis. Hence, the current components, in our

example, are:

~J ~rð Þ ¼
0

0

2

0@ 1A ~Jþ ~rð Þ ¼
0

1

3

0@ 1A ~J� ~rð Þ ¼
0

�1
�1

0@ 1A
It is important to note the bottom-line here: the absence of a net current in a

direction does not necessarily mean that there are no neutrons moving in that

direction. At most, it can be said that there are as many neutrons moving in that

direction, as there are moving in the opposite direction. In particular, in the case of a

1D geometry (for example~x), one should be careful to note that neutrons do travel

in the ~y and ~z directions but in equal amounts (Fig. 8.5).

An isotropic flux corresponds to an angular neutron density independent of

direction ~Ω and is given by:

4J. Kenneth Shultis: After a Ph.D. at the University of Michigan in 1968, he worked in several

fields linked to neutronics, in particular, Monte-Carlo methods in transport and radioprotection—

fields in which he published numerous articles. He now teaches nuclear engineering at Kansas

State University and is the author of several reference books.

(courtesy Shultis)
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Isotropic flux: Φ ~r; v; ~Ω; t
� � ¼ 1

4π
Φ ~r; v; tð Þ, ð8:5Þ

where the integration over 4π steradians is trivial.

In its most general form, the Boltzmann equation depends on 7 variables: the

3 spatial coordinates, the 3 velocity coordinates and time. It should be noted,

however, regarding the velocity variable, that it is more conventional to use the

two angular variables for the direction vector ~Ω of the particle, and the magnitude

v of the velocity, or the kinetic energy E¼mv2/2 of the particle. The reason for this
approach is that the macroscopic cross sections do not depend on ~Ω in isotropic

materials but do depend on v. In the case of an isotropic flux, the positive current

can be calculated by integration over the angular directions oriented in the positive

half space, where ~n is the normal pointing inwards:

Jþ ~r; v; tð Þ ¼
ð

~Ω:~n>0

Φ ~r; v; ~Ω; t
� �

~Ω,~nd~Ω ¼ 1

4π
Φ ~r; v; tð Þ

ð
~Ω:~n>0

~Ω:~nd~Ω

¼ 1

4π
Φ ~r; v; tð Þ

ðπ2
0

cos θ2π sin θdθ ¼ Φ ~r; v; tð Þ
4

A similar calculation for the negative current yields:

J� ~r; v; tð Þ ¼
ð

~Ω�~n>0

Φ ~r; v; ~Ω; t
� �

d~Ω ¼ �Φ ~r; v; tð Þ
4

which, in this case, translates to a net zero current. Note that for any plane going

through~r, the positive current at that point isΦ ~r; v; tð Þ=4, while the negative current

x

yFig. 8.5 Real symmetric

trajectories of neutrons in a

1D geometry along x

8.1 Setting Up the Boltzmann Equation 473



is �Φ ~r; v; tð Þ=4. But this result is valid only for isotropic fluxes. Physically, this is

very much questionable, as for example at the interface between two different

media, but this equivalence will still be used in later sections.

8.2 The Integro-Differential Transport Equation

8.2.1 The Integro-Differential Transport Equation
in Kinetics

If a neutron balance is done on a reactor volume element, we have to consider on

one hand the neutron production, either by neutron sources or by slowing-down of

neutrons (or acceleration in the thermalization zone), and on the other hand, terms

accounting for streaming-out and leakage:

Differential form of the Boltzmann equation:

∂n ~r; v; ~Ω; t
� �

∂t
þ ~Ω:grad

��!
Φ ~r; v; ~Ω; t
� �þ Σt ~r; v; ~Ω; t

� �
Φ ~r; v; ~Ω; t
� �

¼ S ~r; v; ~Ω; t
� �þ ð1

0

dv0
ð
4π
dΩ0ΣS ~r; v0 ! v; ~Ω0 ! ~Ω; t

� �
Φ ~r; v; ~Ω; t
� � ð8:6Þ

The flux is introduced in the time derivative through n ~r; v; ~Ω; t
� � ¼

Φ ~r; v; ~Ω; t
� �

=v. Of note here is that the speed is time-independent since the neutron

population of a given speed v is considered. This is the integro-differential form of

the linear Boltzmann equation, with integrations over energy and angle, and space

and time derivatives. Also the equation here is termed linear compared to the

original Boltzmann equation for gases since the latter contains a quadratic term in

number of particles. This quadratic term arises from the scattering collisions of

particles onto one another, but is negligible in the approximation of “low n”,
e.g. few neutrons in the reactor. This approximation here implies that the density

of neutrons is not significant compared to the density of the target nuclei, and is low

enough to ignore neutron-neutron collisions. These two assumptions are very much

satisfied in reactor physics (Reed and Simon 1979, p245). In writing the equation,5

external forces such as gravity were ignored, because of the very low mass of the

neutron and their small mean lifetime. Radioactivity is also neglected since the free

5Regarding the approximations made for the derivation of the Boltzmann equation, the author

highly recommends (Decoster et al. 1998), in particular the section on the limit of Boltzmann-

Grad. The latter shows that the collision term of the equation is justified for a number N of

interacting particles that tends to infinity. In the case of the hard sphere model of gases, where the

radius of a particle is given by a, if the area Na2 is constant, this means that a tends to zero—from

which stems the consequences on the way of measuring space (and time) with respect to a

characteristic spatial dimension (and time).

474 8 The Boltzmann Equation



neutron half-life is much longer than, again, the mean lifetime. Moreover, the

collisions are assumed to be between point particles. Indeed, if we consider the

radii of the interacting particles and an interaction governed by a potential well, it is

the Enskog equation that should be used—and this is beyond the scope of this text.

The slowing down operator R½ � ¼ Ð1
0

dv0
Ð
4πd

~Ω0ΣS ~r; v0 ! v; ~Ω0 ! ~Ω; t
� � ½ � is

sometimes called the kernel of the transport equation, analogous to integral equa-

tions (Jerri 1999, p3). In the previous equation, the speed variable was used to

characterize the neutron population but the energy variable can also be used:

1ffiffiffiffiffiffi
2E

m

r ∂Φ ~r;E; ~Ω; t
� �

∂t
þ ~Ω:grad

��!
Φ ~r;E; ~Ω; t
� �þ Σt ~r;E; ~Ω; t

� �
Φ ~r;E; ~Ω; t
� �

¼ S ~r;E; ~Ω; t
� �þ Ð1

0
dE0
Ð
4πd

~Ω0ΣS ~r;E0 ! E; ~Ω0 ! ~Ω; t
� �

Φ ~r;E0; ~Ω0; t
� �

The identity below was used:

div ~J
� � ¼ div ~ΩΦ

� � ¼ ~Ω � grad��!
Φþ Φdiv~Ω|fflfflffl{zfflfflffl}

0

which allows the leakage term to be expressed either in the form ~Ω � grad��!
Φ

~r; v; ~Ω; t
� �

or div ~Ω � Φ ~r; v; ~Ω; t
� �� �

. In this approach, ~Ω is a constant since the

Boltzmann equation is written for a given direction ~Ω and a given speed v. In the

case of fission, the source can be regarded as being isotropic (i.e. independent of ~Ω).
The fission source is then made up of two terms: the prompt fission term given by

the fission spectrum χprompt(E), and the delayed neutrons (P groups of Precursors of

concentration Ci and decay constant λi—in general, 6 groups) given by the spectrum

χdelayed i(E), which depends on energy, or even on the delayed neutron group,

denoted here by i.

Isotropic fission source : S ~r;E;tð Þ
¼ 1

4π
χprompt Eð Þ

ð
4π
dΩ0

ð1
0

dE0νΣf

�
~r;E0;t

�
Φ
�
~r;E0; ~Ω;t

�þXP
i¼1

λiCi

�
~r;t
�
χdelayed i Eð Þ

 !
ð8:7Þ

8.2.2 The Integro-Differential Equation in Steady-State

8.2.2.1 Setting Up the Integro-Differential Form

In steady state, the ∂n ~r;E; ~Ω; t
� �

=∂t term disappears. The Boltzmann equation is

then conventionally written in the form:
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~Ω:grad
��!

Φ ~r;E; ~Ω
� �þΣt ~r;E; ~Ω

� �
Φ ~r;E; ~Ω
� �¼ ð1

0

dE0
ð
4π
d~Ω0ΣS ~r;E0 !E~Ω0 ! ~Ω

� �
�Φ ~r;E0; ~Ω0
� �þS ~r;E; ~Ω

� �
The integration over angle of the Boltzmann equation in steady state is then

given by:

Ð
4π
~Ω:grad
��!

Φ ~r;E; ~Ω
� �

dΩþ
ð
4π
Σt ~r;E; ~Ω
� �

Φ ~r;E; ~Ω
� �

dΩ

�
ð
4π
dΩ

ð1
0

dE0
ð
4π
dΩΣS ~r;E0 ! E; ~Ω0 ! ~Ω

� �
Φ ~r;E0; ~Ω0
� �¼ ð

4π
S ~r;E; ~Ω
� �

dΩ

Using the identity div ~ΩΦ
� � ¼ ~Ω:grad

��!
Φ, the first term can be expressed as:ð

4π

~Ω:grad
��!

Φ ~r;E; ~Ω
� �

dΩ ¼
ð
4π
div ~Ω:Φ ~r;E; ~Ω

� �� �
dΩ

¼ div

ð
4π

~Ω:Φ ~r;E; ~Ω
� �� �

dΩ

� �
¼ div ~J ~r;Eð Þ� �

with the usual definition of the current:

Neutron current: ~J ~r;Eð Þ �
ð
4π

~J ~r;E; ~Ω
� �

dΩ ¼
ð
4π

~Ω:Φ ~r;E; ~Ω
� �

dΩ ð8:8Þ

Assuming that the total cross section is isotropic, the second term simplifies to:ð
4π
Σt ~r;E; ~Ω
� �

Φ ~r;E; ~Ω
� �

dΩ ¼ Σt ~r;Eð Þ
ð
4π
Φ ~r;E; ~Ω
� �

dΩ ¼ Σt ~r;Eð ÞΦ ~r;Eð Þ

The third term involves the usual assumption that the doubly-differential
scattering cross section ΣS ~r;E0 ! E; ~Ω0 ! ~Ω

� �
is in fact only a function of

the scalar product ~Ω0 � ~Ω, the directions before and after the collision, i.e., the

cosine of the angle between these directions, conventionally denoted by μ
(Fig. 8.6).

ΣS ~r;E0 ! E; ~Ω0 ! ~Ω
� � ¼ ΣS ~r;E0 ! E; ~Ω0:~Ω

� � ¼ ΣS ~r;E0 ! E; μð Þ

This dependence of the differential scattering cross section on the scalar product
~Ω0 � ~Ω is nearly always true, except in crystalline media, where the bonds introduce

anisotropy in the problem. However, the error due to this assumption is small,

leading to:
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ð
4π
dΩ

ð1
0

dE0
ð
4π
dΩ0ΣS ~r;E0 ! E; ~Ω0 ! ~Ω

� �
Φ ~r;E0~Ω0
� �

¼
ð
4π
dΩ0Φ ~r;E0~Ω0

� � ð1
0

dE0
ð
4π
dΩΣS ~r;E0 ! E; ~Ω0:~Ω

� �
Using the differential solid angle in spherical coordinates,6 dΩ¼ sin θ dθ dφ,

then performing the following change of variable, μ¼ cos θ, dμ¼ � sin θ dθ, in the
above integral, the following is obtained:ð

4π
dΩΣS ~r;E0 ! E; ~Ω0:~Ω

� � ¼ ð
2π
dφ

ð π
0

dθ sin θΣS ~r;E0 ! E; μð Þ

¼ 2π

ðþ1
�1
ΣS ~r;E0 ! E; μð Þdμ

Finally, using simplified notations for the scattering cross section and the flux as

function of energy, the scattering cross section is written:

ΣS ~r;E0 ! Eð Þ ¼ 2π

ðþ1
�1
ΣS ~r;E0 ! E;μð Þdμ and Φ ~r;E0ð Þ ¼

ð
4π
Φ ~r;E0; ~Ω0
� �

dΩ0

The term accounting for neutrons scattering in the considered volume element

can be simplified to:

r

Ω

ϕθθ ddsind =Ω
Fig. 8.6 Spherical

coordinates

6For the concept of solid angles, the author recommends (Baur 1985, p18), which examines the

calculation in detail.
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ð
4π
dΩ

ð1
0

dE0
ð
4π
dΩ0 ΣS ~r;E0 ! E; ~Ω0 ! ~Ω

� �
Φ ~r;E0; ~Ω0
� �

¼
ð
4π

ð1
0

ΣS ~r;E0 ! Eð ÞΦ ~r;E0; ~Ω0
� �

dΩ0dE0 ¼
ð1
0

ΣS ~r;E0 ! Eð ÞΦ ~r;E0ð ÞdE0

The fission source term without delayed neutrons, generally considered isotro-

pic, is written as the integral of the number of neutrons produced, integrated over all

energies and angles:

ð
4π
S ~r;E; ~Ω
� �

dΩ ¼ χprompt Eð Þ
4π

ð
4π

dΩ

ð
4π

dΩ0
ð1
0

dE0vΣf ~r;E
0ð ÞΦ ~r;E0; ~Ω0
� �

¼ χprompt Eð Þ
ð
4π

ð1
0

dE0vΣf ~r;E
0ð ÞΦ ~r;E0; ~Ω
� �

dΩ0

¼ χprompt Eð Þ
ð1
0

dE0vΣf ~r;E
0ð ÞΦ ~r;E0ð Þ

Bringing together the four terms that have been calculated so far leads to what is

known as the integro-differential form of the Boltzmann transport equation. This
equation relates the flux spectrum and the spatial derivative of the neutron current:

Steady-state integro-differential form of the Boltzmann equation:

div ~J ~r;Eð Þ� �þΣt ~r;Eð ÞΦ ~r;Eð Þ ¼
ð1
0

ΣS ~r;E0 ! Eð ÞΦ ~r;E0ð ÞdE0

þχprompt Eð Þ
ð1
0

dE0vΣf ~r;E
0; tð ÞΦ ~r;E0ð Þ

ð8:9Þ

It is common practice to simplify notation by introducing a transport operator T
such that, in transient states:

1

v

∂
∂t
þ Σt ~r;E; ~Ω; t

� �þ ~Ω:grad
��!	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T½ �

Φ ~r;E; ~Ω; t
� �� �

¼
ð1
0

dE0
ð
4π
dΩ0ΣS ~r;E0 ! E; ~Ω0 ! ~Ω; t

� �
Φ ~r;E; ~Ω0; t
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R Φ ~r;E; ~Ω;tð Þ½ �

þ S ~r;E; ~Ω; t
� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Non-fission neutron source
in the volume

þ χνΣfΦ ~r;E; ~Ω; t
� �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

fission sources
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The source terms on the right hand side of the equation comprise the slowing-

down sources represented by the slowing down operator R Φ ~r;E; ~Ω; t
� �� �

, sources

independent of the flux S ~r;E; ~Ω; t
� �

(also called not-coupled-to-the-flux sources or

external sources such as startup point-wise sources, inherent sources of spontane-

ous fission or (α, n) sources), and the fission sources represented in a mnemonic way

by the following term, often isotropic:

χvΣfΦ ~r;E; ~Ω; t
� � ¼ χ ~r;Eð Þv ~r;E; tð ÞΣf ~r;E; ~Ω; t

� �
Φ ~r;E; ~Ω; t
� �

¼ χ ~r;Eð Þv ~r;E; tð ÞΣf ~r;E; tð Þ
4π

Φ ~r;E; ~Ω; t
� �

In steady-state and in the absence of external sources, the source term is

proportional to the flux, giving rise to the equation:

T � R½ � Φ ~r;E; ~Ω
� �� � ¼ χvΣfΦ ~r;E; ~Ω

� �
It can be mathematically shown (Planchard 1995) that the operator [T�R]�1 is

positive over the L2 ~Ω� R
� �

space, and non-negative with respect to the scalar

energies E.

8.2.2.2 The Eigenvalue Problem

The critical reactor problem with one energy group7 is written, using the above

notations, like any eigenvalue problem (Wilkinson 1965):

T � R½ � Φ ~r; ~Ω
� �� � ¼ χvΣfΦ ~r; ~Ω

� �
keff

Using the inverse operator,

T � R½ ��1 χvΣfΦ ~r; ~Ω
� �� � ¼ keffΦ ~r; ~Ω

� �
In kinetics, the source term is more complex because it couples with the delayed

neutrons. Generally, an overall operator H¼ T�R is also used such that:

H Φ ~r; ~Ω
� �� � ¼ χvΣfΦ ~r; ~Ω

� �
keff

ð8:10Þ

7For one energy group, χ¼ 1, but it has been left here to remember to take into account the fission

spectrum in case of generalizing to a multi-group problem.
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It can be shown here that the operator [H]�1χvΣf allows for a unique positive

eigenvector Φ0 with a positive eigenvalue λ0 equal to the spectral radius of the

matrix of the operator [H]�1χvΣf (Jentzsch theorem). This eigenvalue is called the k
effective and the physical importance of this mathematical concept will be thor-

oughly discussed in Chap. 11. All the other eigenvalues are smaller in magnitude to

λ0, and tend to 0. J. Planchard points out that in the multi-group case, it is likely that

the other eigenvalues are real and positive, even if there does not exist a rigorous

mathematical demonstration of the fact. However, it is what happens in the neu-

tronics case with physical values. This property ensures the convergence of the

power iteration method, which will be discussed in the chapter on diffusion. Also,

dividing the neutron production terms by keff is arbitrary, and several formulations

of the eigenvalue reactor problem8 exist.

~Ω:grad
��!

Φ ~r; ~Ω
� �þ Σt ~rð ÞΦ ~r; ~Ω

� � ¼ vΣf ~rð Þ
keff

ð
~Ω

d~ΩΦ ~r; ~Ω
� �

þ
ð
~Ω

d~Ω0ΣS ~r; ~Ω0 ! ~Ω
� �

Φ ~r; ~Ω0
� �þ S ~r; ~Ω

� �

is called the keff formulation of the criticality equation, and it will be very much

used in this text.

~Ω:grad
��!

Φ ~r; ~Ω
� �þ Σt ~rð ÞΦ ~r; ~Ω

� � ¼ λΦ ~r; ~Ω
� �þ vΣt ~rð Þ

ð
~Ω

d~ΩΦ ~r; ~Ω
� �

þ
ð
~Ω0

d~Ω0ΣS ~r; ~Ω0 ! ~Ω
� �

Φ ~r; ~Ω0
� �þ S ~r; ~Ω

� �

is called the λ formulation, and is more adapted to a time-dependent problem of a

(burst) Dirac source introduced in the system (λ is sometimes called the time-

eigenvalue), while:

~Ω:grad
��!

Φ ~r; ~Ω
� �þ Σt ~rð ÞΦ ~r; ~Ω

� �
¼ c vΣf ~rð Þ

ð
~Ω

d~ΩΦ
�
~r; ~Ω

�þ ð
~Ω

d~Ω0ΣS

�
~r; ~Ω0 ! ~Ω

�
Φ
�
~r; ~Ω0

�264
375þS ~r; ~Ω

� �

8D.C. Sahni: Some new results pertaining to criticality and time eigenvalue of one speed neutron
transport equation, Progress in nuclear energy Vol. 30, n�3, 305–320 (1996).
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is called the c9 formulation. Choosing which formulation of the eigenvalue equa-

tion to use is important as the set of the eigenvalues from each of these three

formulations is different. Also, the eigenvectors which can be either discrete or

continuous are not interchangeable from one problem formulation to another. Finally,

one equation can have complex eigenvalues (such as the equation in c) while another
can have all its eigenvalues real (such as the equation in keff). Regarding the keff
problem, a Green’s function G ~r;~r0; ~Ω, ~Ω0

� �
can be introduced and is defined by:

~Ω:grad
��!

G ~r;~r0; ~Ω, ~Ω0

� �þ Σt ~rð ÞG ~r;~r0; ~Ω, ~Ω0

� �
�
ð
~Ω

d~Ω0ΣS ~r; ~Ω0 ! ~Ω
� �

G ~r;~r0; ~Ω, ~Ω0

� � ¼ δ ~r;~r0ð Þδ ~Ω, ~Ω0

� �
i.e., the flux produced by a unit source placed at~r0 in the ~Ω0 direction. For solely the
monoenergetic case, the reciprocity theorem for Green’s functions can be used,

which states that:

G ~r;~r0; ~Ω; ~Ω0
� � ¼ G ~r0;~r;�~Ω0;�~Ω

� �
If reflective boundary conditions are used, the incoming flux at a point~rs of the

surface is written:

Φ ~rS; ~Ω
� � ¼ ð

∂V

d2r

ð
~Ω0:~n0>0

d~Ω0 R ~rs;�~Ω;~r 0s; ~Ω
0� �

~Ω0:~n0Φ ~r 0s; ~Ω
0� �

where ~n0 is the normal to point ~n0s, at the surface ∂V of volume V.

R ~rs;�~Ω;~r 0s~Ω
0� �
is the reflection coefficient which is usually a symmetric function

with respect to its arguments:

R ~rs;�~Ω;~r 0s; ~Ω
0� � ¼ R ~r 0s;�~Ω0;~rs; ~Ω

� �
The integral form involves calculating the flux as a solution in terms of

Green’s functions of the fission sources in thewhole volume and of the surface sources:

Φ ~r; ~Ω
� � ¼ ð

V

d3r0
ð
~Ω0

d~Ω0
vΣf ~r

0ð Þ
keff

G ~r;~r 0; ~Ω; ~Ω0
� �

Φ ~r0ð Þ

þ
ð
∂V

d2r00s

ð
∂V

d2r0s

ð
~Ω0:~n0>0

d~Ω0~Ω0:~n0
ð

~Ω00 :~n00>0

d~Ω00~Ω00:~n00R ~r 0s;�~Ω0;~r 00s ; ~Ω
00� �

Φ ~r 00s ; ~Ω
00� �
G
�
~r; ~Ω;~r 0s;�~Ω0

�� Φ
�
~r 0s; ~Ω

0�G�~r;~r 00s ; ~Ω; ~Ω00
�� �

9The γ notation is sometimes used but Dahl and Sj€ostrand prefer using the c notation in Nuclear

Science and Engineering 69, 114 (1979). The c notation is becoming more and more widespread,

c being the number of secondary neutrons.
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Owing to the properties of Green’s functions, and of the angular flux on the surface,
the term on the right hand side disappears, allowing the flux to be written as:

Ψ ~rð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vΣf ~rð Þ

q
Φ ~rð Þ

¼ 1

keff

ð
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vΣf ~rð Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vΣf ~r0ð Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vΣf ~r0ð Þ

q
Φ ~r 0ð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Ψ ~r 0ð Þ

d3r0
ð
d~Ωd~Ω0G ~r;~r 0; ~Ω; ~Ω0

� �

The somewhat arbitrary introduction of the square root terms allows the impact

of the real and symmetric integral operator to be clearly shown. This is a Hilbert-

Schmidt type of operator, whose real eigenvalues are known to form a countable

infinite set, with the origin being the only accumulation point.

Ψ ~rð Þ ¼ 1

keff
SH~r,~r0 Ψ ~r 0ð Þ½ �

Also, it is known that there is no general eigenvector. Since this eigenvalue

problem deals with the flux integrated over angle, Sahni points out that it has far

fewer eigenvalues than the c formulation of the same problem—hence its appeal.

8.2.2.3 Solutions of the Transport Equation for Simple Cases

In an infinite medium where the source is strictly proportional to the absorption

cross section, the relation below is true:

S ~rð Þ ¼ αΣa ~rð Þ:
The uniform and isotropic angular flux Φ ~r; ~Ω

� � ¼ α= 4πð Þ is the trivial solution
to the Boltzmann equation, since after integration over angle and energy, it sim-

plifies to:

Σt ~rð Þ Φ ~rð Þ ¼ αΣs ~rð Þ þ αΣa ~rð Þ

where Φ ~rð Þ ¼ Ð
4π

Φ ~r; ~Ω
� �

d~Ω ¼ α.

If the steady-state energy equation is integrated over energy, the monoenergetic

integro-differential form of the transport equation is obtained:
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~Ω:grad
��!

Φ ~r; ~Ω
� �þ Σt ~rð ÞΦ ~r; ~Ω

� �
¼
ð1
0

dE

ð1
0

dE0
ð
~Ω0

d~Ω0ΣS ~r;E0 ! E; ~Ω0 ! ~Ω
� �

Φ ~r;E0; ~Ω0
� �þ S ~r; ~Ω

� �

The ~Ω � grad��!
Φ ~r; ~Ω
� �

term corresponds to the derivative along the neutron path,

in the direction ~Ω. In the very particular case where neutrons are considered in

vacuum, the equation simplifies to:

Integro-differential form of the equation in vacuum: ~Ω:grad
��!

Φ ~r; ~Ω
� �

¼ ∂Φ ~r; ~Ω
� �
∂‘

¼ S ~r; ~Ω
� � ð8:11Þ

where ‘ is the coordinate10 depending on the direction ~Ω. Intuitively, the

solution to Eq. 8.11 is given by:

Φ ~r; ~Ω
� � ¼ ð1

0

S ~r � ‘~Ω; ~Ω
� �

d‘

which represents the fact that the flux is obtained by summing the contributions

from the sources emitting in the ~Ω-direction before the point ~r (no collision in

vacuum can deviate the neutrons). This result can also be obtained by rewriting

Eq. 8.11 as:

∂Φ ~r � ‘~Ω; ~Ω
� �

∂‘
¼ S ~r � ‘~Ω; ~Ω
� �

and integrating between ‘¼ 0 and ‘¼1. It is then assumed that the angular flux

in the ~Ω-direction is zero at infinity, which is indeed the case of an isotropic point

source S (in neutron/s), whose angular flux in vacuum is S/(4π ‘2). Only sources

placed on the ~Ω axis before ~r contribute to the angular flux in the same direction.

Sources placed after ~r contribute to the flux in the �~Ω direction:

Φ ~r;�~Ω
� � ¼ ð1

0

S ~r þ ‘~Ω;�~Ω
� �

d‘

If the completely hypothetical case of a purely absorbing medium (therefore

non-scattering) is considered, the integro-differential equation is written as

(Fig. 8.7):

10The author preferred using the notation ‘ as the integration variable along the direction ~Ω rather

than the notation R, which is overused in numerous reference textbooks.
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Integro-differential form of the transport equation in an absorbing medium:

~Ω:grad
��!

Φ ~r; ~Ω
� �þ Σa ~rð ÞΦ ~r; ~Ω

� � ¼ S ~r; ~Ω
� � ð8:12Þ

The solution is obtained by adding an attenuation term to the previous solution

for the vacuum case

Solution for the flux in an absorbing medium: Φ ~r; ~Ω
� �¼ ð1

0

e�Σa‘ S ~r� ‘~Ω; ~Ω
� �

d‘

ð8:13Þ

where e�Σa‘ is the exponential of the optical path, which is defined as11:

Optical path in a purely absorbing medium: Σa‘ �
ð ‘
0

d‘0Σa ~r � ‘0~Ω
� � ð8:14Þ

It will be seen later that the usual definition of the optical path uses the total cross

section. However, this amounts to the absorption cross section in this case. Just as in

vacuum, only sources placed on the ~Ω-axis before~r contribute to the angular flux in
the same direction (owing to the absence of scattering). Case et al. (1953) modifies

Fig. 8.7 Neutron transport in vacuum

11The optical path is often denoted by τ in numerous texts. The Σa‘ notation was preferred here

since the physical meaning is retained. Stacey (2001) uses α(r, r0).
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this expression to introduce a volume integral that is more conventional to integrate.

An angular Dirac function defined by:

8~Ω,

ð
4π

δ2 ~Ω; ~Ω0
� �

f ~Ω0
� �

d~Ω0 ¼ f ~Ω
� �

is introduced. It can also be expressed in terms of the usual Dirac distribution:

δ2 ~Ω; ~Ω0
� � ¼ 1

2π
δ ~Ω � ~Ω0� �� 1
� �

The introduction of this angular Dirac function in the solution of the flux brings

about an integration over the whole angular space:

Φ ~r; ~Ω
� � ¼ ð

4π

d~Ω0 δ2 ~Ω; ~Ω
� � ð1

0

e�Σa‘ ~r; ~Ω0ð ÞS ~r � ‘~Ω0; ~Ω0
� �

d‘

where the optical path is defined, with respect to the direction~Ω0, by:

Σa‘ ~r; ~Ω0
� � ¼ ð ‘

0

d‘0Σa ~r � ‘0~Ω0
� �

If the vector~‘ ¼ ‘~Ω0, having volume element ~d‘ ¼ ‘2dRdΩ0, is introduced, the
solution for the flux can be modified so that the term for the attenuation of a point

source within an absorbing medium is obtained:

Flux in a purely absorbing medium by integrating over space:

Φ ~r; ~Ω
� � ¼ ð1

0

δ2 ~Ω;
~‘

‘

 !
e�Σa‘ ~r;~‘ð Þ S ~r �~‘;

~‘

‘

 !
~d‘

‘2
ð8:15Þ

where Σa‘ ~r;~‘
 �

¼ Ð ‘
0
d‘0Σa ~r �~‘0

 �
. Through this, it can be seen again that

the flux in vacuum from an isotropic source placed at the origin is given by:

Flux of a point source in vacuum: Φ ~r; ~Ω
� � ¼ S ~r ¼ 0; ~Ω

� �
r2

δ
~r

r
:~Ω� 1

� �

¼ 1

4π

S ~r ¼ 0ð Þ
r2

δ
~r

r
:~Ω� 1

� �
ð8:16Þ

which represents the fact that neutrons are spread homogeneously over a sphere

of radius r, and move away radially from the center. If the general case of a source

S0 ~r; ~Ω
� � ¼ S0 δ2 ~Ω; ~Ω0

� �
δ ~r �~r0ð Þ emitting solely in the ~Ω0 direction and placed
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at a point~r0 of the absorbing medium is considered, the solution for the flux rewrites

as:

Φ ~r; ~Ω
� � ¼ S0 δ2 ~Ω; ~Ω0

� �
δ2

~r �~r0
~r �~r0j j ;

~Ω

� �
e
�
Ð ~r�~r0j j
0

Σa ~r�‘ ~r�~r0
~r�~r0j j

 �
d‘

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G ~r�~r0 ; ~Ω; ~Ω0ð Þ

which shows that only neutrons emitted along the vector ~r �~r0 can reach the

point ~r, and that these contribute to the flux in the ~Ω direction only when
~Ω ¼ ~Ω0 ¼ ~r �~r0ð Þ= ~r �~rj j. The term G ~r;~r0; ~Ω; ~Ω0

� �
is similar to a Green’s

function [for Green’s functions, the author recommends in particular (DeSanto

1992; Jerri 1999, p165; Kanwal 1971, p72 and Planchard 1995, p38 within the

context of Diffusion)] which corresponds to the flux due to a unit source placed at

~r0. It is symmetric to the extent that the response in ~r; ~Ω
 �

, for a unit source placed

at~r0 in the ~Ω0 direction, is the same as the response in ~r0 � ~Ω0

� �
, for a unit source

placed at ~r in the �~Ω direction. It should be noted, mathematically, that the

properties of Green’s functions give:

Reciprocity theorem: G ~r;~r0; ~Ω; ~Ω0

� � ¼ G ~r0;~r;�~Ω0;�~Ω
� � ð8:17Þ

This property, known as the reciprocity theorem, is true only for the

monoenergetic transport equation, since a neutron emitted at thermal energies

will not become a fast neutron at another point in the reactor, whereas the opposite

is possible. The general solution for a source field will then be given by:

Φ ~r; ~Ω
� � ¼ ð1

0

d3r0

ð
4π

d ~Ω0 G ~r;~r0; ~Ω; ~Ω0

� �
S ~r0; ~Ω0

� �
If the scattering source term now needs to be taken into account, the source term

in Eq. 8.13 can be modified to give:

S0 ~r; ~Ω
� � ¼ ð

4π

d~Ω0Σs ~r; ~Ω0 ! ~Ω
� �

Φ ~r; ~Ω0
� �þ S ~r; ~Ω

� �
The energy variable E can be added to obtain the same equation in energy. This

leads to the integral form of the equation, which contains the flux in the slowing-

down term and which will be studied further later on. The complementary theorem
allows for the study of the solution within a precise area: it is used in the domain-
decomposition approach for particle transport, where the goal is to increase the

meshing a posteriori in an area of interest. Considering a heterogeneous

non-multiplicative medium surrounded by a surface S and where internal and/or

external sources create a fluxΦ ~r;E; ~Ω
� �

, the problem is mathematically equivalent
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to eliminating the external sources while retaining the internal ones and adding to

the surface S a complementary source of intensity�Φ ~r;E; ~Ω
� �

~Ω � ~n, where~n is the
outside normal to S. Contrary to the reciprocity theorem, the complementary

theorem is valid in a spectral approach to energy. It consists of replacing a source

by the current it causes at the interface of interest, and is based on the linearity of the

transport equation with respect to external sources. It should be cautioned here that

this result is of course no longer valid if the source is coupled to the flux, i.e., in a

multiplicative medium.

8.2.2.4 Adjoint Transport Theory

(Ferziger and Zweifel 1966, p214)

8.2.2.4.1 The Adjoint Integro-Differential Equation

To simplify notation, it is common in perturbation theory12,13 to define the Dirac

operator<> of integration over independent variables, i.e., a triple integration over

space, energy and angle. Hence:

Scalar product in perturbation:

< f , g >�
ð
r

ð
E

ð
~Ω

f ~r;E; ~Ω
� �

g ~r;E; ~Ω
� �

dr dEd~Ω ð8:18Þ

The adjoint flux Φ∗ , through the very definition of the adjoint operator, satisfies

the equation:

< Φ∗,HΦ >�< H∗Φ∗,Φ >

where H∗ is the adjoint operator. Using only this definition, there exists an

infinite number of solutionsΦ∗, sinceH is mathematically real leading toH∗¼HT,

and <Ψ ,HΦ> ¼ <HTΨ ,Φ>, independent of the form of Φ or Ψ . It is the choice

of boundary conditions on the domain of interest that will restrict Φ∗. Therefore,

there are as many different adjoint fluxes as there are adjoint sources and boundary

conditions. The adjoint steady-state equation of the adjoint angular flux

Φ∗ ~r;E;�~Ω
� �

is written by considering that the neutrons are emitted by the adjoint

12For the mathematical aspects of perturbation theory, refer to (Bellman 1964; Cole 1968; Nayfeh

1973).
13See also E. Greespan: Perturbation theory and importance functions in integral transport
formulations, Nuclear science and Engineering, 61, pp170–180, 1976.
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source—in a way considering that they are covering the inverse path of the original

path while travelling back in time:

�~Ω:grad∗
���!

Φ∗ ~r;E;�~Ω
� �þ Σt ~r;Eð ÞΦ∗ ~r;E;�~Ω

� �
�
ð1
0

dE0
ð
4π
d~Ω0ΣS ~r;E! E0; ~Ω:~Ω0

� �
Φ∗ ~r;E0;�~Ω0
� �¼ S∗ ~r;E0;�~Ω

� �
Attention is drawn to the fact that the integration variables of the slowing-down

operator are swapped around, by comparison with the original equation, as well as

the change in sign of the angular direction within the flux. This is because the

matrix of the adjoint operator is the conjugate transpose of the matrix. If the matrix

elements are real, the adjoint matrix is the matrix transposed (Glasstone and Edlund

1972, p374). This equation is rewritten by replacing ~Ω0 by �~Ω0, and ~Ω by �~Ω

(Criticality control of fissile materials 1968, p65) and grad∗
���! ¼ �grad��!

(Duderstadt

and Martin 1979, p371), respecting some conditions that will be detailed later:

Integro-differential equation of the adjoint flux:

� ~Ω:grad
��!

Φ∗ ~r;E; ~Ω
� �þ Σt ~r;Eð ÞΦ∗ ~r;E; ~Ω

� �
�
ð1
0

dE0
ð
4π
d~Ω0ΣS ~r;E! E0; ~Ω:~Ω0

� �
Φ∗ ~r;E0; ~Ω0
� �¼ S∗ ~r;E; ~Ω

� � ð8:19Þ

This equation is rigorously identical in form to the direct equation, except that

the slowing-down operator is written with the transposed matrix and the sign

change of the leakage operator. Creating the adjoint of the transport equation

requires a detailed explanation. The absorption term Σt ~r;Eð ÞΦ ~r;E; ~Ω
� �

,

being self-adjoint, its equivalent in the adjoint equation is hence

Σt ~r;Eð ÞΦ∗ ~r;E; ~Ω
� �

. It is easily seen that the adjoint of the scattering operatorÐ1
0

dE0
Ð
4πd

~Ω0ΣS ~r;E0 ! E; ~Ω0; ~Ω
� �

Φ ~r;E0; ~Ω0
� �

is obtained by substituting the

prime indices of the energy and direction variables, while noticing that:ð
r

d3r

ð
4π
d~Ω

ð1
0

dEΦ∗ ~r;E; ~Ω
� �ð1

0

dE0
ð
4π
d~Ω0ΣS ~r;E0 !E; ~Ω0; ~Ω

� �
Φ ~r;E0; ~Ω0
� �

¼
ð
r

d3r

ð
4π
d~Ω

ð1
0

dEΦ ~r;E; ~Ω
� �ð1

0

dE0
ð
4π
d~Ω0ΣS ~r;E!E0; ~Ω:~Ω0

� �
Φ∗ ~r;E0; ~Ω0
� �

Finding the adjoint of the leakage operator ~Ω:grad
��!

Φ ~r;E; ~Ω
� �

is trickier.

Noticing that:
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~Ω:grad
��!

Φ ~r;E; ~Ω
� � ¼ div ~Ω:Φ ~r;E; ~Ω

� �� �� Φ ~r;E; ~Ω
� �

div ~Ω
� �|fflfflffl{zfflfflffl}
0

since ~Ω is a direction constant in the equation, and that similarly:

Φ∗ ~r;E; ~Ω
� �

:div ~ΩΦ ~r;E; ~Ω
� �� � ¼ div ~Ω:Φ ~r;E; ~Ω

� �
Φ∗
�
~r;E; ~Ω

�� �
� Φ ~r;E; ~Ω

� �
~Ω:grad
��!

Φ∗ ~r;E; ~Ω
� �

the scalar product can be rewritten as:ð
r

d3r

ð
4π
d~Ω

ð1
0

dEΦ∗ ~r;E; ~Ω
� �

~ΩΦ ~r;E; ~Ω
� �

¼
ð
r

d3r

ð
4π
d~Ω

ð1
0

dEdiv Φ∗ ~r;E; ~Ω
� �

~ΩΦ
�
~r;E; ~Ω

�� �
�
ð
r

d3r

ð
4π
d~Ω

ð1
0

dEΦ ~r;E; ~Ω
� �

~Ω:grad
��!

Φ∗ ~r;E; ~Ω
� �

The second term on the right-hand side corresponds to the operator �~Ω � grad��!
Φ∗ ~r;E; ~Ω
� �

of the adjoint equation while the first term can be replaced by an

integral over the surface of the reactor, thanks to Ostrogradsky (divergence)

theorem: ð
r

d3r

ð
4π
d~Ω

ð1
0

dEdiv Φ∗ ~r;E; ~Ω
� �

~ΩΦ
�
~r;E; ~Ω

�� �
¼
ð
rS

d2r

ð
4π
d~Ω

ð1
0

dE~n: Φ∗ ~r;E; ~Ω
� �

~ΩΦ
�
~r;E; ~Ω

�� �
This surface integral can be broken down into two integrals, one for the

incoming directions ~Ω:~n < 0, where ~n is the outside normal to the surface reactor,

and another for the outgoing directions ~Ω:~n > 0:ð
rS

d2r

ð
4π
d~Ω

ð1
0

dE~n: Φ∗ ~r;E; ~Ω
� �

~ΩΦ
�
~r;E; ~Ω

�� �
¼
ð
rS

d2r

ð
~Ω�~n<0

d~Ω

ð1
0

dE~n: Φ∗ ~r;E; ~Ω
� �

~ΩΦ
�
~r;E; ~Ω

�� �
þ
ð
rS

d2r

ð
~Ω�~n>0

d~Ω

ð1
0

dE~n: Φ∗ ~r;E; ~Ω
� �

~ΩΦ
�
~r;E; ~Ω

�� �
For the incoming directions, the angular flux will be zero if the surface is convex,

and if the reactor is surrounded by vacuum or a completely-absorbing medium
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(black body). For outgoing directions, it can be imposed that it is the adjoint angular

flux that should be zero, by imposing that as boundary condition for the problem.

This leads to the following boundary conditions:

Φ ~rS;E; ~Ω
� � ¼ 0 for ~Ω:~n < 0

Φ∗ ~rS;E; ~Ω
� � ¼ 0 for ~Ω:~n > 0

(

It should be noted that if a too restrictive condition is applied, such as:

Φ ~rS;E; ~Ω
� � ¼ 0 8~Ω or Φ∗ ~rS;E; ~Ω

� � ¼ 0 8~Ω

this means that the integrated flux (or the adjoint integrated flux) is zero at the

interface, which is consistent in a homogeneous medium only with a subcritical

reactor, hence not in steady-state by definition. Regarding the source term, an

isotropic fission term is written as:

χ Eð Þ
ð1
0

dE0 vΣf ~r;E
0ð Þ
ð
4π
d~Ω0Φ ~r;E0; ~Ω0

� �
the adjoint term of which, using a reasoning analogous to that used for the

scattering term, is given by:

vΣf ~r;Eð Þ
ð1
0

dE0
ð
4π
d~Ω0 χ E0ð ÞΦ∗ ~r;E0; ~Ω0

� �
Finally, the adjoint equation of the critical equation with fission sources, assum-

ing that the incoming flux and the adjoint outgoing flux are zero, is written as:

�~Ω:grad
��!

Φ∗ ~r;E; ~Ω
� �þ Σt ~r;Eð ÞΦ∗ ~r;E; ~Ω

� �
�
ð1
0

dE0
ð
4π
d ~Ω0ΣS ~r;E! E0; ~Ω:~Ω0

� �
Φ∗ ~r;E0; ~Ω0
� �

¼ νΣf ~r;Eð Þ
ð1
0

dE0
ð
4π
d ~Ω0χ E0ð ÞΦ∗ ~r;E0; ~Ω0

� �
If the incoming flux is non-zero, which is the case at the active core-reflector

interface, the adjoint term �~Ω:grad
��!

Φ∗ ~r;E; ~Ω
� �

is not so rigorous anymore—

which is an easily overlooked fact.

In multi-group, the original operator is written:ð
4π

d~Ω0
X
g0

Σg0!g
~Ω0:~Ω
� �

Φg0 ~r; ~Ω
0� �

while the adjoint operator is
Ð
4π

d~Ω0
P
g0
Σg!g0 ~Ω0:~Ω

� �
Φ∗

g0 ~r;
~Ω0

� �
.
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It will be noted that the adjoint flux is dimensionless if the adjoint source has the

same dimensions as a cross section, but that it could be otherwise for another type of

adjoint source—which can create some confusion. Numerous texts use the concept

of adjoint flux without clearly explaining the defining conditions for this flux

(giving the impression that it were unique, similarly to the original flux), which

again is a cause for widespread confusion. The adjoint flux acts as a weight

function, which represents the contribution of a neutron to a given response (for

example, a detector, in which case the adjoint source will be the surface area of the

detector). The adjoint flux associated with a null condition on the edge for a

homogeneous medium is called the fundamental adjoint flux. It is known, just

like the original flux, only up to a multiplicative constant. Hence, the adjoint flux

depends on the adjoint source, and there are as many adjoint flux profiles as there

are possible adjoint sources (and boundary conditions imposed on the adjoint flux).

Therefore, it is preferable to never mention adjoint fluxes without specifying the

nature of the corresponding adjoint source and the boundary condition, otherwise

the problem would be (mathematically) ill-posed. Attention will be drawn to the

prime indices on the energy variable E0 of the scattering source term, which are

“inversed” with respect to the original flux equation (which amounts to taking the

transpose of the matrix associated with the slowing-down operator). The integration

over angle of the adjoint equation leads to:

�
ð
4π

~Ω:grad
��!

Φ∗ ~r;E; ~Ω
� �

d~Ωþ
ð
4π
Σt ~r;Eð ÞΦ∗ ~r;E; ~Ω

� �
d~Ω

�
ð
4π
d~Ω

ð1
0

dE0
ð
4π
d ~Ω0ΣS ~r;E0 !E; ~Ω:: ~Ω0 ÞΦ∗ ~r;E0; ~Ω0

� �¼ ð
4π
S∗ ~r;E; ~Ω
� �

d~Ω

�
Compelling applications of the adjoint flux in perturbation theory will be

discussed later.

8.2.2.4.2 The Adjoint Equation for the Computation of Neutron

Multiplication

A possible use of adjoint theory is the problem of the contribution to leakage by a

neutron emitted at~rwith energy E.An adjoint equation can be set up by considering
the number p ~r;E; ~Ω

� �
of neutrons lost by leakage from the system, induced by the

previously mentioned neutron emitted in the ~Ω direction (Careful! This is not the

leakage probability; indeed, this number of neutrons can be higher than 1.). The

differential equation for this variable is:
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p ~r;E; ~Ω
� �¼ p ~rþ ‘~Ω;E; ~Ω

� �� e�Σt‘|ffl{zffl}
probability of non-interaction

in the path ‘

þ
ð‘0¼‘

‘0¼0

e�Σt ‘�‘0ð Þd‘0
ð
4π

d~Ω0
ð
E0

dE0cΣt ~rþ ‘0~Ω;E! E0; ~Ω! ~Ω0
� �

p ~rþ ‘0~Ω;E0; ~Ω0
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
neutrons coming from the medium in the correct direction and created by collision by the initial

neutron of energy E along the path ‘ and arriving in~rþ ‘~Ω while leaving from ~rþ ‘0~Ω

Parameter c is the number of secondary neutrons emitted by collision

(Silvennoinen 1976, p37). Since e�Σt‘ ¼ 1� Σt‘þ O ‘2
� �

, rearranging the previous

equation and writing it to first order gives:

p ~r;E; ~Ω
� �� p ~r þ ‘~Ω;E; ~Ω

� �
‘

þ Σtp ~r þ ‘~Ω;E; ~Ω
� �

¼
ð
4π

d~Ω0
ð
E0

dE0cΣt ~r;E! E0; ~Ω! ~Ω0
� �

p ~r;E0; ~Ω0
� �

Considering the limiting case of ‘ tending to zero, the adjoint integro-differential
equation for the number of neutrons lost by leakage is obtained:

Equation for the number of neutrons leaked: � ∂p ~r;E; ~Ω
� �
∂‘

þ Σtp ~r;E; ~Ω
� � ¼

�~Ω:grad
������������!

p ~r;E; ~Ω
� �þ Σtp ~r;E; ~Ω

� � ¼ ð
4π

d~Ω0
ð
E0

dE0cΣt ~r;E! E0; ~Ω! ~Ω0
� �

p ~r;E0; ~Ω0
� �

ð8:20Þ

If the medium is geometrically convex, a 4π-source point ~rS on its surface S will

have its number of neutrons lost by leakage p ~rS;E; ~Ω
� � ¼ 1 for ~Ω:~n > 0, where~n is

the outside normal to the volume (outgoing directions), since a neutron emitted in this

direction will not be able to re-enter the system because of its convexity. Comparing

(8.20) to the adjoint equation (8.19), it can be seen that they are identical,

with p ~r;E; ~Ω
� � ¼ Φ∗ ~r;E;�~Ω

� �
and S∗ ~r; E; ~Ω

� � ¼ νΣfΦ∗ ~r; E; ~Ω
� �

, i.e.,

taking into account only fission sources. The number of neutrons lost by leakage

can hence be calculated by solving the adjoint integro-differential equation, with

the fission source as the adjoint source, and with the boundary condition

Φ∗ ~r;E; ~Ω
� � ¼ 1 for incoming directions ~Ω:~n < 0.
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Solving the problem in multi-group will lead to the system of equations:

�~Ω:grad
��! pg ~r; ~Ω

� �þ Σt,gpg ~r; ~Ω
� � ¼ ð

4π

d~Ω0
XG
g0¼1

cgΣt,g
~Ω:~Ω0
� �

pg ~r; ~Ω0
� �

with pg ~rS; ~Ω
� � ¼ δg,h for ~Ω:~n > 0 as boundary condition, which leads to the

contribution to leakage from a source of 1 neutron per second placed at ~r in the

energy group h. To obtain the contribution from all the groups of a multi-energetic

source over the set of G groups, (unfortunately) G adjoint calculations have to be

carried out, which decreases the appeal of the method with respect to a direct

approach by modifying the boundary condition.

8.2.2.4.3 Neutron Importance

(Stacey 2001, p485; Reuss 2003, p370)

It is often interesting to look at the neutron importance, i.e., the contribution of a
neutron emitted at~r, with energy E to the multiplication of a system. It is thanks to

Eugene Wigner that the physical meaning of this particular adjoint flux was

identified as early as 1945. It can easily be understood that a neutron emitted at

the surface of a convex system towards outgoing directions will not be able to

contribute to the system multiplication. The boundary condition of the importance

I ~r;E; ~Ω
� �

therefore concerns the outgoing directions:

8E, I ~rS;E; ~Ω
� � ¼ 0 pour ~Ω:~n > 0:

The neutron importance will therefore be stronger in the reactor center than on

the periphery, and stronger at thermal energies—where the fission probability is

very high—than at a capture resonance energy, where the neutron has every chance

of being captured. Following the same reasoning as in the previous paragraph, the

neutron importance will satisfy the adjoint equation with the (transposed) fission

source as adjoint source (Fig. 8.8):

Neutron importance equation: � ~Ω�grad��!
I ~r;E; ~Ω
� �þΣtI ~r;E; ~Ω

� � ¼ð
4π

d~Ω0
ð
E0

dE0cΣt ~r;E! E0; ~Ω! ~Ω0
� �

I ~r;E0; ~Ω0
� � ð8:21Þ

In this equation, the expression cΣt E! E0; ~Ω! ~Ω0
� � � χ E0ð ÞνΣf Eð Þþ

Σs E! E0; ~Ω! ~Ω0
� �

where parameter c is the number of secondary neutrons, is

corresponding in the adjoint equation of the expression cΣt E0 ! E; ~Ω0 ! ~ΩÞ �


χ Eð ÞνΣf E0ð Þ þ Σs E0 ! E; ~Ω0 ! ~ΩÞ


included in the direct equation.
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Following expressions should be used as boundary condition on all incoming

directions and all energies:

8E, I ~rS;E; ~Ω
� � ¼ 0 for ~Ω:~n < 0

It is interesting to note that, in all likelihood, I ~rS;E; ~Ω
� �

> 0 for ~Ω:~n > 0,

which, upon integrating over 4π steradians, gives a non-zero integrated impor-

tance I ~rS;Eð Þon the reactor surface. An adjoint flux calculation with a zero adjoint
flux on the boundary therefore does not yield the importance, contrary to wide-

spread belief leading to incorrect modelization in some codes. It is essential to

understand that the importance has meaning only for a critical reactor. Physically,

the importance I ~r;E; ~Ω
� �

is proportional to the total number of neutrons that are

produced by introducing a neutron at the point~r, with energy E, and in the direction
~Ω. In a supercritical reactor, this value tends to infinity. In a subcritical reactor, it

tends to zero. In a critical reactor where a source is inserted, the problem cannot

have a steady-state solution, owing to the strict positivity of the importance.

8.2.2.4.4 Perturbation Theory Approach to the Subcritical Flux with Source

In a very slightly subcritical reactor, if a source of 1 neutron per second is located at

the same point of the phase space, the obtained equilibrium distribution will be such

that the total number of neutrons will be proportional to the calculated importance

for the nearly-critical reactor. If the reactor is ‘too’ subcritical, the permanent

adjoint flux, even if calculated with the boundary condition of the importance,

will not be representative of the latter anymore. The adjoint flux becomes a purely

mathematical concept, which does not have physical meaning anymore, and the

Fig. 8.8 Variation of the

importance in the energy

neighbourhood of a

resonance: a scattering

resonance does not modify

the importance
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problem, even if it converges, is ill-posed. This is not a purely academic matter,

since during the transition phase of subcritical to critical for a reactor, the flux

depends on the location and intensity of external sources, while the reactivity

depends solely on the state of the reactor, and is hence independent of the sources.14

With an external source S ~r;Eð Þ, the only steady-state problem is written (Fig. 8.9):

~Ω:grad
��!Φε ~r;E; ~Ω

� �þ ΣtΦε ~r;E; ~Ω
� �

¼
ð
4π

d~Ω
0
ð
E
0

dE0cΣt E
0 ! E; ~Ω! ~Ω

0 �
Φε ~r;E

0
; ~Ω

0
 �

d~Ω

� ενΣf E;ð ÞΦε ~r;Eð Þ þ S ~r;Eð Þ ð8:22Þ

where ε2 [0, 1] is the anti-reactivity of the reactor. If ε tends to zero, the flux

Φε ~r;Eð Þ, where the index explicitly shows that it depends on ε, tends to infinity,

unless the source itself tends to zero. If considered to first order, the source tends to

zero, i.e., S ~r;Eð Þ ¼ εS0 ~r;Eð Þ, then the flux tends to the solution of the critical

Fig. 8.9 Jacques Planchard (1933–2009) is one of the greatest authorities on numerical methods

as applied to nuclear reactors. He joined EDF R&D in 1956 following a degree in mathematics. He

is credited with much of the important work on direct and inverse perturbation methods, eigen-

value calculations or non-coupled source calculations. He is the author of a very thorough book on

these topics in 1995 “Méthodes mathématiques en neutronique” [Mathematical methods in
neutronics], book which contains original derivations, particularly on convergence problems,

which is a topic that has received little attention in literature. This is why he is one of the pillars

of “mathematical” neutronics in France. Anecdotally, he would carry on going to work for free,

years after his retirement, so much his work was dear to him. (Picture of Planchard at the summer

school of Numerical Analysis in Bréau sans Nappe in 1970, courtesy of Guy Blanchon)

14G.B. Bruna, J. Planchard: Flux neutroniques dans un réacteur légèrement sous-critique en pré
sence de sources [Neutron flux in a slightly subcritical reactor in the presence of sources],
Research and Studies department bulletin, series C, No. 4, p55–67 (1990).
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calculation without external sources. Planchard suggests15 developing the subcrit-

ical mono-energetic flux in the form of a diverging series when ε! 0:

Φε ~rð Þ ¼ α0Φ ~rð Þ þ εΨ 1 ~rð Þ þ ε2Ψ 2 ~rð Þ þ . . .

where Φ ~rð Þ is the flux from the critical calculation. Writing Eq. 8.22 to one

energy group, in operator form, leads to:

K � 1� εð ÞP½ � Φε ~rð Þ½ � ¼ S ~rð Þ

By replacing the flux and source in this equation by their Taylor expansion in ε,
and then identifying the coefficients on either side of the polynomial obtained, we

find:

K � P½ � Ψ 1 ~rð Þ½ � ¼ �α0PΦ ~rð Þ þ S0 ~rð Þ
K � P½ � Ψ 2 ~rð Þ½ � ¼ �PΨ 1 ~rð Þ
⋮
K � P½ � Ψ nþ1 ~rð Þ½ � ¼ �PΨ n ~rð Þ

8>><>>: :

Since the operator matrix [K�P] is singular for the critical problem, we will use

this property by multiplying the first equation of the system by an adjoint flux (for

example, the importance), verifying the adjoint equation with a fission source but

no independent sources. The orthogonality property with respect to the scalar

product of the adjoint flux allows us to find:

α0 ¼ S0,Φ∗h i
PΦ;Φ∗h i

Starting with α0 which is already known, Ψ 1 ~rð Þ can be uniquely written in the

form Ψ 1 ~rð Þ ¼ Ψ 1,0 ~rð Þ þ α1Φ ~rð Þ where Ψ 1,0 ~rð Þ is a unique solution in the space

orthogonal to Φ ~rð Þ. We can then compute:

α1 ¼ PΨ 1,0,Φ∗h i
PΦ;Φ∗h i

and so on from one to the other using relations such asΨ 2 ~rð Þ ¼ Ψ 2,0 ~rð Þ þ α2Φ ~rð Þ.
It can be seen how using the orthogonality condition allows for calculating the

perturbed fluxΦε ~rð Þ in the form of a truncated Taylor series in ε. If the perturbation
is important, the terms orthogonal toΦ ~rð Þ have more weight, representing a gain in

15J. Planchard: Calcul des flux neutroniques dans un réacteur au voisinage de la criticité and en
présence de source [Calculation of the neutron fluxes in a reactor in the neighbourhood of
criticality in the presence of sources], Research and Studies department bulletin, serie C, N�2,
p11–16 (1989).
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amplitude of the non-fundamental harmonics. We note here that Chap. 17 will

address the problem of a sub-critical approach again.

8.2.2.5 The Critical Reactor Eigenvalue Problem

(Planchard 1985)

To determine the criticality of a reactor, an eigenvalue problem is used once

more, to find the largest eigenvalue of the effective multiplication factor keff, such
that the steady-state integro-differential equation is satisfied:

~Ω:grad
��! Φ ~r;~Ω

� �þΣt ~rð ÞΦ ~r;~Ω
� �¼

ð1
0

dE

ð1
0

dE
0
ð
~Ω0

d ~Ω
0
ΣS ~r;E

0 !E; ~Ω
0 !~Ω

 �
Φ ~r;E

0
; ~Ω

0
 �

þ

νΣf ~rð Þ
ð
~Ω0

d ~Ω
0
Φ ~r; ~Ω

0
 �

keff

ð8:23Þ

Taking into account the energy variable, the fission spectrum χ(E) appears and is
independent of the energy of the incident neutron:

~Ω:grad
��! Φ ~r; ~Ω;E

� �þΣt ~rð Þ Φ ~r; ~Ω;E
� �¼ ð1

0

dE
0
ð
~Ω0

d ~Ω
0
ΣS ~r;E

0 ! E; ~Ω
0 ! ~Ω

 �
Φ ~r;E

0
; ~Ω

0
 �

þχ Eð Þ
ð
E
0

dE
0
ð
~
Ω
0

d ~Ω
0
ν E0ð ÞΣf ~r;E

0� �
Φ ~r; ~Ω

0
;E

0
 �

keff

The only way a steady-state solution exists is if keff¼ 1. Equation 8.23 can be

written in a condensed form by using the operators of Eq. 8.10, which allows us to

compute the flux using the general formula:

Φ ¼ H�1
χ

keff
νΣfΦ

� �
:

The effective multiplication factor can then be expressed in the general form:
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keff ¼

Ð
E
0
dE

0 Ð
~
Ω
0
d ~Ω

0
ν E0ð ÞΣf ~r;E

0� �
H�1 χνΣfΦ

� �
Ð
E
0
dE

0 Ð
~
Ω
0
d ~Ω

0
ν E0ð ÞΣf ~r;E

0� �
H�1 χ

keff
νΣfΦ

 � :
A conventional way of calculating the eigenvalue is to use the power iteration

method which consists of iterating over the fission term, starting with the initial

coefficient set Φ0
,k0eff

 �
. Assuming the following:

νΣfΦ
n ¼ 1

kn�1eff

ð
E
0

dE
0
ð
~
Ω
0

d ~Ω
0
ν E0ð ÞΣf ~r;E

0
 �

H�1 χνΣfΦ
n�1� �

we solve iteratively the equation below:

HΦn ¼ χ

kn�1eff

νΣfΦ
n�1:

The new value k n
eff is obtained by iteration by using the scalar product of

functions, integrated over the reactor,

< f ~rð Þ, g ~rð Þ >�
ð

reacteur

f ~rð Þ g ~rð Þ d~r

yielding,

k n
eff ¼ kn�1eff

< νΣfΦn,w >

< νΣfΦn�1,w >

where w ~rð Þ is a weight function carefully chosen to accelerate the

convergence rate.

8.2.2.6 Uncollided Flux

8.2.2.6.1 Green’s Functions, Uncollided Neutron Flux

(Shultis and Faw 2000, p156)

When the total cross section is used in the calculation of the optical path, it

comes down to eliminating the neutrons that undergo the slightest collision—

whether it be absorption or scattering—in the calculation of the neutron population

in a given direction. The terms first-flight neutrons and first-flight flux are used, or
simply uncollided flux. Thanks to the linearity of the Boltzmann transport equation,
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the flux solution can be reconstructed in a space containing imposed sources, using

combinations of basic solutions of plane or point sources. Hence it is interesting to

determine the first-flight kernels, solutions to the integro-differential equation, i.e.,

the Green’s functions of some particular simple geometries. Recall that the Green’s
function G ~r;~r0ð Þ represents in our case the flux at ~r when a unit point source is

placed at ~r0. For example, for a conventional diffusion operator, this function

satisfies:

Green’s function for diffusion: �DΔG ~r;~r0ð Þ þΣaG ~r;~r0ð Þ ¼ δ ~r�~r0ð Þ ð8:24Þ

The Green’s function depends not only on the form of the differential equation

but also on the boundary conditions (zero at infinity, or on a boundary of the

domain, etc.) (Kanwal 1971, p106). For monoenergetic neutrons, G ~r;~r0ð Þ ¼
G ~r0;~rð Þ. This can be generalized by introducing an angular variable;

G ~r;~r0; ~Ω; Ω
!

0

 �
is then the flux at ~r in the direction ~Ω produced by a source at

~r0 emitting in the direction Ω
!

0. For a source spread over a volume V, the resulting
flux will be obtained by integrating the product of the source and the Green’s
function over the volume, because of the linearity of the diffusion equation,

leading to:

Φ �r; ~Ω
� � ¼ ð

V

ð
~Ω0

~dr
0
G ~r;~r0; ~Ω; Ω

!0 �
S ~r0; Ω

!0 �

Since the transport operator is linear as well, similarly a Green’s function

associated with it can be defined. This Green’s function will be, of course, different
from that for the diffusion equation since it is associated with the operator via

Eq. 8.24. It has already been seen that the angular flux of an isotropic source is

given by Eq. 8.16.

8.2.2.6.2 Uncollided Flux from a Point Source

In a medium with total cross section Σt, the first-flight flux induced by an isotropic

source S0/(4π) is given by:

Φunc ~r; ~Ω
� � ¼ ð1

0

d3r0

ð
4π

d Ω0
�!

G ~r;~r0; ~Ω; Ω0
�! �

S ~r0; Ω0
�! �

with: G ~r;~r0; ~Ω; Ω0
�! �

¼ δ2 ~Ω; Ω0
�! �

δ2
~r�~r0
~r� ~r0j j ; ~Ω

 �
e
�
Ð ~r� ~r0j j
0

Σt ~r�‘ ~r�~r0
~r� ~r0j j

 �
d‘

and S ~r0; Ω
!

0

 �
¼ S0

4π δ ~r;~r0ð Þ.
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By placing the source at the center of the reference frame, i.e., ~r0 ¼ 0, the

calculation is simplified (Fig. 8.10):

Φunc ~r; ~Ω
� � ¼ S0

4π
δ2

~r

r
:~Ω

� �
e
�
Ð r

0
Σt ~r�‘~rrð Þ d‘

It should be noted that the uncollided flux should not be confused with the real

flux. The crucial difference stems from the fact that the real flux comprises the

contribution of neutrons scattered from any point of the scattering medium. If the

uncollided flux is integrated over all directions, it is found for a medium of constant

total cross section:

First-flight flux for a point source: Φ ponctual
unc rð Þ ¼ð

4π

d~Ω
S0
4π

δ2
~r

r
; ~Ω

� �
e
�
Ð r

0
Σt ~r�‘~rrð Þ d‘ ¼ S0

4π r2
e�Σt r ð8:25Þ

This intuitive result spreads the neutron flux in an isotropic way over a surface of

4π r2 by taking into account an attenuation coefficient, which is actually the total

macroscopic cross section. It should be pointed out that this flux tends to infinity

when r! 0 while the uncollided neutron current stays finite. This suggests that the

flux, in transport theory, which is composed of the first-flight flux and the contri-

butions to the flux due to the successive collisions, will itself tend to infinity in the

neighborhood of the source. This remark is to draw the reader’s attention on the fact
that the definition of the flux remains a volumetric concept, which loses meaning

once indefinitely close to the source. The purely mathematic idealization of the

point source emitting neutrons that physically occupy a volume in space should also

be noted. Hence, there very well exists a limiting radius under which the notion of

flux is not a physical concept anymore.

r

Ω
tΣ

Fig. 8.10 Isotropic source

placed in an absorbing and

scattering medium
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If the medium is purely absorbing (no scattering), the uncollided flux becomes

the real flux by replacing the total cross section by the absorption cross section. The

neutron current in any given direction ~Ω is given by:

~J r; ~Ω
� � ¼ S0

4π r2
e�Σt rδ2

~r

r
; ~Ω

� �
~r

r

which represents the fact that the uncollided current is in the direction given by

the vector ~Ω ¼ ~r=r (and zero in all other directions).

8.2.2.6.3 Uncollided Flux from a Plane Source

From the mathematical construct of the point source, the uncollided flux of a plane

source can be calculated by simple integration. The uncollided flux induced by an

isotropic plane source is obtained by integrating the effect of a point source

corresponding to an elementary ring of thickness dr (Stacey 2001, p303):

Φ plane
unc xð Þ ¼

ðþ1
r¼0

Φ ponctual
unc Rð Þ 2πr dr

By assuming that the source emits S0/2 neutrons per second and per unit surface

in the right half-space, and since R2¼ r2 + x2, after integration over R, it is found
that:

Φ plane
unc xð Þ ¼

ðþ1
r¼0

Φ ponctual
unc Rð Þ 2πr dr ¼ S0

2

ðR¼þ1

R¼x

e�ΣtR

R
dR ¼ S0

2
E1 Σtxð Þ,

It should be noted that an exponential function16 was used. The latter can only be

computed numerically and is given by (Fig. 8.11):

Exponential function: En xð Þ �
ðþ1
1

y�ne�yxdy ¼
ð1
0

μn�2e�
x
μdμ ð8:26Þ

The positive uncollided current, going through a surface element placed at x and
parallel to the source place, is obtained by integration of the current from a point

source:

16Tabulations of exponential functions can be found in numerous mathematical textbooks, but also

in some radioprotection textbooks such as (Goldstein 1959, p353).
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Jþ xð Þ¼
ðþ1

r¼0
Φ ponctual

unc Rð Þ ~Ω:~n|{z}
cos θ¼

x

R

2π r dr|{z}
R dR

¼ x
S0
2

ðR¼þ1

R¼x

e�ΣtR

R2
dR¼S0

2

ðy¼þ1

y¼1

e�Σtxy

y2
dy¼S0

2
E2 Σtxð Þ

J� xð Þ¼0

8>>>><>>>>:

8.2.2.6.4 Uncollided Flux from an Isotropic Line Source

In the same way, we can compute the uncollided flux from a line source (Stacey

2001, p309):

Since R2¼ r2 + x2, we have RdR¼ xdx, and since sinφ¼ r/R and cosφ¼ x/R, we
obtain dφ¼ � rdx/R2. In this way, an integral over the x coordinate of the line is

transformed into an integral over the angle φ between the line and segment XM
(Fig. 8.12).

Φline
unc xð Þ ¼

ðþ1
x¼�1

Φ ponctual
unc Rð Þ dx ¼ 2

ðþ1
x¼0

S0

4πR2
e�Σt R dx

¼ S0
2π r

ðπ=2
φ¼0

e�
Σt r
sinφ dφ ¼ S0

2π r
Ki1 Σtrð Þ

In this, a Bickley-Nayler function of order 1 has been used, with the general form

being given by (Silvennoinen 1976, p165):

x

R 
r n

Ω

θ

Fig. 8.11 Isotropic plane source
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Bickley-Nayler functions:

Kin xð Þ �
ðπ2
0

sin φð Þn�1e� x
sin φ dφ ¼

ðπ2
0

cos θð Þn�1e� x
cos θ dθ ð8:27Þ

The uncollided flux can be calculated for a large number of geometries by

combining the uncollided fluxes of the simple geometries that have just been

detailed.

8.2.2.6.5 Using Homogeneous Green’s Functions

Moving along a direction ~Ω, the flux is continuous through an interface separating

two media. Regions containing a homogeneous and isotropic medium are chosen

here to tile the space. Considering the Heaviside function (step function)17:

Θ r
0 � r

� � ¼ 1 if r
0
> r

Θ r
0 � r

� � ¼ 0 if r
0
< r

	
An index referring to the interfaces crossed, and subscripting the position vector,

is then defined such that:

~rkj j < rkþ1��!�� ��
The difference between Heaviside functions allows us to construct a function

which is equal to 1 between ~rk and rkþ1��!, i.e., in the medium k:

r

R

dx

M

O

X

ϕ

Fig. 8.12 Isotropic line

source

17The Heaviside function is often denoted by H. However, since this letter is already very much

used in transport theory, it is preferred here to use Θ, which is also sometimes used.
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Θ rkþ1��! �~r
� �� Θ rk

!�~r
� � ¼ 1 if ~rk < ~r < rkþ1��!

Θ rkþ1��! �~r
� �� Θ rk

!�~r
� � ¼ 0 otherwise

	
The steady-state integro-differential equation can then be written in the discrete

form18:

~Ω � grad��! Φ ~r; ~Ω
� �þX

k

Θ rkþ1��!�~r
� ��Θ rk

!�~r
� � �

Σ k
t Φ ~r; ~Ω
� �

¼ S ~r; ~Ω
� �þX

k

Θ rkþ1��!�~r
� ��Θ rk

!�~r
� � � ð

Ω0

d~Ω0Σ k
SPk

~Ω0 ! ~Ω
 �

Φ ~r; ~Ω0
� �

If a particular region k
0
is chosen, and its contribution to the left of the¼ sign is kept

while the other contributions are moved to the right, the previous equation becomes:

~Ω � grad��! Φ ~r; ~Ω
� �þ Θ rk0þ1

��! �~r
� �� Θ rk0

�! �~r
� � �

Σk0
t Φ ~r; ~Ω
� �

¼ S ~r; ~Ω
� �þX

k

Θ rkþ1��! �~r
� �� Θ ~rk �~rð Þ

 � ð
~Ω

d~Ω0Σ k
SPk

~Ω0 ! ~Ω
 �

Φ ~r; ~Ω
� �

�
X
k 6¼k0

Θ rkþ1��! �~r
� �� Θ rk

!�~r
� � �

Σ k
t Φ ~r; ~Ω
� �

Using the following property of the Heaviside function:

Θ rk0þ1
��! �~r
� �� Θ rk0

�! �~r
� � ¼ 1� Θ ~r � rk0þ1

��!� �þ Θ rk0
�! �~r
� �� �

the preceding equation is transformed by moving all the Heaviside terms to the

right:

~Ω�grad��!
Φ ~r; ~Ω
� �þΣk0

t Φ ~r; ~Ω
� �

¼ S ~r; ~Ω
� �þX

k

Θ rkþ1��!�~r� ��Θ ~rk �~rð Þ
 � ð

~Ω

Σ k
SPk Ω0

�!! ~Ω
 �

Φ ~r; ~Ω
� �

�
X
k 6¼k0

Θ rkþ1��!�~r� ��Θ rk
!�~r� �� �

Σ k
t Φ ~r; ~Ω
� �

þ Θ ~r� rk0þ1
��!� �þhΘ rk0

�!�~r� � �
Σk0
t Φ ~r; ~Ω
� � ð8:28Þ

18See in particular John P. Church: Spatially dependent integral neutron transport theory for
heterogeneous medium using homogeneous Green’s functions, thesis from the University of

Florida, n�63-7471, 1963.
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Let us define a Green’s function gk
�
~r, ~Ω, ~r0 , ~Ω0

�
depending on the tiling of the

space, and which satisfies the previous equation, by replacing the term on the

right by the product of Dirac19 delta functions of space and direction

δ
�
~r � ~r0

�
δ
�
~Ω� ~Ω0

�
, and which corresponds to the same boundary conditions

imposed:

~Ω � grad��!
gk
�
~r, ~Ω, ~r0 , ~Ω0

�þ Σk0
t gk
�
~r, ~Ω, ~r0 , ~Ω0

� ¼ δ
�
~r � ~r0

�
δ
�
~Ω� ~Ω0

�
gk
�
~r, ~Ω, ~r0 , ~Ω0

�
physically represents the flux at the point ~r in the direction ~Ω

created by a unit source (one neutron per second per unit solid angle) at ~r0 in the

direction ~Ω0 and emitting its neutrons in the medium having the same properties as

the region k0. In this medium referred to as first-flight—which is a concept already

touched upon—each collision, be it absorption or scattering, removes the neutron

from the considered neutron population, since the probability Σk0
t of removal of the

neutron in the Green’s function equation corresponds to the total cross section of the
region k0. In this way, a neutron contributes to the flux at the point~r in this approach
only if it has not undergone any collision in its path since the source. If the lethargy

is considered, since the neutron has to not collide at all since the point source, its

lethargy remains unchanged. The Green’s function including the energy aspect is

thus the product of the Green’s function of space by a Dirac delta function of

lethargy:

gk
�
~r, ~Ω, u, ~r0 , ~Ω0 , u0

� ¼ gk
�
~r, ~Ω, ~r0 , ~Ω0

�
δ u� u0ð Þ

The function gk
�
~r, ~Ω, ~r0 , ~Ω0

�
is used to integrate Eq. 8.28 and obtain:

Φ ~r; ~Ω
� �¼ ð

~r0

ð
Ω
!

gk ~r; ~Ω; ~r0 ; ~Ω0
 �

S ~r; ~Ω
� �þX

k

Θ rkþ1��!�~r0
 �

�Θ ~rk �~r0
 � � ð

~Ω0

X k

s
Pk

~Ω0 ! ~Ω
 �

Φ ~r0 ; ~Ω0
 �

�
X
k 6¼k0

Θ rkþ1��!�~r0
 �

�Θ ~rk �~r0
 � �

Σ k
t Φ ~r0 ; ~Ω0
 �

þ Θ ~r0 �rkþ1��! �
þΘ ~rk0 �~r0

 � �
Σk0
t Φ ~r0 ; ~Ω0
 �

2666666664

3777777775

The integration over ~r0 is simplified by the fact that Θ
�
rkþ1��! � ~r0

�� Θ
�
~rk � ~r0

�
is 1 only between ~rkj j and rkþ1��!�� ��, and thatΘ�~r0 � rkþ1��!�þ Θ

�
~rk0 � ~r0

�
is 0 between

the same limits and 1 elsewhere, from which we obtain:

19For more on the Dirac delta function, the author recommends (Kanwal 1971, p70) for example.
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Φ ~r; ~Ω
� � ¼ ð

r0

d~r0
ð
~Ω0

d ~Ω0 gk ~r; ~Ω; ~r0 ; ~Ω0
 �

S ~r; ~Ω
� �

þ
X
k

Σk0
t � Σ k

t

 � ð
~r0 2 k

d~r0
ð
~Ω0

d ~Ω0gk ~r; ~Ω; ~r0 ; ~Ω0
 �

Φ ~r0 ; ~Ω0
 �

þ
X
k

ð
~r0 2 k

d~r0
ð
~Ω0

d ~Ω0gk ~r; ~Ω; ~r0 ; ~Ω0
 � ð

Ω
00

Σ k
s Pk

~Ω
00 ! ~Ω0

 �
Φ ~r0 ; ~Ω00
 �
ð8:29Þ

For the integration over angle, the flux, source, the differential scattering cross

section and the Green’s functions can be expressed in terms of a complete basis set

of spherical harmonics. Because of the boundary conditions, the Green’s functions

can depend on both directions ~Ω and ~Ω0 , and not only on their scalar product, which
makes the expressions obtained more complex. If the space considered is infinite,

the Green’s function acts as a double Dirac delta function in direction, i.e.,

δ ~Ω� �~r � ~r0
��

δ ~Ω� ~Ω0
 �

, which means that in the absence of scattering in

the computation of the Green’s function, only the neutrons emitted in the direction
~Ω and along the vector

�
~r � ~r0

�
contribute to the fluxΦ

�
~r, ~Ω

�
. Substituting for the

expansions in spherical harmonics20 in Eq. 8.29 results in terms that are products of

spherical harmonics—most of which will result in zero after integration over angle.

Ultimately, the homogeneous Green’s functions method serves to transform the

integro-differential equation in an integral equation with a kernel that satisfies

Green’s equation. Rather than neglect the flux moments in the expansion, this

method allows us to neglect only the products of high order moments of the Green’s
function and the flux moments. Another advantage is that once the Green’s func-
tions that depend only on the geometry, the exterior surface, the total cross section

of the region k and the boundary conditions set on the domain (and optionally the

energy for a multi-group problem) have been determined, the flux for any hetero-

geneous medium can be calculated, given the same boundary curve and boundary

conditions. While this method can be equivalent in precision to very high orders of

Pn or Sn methods, it can however become costly when evaluated the Green’s
functions for unusual geometries, which requires the use of Monte Carlo codes. It

should be noted that in the case of a heterogeneous plate, whether it be multiplying

or under-multiplying, Kornreich and Ganapol have obtained elegant solutions,21

which use the Green’s functions method.

20For spherical harmonics, the author recommends (Robin 1959).
21Drew E. Kornreich, Barry D. Ganapol: The Green’s function method for nuclear engineering
application, Nuclear Science and Engineering, Vol. 126, p293–313 (1997).
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8.3 Integral Form of the Boltzmann Equation

(Soodak 1962, p112; Stacey 2001, p301; Meghreblian and Holmes 1960, p366)

8.3.1 Peierls Operator

A form of the Boltzmann equation where the flux appears in a differential (gradient)

operator has previously been seen. However, it is possible to write this equation in

the form of an integral operator called the Peierls operator (after the works of Sir
Rudolph Peierls22).

The book on Sir Rudolph Peierls by Sabine Lee and a portrait of the scientist knighted by the

Queen of England (The Marguet collection and Public domain)

22Rudolph Peierls (1907–1995) was an English physicist of German origin. He was born in Berlin in a

Jewish family. After studying physics at the University of Berlin, and then that ofMunich (with Arnold

Sommerfeld), and finally Leipzig, he obtained his PhD in 1929. He then became the assistant of

W. Pauli in Zurich. After numerous stays across Europe in different research labs, he obtained in 1933

a fellowship from the Rockefeller Institute and left for England, which would become his home. He

found a position at the University of Manchester where he worked on the statistical mechanics of

alloys before moving to Cambridge where he worked with P.G.L. Kapur on liquid helium and

supraconductivity. He also worked on the theoretical equations for nuclear reaction calculations,

from the works of Breit-Wigner. This led to the Kapur-Peierls model. From 1937 to 1963, he was a

full Professor at the University of Birmingham, first appointed to the Applied Mathematics Chair

(1937–1945), and then to the Mathematical Physic Chair (1945–1963). In March 1940, he co-authored

with Frisch the famous memoir on the construction of an atomic bomb from uranium-235. Peierls also

contributed to the English team of the Manhattan project. After the war, he returned to Birmingham

where he worked on nuclei and nuclear forces models in the quantum physics framework. Laden with

honors (Planck medal, Lorentz medal, Dirac medal but surprisingly no Nobel Prize), he was knighted

by the Queen of England in 1968. He spent the end of his career at the University of Oxford until 1974.
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This integral is particular suitable for a numerical method called collision
probability method or Pij method, which will be addressed in the next chapter.

The flux at~r in the direction ~Ω originates from neutrons having interacted at~r � ‘~Ω
at time t� ‘/v, which took the direction ~Ω, and which have not been absorbed along

the path on the straight-line ‘. The scattering collision rate of neutrons at the point

~r � ‘~Ω which took the direction ~Ω having come from direction ~Ω0 , is given by:

ΣS ~r � ‘~Ω; ~Ω0 ! ~Ω; v0 ! v
� �

Φ ~r � ‘~Ω; ~Ω0; v0; t
� �

The probability of the neutron being uncollided along the straight-line path ‘ is
given by (Fig. 8.13):

e
�
Ð‘
0

Σt ~r�‘0 ~Ω;vð Þd‘0
� �

The quantity:

Optical path: Σt‘ �
ð‘
0

Σt ~r � ‘0Ω; v
� �

d‘0 ð8:30Þ

is called the optical path even if it is dimensionless, because it is related to the

distance travelled while uncollided. The optical path is sometimes denoted by τ or

ΣtR
	

in some reference textbooks. And it always arises in the transport equation in

the form e�Σt‘ . The flux in the absence of a source is obtained by integrating the

uncollided neutrons along the optical path Σt‘ over all the possible interaction

points in space, all the speeds and all the incident angles of interaction:

Integral form of the Boltzmann equation in the absence of a source:

Φ ~r; ~Ω; v; t
� � ¼ ð1

0

d‘

ð
4π
d ~Ω0

ð1
0

dv0ΣS ~r � ‘~Ω; ~Ω0 ! ~Ω; v0 ! v
� �

Φ ~r � ‘~Ω; ~Ω0; v0; t� ‘

v

� �
e�Σt‘

ð8:31Þ

This equation is generally solved by assuming that the cross sections are

independent of time or at least of the considered time step (slow transient

v,Ω ′′

Ω

diffusion 

r
Ω−r

Fig. 8.13 Contribution to

the flux at the point ~r

508 8 The Boltzmann Equation



hypothesis). In the presence of isotropic fission sources (i.e., χ v; ~Ω
 �

¼ χ vð Þ= 4πð Þ)
and without external sources, the integral equation is written:

Φ ~r; ~Ω;v; t
� �¼ χ vð Þ

ð1
0

d‘

ð
4π
d~Ω0

ð1
0

dv0vΣf ~r�‘~Ω; ~Ω0;v0
� �

Φ ~r�‘~Ω; ~Ω0;v0; t� ‘

v

� �
e�Σt‘

þ
ð1
0

d‘

ð
4π
d~Ω0

ð1
0

dv0ΣS ~r�‘~Ω; ~Ω0 ! ~Ω;v0 ! v
� �

Φ ~r�‘~Ω; ~Ω0;v0; t� ‘

v

� �
e�Σt‘

The notations can be simplified by introducing the neutron source q ~r; ~Ω; v; t
� �

which represents the integrate fission source (with a fission cross section vΣf), the

integrated scattering sources and any other external sources S ~r; ~Ω; v; t
� �

:

Φ ~r; ~Ω; v; t
� � ¼ ð1

0

d‘ q ~r � ‘~Ω; ~Ω; v; t� ‘

v

� �
e�Σt‘

where:

q ~r; ~Ω; v; t
� � ¼ χ vð Þ

ð1
0

d‘

ð
4π
d~Ω0

ð1
0

dv0 vΣf ~r; ~Ω0; v0
� �

Φ ~r; ~Ω0; v0; t
� �

þ
ð1
0

d‘

ð
4π
d~Ω0

ð1
0

dv0ΣS ~r; ~Ω0 ! ~Ω; v0 ! v
� �

Φ ~r; ~Ω0; v0; t
� �

þ S ~r; ~Ω; v; t
� �

The Peierls operator K[], which represents the attenuated transport of the

collided neutrons and coupled sources, can now be used:

Φ ~r; ~Ω; v; t
� � ¼ K q½ � ¼

ð1
0

d‘ q ~r � ‘~Ω; ~Ω; v; t� ‘

v

� �
e�Σt‘

More precisely, if the operator K[] acts on the source q, it is called the Peierls
attenuation operator and if it acts on the flux Φ, the Peierls collision operator,
H[Φ]�K[q].

If the medium is isotropic, the dependence of the fission cross sections on angle

can be ignored. And the scattering cross section will only depend on the scalar

product ~Ω:~Ω0, leading to Σs ~r; ~Ω; ~Ω0; v; t
� � ¼ Σs ~r; ~Ω:~Ω0; v; t

� �
. The total cross

section takes into account the scattering cross section. This hypothesis is generally

valid in reactors if the regions are properly homogenized.

If the scattering is isotropic, we can write Σs ~r; ~Ω; v; t
� � ¼ Σs ~r; v; tð Þ= 4πð Þ. This

is the case of most materials used in reactors with the notable exception of water,

which shows a strong anisotropy.
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If the flux is isotropic, we can writeΦ ~r; ~Ω; v; t
� � ¼ Φ ~r; v; tð Þ= 4πð Þ. This is rarely

true, except in very simple cases of point sources in an infinite medium for example,

or in huge approximations of reality.

The delayed neutrons, which can be emitted up to several seconds/minutes after

the fission by the fission products, can be taken into account in the integral form

through the source term via a delay between absorption and emission.

The scalar flux is obtained by integrating the angular flux over 4π steradians:

Φ ~r; v; tð Þ ¼
ð
4π

Φ ~r; ~Ω; v; t
� �

d~Ω ¼
ð
4π

d~Ω

ð1
0

d‘q ~r � ‘~Ω; ~Ω; v; t� ‘

v

� �
e�Σt‘

which will be changed to a volume integral over the whole reactor by noticing

that for~r0 ¼ ~r � ‘~Ω, the volume element around~r0 is d3 r0 ¼ ‘2 d‘d~Ω (Bussac and

Reuss 1985, p81). This allows us to remove d~Ω in the case where the scattering and

the sources are isotropic (4π term appears instead). Hence, using:

Φ ~r; v0; t� ‘

v

� �
¼
ð
4π

Φ ~r; v0; t� ‘

v

� �
d~Ω

we find (Bussac and Reuss 1985, p82; Duderstadt and Hamilton 1976, p133):

Φ ~r;v; tð Þ ¼
ð
V

d3r0q ~r 0;v; t� ‘

v

� �
e�Σt‘

4π‘2

¼
ð
V

d3r0
e�Σt‘

4π‘2

χ vð Þ Ð1
0

dv0 vΣf ~r
0;v0ð ÞΦ ~r 0;v0; t� ‘

v

� �
þ Ð1

0
dv0ΣS ~r 0;v0 ! vð ÞΦ ~r 0;v0; t� ‘

v

� �
þ S ~r 0;v; t� ‘

v

� �
2664

3775
We then talk of a volume integral form (isotropic), the general form of which

will be discussed in the section below.

8.3.2 The Volume Integral Form

It is often more practical to numerically solve the integral form by adding an

integration over volume. The solution for the flux is then written:
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Φ ~r; v; ~Ω
� � ¼ ð

V

d3r0
ð
4π

d ~Ω0
e
�Σt‘ ~r; ~r�~r0j j; ~r� ~r0

~r� ~r0j j;v
� �
~r� ~r0
��� ���2 δ2 ~Ω; ~Ω0

 �
δ2

~r� ~r0

~r� ~r0
��� ���, ~Ω0

0B@
1CA

ð1
0

dv0
ð
4π

d ~Ω0 Σs
~r0 ; v0 ! v; ~Ω0 ! ~Ω
 �

Φ
�
~r0 ; v0; ~Ω0

�þ S
�
~r0 ; v; ~Ω0

�24 35
where Σt‘ ~r; ‘; ~Ω; v

� � ¼ Ð ‘
0
d‘0Σt ~r � ‘0~Ω; v

� �
is the optical path. The integration

over angle ~Ω ¼ ð~r � ~r0 Þ=j~r � ~r0 j of the angular flux serves to remove the Dirac

delta function over angle and obtain the scalar flux:

Volume integral form:

Φ ~r; vð Þ ¼
ð
4π

d~ΩΦ ~r; v; ~Ω
� � ð

V

d3r0
e�Σt‘ ~r; ~r�~r0j j;; ~Ω;vð Þ

~r � ~r0
��� ���2

�
ð1
0

dv0
ð
4π

d ~Ω0 Σs
~r0 ; v0 ! v; ~Ω0 ! ~Ω
 �

Φ
�
~r0 ; v0; ~Ω0

�þ S
�
~r0 ; v; ~Ω

�24 35
ð8:32Þ

Recall that the source term comprises the fission sources and the external

sources. In numerous cases, it is assumed that the scattering is linearly anisotropic,

i.e., that the scattering cross section is a linear function of the cosine of the deviation

angle, denoted by μ0 ¼ ~Ω: ~Ω0 and expressed in terms of an expansion in Legendre

polynomials:

Σs ~r; v0 ! v; ~Ω0 ! ~Ω
 �

¼ 1

4π
Σs, 0 ~r; v0 ! vð Þ þ 3μ0Σs, 1

�
~r; v0 ! v

�� �
For isotropic scattering and source, the scalar flux, after integration over the

speed, is given by:

Φ ~rð Þ ¼
ð
V

d3r0
e�Σt‘ ~r; ~r�~r0j jð Þ

4π ~r � ~r0
��� ���2 Σs, 0

�
~r0
�
Φ
�
~r0
�þ S

�
~r0
� �

The approximation to the scattering cross section is often called the Bn approx-
imation, where n is the order to which the scattering cross section is expanded.

Hence, in the previous equation, it is a B1 approximation. The source can also be

written in the form:
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S ~r; v; ~Ω
� � ¼ 1

4π
S0 ~r; vð Þ þ 3~Ω: ~S1

�
~r; v
�h i

where

S0 ~r;vð Þ¼
ð
4π

d~ΩS ~r;v; ~Ω
� �

S1 ~r;vð Þ¼
ð
4π

d~Ω ~ΩS ~r;v; ~Ω
� �

Σs,0 ~r;v0 ! vð Þ¼
ð
μ0

dμ0Σs ~r;v
0 ! v;μ0ð Þ Σs,1 ~r;v0 ! vð Þ¼

ð
μ0

dμ0μ0Σs ~r;v
0 ! v;μ0ð Þ

8>>>><>>>>:
The neutron angular current (vector) is then defined as:

~J ~r; v; ~Ω
� � ¼ ~ΩΦ ~r; v; ~Ω

� �
where the following integration over angle gives the scalar or integrated current:

~J ~r; vð Þ ¼
ð
4π

d~Ω ~ΩΦ ~r; v; ~Ω
� �

8.3.3 The First Collision Probability

(Reuss 1985, p181; Stamm’ler and Abbate 1983, p115)

8.3.3.1 Definition of the First Collision Probability

The collision probability method is the oldest method to solve the integral form of

the transport equation.23,24 It is based on the computation of the probability of first

collision when considering two zones of the reactor. It is a costly method when it

comes to computational time, and is in fact generally used for one or

two-dimensional geometries (as is the case in the French APOLLO2 code from

the CEA), and very rarely for three-dimensional ones.

It consists in simplifying Peierls operator through a partitioning of the space and

assumes a B0 approximation, meaning that the scattering and sources are isotropic.

A problem where the energy has been integrated over will be examined in order to

23J. Chernick: Theory of uranium-water lattices in [Atoms for peace, 1955 Volume V, p243–261].
24J.R. Askew: Review of the status of collision probability methods, Proceedings of a seminar on

numerical reactor calculations held in Vienna by the AIEA, 17–21 January 1972, p185–209

(1972). Askew is one of the main developer of the English code WIMS.
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simplify notation by eliminating the E variable. The Peierls operator integrated over

energy is written as:

Φ ~rð Þ ¼
ð
d ~r0

e�Σt‘ ~r;~r0ð Þ

4π ~r � ~r0
��� ���2 q ~r0

 �

where:

q ~r0
 �

¼
ð1
0

dE

ð1
0

dE0Σs

�
~r0 ,E0 !E

�
Φ
�
~r0 ;E0

�þS
�
~r0 ;E

�� �
Σs

~r0
 �

Φ ~r0
 �

þS ~r0
 �

Let Vi represent a partitioning of the space into regions such that V ¼Pn
i¼1

Vi, an

integration of the reaction rate is carried out over each of these:

Evaluation of the total reaction rate:

ð
Vi

d~rΣt ~rð ÞΦ ~rð Þ

¼
ð
Vi

d~rΣt ~rð Þ
ð

V¼
P
j

Vj

d ~r0
e�Σt‘ ~r;~r0ð Þ

4π ~r � ~r0
��� ���2 q ~r0

 �

¼
ð
Vi

d~rΣt ~rð Þ
X
j

ð
Vj

d ~r0
e�Σt‘ ~r;~r0ð Þ

4π ~r � ~r0
��� ���2 q ~r0

 �
ð8:33Þ

The following volume-averaged variables are then used:

Φi ¼

Ð
Vi

d~rΦ ~rð Þ

Vi
, qi ¼

Ð
Vi

d~r q ~rð Þ

Vi
, Si ¼

Ð
Vi

d~r S ~rð Þ

Vi
et Σ i

t ¼

Ð
Vi

d~rΣt ~rð ÞΦ ~rð Þ

Φi

and the probability of a neutron emitted from the volume Vi to undergo its first

collision in the volume Vj is given by:

~Pij ¼ ~Pi!j �

Ð
Vj

d~rΣt ~rð Þ
Ð
Vi

d~r0 e
�Σt‘
�
~r, ~r0
�

4π ~r�~r0j j2 q
~r0
 �

Ð
Vi

d~r0q ~r0
 � ¼

Ð
Vj

d~rΣt ~rð Þ
Ð
Vi

d~r0 e
�Σt‘
�
~r, ~r0
�

4π ~r�~r0j j2 q
~r0
 �

Viqi

8.3 Integral Form of the Boltzmann Equation 513



If the density q is constant in the elementary volumes, we define25:

Pi!j ¼ Pij �

Ð
Vj

d~rΣt ~rð Þ
Ð
Vi

d~r0 e
�Σt‘
�
~r, ~r0
�

4π ~r�~r0j j2

Vi

With these defined variables, Eq. 8.33 is written:

Flux equations given by the Pij method :

Σ i
t Φi Vi ¼

Xn
j¼1

Pji qj Vj for i ¼ 1 to n ð8:34Þ

and also:

qj ¼ Σ j
sΦj þ Sj ¼ Σ j

s þ νΣ j
f

 �
Φj þ Sautonomousj

This second equation serves as a reminder that the source Sj as it is defined,

contains the fission sources. Some authors prefer using the reduced collision
probability or transmission probability (Stacey 2001, p320, denoted Tj i), which

does not contain the total cross section and which is divided by the considered

volume:

pij ¼

Ð
Vj

d~r
Ð
Vi

d~r0 e
�Σt‘
�
~r, ~r0
�

4π ~r�~r0j j2

Vj

These reduced probabilities satisfy:

Vipji ¼ Vjpij

pij ¼
Σ j
t pijVj

Vi

8<:
VjΦj ¼

Xn
i¼1

Vjpij qi

Φj ¼
Xn
i¼1

pij qi

8>>><>>>:
The French code APOLLO2 itself uses volume reduced collision probabilities

defined by:

25Some authors well-read in the numerical aspects prefer denoting the probability of first collision

in the zone j of a neutron emitted in the zone i by Pji¼Pj! i by respecting the matrix notation

row-column which arises in the numerical modeling of the problem. This text being purely

theoretical, we have chosen the “frank” notation, which seems more instructive. However, the

reader should be very careful about this when reading other reference textbooks.
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pApo
ij ¼ ViPij

Σ j
t

:

These have the advantage of remaining finite even if the medium is a vacuum,

and allows us to write the reciprocity relations in the very mnemonic form:

pApo
ji ¼ pApo

ij

If the Pij are known, the method leads to resolving a linear system coupling the

fluxes from different regions. This calculation assumes a flat flux (average value) in

the regions. The precision can be improved by assuming a linear flux in space

(in between two interfaces). The reciprocal probabilities Pij are related to the

probabilities Pij by the reciprocity relation:

Reciprocity of the Pij : Σ
j
t Pji Vj ¼ Σ i

t Pij Vi ð8:35Þ

The reciprocity of the Pij implies that only n(n+ 1)/2 probabilities need to be

calculated. If there is no leakage from the medium, it entails that a neutron

definitely has to interact somewhere—which is represented by the normalization

equation:

Normalization equation for the Pij in an infinite medium: 8i,
Xn
j¼1

Pij ¼ 1

ð8:36Þ

It results from this conservation law that only n(n� 1)/2 probabilities have to be

computed in an infinite medium (though still n(n+ 1)/2 in a finite medium). For

large domain problems, these computations are still expensive. The probability that

a neutron escapes uncollided through a surface Si around a volume Vi is related to

the collision probability in that volume through:

PiSi þ Pii ¼ 1

Thanks to the reciprocity theorem, the probability that a neutron entering

through the surface Si interacts in Vi is given by:

PSii ¼
4Vi

Si
Σ i
t PiSi ð8:37Þ

This result is particular simple to prove because of the Dirac’s chord method,

which will be looked at in detail later. More generally, the probability of reaching

uncollided the exterior surface S of a volume V (sum of the volumes Vi) is
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complementary to the probabilities of interaction in the domain. This translates to

the fact that the neutron is either absorbed or leaks out of V through its surface:

Xn
j¼1

Pij þ PiS ¼ 1

This probability can be calculated by integrating the neutrons reaching any point

of the surface uncollided:

PiS ¼

Ð
Vi

d~r0
Ð
S

dS ~Ω:~n e
�Σt‘ ~rS ;

~r0ð Þ
4π ~rS�~r0j j2

Vi
for ~Ω:~n > 0

However, this result is more easily obtained every Pij value has already been

calculated, usingPiS ¼ 1�Pn
j¼1

Pij. Also, by extension, we can define the probability

that a neutron entering through the surface S undergoes its first collision in the

volume Vi, or the probability that a neutron goes through the volume V from end to

end to reach the surface S on the opposite side uncollided. Because these are

complementary, we can write:

Xn
i¼1

PSi þ PSS ¼ 1

The result of Eq. 8.37 giving the probability PiS, the reciprocal of PSi, can be

generalized at the surface of the complete volume V:

PSi ¼ 4Vi

S
Σ i
t PiS

8.3.3.2 Calculating First Collision Probabilities

(Silvennoinen 1976, p166; Stamm’ler and Abbate 1983, p119)

The first collision probability method requires the calculation of the probabilities

of first collision in the actual geometry of the reactor. Let us first consider a

one-dimensional problem with a homogeneous medium of total cross section Σt

where we are looking for the probability of reaching uncollided the point r on a

cylindrical element for neutrons emitted from an isotropic line source placed on the

axis of said cylinder (Fig. 8.14). Assuming the neutron is emitted with an angle θ,
this probability will be denoted by p(r, θ).
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The optical path separating the point source at the origin and the point P on the

cylinder is given by Σtr/ sin θ. The probability of reaching the point P for the angle θ
is:

p r; θð Þ ¼ e�Σt
r

sin θ

The probability for a neutron to be emitted in the differential angular element dθ
from the originO to the point P is proportional to the solid angle sin θ dθ dφ because

of the nature of the isotropic emission from each point source along the line. The

probability of reaching the edge of the cylindrical element can be deduced through

an integration, where the point source is moved along the line source (θ2]0 , π/2],
zero-angle for the points O at infinite, right angle for the point O obtained by

projection of the point P on the line) (Stacey 2001, p310, proved this result by

integrating the point source kernel):

p rð Þ ¼

Ð2π
0

dφ
Ðπ2
0

e�Σt
r

sin θ sin θdθ

Ð2π
0

dφ
Ðπ2
0

sin θdθ

¼ Ki2 Σtrð Þ

where a Bickley-Nayler function of order 2 has been used, i.e., Ki2, the general
form (Lewis and Miller 1993) of which is given by:

Kin xð Þ ¼
ðπ2
0

sin θð Þn�1e� x
sin θ dθ ¼

ðπ2
0

cos θð Þn�1e� x
cos θ dθ

0

r

Σt

P

Line source

θ

ϕ

Fig. 8.14 Probability of

reaching the point r on the

cylindrical element—

notations
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These functions, which are very much analogous to modified Bessel functions

Kn, have been numerically26 tabulated from 1935 by W.G. Bickley27 and John

Nayler.28 In the case of a 2D geometry extruded in the z direction (Fig. 8.15), a ray
tracing method is used, since it is very rare to have a simple enough geometry that

an analytical integration is possible. This method consists of mentally tracing at an

angle θ, a network of parallel lines (rays), which go through the surfaces of interest,
and then combining the probabilities of non-collision (escape). The probability that

a neutron, emitted at the point x (belonging to the segment [di]) in the direction θ
going through the volumes Vi and Vj, undergoes its first collision in the volume Vj is

given by:

p x 2 di½ � ! 8xj 2 dj
� �

θ
� � ¼ Ki2 Σ j

t dj � x
� � �

Ki2 Σtd
j
i

 �
1� Ki2 Σ j

t dj

 � �
The primary rationale for using the functions Ki2—which were encountered

when calculating the escape probability from an isotropic line source—is noticing

that here, the escape probability of a neutron emitted from an isotropic line source

along the z axis and placed at the abscissa x on the segment [di] has to be computed.

The forms of the successive probabilities explain the product of the three indepen-

dent probabilities. The origin of the x axis is the point of entry in the volume Vi, and

1� Ki2 Σ j
t dj

 � �
is the probability of interaction in the volume Vj from the

definition of Ki2 Σ j
t dj

 �
.

The medium in between Vi and Vj is supposed to have an optical path of Σtd
j
i

which is zero in the case of a vacuum, in which case the probability of crossing the

distanced j
i is 1. The overall probability pij is obtained by averaging the probabilities

for each ray:

26William Gee Bickley, John Nayler: A short table of the functions Kin(x) form n ¼ 1 to n ¼ 16,
Philosophical Magazine Vol. 20, issue 13 pp343–347 (1935).
27William Gee Bickley (1893–1969) was a British mathematician. After studying mathematics

and physics at the University College of Reading, he taught in different schools in Tadcaster,

Loughborough and Westminster City. He published his first paper on a hydrodynamics problem,

and then became a lecturer at the Battersea Polytechnic in 1919. He became an assistant Professor

at the Imperial College in 1930. In 1947, he was made full Professor. He was known for his

important work in numerical analysis (such as numerical differentiation equations), on Bessel

functions, and he wrote a cornerstone book with G. Temple on the Rayleigh principle. Throughout

his life, he had always been mindful of the proper use of applied mathematics to physics.
28John Nayler. Little is known on Nayler except for his official distinctions: Associate of the City

and Guild Institute (of the Imperial College), Bachelor of Science in Engineering, Diploma of

Imperial College. It should be noted, however, that his name is often misspelled as Naylor, i.e.,
with an ‘o’, probably owing to an initial typo that has since been reproduced in several neutronic

textbooks. The website of the Philosophical Magazine, one of the oldest commercial scientific

journals and published by Taylor and Francis continuously since 1798, is categorical on the exact

spelling of his name.
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Pij ¼
Ð 2π
0

dθ
Ð Y θð Þ
0

dy
Ð di Yð Þ
0

p x 2 di½ � ! 8xj 2 dj
� �

θ
� �

dxÐ 2π
0

dθ
Ð Y
0
dy
Ð di Yð Þ
0

dx

The result below, where the integral of a Bickley-Nayler function is said

function of the next order, will be used:

Kin xð Þ ¼
ðþ1
x

Kin�1 yð Þdy

to obtain Ki3 functions after integration, since:ð d
0

Ki2 xð Þdx ¼ Ki3 0ð Þ � Ki3 dð Þ:

The probability that a neutron undergoes a collision in volume Vi where it is

emitted from, is:

Pij ¼
Ð 2π
0

dθ
Ð Y θð Þ
0

dy
Ð di Yð Þ
0

1� Ki2 Σ i
t di � xð Þ� �� �

dx

2π Vi

id

jd

j
id

x

y

j
tΣ

jV

i
tΣ

iV

tΣ
Y

z Cylinder axis

θ

Fig. 8.15 Ray tracing in 2D geometry
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Hence, the computation of the Pij can be extended to 2D (Stacey 2001, p313;

Stamm’ler and Abbate 1983, p120), or even 3D,29 starting from the calculations

done in 1D, albeit for the more or less tedious integrations. However, the determi-

nation of the ray tracing will be more and more expensive (searching for intersec-

tions and tangent planes for the integration limits). Hence, the Pij method is rarely

used in 3D.

8.3.3.3 Dirac’s Chord Method

(Duderstadt and Martin 1979)

Paul Dirac (1902–1984) was a British physicist and mathematician who postulated the existence

of antimatter (positron of Dirac), which was later confirmed experimentally. Nobel Laureate in

physics in 1933, he is also credited with very innovative mathematical concepts. (Public domain)

Consider a convex volume V of any shape, containing a uniform distribution of

neutrons from an isotropic source S0. The number of uncollided neutrons coming

from a volume element d~r ¼ d3r, and escaping from a surface element dS sur-

rounding the volume can be calculated as follows:

dn

dt
~r ! ~rSð Þ ¼ S0

4π
e�Σt ~rS�~rj jd~r d~Ω

By integrating over contributions from the whole volume, i.e., over each element

d~r, and then over the surface, the escape rate of neutrons through the surface S is

obtained (Fig. 8.16):

29See, for example, R.D.M. Garcia: Collision probabilities in r� θ� z geometry, Nuclear Science
and Engineering, 153, p46–59 (2006).

520 8 The Boltzmann Equation



dn

dt
V ! ~rSð Þ ¼ S0

4π

ð
~r2V

ð
~rS2 S

e�Σt ~rS�~rj j d~r d~Ω

Care should be taken if the volume is not convex. Indeed, we can then have
~Ω � ~n < 0, which effectively translates to particles re-entering the volume, from

other parts of it. The number of neutrons emitted in the volume being S0V, we can
deduce the probability of escaping uncollided from the volume, i.e., the first-flight
escape probability (Case et al. 1953, p17), which will be indexed using 0, to

differentiate it from escape after several collisions (the term transmission proba-
bility is sometimes used):

PVS, 0 ¼
S0
4π

Ð
~r2V

d~r
Ð

~rS2 S
e�Σt ~rS�~rj j d~Ω

S0V
¼ 1

4πV

ð
~r2V

d~r

ð
~rS2 S

e�Σt ~rS�~rj j d~Ω

To compute the spatial volume integral, the quantity ~Ω � ~ndSd‘will be chosen as
volume element, where ‘ is the length along a path or chord joining two elements of

opposite surface. This chord has a length RΩ which depends on the direction. The

volume integral will thus be transformed into an integral over the set of possible

chords defined by the set of surface elements:

PVS, 0 ¼ 1

4πV

ð
S

dS

ð‘¼RΩ

‘¼0

ð
~Ω

d~Ωe�Σt‘ ~Ω � ~n

¼ 1

4πVΣt

ð
S

dS

ð
~Ω

d~Ω 1� e�ΣtRΩ
� �

~Ω � ~n ð8:38Þ

Sr

n

dS

ΩR

r

Ω

Fig. 8.16 Escape from a volume
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Dirac then introduced the probability p(R) dR that a chord has a given length R in

dR. The first moment of this probability gives the mean chord length <R>, which

allows us to use Cauchy’s theorem relating mean chord length, volume and surface

of a convex volume,

Cauchy’s theorem for the mean chord length: < R >¼
ðRmax

Rmin

Rp Rð ÞdR ¼ 4V

S

ð8:39Þ

The proof of this theorem through a neutronic approach (calculation of the

absorption in a convex volume where the absorption cross section tends to zero)

is given in (Dresner 1960, p60) and reproduced in (Spanier and Gelbard 1969,

p152). The probability p(R)dR is computed by an integration over the whole surface

of the volume of the element d~Ω ~Ω � ~n, expressed in the particular value of the

desired chord R:

p Rð ÞdR ¼ < R >

4πV

ð
RΩ¼R

dS

ð
d~Ω ~Ω � ~n

By substituting this expression in Eq. 8.38, and simplifying, it is found:

PVS, 0 ¼ 1

< R > Σt

ðRmax

Rmin

1� e�ΣtR
� �

p Rð ÞdR ð8:40Þ

8.3.4 1D Geometry

Historically, it is evident that it was one-dimensional geometries that were consid-

ered and solved first. In France, the code APOLLO1, which was integrated within a

much larger framework of codes called NEPTUNE,30 was the crucible for theoret-

ical developments of the water-moderated reactor physics department of the CEA/
Saclay. For a linearly anisotropic collision law, the solution for the flux from the

integral transport equation is written:

30Alain Kavenoky: Neptune: un système modulaire pour le calcul des réacteurs �a eau légère
[Neptune: a modular system for modeling Light Water Reactors], Scientific and Technical

Information Bulletin of the CEA, N�212, p7–20 (1976).
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Φ ~rð Þ¼
ð
d~r0

e�Σt‘ ~r;~r0ð Þ

4π ~r�~r0
��� ���2q ~r0

 �
q ~r0
 �

�Σ0
s

~r0
 �

Φ ~r0
 �

þS0 ~r0
 �

þ ~Ω � Σ1
s

~r0
 �

~J ~r0
 �

þ ~S1 ~r0
 �� �

In 1D geometry characterized by the index n (n¼ 1 , slab, n¼ 2 , cylinder,
n¼ 3 , sphere), the solution of the flux is written in condensed form (omitting the

arrows on the position vectors for brevity’s sake):

Φ rð Þ ¼
ðr1
r0

Gn r0; rð Þ Σ0
s r0ð ÞΦ r0ð Þ þ S0 r0ð Þ

 �
r0n�1dr0 þ

ðr1
r0

fGn r0; rð Þ~Ω�

Σ1
s r0ð Þ~J r0ð Þ þ S1

!
r0ð Þ

 �
r0n�1dr0

In this equation, Gn(r
0, r) is the first-flight Green’s function, i.e., the flux arising

at r from an isotropic unit source placed at r0 and fGn r0; rð Þ is the Green’s function
corresponding to an isotropic unit source multiplied by ~Ω:~n, where ~n is the normal

to the plane tangent to the source. The balance equation in 1D geometry is given by:

rn�1J rð Þ ¼ rn�10 J r0ð Þ þ
ðr
r0

S0 r0ð Þ � Σa r0ð ÞΦ r0ð Þ
 �

r0n�1dr0

APOLLO1 had four approximations:

– Isotropic collision and flat flux: the medium is divided into J regions and the

reduced collision probabilities were defined for each energy group g

p
g
ji ¼ ϖn

Vi

Ðri
ri�1

rn�1dr
Ðrj

rj�1
Gn r0; rð Þr0n�1dr0where ϖn is a geometric coefficient.

The flux is then obtained by summation:

Φg
i ¼

XJ
j¼1

pg
ji Σ0

s,g!gΦ
g
j þ

X
g0

Σ0
s,g0!gΦ

g0
j þ S0j,g

 !

– Linear anisotropic collision and flat flux: the isotropic part is treated as before

when the anisotropic part is introduced:

~p g
ji ¼

ϖn

Vi

ðri
ri�1

rn�1dr
ðrj
rj�1

fGn r0; rð Þr0n�1dr0
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– Isotropic collision and linear flux: the flux is made linear in a region between

two consecutive interfaces j1 and j2, by writing:

Φi rð Þ ¼ α rð ÞΦg
j1
þ β rð ÞΦg

j2
for r 2 j1; j2½ �

where α(r) and β(r) are independent polynomials. The new unknowns of the

problem become the fluxes at the interfacesΦg
jk
. A general form of the probabilities,

p
g
jik, is then used:

Φg
i ¼

XJ
j¼1

X2
k¼1

pg
jik Σ0

s,g!gΦ
g
jk
þ
X
g0

Σ0
s,g0!gΦ

g0
jk
þ S0j,g

 !

– Linearly anisotropic flux and linear flux31: the same method as before is used for

the isotropic part while the anisotropic general form of the probabilities, ~p g
jik, is

introduced.

2D calculations are now used instead of this historical 1D approach, and this will

be detailed further in Chap. 14.

8.3.5 Escape Probabilities

(Duderstadt and Hamilton 1976, p415)

8.3.5.1 Escape Probability from a Slab

In the case of a slab of thickness a and infinite in the other dimensions, the mean

chord is given by:

< R >¼ 2a

However, <R2> ¼ +1 (Reuss 1985, p184). Noticing that (Fig. 8.17) cos2

θ¼ 1� a2/R2 and μ¼ cos θ, we obtain by differentiation:

31Anne-Marie Brun: Généralisation de la méthode des probabilités de collision pour tenir compte
soit du gradient de flux, soit du choc linéairement anisotrope, application au calcul du réacteur
Minerve [Generalization of the collision probability method to account either for the flux gradient
or a linearly anisotropic collision, and its application to modeling the reactor Minerve], thesis at
the University of Orsay (1969).
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2 cos θd cos θð Þ ¼ 2μdμ ¼ 2
a2

R3
dR

where, since dΩ
!¼ 2π dμ and Ω

!� ~n ¼ � cos θ, we can compute the probabil-

ity p(R):

p Rð ÞdR ¼ < R >

4πV

ð
RΩ¼R

dS

ð
dΩ
!

Ω
!� ~n ¼ 1

πS
S2π μdμ ¼ 2μdμ ¼ 2a2

R3
dR

By substituting this result in Eq. 8.40, we find, for an infinite slab:

PVS, 0 ¼ 1

< R > Σt

ðþ1
a

1� e�ΣtR
� �

p Rð ÞdR ¼ 1

2aΣt

ðþ1
a

2 1� e�ΣtR
� �a2

R3
dR

¼ 1

2aΣt

ðþ1
1

2

y3
1� e�Σtay
� �

dy

where the exponential function E3 Σtað Þ ¼ Ðþ1
1

1
y3 e
�Σtay dy can be substituted, to

give:

First-flight escape probability from a slab: PVS, 0 ¼ 1

2aΣt
1� 2E3 Σtað Þ½ � ð8:41Þ

Σt

a

θ R

Fig. 8.17 Slab with

thickness a
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8.3.5.2 Escape Probability from a Sphere

In the case of a sphere of radius a, we always have p(R) dR¼ 2μ dμ. Through
trigonometry, we obtain μ¼ cos θ¼R/(2a), and by differentiation, dμ¼ dR/(2a),
where:

p Rð ÞdR ¼ R

2a2
dR

and < R >¼ 4V
S ¼ 4

3
a

Generally, all the moments <Rn> of a finite object exist. By using these results

in Eq. 8.40, we find for the sphere (Fig. 8.18):

PVS, 0 ¼ 1

< R > Σt

ðþ1
a

1� e�ΣtR
� �

p Rð ÞdR

¼ 3

4aΣt

ð2a
0

R

2a
1� e�ΣtR
� �

dR

and, after integration:

First-flight escape probability from a sphere: PVS, 0

¼ 3

4aΣt
1þ 1

aΣt
e�2aΣt þ 1

2a2Σ2
t

�
e�2aΣt � 1

� �
ð8:42Þ

a 

R 
θ

n  

dS

θ

Fig. 8.18 Sphere of radius a
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8.3.5.3 Internal Escape Probability from a Hollow Sphere

Westfall has developed32,33 the transmission probabilities for a hollow sphere

assuming white or specular boundary conditions, as well as uniformly distributed

isotropic sources. This corresponds to an interface current in the form of a cosine,

with respect to the normal. These expressions are particularly useful for spherical-

shaped fuel (pebble-bed reactor, or even micro-fuel of HTRs). Let pie be the

probability that a neutron leaves the internal surface isotropically, to reach the

external surface without collision (the other definitions are similar in using the

indices i for internal, e for external, and V for the internal volume):

pie ¼

Ð
ds

Ð
~n�~Ω>0

dΩ~n:Ω
!

e�Σt,e‘ ~Ωð Þ
Ð
ds

Ð
~n�~Ω>0

dΩ~n:Ω
!

Owing to the spherical symmetry, this can be simplified to (Fig. 8.19):

pie ¼

Ðy¼ri
y¼0

2πye�Σt,e‘ yð Þ dy

Ðy¼ri
y¼0

2πydy

Setting a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e � r2i

p
Σt,e and a¼ (re� ri)Σt , e, and after some algebraic manip-

ulations, we find:

pie ¼
1

2r2i Σ
2
t,e

aþ 1ð Þe�a � bþ 1ð Þe�b þ a4

b2
E3 bð Þ � a2E3 að Þ

� �
:

By reciprocity: pei ¼ ri
re

 �2
pie

The probability, pee, for a neutron arriving isotropically from the external surface

to reach the external surface again without going through the internal volume V, can
also be found:

32R.M. Westfall: Cosine current transmission probabilities for spherical shells, Transactions
American Nuclear Society, 18, 147 (1974).
33E.E. Bende, A.H. Hogenbirk: Analytical calculation of the average Dancoff factor for a fuel
kernel in a pebble bed high-temperature reactor, Nuclear Science and Engineering, 133,147–162

(1999).
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pee ¼

Ðy¼re
y¼ri

2πye�Σt,e
ffiffiffiffiffiffiffiffiffi
r2e�y2
p

dy

Ðy¼re
y¼0

2πydy

¼ 1

2r2eΣ
2
t,e

1� 2aþ 1ð Þe�2a� �

The probability, pii, is given by the equation valid for any convex volume:

pii ¼ 1� Rh iΣt, iPVi ¼ 1� 4

3
riΣt, iPVi

The probability, PVi, is related to the solid sphere problem.

8.3.5.4 Escape Probability from a Cylinder

The calculation for cylinder of radius R, mean chord length <R> ¼ 2R, is more

tedious. Indeed, it involves Bessel functions (Duderstadt and Martin 1979):

PVS, 0 ¼ 2ΣtR

3

2 ΣtRK1 ΣtRð ÞI1 ΣtRð Þ þ K0 ΣtRð ÞI0 ΣtRð Þ � 1½ �

þK1 ΣtRð ÞI0 ΣtRð Þ � K0 ΣtRð ÞI1 ΣtRð Þ þ K1 ΣtRð ÞI1 ΣtRð Þ
ΣtR

0B@
1CA

The study of an annular cylinder, where the inner/central part is made of another

material than that of the outer part, consists of calculating34 the average chord of

such a cylinder (Fig. 8.20).

Let G be the probability that a neutron entering isotropically through the internal

surface of the cylinder does not exit the inner cylinder (sticking probability, Spanier
and Gelbard 1969, p151). And let pii be the probability of going through the inner

cylinder without collision. If we consider a neutron along the path ~Ω, and ifG¼ 0, it

erir

eep

Vip
iip

iep

eip
Ω

etΣ ,

n

y

itΣ ,

Fig. 8.19 Hollow sphere

with external radius re and
internal radius ri

34M. Segev, G. Raitses, J.M. Paratte: In-rod effective cross sections of resonance absorbers
evaluated with routine cell codes, Nuclear Science and Engineering, 131, 123–131 (1999).
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will be able to reach the right half-circumference π r2e (by varying the slope of ~Ω).

For a neutron along the path Ω2
�!

, those on the right (half of the neutrons) of the

inner cylinder will reach the external surface on the right without encountering the

central cylinder while the neutrons on the left (the other half) will definitely

encounter it, and will have a probability G of not reaching the surface α re. Overall,
the weighted escape surface per unit height for neutrons going to the right is:

πr2e � G
αre
2

,

a quantity which will be multiplied by 2 to account for neutrons going in the

opposite direction �~Ω. By using α¼ π� 2 arccos(ri/re) and g � 1
2
� arccos ri=reð Þ

π , we

find:

Rh i ¼ 4π r2e � r2i
� �

2πre 1� Ggð Þ :

G can be calculated in terms of the probability pii and the escape probability

from the central cylinder PVS , 0 where S is the internal surface. Since 1� pii is the
probability of having a collision in the internal cylinder V for a neutron arriving

isotropically from the internal surface, the proportion (1� pii)Σa , e/Σt , e will be

absorbed. From which stems the following scheme:

pii crosses

1�pii collides!
1�piið ÞΣs,e

Σt,e
diffuses!

1�piið ÞΣs,e

Σt,e
PVi,0 leaks

1�piið ÞΣs,e

Σt,e
1�PVi,0ð Þ collides!

1�piið Þ Σs,e
Σt,e

 �2
1�PVi,0ð Þ diffuses���

1�piið ÞΣs,e

Σt,e
1�PVi,0ð ÞΣa,e

Σt,e
absorbs

8>><>>:

8>>>>>><>>>>>>:
1�piið ÞΣa,e

Σt,e
absorbs

8>>>>>>>>>><>>>>>>>>>>:

8>>>>>>>>>>>><>>>>>>>>>>>>:
The quantity of neutrons absorbed is thus given by:

α

re

ri

Ω1

pii

Σt,e

Σt,i

Ω2

Fig. 8.20 Annular cylinder

with external radius re and
internal radius ri
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G ¼ 1� piið ÞΣa,e

Σt,e
1þ 1� PVi, 0ð ÞΣa,e

Σt,e
þ 1� PVi, 0ð Þ2 Σs,e

Σt,e

� �2

þ � � �
" #

¼ 1� piið ÞΣa,e

Σt,e

1

1� 1� PVi, 0ð Þ Σa,e
Σt,e

These computations allow us to take into account, for example, a partitioning of

the fuel pellet to consider the rim effect of plutonium production on the surface of

the fuel in spatial self-shielding.

8.3.5.5 Concept of Opacity

If we consider the escape probability in terms of the geometry (slab of thickness 2R,
cylinder and sphere of radius R), a non-negligible dependence on Σt R can be

observed. In particular, the escape probability for a sphere is more important

because of its compactness. On the other hand, it can be seen that in all these

calculations, there arises the product of the total cross section by the mean chord,

which is called opacity or blackness, often denoted by X:

Opacity: X ¼ Σt < R >¼ 4ΣtV

S
ð8:43Þ

This dimensionless quantity can be regarded as the mean chord length expressed

in terms of the mean free path, 1/Σt. It is shown that the first-flight escape

probability PVS, 0 shows little dependence on the shape of the medium when it is

considered in terms of the opacity—which makes it an excellent parameter to

characterize a medium (Fig. 8.21) (Meghreblian and Holmes 1960, p671):

It is also observed that the rational approximation of Wigner, which was seen in

the chapter on resonance absorption, and which consists of approximating the first-

flight escape probability by:

PVS, 0 � 1

1þ Σt Rh i ¼
1

1þ X

is fairly close to real life—within 20% for a 1D geometry (Spanier and Gelbard

1969, p154).

8.3.5.6 Multiple Collision Escape Probability

If PVS is the first-flight escape probability (uncollided neutrons), which will be now

denoted PVS, 0 for more precision, the collision probability in the fuel for a first-

flight neutron will naturally be:
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PVV, 1 ¼ 1� PVS, 0

After the collision, and assuming a uniform distribution of first collisions, the

escape probability for neutrons having undergone a single collision, so far as the

scattering probability is Σ c
s =Σ

c
t , is therefore:

PVS, 1 ¼ PVS, 0 1� PVS, 0ð ÞΣ
c
s

Σ c
t

By induction, the escape probability for a neutron having undergone n collisions,
is:

PVS,n ¼ PVS, 0 1� PVS, 0ð Þn Σ c
s

Σ c
t

� �n

By summing the different contributions from successive collisions, the multiple
collision escape probability is obtained as the infinite sum of a geometric35 series,

since 1� PVS, 0ð ÞΣ c
s =Σ

c
t is less than 1:

Sphere

Cylinder

Slab

Opacity ΣΣt <R>

P
V

S
,0

1.0

0.8

0.6

0.4

0.2 Rational approx.
of Wigner          

0
0 2 4 6 8 10

Fig. 8.21 First-flight escape probability against blackness (adapted from Dresner 1960, p70)

35Paul Reuss rightly points out the importance of the assumption of “flat” fluxes (uniform and

isotropic) in this calculation. Otherwise, the probability PVS , 0 is different from one collision to the

other, making the logic of the geometric series meaningless.
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Multiple collision escape probability with a uniform distribution of collisions:

PVS ¼ PVS, 0

X1
n¼0

1� PVS, 0ð Þn Σ c
s

Σ c
t

� �n

¼ PVS, 0

1� 1� PVS, 0ð ÞΣ
c
s

Σ c
t

ð8:44Þ

Using this new variable, we can write the relations linking all the relevant

probabilities:

PVS ¼ 1

X
PSV

PSV þ PSS ¼ 1

PVV þ PVS ¼ 1

8>><>>:
For a strong opacity, the neutron has very little chance of crossing the volume

(which explains the term opacity derived from optics). Hence, its probability of

interacting in the volume when coming from the surface is 1: PSV� 1 and

PVV� 1� 1/X which is not equal to 1 since a neutron emitted near the surface

still has a chance to escape. For media with a large size when compared to the mean

free path, the first-flight escape probability tends to:

lim
V!1

PVS ¼ 1

X
¼ S

4ΣtV

Amouyal, Benoist and Horowitz have proposed, in the early 60’s, corrections to
take into account the spatial non-uniformity of the collision density. It will be seen

in the chapter on heterogeneous reactors how to generalize this reasoning to infinity

in multi-cell calculations.

8.3.5.7 Escape Probability in Transient States

The first-flight collision probabilities, as defined above, only have meaning in

steady-state. However, we can extend the concept to transient states, by using

first-flight leakage rates. The transient state transport equation with a time-

independent external source is given by:

1

v

∂Φ ~r; Ω
!
; t

 �
∂t

þ ~Ω � gtrad���!
Φ ~r; Ω

!
; t

 �
þ ΣtΦ ~r; Ω

!
; t

 �
¼ S f tð Þ
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If a Laplace transform in time is applied to the previous equation, we obtain,

with Φ ~r; ~Ω; p
� � ¼ Lt Φð Þ ¼

Ð1
0

e�ptΦ ~r; Ω
!
; t

 �
dt and Φ ~r; Ω

!
; t ¼ 0

 �
¼ 0:

~Ω � grad��!
Φ ~r; ~Ω; p
� �þ Σt þ p

v

 �
Φ ~r; Ω

!
; p

 �
¼ SF pð Þ

In the case where f(t)¼ δ(t), i.e., a “flash” source at t¼ 0 of intensity S, it can be

seen that Φ ~r; Ω
!
; p

 �
satisfies the usual steady-state transport equation where the

term p/v has been added to the total cross section. Therefore, the escape probabil-

ities computed in steady-state can be used to obtain the value of the transient state

leakage rate using the Laplace transform. For example, in the case of the slab of

thickness a, where we had found:

PVS ¼ 1

2aΣt
1� 2E3 Σtað Þ½ �, we obtain: PVS pð Þ

¼ v

2a Σtvþ pð Þ 1� 2E3 Σt
Σtvþ pð Þa

v

� �� �
which, through an inverse Laplace transform, gives:

PVS tð Þ ¼ v

2a
e�Σtvt Θ tð Þ � 1� a2

v2t2

� �
Θ t� a

v

 �� �
In this equation, Θ(t) is the Heaviside (step) function. This approach works with

convex geometries but Henderson and Magnard generalized36 it for solid and

hollow spheres, where the inverse Laplace transform leads to very long formula

but still analytical. For example, still in the case of a slab but with a source pulse of

length Δt, i.e., with f(t)¼Θ(t)�Θ(tþΔt):

κ tð Þ ¼ 1� e�Σtvtð ÞΘ tð Þ þ 1� a2

v2t2

� �
e�Σtvt � 2E3 Σtað Þ þ 2

a2

v2t2
E3 Σtvtð Þ

� �
Θ t� a

v

 �
PVS tð Þ ¼ 1

2Σta
κ tð Þ � κ t� Δtð Þ½ �

8><>:

36D.L. Henderson, C.W. Maynard: Time-dependent first-flight leakage rates for slabs, spherical
shells and spheres, Nuclear Science and Engineering, 97, 203–210 (1987).
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Keller and Lee have generalized this approach37 by calculating the first-flight

collision probabilityPii0kk0 depending on time, for a plane reactor, for a neutron born

in the region i in the time interval k, interacting in the region i’ in the time interval

k’:

Pii0kk0 ¼
Σik

Δk0Δi0

ðxiþ1=2
x
i�1=

2

dx

ðxi0þ1=2
x
i0�1=

2

dx0
ðtkþ1=2

t
k�1=

2

dt

ðtk0þ1=2
t
k0�1=

2

dt0K x; x0; t; t0ð Þ

where K is the first-flight collision operator in transient state:

K x; x0; t; t0ð Þ ¼ e�Σtv t�t0ð Þ

2 t� t0ð Þ Θ t� t0 � x� x0j j
v

� �
The time-dependent flux is then given by:

Φ x; tð Þ ¼
ðþ1
�1

dx0
ðt
0

dt0K x; x0; t; t0ð ÞQ x0; t0ð Þ

8.3.5.8 Interface Current Method

(Stacey 2001, p315)

When the Peierls operator is integrated from an interface of the domain

(assumed convex), in general, the result is such that the flux and current are

non-zero at that interface. The integral form thus reveals a surface term

representing the transport of neutrons at the interface in the direction ~Ω. Let rS
!

be a point on surface S, with the outwards normal denoted by~n, taking into account
an isotropic source per unit volume, the integral form of the transport equation is

given by:

Φ ~r; Ω
! �
¼ e�Σt‘ ~r;rS

!� �
Φ rS
!; ~Ω
� � þ

ð‘
0

d‘0
e�Σt‘ ‘

0� �
4π

q ~r � ‘0Ω
! �

where rS
! ¼ ~r � ‘S Ω

!
and d2Ω ¼ d2‘S ~Ω�~n

‘2S
. Integrating over all points of the

surface S and the volume sources, we find (Fig. 8.22):

37P.M. Keller, J.C. Lee: A time-dependent collision probability for one-dimensional space-time
nuclear reactor kinetics, Nuclear Science and Engineering, 129, 124–148 (1998).
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Φ ~rð Þ ¼
ð
4π

dΩ
!

Φ ~r; ~Ω
� �

¼
ð
~Ω

ð
~rS2S

d2Ωd~rS e
�Σt‘ ~r; ~rSð ÞΦ ~rS ; ~Ω

� � þ
ð
V

d~r0
e�Σt‘

�
~r, ~r0
�

4π ~r � ~r0
��� ���2 q ~r0

 �

The surface contribution of the integrated flux is a surface integral over the

incoming neutrons (~Ω:~n < 0), which is written:ð
~Ω:~n<0

d2‘S
e�Σt‘ ‘Sð Þ

‘2S

~Ω:~nΦ rS
!; ~Ω
� �

recalling that ~ΩΦ ~rSð Þ is the neutron current and that ~Ω � ~nΦ ~rSð Þ is the incoming

neutron flux for ~Ω:~n < 0, and outgoing flux for ~Ω:~n > 0. Assuming that the flux at

the interface is isotropic, we have:

Φ rS
!; ~Ω
� � ¼ Φ rS

!� �
4π

since:

Ω
r

Sr

n

'r
'rd

Fig. 8.22 Accounting for neutron current at the boundaries
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ð
~Ω�~n>0

d2Ω ~Ω � ~n ¼
ðπ=2
0

dθ sin θ cos θ

ð2π
0

dφ ¼ π

The outgoing and incoming currents, J+ and J� are then given by:

Jþ ¼
ð
s

d2rs

ð
~Ω�~n>0

d2ΩΩ
!
:~nΦ rS

!; ~Ω
� � ¼ ð

S

d2rS
Φ rS
!� �
4

J�j j ¼
ð
s

d2rs

ð
~Ω�~n<0

d2Ω ~Ω � ~n�� ��Φ rS
!; ~Ω
� � ¼ ð

S

d2rS
Φ rS
!� �
4

8>>>>><>>>>>:
The net current J¼ J+� |J�| is thus indeed zero at the interface because of the

isotropy of the flux, which translates to a perfect reflection condition. The interface

current method38 consists in subdividing the surface of the volume Vi into surface

elements Si
k for which constant currents are assumed, such that:

XK
k¼1

Si
k ¼ Si

Each of the surfacesSi
k is also the surface of another volume Vj in contact with Vi.

The volume Vi is itself divided into elementary volumes V i
m, whose exterior

surfaces will be Si
k, such that:

XM
m¼1

V i
m ¼ Vi

Figure 8.23 illustrates a 2D example.

Since the setting of the volume Vi is considered through the interface conditions,

it is pointless to integrate the Boltzmann equation over the whole space, but rather

only on the tiling of the considered volume, by introducing surface integrals

induced by incoming currents:

Σ i
mΦ

i
m V

i
m ¼

XM
j¼1

Pjm qj V
i
j þ

XK
k¼1

Pkm J
i�
k

38Li Mao: Contribution �a la résolution de l’équation de Boltzmann en multigroupe par les mé
thodes déterministes et Monte-Carlo [Contribution to the resolution of the Boltzmann equation in
multi-group by deterministic and Monte-Carlo methods], thesis at the University of Aix-Marseille

(1998). This thesis contains a very complete chapter on the interface current method.
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In this equation, Pkm is the probability that a neutron entering through the surface

k has its first collision in the volume V i
m. This probability is obtained by weighing

the incoming current by the attenuation operator:

Pkm ¼ 1

Ji
�
k

ð
S

d2rS

ð
V i
m

d~rΣt ~rð Þe
�Σt‘ ‘sð Þ

‘2S
Ji
�
k rS
!; ~Ω
� �

: ~nk

It will be noted that because of continuity, the current entering through the

surface Si
k is equal to the outgoing current through the same surface from the

adjacent volume—from which stems the coupling relations between the volumes

Vi, and similarly for the fluxes. Also, there exists a relation between incoming and

outgoing currents for the same macro-volume Vi. It will be pointed out that the flux

at the point ~rS is given by the contribution of the sources in the volume Vi and one

point from the opposite surface:

Φ ~rs; ~Ω
� � ¼ ð‘S

0

d‘
e�Σt‘ ~rS�‘ ~Ω; ~rSð Þ

4π
q ~rS � ‘~Ω
� �þ Φ ~r0s ; ~Ω

 �
e�Σt‘ ~r0

S
; ~rSð Þ

If this equation is multiplied by Ω
!
: ~nk , and the resulting expression is integrated

over the surface Si
k for the outgoing (Ω

!
: ~nk > 0) contributions, we find:

jV

i
mV

i
mV 1

i
kS 1

i
kS

Fig. 8.23 Tiling of a 2D
space
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ð
S i
k

d2rS

ð
~Ω�~nk>0

d2Ω ~Ω � ~nkΦ ~rs; ~Ω
� �¼ ð

S i
k

d2rS

ð
~Ω�~nk>0

d2Ω ~Ω � ~nk
ð‘S
0

d‘
e�Σt‘ ~rS�‘~Ω; ~rSð Þ

4π
q ~rS � ‘~Ω
� �

þ
ð
S i
k

d2rS

ð
~Ω�~nk>0

d2Ω ~Ω � ~nkΦ ~r0s ; ~Ω
 �

e�Σt‘ ~r0
S
; ~rS Þð

The first term on the right-hand side can be transformed into a volume integral

over ~r0 , while the second term can be changed to a surface integral over ~r0s , by using
the following:

d~r0 ¼ d3r0 ¼ ‘2d‘d2Ω and d2rS ¼ ‘2S
~Ω � ~n d

2Ω

Which can be written with the usual notations:

Ji
þ
k ¼

XM
j¼1

Pjk qj V
i
j þ

XK
k0¼1

Pk0k J
i�
k0

where Pjk is the probability of escaping the volume V i
j through the surface Si

k,

which will be calculated using the equation:

Pjk ¼ 1

qj

ð
S i
k

d2rS

ð
V i
j

d~rΣt ~rð Þe
�Σt‘ ‘sð Þ

‘2S

~Ω � ~nkq ~rð Þ

In this way, we obtain a system of equations, which links the probabilities, but

also, through current and flux continuity at the interfaces, the different macro-

volumes. The albedo matrix, which couples the outgoing and incoming currents,

can be full for a macro-volume but will be very sparse when considering the whole

space consisting of a tiling of macro-volumes. Indeed, the number of non-zero

elements increases linearly with the number of macro-volumes because of the

decoupling of the regions via the currents. It will also be noted that this method is

easily parallelizable, explaining the strong interest on new parallel processors.

8.3.6 The Integral Equation in 2D

In the case of a 2D geometry, the direction ~Ω will be projected in the considered

plane (Oxy). The optical path is also projected in that plane. Instead of defining θ as
the angle between the plane and the direction ~Ω, it will be defined as the angle

between the z-axis and ~Ω. This is because it was seen in the 1D calculations for the

escape probabilities that it was the sine of the angle between the z-axis and ~Ω that

arose and led naturally to the Bickley-Nayler function. Under these assumptions,

the angular flux Φ ~r; ~Ω
� �

is given by:
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Φ ~r; Ω
! �
¼
ð‘s
0

d‘
q ~r � ‘Ω

!
p

 �
sin θ

e�
Σt‘ ~r;~r�‘Ωp

!� �
sin θ þ Φ ~r � ‘S Ωp

�!
, Ω
! �

e�
Σt‘ ~r;~r�‘SΩp

!� �
sin θ

As usual, there is a term because of the internal sources q of the volume,

integrated up to the surface of the volume, and a surface term because of the

boundary conditions.

8.3.7 Application to an Infinite Medium with a Fission
Source

(Case et al. 1953; Case and Zweifel 1967)

In the case of an infinite medium with constant cross section and with only

fission sources, the flux is written in the form:

Φ ~rð Þ ¼
ð

~dr0
e�Σt ~r�~r0

�� ��
4π ~r � ~r0
��� ���2 q

�
~r0
�

with q
�
~r0
� ¼ vΣf þ Σs

� �
Φ
�
~r0
�

where we will look for a solution in the spatial form (Salmon 1961; Duderstadt

and Martin 1979; Tait 1964, p27):

Φ ~rð Þ ¼ e
~B:~r

where ~B is an arbitrary vector of magnitude B. Generally, we also consider the

average number of secondary neutrons defined by:

Number of secondary neutrons per collision:

c � vΣf þ Σs þ 2Σn, 2n þ 3Σn, 2n þ . . .

Σt

ð8:45Þ

The quantity cΣt that cannot be split in two parts just like vΣf, is therefore the

average number of secondary neutrons per mean free path (Tait 1964, p17). By

substituting this spatial form of the flux in the integral equation and multiplying

each term in the resulting expression by e�~B:~r, we obtain:

e�~B:~reþ~B:~r ¼ 1

¼ ce�~B:~r
ð

~dr0 Σt
e�Σt ~r�~r0

�� ��
4π ~r � ~r0
��� ���2 eþ~B:~r ¼ c

ð
~dr0 Σt

e�Σt
~B
Σt
: ~r�~r0
� �

þ ~r�~r0
�� ��� �

4π ~r � ~r0
��� ���2
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By placing ~B along the ~y axis (Fig. 8.24), we can evaluate the previous

integral, with ‘ ¼ ~r � ~r0
��� ���, ~B: ~r � ~r0

 �
¼ B‘ cos θ and the differential volume

element, d~r0 ¼ ‘2 d‘ sin θdθdφ:

ð
~dr0 Σt

e�Σt
~B
Σt
: ~r�~r0ð Þþ ~r�~r0j j½ �

4π ~r � ~r0
��� ���2 ¼ 1

4π

ð2π
0

dφ

ðπ
0

sin θdθ

ð1
0

Σte
�Σt‘ 1þ B

Σt
cos θð Þd‘

¼ Σt

2B
In

1þ B
Σt

1� B
Σt

 !

This integral equation will be often encountered later, as it appears when a

Fourier transform of the Boltzmann equation is done.

If c> 1, the solution to the transcendental equation, also called dispersion, in
B/Σt (Meghreblian and Holmes 1960, p380):

Dispersion equation of Placzek:
cΣt

2B
In

1þ B
Σt

1� B
Σt

 !
¼ 1 ð8:46Þ

is purely imaginary denoted by iB/Σt with B/Σt¼ c Arctg(B/Σt).

If c< 1, the solution is real with B/Σt¼ c Argth(B/Σt). In that case, the magni-

tude of B physically represents an attenuation coefficient in a sub-critical medium.

This is shown graphically by plotting B against c in Fig. 8.25.

8.3.8 Graphical Solution to the Dispersion Equation

Coming back to Placzek’s original form, when c> 1, we can find graphically the

solutions to the equation, tan B
cΣt
¼ B

Σt
(Fig. 8.26).

x

y

z

B

'r

'rr
B

Fig. 8.24 Geometrical

aspects of ~B
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It can be observed that there are an infinite number of positive and negative

solutions, all of which are complex solutions satisfying the dispersion equation and

are greater than 1 in magnitude, except for the two “central” ones. In the case where

c< 1, the graphical solution of th[B/(cΣt)]¼B/Σt yields only two opposite real

roots since the function th is odd (Fig. 8.27):

The dispersion equation for c< 1 therefore has a pair of real roots ±B with a

magnitude smaller than Σt (Case and Zweifel 1967; Glasstone and Edlund 1972,

p396). It will be noticed that the flux is then a linear combination of positive and

negative exponentials of i~B �~r (for c> 1) or ~B �~r (for c< 1). This flux, called

asymptotic flux, therefore satisfies a general diffusion equation such as:

ΔΦ� B2Φ ¼ 0 for c < 1

ΔΦþ B2Φ ¼ 0 for c > 1

	

0 1 2 3

1

2

3

4

c

tB/Σ
1

Fig. 8.25 Spatial

coefficient for the

asymptotic flux

tΣ
B

tcΣ
B

tan

xy

Fig. 8.26 Graphical

solution to the dispersion

equation (c< 1)
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In a domain without sources, 1/B2 represents a diffusion length (Tait 1964, p28).
It will later be seen how to compute an expansion of the angular part of the flux in

plane geometry in the more general case of anisotropy. These calculations suggest

very clearly the use of a 3D Fourier transform to find a general solution to the

Boltzmann equation in this geometry:

φ ~B
� � ¼ Ð Φ ~rð Þei~B�~r d~r

Φ ~rð Þ ¼ 1

8π3

ð
φ Bð Þe�i~B�~r d~B

8<:
Substituting these expressions in the integral form of the equation, we find:

ð
φ Bð Þe�i~B�~rd~B ¼

ð
d~r0
ð
d~B

cΣt

4π
φ Bð Þe�i~B�~r e�

~B:
�
~r0 �~r
�
�Σt ~r�~r0
�� ��

~r � ~r0
��� ���2

The exponential term can be integrated to give:

ð
e�

~B:
�
~r0 �~r
�
�Σt ~r�~r0
�� ��

~r � ~r0
��� ���2 d~r0 ¼ �iΣt

2B
ln

1þ i BΣt

1� i BΣt

 !
¼ Σt

B
Arctan

B

Σt

The same transcendental equation in B is obtained as in (8.46). Here again, the

flux satisfies the diffusion equation seen previously. The quantity L2¼ 1/(BΣt)
2 is

the (asymptotic) diffusion area, the physical meaning of which will be discussed

further in the chapters on diffusion.

tΣ
B

tcΣ
Bth

xy

1

1

1

1

Fig. 8.27 Graphical

solution to the dispersion

equation (S¼ k Logω)
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8.4 Third Form of the Transport Equation: the Surface-

Integral Form

Aside from the integro-differential and integral forms, there exists a third form of

the Boltzmann equation, less known, which has been explored largely by Pierre

Benoist and Alain Kavenoky39 at the end of the 60’s, then in the 70’s.40,41

39Alain Kavenoky (1939–). After his studies at Ecole Polytechnique in Paris (matriculated in

1960), and then at the Ecole des Ponts et Chaussées (1965), he joins the CEAwhere he successfully

completes his thesis on the transport equation in 1973. His contribution at CEA/SERMA to the

APOLLO1 code development is substantial.

(the Marguet collection)
40Pierre Benoist, Alain Kavenoky: A new method of approximation of the Boltzmann equation,
Nuclear Science and Engineering, 32, p225 (1968). Alain Kavenoky (1939–) was the student of

Pierre Benoist after his studies at the Ecole Polytechnique (1962), and his DEA (Diplôme d’Etudes
Appronfondies – Diploma of Profound Studies) in 1965. His state doctoral thesis (La méthode Cn

de résolution de l’équation du transport [The Cn method for solving the transport equation], 1973)
finds its place in the long-standing French tradition of neutronics, with Jacques Yvon as president,

and Jules Horowitz, Jean Bussac and Pierre Benoist as jury members. It will impact significantly

the 70’s. The Cn method that is developed in it, led to the publication of about ten conference and

prestigious journal papers. Kavenoky was thereafter head of the Physics and Mathematics group of

the CEA/SERMA in Saclay, and contributed substantially to the development of APOLLO1. After

that, he was a member of the Scientific, Pedagogical and Technological Mission of the CNRS,

tasked with intensive computations, and took care of funding for various university projects.

The Marguet collection

41Pierre Benoist, Alain Kavenoky: La méthode Cn de résolution de l’équation du transport:
application �a la géométrie plane [The Cn method for solving the transport equation: application
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This surface-integral form, which would be aptly called the Benoist-

Kavenoky form since it had not been really used before their innovative works,

is based on a complementary property of the Boltzmann equation, called

Placzek’s lemma.

8.4.1 Placzek’s Lemma

George Placzek (Public domain)

Consider a sub-critical medium, at the limit of being critical (but not super-critical

such that there can exist a steady-state solution), surrounded by its outer surface S.
This medium, characterized by a number c of secondary neutrons is finite

(of volume V ) and surrounded by vacuum. It is shown that this problem is

rigorously equivalent to the infinite case where the medium fills the whole space,

but where the sources are removed outside of V, while those inside are kept, and

where a surface source is added to S with an intensity �~Ω:~nΦfinite ~rS ; ~Ω
� �

, with ~n

being the outside normal to a point ~rS of the surface S, and Φfinite ~rS ; ~Ω
� �

is the

angular flux of the (first) finite problem (Fig. 8.28).

to a plane geometry], Numerical reactor calculations, Proceedings of a seminar on numerical

reactor calculations held in Vienna by the AIEA, 17–21 January 1972, p211–229 (1972).
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In the case of a super-critical problem, the solution of the infinite problem is

chosen such that the angular flux is zero outside of V. This lemma is proven by

considering the angular flux Θ ~r;Vð ÞΦfinite ~r; ~Ω
� �

, differentiated from the solu-

tion of the flux to the finite problem. Θ ~r;Vð Þ is the volume Heaviside function,

which is 1 in the volume V and zero elsewhere. Since the Boltzmann equation

is the same in the volume for the two cases, Φ1 ~r; ~Ω
� � � Θ ~r;Vð ÞΦfinite ~r; ~Ω

� �
is

of course the solution to the infinite case since Θ ~r;Vð Þ � 1 in the volume. The

added surface source creates an angular flux discontinuity at the interface such

that:

Φ1 ~rS
�; ~Ω

� � ¼ Φ1 ~rS
þ; ~Ω

� ��Φfinite ~rS ; ~Ω
� �

In these, ~rS
� ¼ lim

ε!0
~rS � ε~nð Þ and ~rS

þ ¼ lim
ε!0

~rS þ ε~nð Þ. The function Θ ~r;Vð Þ
Φfinite ~r; ~Ω

� �
satisfies this equation by construction. At the interface S, the

outgoing angular current from the finite problem is ~Ω:~nΦfinite ~rS ; ~Ω
� �

. If a source

removing a current �~Ω:~nΦfinite ~rS ; ~Ω
� �

is added, the result of these two compo-

nents, because of the linearity of the Boltzmann equation for external sources in a

purely scattering medium, is a null current at the surface S of the infinite problem for

outgoing (~Ω:~n 
 0) directions of the volume V (and hence, incoming directions for

the complementary infinite medium). Since there are no sources external to V in the

infinite case, the flux is naturally zero (by construction). It is in fact the point of this

clever construction regarding the infinite medium. In this case, the fluxΘ ~r;Vð ÞΦfinite

~r; ~Ω
� �

is also zero outside the volume because of the Heaviside function. And hence,

Fig. 8.28 Placzek’s lemma
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this proves Placzek’s lemma. The lemma is easily generalized in multi-group by

considering a source depending on energy, while taking into account the slowing-

down source.

8.4.2 Flux Equation at the Interface

According to Placzek’s lemma, we can express the Boltzmann equation as an

integral equation in terms of the flux at the interface S, and not that in the volume

anymore. This flux will be obtained by applying a Green’s function

G ~r0 ; ~Ω0 ;~r; ~ΩÞ


, in infinite medium, easily calculated by a Fourier transform

using methods already discussed. Consider a volume source S ~r; ~Ω
� �

inside the

medium and a superficial “incoming” source, which emits towards the inside, i.e.,

Φþ ~rS ; ~Ω
� �

for ~Ω:~n � 0 and an “outgoing” source Φ� ~rS ; ~Ω
� �

for ~Ω:~n 
 0. The

angular flux at any point is given by:

Φ ~r; ~Ω
� � ¼ ð

V

S ~r0 ; ~Ω0
 �

G ~r0 ; ~Ω0 ;~r; ~Ω
 �

d ~Ω0 d3r0

�
ð
S

ð
~Ω0 �~n�0

~Ω0 � ~nΦþ ~rS0 ; ~Ω
 �

G ~rS0 ; ~Ω0 ;~r; ~Ω
 �

d ~Ω0 d2r0

�
ð
S

ð
~Ω0 �~n
0

~Ω0 � ~nΦ� ~rS0 ; ~Ω
 �

G ~rS0 ; ~Ω0 ;~r; ~Ω
 �

d ~Ω0 d2r ð8:47Þ

If ~r tends towards a surface point ~rS , we find:

Φ ~rS ; ~Ω
� � ¼ ð

V

S ~r0 ; ~Ω0
 �

G ~r0 ; ~Ω0 ; ~rS ; ~Ω
 �

d ~Ω0 d3r0

�
ð
S

ð
~Ω0 �~n�0

~Ω0 � ~nΦþ ~rS0 ; ~Ω
 �

G ~rS0 ; ~Ω0 ; ~rS ; ~Ω
 �

d ~Ω0 d2r0

�
ð
S

ð
~Ω0 �~n
0

~Ω0 � ~nΦ� ~rS0 ; ~Ω
 �

G ~rS0 ; ~Ω0 ; ~rS ; ~Ω
 �

d ~Ω0 d2r
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This equation links all the points on the surface. Assuming that the incoming flux

Φþ ~rS ; ~Ω
� �

for ~Ω:~n � 0 is known, the third form of the Boltzmann equation can

be written:

Φþ rS
!; Ω
! �
¼
ð
V

S ~r0 ; ~Ω0
 �

G ~r0 ; ~Ω0 ; ~rS ; ~Ω
 �

d ~Ω0 d3r0

�
ð
S

ð
~Ω0 :~n�0

~Ω0 :~nΦþ ~rS ; ~Ω
� �

G ~rS ; ~Ω
0 ; ~rS ; ~Ω

 �
d ~Ω0 d2r0

�
ð
S

ð
~Ω0 �~n
0

~Ω0 :~nΦ� ~rS ; ~Ω
� �

G ~rS ; ~Ω
0 ; ~rS ; ~Ω

 �
d ~Ω0 d2r

Φ� ~rS ; ~Ω
� � ¼ ð

V

S ~r0 ; ~Ω0
 �

G ~r0 ; ~Ω0 ; ~rS ; ~Ω
 �

d ~Ω0 d3r0

�
ð
S

ð
~Ω0 �~n�0

~Ω0 :~nΦþ ~rS ; ~Ω
� �

G ~rS ; ~Ω
0 ; ~rS ; ~Ω

 �
d ~Ω0 d2r0

�
ð
S

ð
~Ω0 �~n
0

~Ω0 :~nΦ� ~rS ; ~Ω
� �

G ~rS ; ~Ω
0 ; ~rS ; ~ΩÞd ~Ω0 d2r



8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:
Once the angular fluxes at the surface are known, the flux at any point can be

obtained using Eq. 8.47.

8.4.3 Application to the Milne Problem

Consider a plane geometry. The Milne problem, which will be further discussed in

Chap. 9, consists of studying the outgoing angular flux from a semi-infinite plane

submitted to an exterior radiation (astrophysics problem). The problem, where an

incoming angular flux is imposed, is written using the cosine of the deviation angle

(with respect to the positive x axis), when hitting the plane:

Φþ μð Þ ¼
ð1
0

μ0Φþ μ0ð ÞG μ0; μð Þ dμ0 þ
ð0
�1

μ0Φ� μ0ð ÞG μ0; μð Þ dμ0 forμ > 0

This equation links the outgoing flux Φ� at the interface to the incoming flux.

The Green’s function is decomposed into an uncollided flux (denoted Gunc) and a

multiple-collision flux (denoted Gmc):
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G μ0; μð Þ ¼ Gunc μ0; μð Þ þ Gmc μ0; μð Þ ¼ 1

μ
μ� μ0ð Þ þ Gmc μ0; μð Þ

By substituting this form of the Green’s function into the flux equation, we have,

0 ¼
ð1
0

μ0Φþ μ0ð ÞGmc μ0; μð Þ dμ0 þ
ð0
�1
μ0Φ� μ0ð ÞGmc μ0; μð Þ dμ0 forμ > 0

Φþ μð Þ ¼
ð1
0

μ0Φþ μ0ð ÞGmc μ0; μð Þ dμ0 þ
ð0
�1
μ0Φ� μ0ð ÞGmc μ0; μð Þ dμ0 forμ < 0

8>>>>>>><>>>>>>>:

8.4.4 Second Complementarity Theorem

The linearity of the integro-differential equation is used to define the solution of the

problem with a heterogeneous medium, finite or infinite, as the combination of two

“overlapped” problems. Inside the medium, a convex surface S is designated, such

that it surrounds a volume V, with the flux at the interface beingΦ ~rS ; ~Ω
� �

. Using a

similar line of reasoning as Placzek’s lemma, the flux at any point can be

reconstructed by computing a second problem where this volume V is mentally

placed inside an infinite black body. The sources inside V are retained but a source

of strength Θ �~Ω � ~n� �
Φ ~rS ; ~Ω
� �

is imposed at the surface S only for incoming

directions (~Ω � ~n < 0) withΘ as the Heaviside function. To this second problem, the

solution of a third problem is added. This latter problem is obtained by, this time,

substituting the volume V by a black body and imposing a surface source Θ ~Ω � ~n� �
Φ ~rS ; ~Ω
� �

at S for outgoing directions ~Ω � ~n > 0,

Φ ~r; ~Ω
� � ¼ Φ2 ~r; ~Ω

� �þ Φ3 ~r; ~Ω
� �

The second problem is rigorously identical to that investigated during the proof

of Placzek’s lemma. The same goes for the third problem, to the extent that the fact

the volume is a black body amounts to making the surface S convex with respect to
the outside (no neutron will be able to cross V to appear on the other side)

(Fig. 8.29).

The third form of the Boltzmann equation has the advantage of using only the

angular fluxes at the interfaces: the amount of calculations required for resolution is

therefore not dependent on the size of the media—which can be aptly used during

the meshing of the studied problem.

548 8 The Boltzmann Equation



8.5 Concept of Characteristic Function

In an infinite homogeneous and isotropic medium, there exists a Green’s operator

G ~r � ~r0
 �

which relates a point source S ~r0
 �

to a flux Φ ~rð Þ by the convolution

equation:

Φ ~rð Þ ¼ G ~r � ~r0
 �

S ~r0
 �j k

Let φ(B), g(B) and s(B) be the respective Fourier transforms of the previous

functions. The Fourier transform of a convolution being the product of the Fourier

transforms,42 we can write:

φ Bð Þ ¼ g Bð Þ s Bð Þ

=
V 

S 

Sr( )
Source

Ω,rΦ

n

( )Ω,rΦ S

( )Ω,rΦ S

Fig. 8.29 Second complementarity theorem

42On Fourier transforms, the author recommends (Kaplan 1962).
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Since the medium is isotropic, G ~r � ~r0
 �

depends only on the norm of its

argument, and so does g(B). The characteristic function is then defined as the

inverse Fourier transform of G ~r � ~r0
 �

:

Characteristic function: ψ Bð Þ ¼ 1

g Bð Þ ð8:48Þ

The characteristic function is closely tied to the theory used to describe the

movement of neutrons. Hence, in diffusion theory, the flux from a point source δ ~rð Þ
is given by the Green’s function in spherical coordinates:

Φ rð Þ ¼ 1

4πDr
e�

r
L ¼ G rð Þ

where the Fourier transform in 3D43 is written:

g Bð Þ ¼
ð
4π

G rð Þei~B�~rd3r ¼
ðþ1
0

1

4πDr
e�

r
L

� �
sin Br

Br
4πr2 dr ¼

ðþ1
0

1

DB
e�

r
L sin Br dr

This integral is evaluated by noticing that sinBr is the imaginary part of eiBr:

ðþ1
0

1

DB
e�

r
LeiBrdr¼ 1

DB

e iB�1
Lð Þr

iB�1
L

" #þ1
0

¼ 1

DB

1
1
L�iB

 !
¼ L

DB 1þL2B2
� �þi L2

D 1þL2B2
� �

where

Characteristic function for diffusion: g Bð Þ

¼ L2

D 1þ L2B2
� � ¼ 1

ΣA 1þ L2B2
� � and ψ Bð Þ ¼ ΣA 1þ L2B2

� � ð8:49Þ

The function g(B) can be expanded in terms of a power series in B by expanding:

sin Br ¼ Br � Brð Þ3
3!
þ Brð Þ5

5!
� Brð Þ7

7!
þ . . .

43In 3D, the Fourier transform is given by
Ðþ1
0

f rð Þ sin Br
Br 4πr2dr and in 2D,

Ðþ1
0

f rð ÞJ0 Brð Þ2πrdr.
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to give:

g Bð Þ ¼
ðþ1
0

G rð Þ sin Br

Br
4πr2 dr

¼
ðþ1
0

G rð Þ4πr2 dr � B2

3!

ðþ1
0

r2G rð Þ4πr2 dr þ B4

5!

ðþ1
0

r4G rð Þ4πr2 dr � . . .

If the function G(r) is made dimensionless, it is sufficient to relate the source

(in [n/cm3/s]) to a reaction rate with the same units, for example, the absorption rate:

ΣaΦ ~rð Þ ¼ Gð~r � ~r0 Þ Sð~r0 Þ
j k

The characteristic function is modified accordingly:

g Bð Þ ¼ 1

1þ L2B2
and ψ Bð Þ ¼ 1þ L2B2

This normalization is interesting in so far as:

Ðþ1
0

G rð Þ4πr2 dr ¼ Ðþ1
0

1
4πL2

e�
r
L

r 4πr2dr ¼ Γ 2ð Þ ¼ 1.

The transform of G can then be calculated more precisely:

g Bð Þ ¼ 1� B2

3!
r2
� �þ B2

5!
r4
� �� B4

7!
r6
� �

. . .

where〈rn〉 is the average of the “crow flight” distance travelled by the neutron

raised to the n-th power. For the diffusion operator:

ðþ1
0

r2G rð Þ4πr2 dr ¼
ðþ1
0

r2
1

4πL2
e�

r
L

r
4πr2dr ¼ LnΓ nþ 2ð Þ ¼ Ln nþ 1ð Þ!

Hence, in diffusion: g Bð Þ ¼ 1� L2B2 þ L4B4 � L6B6 . . . ¼ 1
1þL2B2

The already-obtained expression for g(B) is found again through a limited

expansion. We also recover the fact that in diffusion theory, 〈r2〉¼ 6L2, by
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identifying the coefficient of B2. When applied to monoenergetic transport equation

with scattering and isotropic source, it is seen that:

~Ω�grad��!
Φ ~r; ~Ω
� �þΣtΦ ~r; ~Ω

� �¼ð1
0

dE

ð1
0

dE0
ð
~Ω0

d ~Ω0Σs E0!E; ~Ω0!~Ω
 �

Φ ~r;E0; ~Ω0
 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
4πΣS

Ð
4π
Φ ~r; ~Ω0ð Þd ~Ω0

þS ~rð Þ
4π

The associated characteristic function can be found by replacing Φ ~r; ~Ω
� �

by

ϕ ~Ω
� �

ei
~B�~r, and the source by ψ Bð Þei~B�~r. This approach is identical to taking the

Fourier transform of the equation. By construction:ð
4π
ϕ ~Ω
� �

d~Ω ¼ 1

By substituting in the equation, we find:

i~Ω � ~Bϕ ~Ω
� �

ei
~B�~r þ Σtϕ ~Ω

� �
ei

~B�~r ¼ 1

4π
Σse

i~B�~r þ ψ Bð Þei~B�~r
4π

where: ϕ ~Ω
� � ¼ 1

4π Σtþi~Ω�~Bð Þ Σs þ ψ Bð Þð Þ.
The function ψ(B) is obtained by integrating over ~Ω, to give:

ð
4π

ϕ ~Ω
� �

d~Ω¼ 1¼ 1

4π
Σsþψ Bð Þð Þ

ð
4π

1

Σtþ i~Ω �~B� � d~Ω¼ 1

4π
Σsþψ Bð Þð Þ

ð1
�1

2π
1

Σtþ iμBð Þdμ

where μ is the cosine of the angle between ~B and ~Ω, and d~Ω ¼ 2π dμ. Also:

ð1
�1

1

Σtþ iμBð Þdμ¼
1

Σt

ð1
0

1

1þ iμB
Σt

 �þ 1

1� iμB
Σt

 � dμ¼ 1

iB
ln

1þ iμB
Σt

 �
1� iμB

Σt

 �
24 351

0

¼ 2

B
Arc tan μ

B

Σt

� �� �1
0

such that, finally:

Characteristic function in homogeneous isotropic transport:

ψ Bð Þ ¼ B

Arc tan B
Σt

 �� Σs

ð8:50Þ

For a function, G ~rð Þ normalized such that ΣaΦ ~rð Þ ¼ G ~r � ~r0 Þ S ~r0 Þ
 kj

, the

characteristic function is written as follows:
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ψ Bð Þ ¼ B

ΣaArc tan
B
Σt

 �� Σs

Σa

8.6 Fourier Transform of the Boltzmann Equation

8.6.1 Formalism

Let us start again with the classic Boltzmann equation with an angular source:

~Ω �grad��!
Φ ~r; ~Ω
� �þΣtΦ ~r; ~Ω

� �¼ ð1
0

dE

ð1
0

dE0
ð
~Ω0

d ~Ω0Σs E0 !E; ~Ω0 ! ~Ω
 �

Φ ~r;E0; ~Ω0
 �

þS ~r;E; ~Ω
� �

The Fourier transform of the flux applied to an infinite and homogeneous

medium is written:

φ E; ~B; ~Ω
� � � ð

~r

e�i~B�~rΦ ~r;E; ~Ω
� �

d~r

Usually, an arbitrary vector~k is used in the exponential, but it will later be seen,
that in this case, this vector has the meaning of a Laplacian, hence the more suitable

notation of ~B. The inverse Fourier transform yields the flux:

Φ ~r;E; ~Ω
� � ¼ 1

8π3

ð
~B

eþi~B�~rφ E; ~B; ~Ω
� �

d~B

The Fourier transform of the Boltzmann equation is written:

i~B �~r þ Σt

� �
φ E; ~B; ~Ω
� � ¼ ð

4π
d ~Ω0

ð1
0

dE0Σs E0 ! E; ~Ω0 ! ~Ω
 �

φ
�
E0, ~B, ~Ω0

�þ s E; ~B; ~Ω
� �

With: s E; ~B; ~Ω
� � � Ð~re�i~B�~rS ~r;E; ~Ω

� �
d~r.

By using the integration over angle, φ E; ~B
� � � Ð

4πφ E; ~B; ~Ω
� �

d~Ω (it should be

pointed out that the symbol for the variable φ is unchanged to simplify notation,

hence the importance of the dependencies), and the Boltzmann equation can be

integrated over angle:

φ E; ~B
� � ¼ ð

4π

1

i~B �~r þ Σt

� � d~Ω ð1
0

dE0
Σs E

0 ! Eð Þ
4π

φ E0; ~B
� �� �

þ s E; ~B
� �
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With s E; ~B
� � � Ð

4πs E; ~B; ~Ω
� �

d~Ω and an isotropic scattering cross section:

Σs E0 ! E; ~Ω0 ! ~Ω
 �

¼ Σs E
0 ! Eð Þ
4π

By placing the vector ~B ¼ ~Br along the polar axis and using

μ ¼ cos θ � cos ~Ω �~r, we obtain:

Ð
4π

1

4π i~B:~r þ Σt

� � d~Ω ¼
ð2π
0

dφ

ðþπ
�π

dθ
sin θ dθdφ

4π iB cos θ þ Σtð Þ
¼ Ðþ1�1 dμ

2 iBμþ Σtð Þ ¼
1

2iB
ln

Σt þ iB

Σt � iB

� �
¼ 1

B
Arc tan

B

Σt

� �
if we set:

Σt Bð Þ � B

Arc tan B
Σt

 � :
If this expression is expanded in a power series of B, it is found:

Σt Bð Þ � Σt þ 1

3Σt
B2 þ O B4

� �
The Fourier-transformed and angularly-integrated Boltzmann equation can be

written:

Fourier transform of the Boltzmann equation:ð1
0

dE0Σs E
0 ! Eð Þφ E0; ~B

� �� Σt Bð Þφ E; ~B
� �þ s E; ~B

� � ¼ 0 ð8:51Þ

It should be noted that this equation coincides with Boltzmann equation for the

real flux in the particular case where the flux is spatially uniform (no gradient terms)

and where Σt(B) is replaced by the usual cross section, Σt, depending on energy.

Also note that Σt(B¼ 0)¼Σt. Thus, the equation corresponds to that for a spatially

uniform flux, which confirms the Laplacian equivalence of B. It is also interesting to
observe that the use of the expansion of Σt(B) limited to the B2 term in the previous

equation allows us to recover the diffusion equation.

In the general case, the medium is not homogeneous and the sources, as well as

scattering, are not isotropic. If an expansion in spherical harmonics is done for the

flux, the same Eq. 8.51 is obtained, without assuming an isotropic medium, but

retaining only the isotropic part of flux. This is the B0 approximation.
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8.6.2 Resolution Using Green’s Function

Works on the modelling of the Boltzmann equation using Green’s function (for

example in slab geometry for monokinetic neutrons44) appeared in USA at the

beginning of the 1960s. Recall that the Green’s function of the transport problem

corresponds to the flux created by a unit source δ3 ~r � ~r0ð Þδ E� E0ð Þ placed at

energy E0 and at point ~r0 in space. Subject to knowing how to calculate all the

possible Green’s functions, the flux from an arbitrary source is then easily calcu-

lated by integration over space and energy:

Φ E;~rð Þ ¼
ðE0¼1

E0¼0
dE0

ð
~r0

G ~r; ~r0E,E0ð ÞS E0; ~r0ð Þd~r0

Also recall that in Cartesian geometry:
~dr � dxdydz and δ z� z0ð Þ ¼ Ð x0¼þ1x0¼�1 dx0

Ð y0¼þ1
y0¼�1 dy0δ

3 ~r � ~r0ð Þ,
in cylindrical geometry:
~dr � r dr dθdz and δ3 ~r � ~r0ð Þ ¼ 1

r0
δ r � r0ð Þδ θ � θ0ð Þδ z� z0ð Þ,

in spherical geometry:

~dr � r2 dr dΩ and δ3 ~r � ~r0ð Þ ¼ 1

r20
δ r � r0ð Þδ ~Ω� ~Ω0

 �
:

The Fourier transform of the Green’s function g E;E0; ~B; ~r0
� � �Ð

~re
�i~B�~rG ~r; ~r0 ;E;E0ð Þd~r satisfies the equation:ð1

0

dE0Σs E0 ! Eð Þg E0;E0; ~B; ~r0
� ��Σt Bð Þg E;E0; ~B; ~r0

� �þ e�i~B�~r0 δ E�E0ð Þ ¼ 0

Assuming that the solution ϕ E;E0; ~B
�� ��� �

to the integral equation is unique:

Slowing-down=thermalization equation for a point source in energy:ð1
0

dE0Σs E0 ! Eð Þϕ E0;E0; ~B
�� ��� ��Σt Bð Þϕ E;E0; ~B

�� ��� �þ δ E�E0ð Þ ¼ 0 ð8:52Þ

The Fourier transform of the Green’s function can then be calculated as:

g E;E0; ~B; ~r0
� � ¼ e�i~B� ~r0 ϕ E;E0; ~B

�� ��� �
,

44Adnan Ahmad Aswad: A numerical solution to the neutron one-velocity time-independent
Boltzmann equation in slab geometry using a homogeneous Green’s function and its Pn angular
moments, PhD at The University of Florida, 1964.
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which translates to a separation of variables (of space and energy) for some well-

determined values of B � ~B
�� ��. The inverse Fourier transform yields the original

Green’s function:

G ~r; ~r0 ;E;E0ð Þ ¼ 1

8π3

ð
~B

eþi~B� ~r� ~r0ð Þϕ E;E0;Bð Þ ~dB

In Cartesian geometry, we obtain:

G z, z0E;E0ð Þ ¼ 1

2π

ðB¼þ1
B¼�1

eþiB� Z�Z0ð Þϕ E;E0;Bð ÞdB

In an infinite and homogeneous medium, the fact that the Green’s function

depends only on the distance ~r � ~r0k k is seen again.

José Guasp45 is credited with having analyzed in 1970 the mathematical behav-

ior of the solutions ϕ(E,E0,B) of Eq. 8.52 for thermalization theory. For that, a

particular form of the scattering cross section Σs(E
0 !E) has to be chosen, and he

went with Cadilhac “secondary model”, which features interesting semi-

factorization properties but is limited to being able to be applied only to mono-

crystalline media (showing a Bragg cutoff). The secondary model allows us to

simplify Eq. 8.52 into a second-order differential equation involving functions

specific to a considered moderator. The analysis of Eq. 8.52 suggests the decom-

position of its solution ϕ(E,E0,B) into a regular part and a singular part in energy:

45José Guasp: The Green’s function in the secondary model of thermalization, thesis completed in

the science university of Madrid, 1970. Jose Guasp previously obtained an MSc degree in physics

at the University of Madrid (Universitas Complutensis, Espagne) in 1961. As from 1962, he

worked as a researcher at the “Junta de Energia Nuclear” (the Spanish atomic energy commission,

now called CIEMAT) in the theoretical physics field. He became a member of the fusion

department of the same CIEMAT (now called the “Asociacion EURATOM/CIEMAT para
Fusion”). His fields of interest are the transport equation, the optimization of the stellarator

concept, and the heating of neutral particles by lasers. He was on secondment for long periods

(including the whole of 1992) in Japan (NIPS in Nagoya) on topics related to plasma physics.

(Courtesy Guasp)
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ϕ E;E0;Bð Þ ¼ ϕ E;E0;Bð Þ þ A E0;Bð Þδ E� E0ð Þ
By substituting this decomposition in Eq. 8.52, it is easily found that:

A E0;Bð Þ ¼ 1

Σt E0;Bð Þ
It is therefore the last term, which carries the monoenergetic contribution of the

neutrons not having undergone any collisions yet. The Green’s function hence

consists of two terms:

G ~r; ~r0 ;E;E0ð Þ ¼ 1

8π3

ð
~B

eþi~B� ~r� ~r0ð Þϕ E;E0;Bð Þd~B¼

¼ 1

8π3

ð
~B

eþi~B� ~r� ~r0ð Þϕ E;E0;Bð Þd~Bþ 1

8π3

ð
~B

eþi~B� ~r� ~r0ð Þ δ E�E0ð Þ
Σt E0;Bð Þ d

~B

In Cartesian geometry, the singular part is written:

1

2π

ðB¼þ1
B¼�1

eþiB: z�z0ð Þ δ E�E0ð Þ
Σt E0;Bð Þ dB ¼

δ E�E0ð Þ
2π

ðB¼þ1
B¼�1

eþiB: z�z0ð Þ
arctan

B

Σt E0ð Þ
� �
B

dB

¼ δ E�E0ð Þ
2

Ei Σt E0ð Þ: z� z0j jð Þ

where the complex integral exponential function, Ei, has been introduced. The

analysis of Σt E; ~B
� �

shows that there exist two values (poles) of ~B which render it

null, namely ~B ¼ ±iΣt Eð Þ. Moreover, on the purely imaginary axis, the intervals

such that Re ~B
� � ¼ 0 and Im ~B

� � 
 Σt Eð Þ, make Σt E; ~B
� �

and therefore ϕ E,E0;Bð Þ
non-analytical. The regular part ϕ E,E0;Bð Þ of the flux satisfies the equation:ð1

0

dE0Σs E
0 ! Eð Þϕ E0,E0;Bð Þ � Σt E;Bð Þϕ E,E0;Bð Þ þ Σs E0 ! Eð Þ

Σt E0;Bð Þ ¼ 0

This last equation is, strictly speaking, not a Fredholm integral equation (because

of the multiplicative term Σt(E,B)), but it can be expressed in that way through an

intelligent change of variable, which serves to remove the multiplicative term, by

introducing:

ψB Eð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σt E;Bð Þ

p ϕ E;Bð Þffiffiffiffiffiffiffiffiffiffiffi
m Eð Þp

GB E0;Eð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffi
m E0ð Þ
m Eð Þ

s
Σt E

0 ! Eð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σt E

0;Bð ÞΣt E;Bð Þ
p

SB Eð Þ �
Σs E0 ! Eð Þ
Σt E0;Bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m Eð ÞΣt E;Bð Þp
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where m(E) is Maxwell’s function. With these changes of variables, the equation

is then written: ð1
0

dE0GB E0;Eð ÞψB E0ð Þ � ψB Eð Þ þ SB Eð Þ ¼ 0 ð8:53Þ

where GB(E
0,E)¼GB(E,E

0) if B is real or purely imaginary, with a magnitude

smaller than Σt(E), i.e., the usual micro-reversibility property only applicable in

thermalization region. On the other hand, if B is an arbitrary complex number, the

micro-reversibility property is not ensured. Through a rigorous mathematical anal-

ysis, Guasp shows that the regular function ϕ E;E0;Bð Þ is analytic except for a

discrete spectrum of purely imaginary eigenvalues ±i Bk and for a continuous

spectrum of purely imaginary values such that Im ~B
� � 
 Σt Eð Þ.

The eigenvalues of the discrete spectrum are those that allow a non-trivial

solution to Eq. 8.53. Knowing the non-analytical domain of the function

ϕ E;E0;Bð Þ allows the construction of an integration path which excludes the

poles of the complex integral, which enables the evaluation of the integral over

B through the residue theorem. It should be noted that all the eigenvalues of the

problem are on the purely imaginary axis. Guasp also proposed an easily program-

mable variational method to evaluate the discrete eigenvalues. These eigenvalues

correspond to the poles of the Fourier transform of the Green’s function. These

poles introduce, in the solution of the flux, terms which decrease exponentially with

respect to the distance from neutron source (Fig. 8.30).

The work of Guasp is an extremely interesting generalization of the seminal

work of Case and of Millot on the 1D Boltzmann equation, and on the exponential

attenuation with respect to the distance from the source, which will be later

analyzed.

+ iB2

+ iB1

− iB1

− iB2

Im(B)

Σ ( )Ei t+

( )EiΣt−

)(μmP

Fig. 8.30 Representation

of the complex plan and

non-analytic zones of the

flux, as well as a

visualization of the

integration path for

complex integrals (from

Guasp 1970)

558 8 The Boltzmann Equation



8.7 The 1D Transport Equation

8.7.1 General Points

In the particular simple case of 1Dgeometry (suppose the~xaxis inCartesian geometry),

the transport equation can be considerably simplified. This situation, while not neces-

sarily realistic, however helps to properly understand the underlying physics, with an

alleviated notation. It will be assumed that the flux has a rotational symmetry about the

~x axis and that the differential scattering cross section depends only on the scalar

product, ~Ω � ~Ω0, of the angles before and after the collision. It has been seen that this

assumption is not completely exact for crystalline media (Fig. 8.31).

Usually, the cosine of the angle between the vector ~Ωand the~xaxis is denoted by
μ ¼ ~Ω:~x ¼ cos θ. One should be careful to realize that the angle θ does not

correspond to the angle between the directions before and after the collision. In

this geometry, the flux depends only on the x coordinate and μ:

Φ x; μð Þ ¼ n x; μð Þv ¼ 2πΦ x; ~Ω
� �

The integrated flux is given by the equation:

Φ xð Þ �
ðþ1
�1

Φ x; μð Þdμ

In Cartesian geometry, the first term of the transport equation:

~Ω � grad��!
Φ ~r;E; ~Ω
� � ¼ μ

∂Φ
∂x
þ η

∂Φ
∂y
þ ξ

∂Φ
∂z

simplifies to μ∂Φ(x, μ,E)/∂x in the 1D geometry case. The 1D Boltzmann

equation is then written:

Steady-state Boltzmann equation in 1D:

μ
∂Φ x; μ;Eð Þ

∂x
þ Σt x;Eð ÞΦ x; μ;Eð Þ ¼

ð1
0

dE0
ðþ1
�1

ΣS x; μ0 ! μ;E0 ! Eð ÞΦ x; μ0;E0ð Þdμ0 þ S x; μ;Eð Þ

ð8:54Þ

θ

θπdΩ cos2=

x

Ω'.Ω

Ω

'Ω

Fig. 8.31 Angular

representation for the 1D
transport equation
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The limits of the integral of the scattering source term correspond to the limit

values of the cosine, for an integration over the whole space. Integrating Eq. 8.54

over energy leads to the Boltzmann equation with an integrated flux:

μ
∂Φ x; μð Þ

∂x
þ Σt xð ÞΦ x; μð Þ ¼

ðþ1
�1

ΣS x; μ0 ! μð ÞΦ x; μ0ð Þdμ0 þ S x; μð Þ

If the medium is not absorbing, the total cross section is replaced by the

scattering cross section. In the case where the scattering is isotropic, the differential

scattering cross section simplifies:

ΣS x; μ0 ! μð Þ ¼ 1

2
ΣS, 0 xð Þ

We then look for a solution of the flux in the form:

Φ(x, μ)¼ ax+ bμ+ c.

Substituting that into the differential equation, we find:

μaþ Σs xð Þ axþ bμþ cð Þ ¼ 1

2
Σs xð Þ axþ cð Þμ½ �μ¼þ1μ¼�1 ¼ Σs xð Þ axþ cð Þ

which is valid only if b¼ � a/Σs(x). A general solution to a problem without

absorption or source has thus been found:

Angular flux in a non-absorbing medium without source:

Φ x; μð Þ ¼ a x� μ

Σs xð Þ
� �

þ c ð8:55Þ

where parameters a and c are constants. Since the flux has to be positive, this

expression is physically meaningful only for a set of coefficients satisfying that

condition. Regarding the integrated flux, it is:

Φ xð Þ ¼
ðþ1
�1

Φ x; μð Þdμ ¼ 2 axþ cð Þ

It is one of the very rare situations where an analytical expression can be found for

the angular flux of the Boltzmann equation. Indeed, even the problem of neutron

diffusion in an infinite medium in plane geometry, with constant cross sections and

completely elastic collisions, still does not have an exact analytical solution yet but

only asymptotic solutions valid for some range of values of distance and energy46—

while the restrictive assumptions might have led to believe that the problem is simple.

46Dan G. Cacuci: On the slowing down and transport of neutrons in an infinite medium, Nuclear
Science and Engineering 108, p50–68 (1991).
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In spherical geometry, care should be taken to not confuse the angle θ of collision

previously defined with the angle θ usually used for the second spherical coordinate

(in (r , θ ,φ)). The deviation angle here is represented by the angle χ between the

vector ~r and the vector ~Ω. Since the notation θ is retained for the co-latitude in

spherical coordinates, the cosine of the collision angle is therefore μ¼ cos χ. If we
consider a neutron going in a straight line along the path ‘~Ω, the Boltzmann equation

involves the derivative with respect to the variable ‘ along the neutron path:

∂Φ ~r; ~Ω
� �
∂‘

þΣt ~rð ÞΦ ~r; ~Ω
� �¼ ðΣS ~r; ~Ω0 ! ~Ω

� �
Φ ~r; ~Ω0
� �

d~Ω0 þ S ~r; ~Ω
� �¼Q ~r; ~Ω

� �
It therefore seems that d

d‘ ¼ ~Ω:grad
��!

.

For spherical coordinates the flux gradient is thus given by Lewis and Miller

(1993, p29):

∂Φ
∂‘
¼ ∂Φ

∂r
dr

ds
þ ∂Φ

∂μ
dμ

ds
¼ ∂Φ

∂r
μþ ∂Φ

∂μ
dμ

dχ

dχ

ds

Noticing that, by construction, (Fig. 8.32),
dr

d‘
¼ μ ¼ cos χ and sin χ ¼ �rdχ

d‘
, we

have:

dμ

d‘
¼ 1� μ2

r

The transport equation in one-dimensional spherical geometry is finally written:

Fig. 8.32 Spherical

coordinates used for the

Boltzmann equation
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Boltzmann equation in 1D spherical geometry:

μ
∂Φ ~r; μð Þ

∂r
þ 1� μ2

r

� �
∂Φ ~r; μð Þ

∂μ
Σt ~rð ÞΦ ~r; ~Ω

� �
¼
ð
ΣS ~r; ~Ω0 ! ~Ω
� �

Φ ~r; ~Ω0
� �

d~Ω0 þ S ~r; ~Ω
� � ¼ Q ~r; ~Ω

� � ð8:56Þ

Some authors at times write the gradient term in the form termed conservative,
i.e.:

~Ω � grad��!
Φ ~r; μð Þ ¼ μ

r2
∂r2Φ ~r; μð Þ

∂r
þ
∂ 1�μ2

r

 �
Φ ~r; μð Þ

∂μ

If higher dimensional spherical geometries are considered, the equations become

substantially more complex and involve the different angles in Fig. 8.32. Lewis and

Miller (1993), in particular, gives the analytical expressions for the gradient term in

different cylindrical and spherical configurations.

8.7.2 Lafore and Millot Method, Case Method

8.7.2.1 Historical Overview

The homogeneous 1D transport equation is written

μ
∂Φ x; μð Þ
Σt∂x

þ Φ x; μð Þ ¼ c

2

ðþ1
�1

Φ x; μ0ð Þ dμ0

where parameter c is the average number of secondary neutrons per collision:

c � Σs þ vΣf

Σt

This equation will be rewritten using a change of variable for space, namely,

x¼Σtx (which is equivalent to considering distance in transport mean free paths):

μ
∂Φ x; μð Þ

∂x
þ Φ x; μð Þ ¼ c

2

ðþ1
�1

Φ x; μ0ð Þ dμ0

562 8 The Boltzmann Equation



It is thanks to Lafore and Millot,47 as from early as 1958,48

and probably independently thanks to Kenneth M. Case, as from

47Pierre Lafore (1918–), was an engineer at the CEA who proposed the thesis subject of and

supervised Jean-Paul Millot. Born on the 14th of August 1918 and a telecommunications engineer,

he was imprisoned for five years during the Second World War. He then worked for seven years as

Civil Servant of the State in the Corps (Administration) of Telecommunications in Poitiers, before

applying for a position at the CEA, where he was employed on secondment. He worked mainly in

Fontenay in the radioprotection field, and studied for a long time the diffusion of neutron in

different materials (concrete, graphite, etc.).

(Courtesy Lafore)

Jean-Paul Millot (1934–2001) graduated from the “Ecole Normale Supérieure” in 1953 where

he was the student of Professor Schwartz, whose works in distribution theory he used in his thesis.

After an extremely innovative State Ph.D. on solving the Boltzmann equation in 1962 (Etude de la
diffusion des neutrons rapides, Section efficace de déplacement [On the study of scattering of fast
neutrons,]) at Fontenay aux Roses (on the suburbs of Paris—site where the first French reactor Zoé

was built), he worked at the CEA in Cadarache (France) where he would describe the CABRI

reactor and conceive the PHEBUS reactor. He would then move to Framatome in 1970. Jean-Paul

Millot spent the majority of his career in Framatome where he was Head of the Neutronics

Department and then Head of the Reactor Core Department around 1980. A very innovative

person, he is credited with the first designs of Framatome outside the bounds of the Westinghouse

license. In particular, he is an advocate of control rod mode “G” for “grey”, and also of algorithms

for protection chains of P4 and N4 designs. He then became Head of the High-Converting Spectral

Shift Reactor (Réacteur Convertible �a Variation de Spectre (RCVS)) project—a novel PWR

concept without boron where the control was only through the control rods.

(Courtesy Millot family)
48P. Lafore, J.P. Millot: Etude de l’équation de Boltzmann �a une dimension [On the study of the 1D
Boltzmann equation], Industries Atomiques (Atomic Industries) n�9/10 (1958).

8.7 The 1D Transport Equation 563



1960,49 that the idea of looking for solutions to the 1D case in the form below

arose:

Φ x; μð Þ ¼ Φν μð Þe�x
ν in Case notations, which are usually used nowadays.

This separation of variables involving an exponential term is suggested by the

translation invariance of the homogeneous 1D transport equation. Lafore and Millot

instead use, since 1958, the notation Φ(x, μ)¼ e�αxg(α, μ) where α � 1
ν and show

that the functions g(α, μ) have the form:

g α; μð Þ ¼ Σs

Σt � αμ
þ K αð Þδ Σt � αμð Þ

They prove that these functions are orthogonal when they are associated with the

product:

ðþ1
�1

μg1 α1; μð Þg2 α2; μð Þdμ ¼ δ α1 � α2ð ÞΘ α1ð Þ

where Θ(α1) is a function computed by Millot for the discrete-value solutions, α0,
of the dispersion equation:

Θ α0ð Þ ¼ Σ2
s

α0

Σt

Σ2
t � α20

� 1

Σs

� �
and for the continuous spectrum:

Θ αð Þ ¼ Σ2
s

α
π2 � α

Σs
þ ln

Σt þ α

Σt � α

���� ����� �� �2
" #

P. Lafore, J.P. Millot: Etude de la diffusion isotrope des neutrons [On the study of isotropic
scattering of neutrons], Industries Atomiques [Atomic Industries] n�5/6 (1959). These two

articles, maybe heralding the works of K. M. Case, were published in French in a little-known

Swiss vulgarization magazine.
49Kenneth M. Case, Elementary solutions of the transport equation and their applications, Annals
of Physics, Vol. 9 pp1–23, (1960).
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A particularly seminal point in 1962, year of the completion of Millot’s thesis, is
the demonstration of the completeness of the basis set of functions g(α, μ) with
respect to sufficiently regular functions, as is shown by the use of the notation:

f μð Þ ¼
X

g α; μð ÞA αð Þ

where∑ is an integral (
Ð
α
dα) for |α|>Σt and a discrete sum for the two real values

±α0.
In this article of 1960, Case refers to the works50 of N. G. Van Kampen51 who

studied the oscillations of electron plasmas in steady-state. In this type of problem,

Anatoly Vlasov (1908–1975) showed that stationary plane waves could be solutions

to the linearized transport equation, if the wave vector κ and the frequency ω were

the solution of a dispersion equation of the form (with f0(v) the speed distribution at
equilibrium):

4π e2

m
n0
κ

k

ð
∂f 0
∂v

dv

κv� ω
¼ 1

50N.G. Van Kampen: On the theory of stationary waves in plasmas, Physica Vol. XXI, pp949–963
(1955).
51Nicolass “Nico” Godfried Van Kampen (1921–2013). Dutch physicist. He studied theoretical

physics at Leiden University under the supervision of Hendrik Krames. His thesis in 1952 dealt

with the “contribution of scattering of light to quantum physics”. He then worked at Institute for

Theoretical Physics at Utrecht University. He is the author of the book “Stochastic processes in
physics and chemistry” (1981), which is considered to be the reference in the field.

(The Marguet collection, Photograph unknown)
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This equation is of the same form as the dispersion equation in neutronics. It was

Van Kampen who, in 1955, suggested evaluating this integral using the Cauchy

principal value method, and expressing the solution with an expansion using a

continuous spectrum of functions, contrary to the Lev Landau’s52 approach, who
considered the problem using a Laplace transform. Case was very up-to-date with

this work since he himself studied the problem of plasma oscillations in an article in

1959,53 which shows that the approaches of Van Kampen and Landau are

equivalent.

52Lev Davidovitch Landau (1908–1968). Russian physicist. After studying at Petrograd Univer-

sity, he started a thesis in 1924 at Leningrad State University (which he did not defend!). The

Soviet government authorized him in 1929 to go work in European laboratories (G€ottingen,
Leipzig, Copenhague, Cambridge and Zurich). In 1938, he is imprisoned for a year on the charge

of being a spy for the Nazis (!). In 1945, he joined the Science Academy of the USSR without the

support of the party because his Jewish origins made him suspicious in the eyes of the communist

power in place. In 1949, he started a substantial book with Lifchitz. He was awarded the Nobel

Prize in 1962 for his work on condensed states of matter. It was during that year that a very serious

car accident put him in a deep coma. While he did come out of it, it did destroy his intellectual

abilities.

(Public domain)
53Kenneth M. Case: Plasma oscillations, Annals of Physics, Vol. 9, pp349–364 (1959).
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8.7.2.2 Theory

By introducing the form of the flux in the equation, we find:

ν� μð ÞΦν μð Þ ¼ cν

2

ðþ1
�1

Φν μ0ð Þ dμ0

Dividing by (ν� μ) , when it is valid (i.e., ν 6¼ μ ), and then integrating over

μ2 [�1, 1], the dispersion equation (8.46) is recovered, then written with K. M.

Case’s notation in the form:

Dispersion equation with Case notations:

A νð Þ ¼ 1� cν

2

þ
�1;þ1½ �

1

ν� μ
dμ ¼ 1� cν

2
In

νþ 1

ν� 1

� �
¼ 0 withν ¼ Σt

B
ð8:57Þ

The integral symbol
Þ

�1;þ1½ �
represents an integration over [�1, +1] in the sense of

Cauchy’s principle value, to take into account the case where ν2 [�1, +1]. There
are solutions for two discrete eigenvalues ±ν0 (of opposite sign), which are solu-

tions to the dispersion equation, as we have seen previously, and whose related

normalized eigenvectors are given by:

Φ±
0 μð Þ ¼ ±

cν0
2

1

±ν0 � μð Þ

However, Case, like Lafore and Millot, noticed that there were also as solution

all functions for any ν2 [�1, 1], constructed in the form:

Continuous spectrum of Case’s eigenvectors:

Φν μð Þ ¼ cν

2

1

ν� μð Þ þ λ νð Þδ ν� μð Þ ð8:58Þ

with λ(ν)� (A+(ν) +A�(ν))/2 and A± νð Þ � lim
ε!0

A ν±iεð Þð Þ, i.e., the Cauchy defi-

nition of the principal value. The distribution δ(ν� μ) is defined by:
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þ
�1;þ1½ �

δ ν� μð ÞF μð Þdμ ¼ F νð Þ if ν 2 �1;þ1½ �
0 otherwise

	

Case named these functions the continuous spectrum of eigenvectors, much to

mathematicians’54 chagrin. These eigenvectors are arbitrarily normalized to

1, which can be verified by evaluating:

ðþ1
�1

Φν μð Þdμ ¼ cν

2

þ
�1;þ1½ �

1

ν� μð Þ dμþ λ νð Þ ¼ 1

using the very definition of λ(ν). The functionsΦν μð Þe�x
ν are, by construction, all

solutions of the homogeneous transport equations. Finally, Case gives the general

solution as a combination of three solutions: the two discrete ones and the one from

the continuous spectrum:

54Mathematicians instead talk of the discrete spectrum of a linear operator (Dowson 1978), which

meant that Case’s theory was looked upon with caution in the beginning. Paul Zweifel, probably

due to an unfamiliarity with the works of Lafore and Millot of 1958, remarked that it was only in

1988 that Case’s approach was finally rigorously mathematically validated. The works of Paul

Zweifel in neutronics are authoritative. After a Ph.D. at Duke University in 1954, he worked in the

theoretical division of Knolls Laboratories. In 1958, he started teaching at the University of

Michigan—which he would do for ten years. It is also where he would work with Kenneth

Case, with whom, he would write the very famous “Linear Transport Theory”, one of the most

important texts in neutronics. In 1968, he became a Professor at Virginia Tech, where he would

remain until his retirement in 1996.

Paul Zweifel
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Φ x; μð Þ ¼ aþ0 Φ
þ
0 μð Þe� x

ν0 þ a�0 Φ
�
0 μð Þeþ x

ν0 þ
ðþ1
�1

f νð ÞΦν μð Þe�x
νdν

The constants aþ0 , a
�
0 and the function f(ν) are defined through the boundary

conditions. We will be coming back to Case’s method in more detail, in the albedo

problem in the next chapter. We can generalize this approach to a lattice of

m homogeneous plates by taking into account the anisotropy.55 The 1D Boltzmann

equation accounting for anisotropy will be written by expanding the scattering and

fission terms with Legendre polynomials—method which will be described in detail

in Chap. 9:

μ
∂Φ x; μð Þ

∂x
þ Φ x; μð Þ ¼ c

2

Xn
l¼0

blPl μð Þ
ðþ1
�1

Pl μ
0ð ÞΦ x; μ0ð Þ dμ0

Paul Zweifel and the reference text on neutron transport (The Marguet collection)
55J. Kenneth Shultis: A new method for the calculation of the emergent distributions for the
anisotropic slab albedo problem, Journal of Computational Physics, Vol. 11, n�1, 109–126 (1973).
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The solution is written:

Φ x; μð Þ ¼
Xm
j¼1

aþj Φ
þ
j μð Þe� x

νj þ
Xm
j¼1

a�j Φ
�
j μð Þeþ x

νj þ
ðþ1
�1

f νð ÞΦν μð Þe�x
νdν

where the coefficients aþj , a
�
j and f(ν) depend on the boundary conditions and

where the m pairs of eigenvalues ±νj (1�m� n+ 1, |νj|> 1) are the solutions to the

dispersion equation:

1� cν

2

þ
�1;þ1½ �

D μ; μð Þ
ν� μð Þ dμ ¼ 1 with: D ν; μð Þ ¼

Xn
l¼0

bl hl νð ÞPl μð Þ

where coefficients hl(μ) are given by the iteration equation:

lþ 1ð Þhlþ1 μð Þ � ν 2lþ 1� blcð Þhl μð Þ þ lhl�1 μð Þ with h0 μð Þ � 1

The discrete eigenvectors are given by:

Φ±
j μð Þ ¼ cνj

2

D νj; ±μ
� �
νj � μ
� � j ¼ 1, � � �,m

On the other hand, the continuous spectrum eigenvectors are given by:

Φν μð Þ ¼ cν

2

D ν; μð Þ
ν� μð Þ þ λ νð Þδ ν� μð Þ with: λ νð Þ ¼ 1� cν

2

þ
�1;þ1½ �

D μ; μð Þ
ν� μð Þ dμ

The continuous spectrum and discrete eigenvectors satisfy the orthogonality

property:

ðþ1
�1

μΦν μð ÞΦν0 μð Þdμ¼ v λ2 νð Þ þ cπν
2
D ν;νð Þ� �2 �

for ν¼ ν0

0 if ν 6¼ ν
0
forν 2 �1;þ1½ �, ν0 2 �1;þ1½ �, or for ±νj

(

and:

ðþ1
�1

μ Φ±
j μð Þ

 �2
dμ ¼ ±

cν2j
2

ðþ1
�1

D2 νj; ν
� �

νj � μ
� �2

570 8 The Boltzmann Equation



These orthogonality relations are useful for finding the coefficients aþj , a
�
j and

f(ν), depending on the type of problem considered (Shultis evaluated these in the

case of collimated or pencil beam of particles for Fredholm’s56 equation with

c� 1). Garcia and Siewert generalized57 this approach in multi-group for a transfer,

in the form of a triangular matrix. Finally in 1992, Garis, Pazsit and Sahni

developed58 the complete solution of the plane critical monokinetic problem with

two regions c1 and c2. They showed that the spectrum of the eigenvalues consisted

of continuous lines in the plane c1 c2, which never coupled with each other. We

show that, for some discrete values of c1> 1, c2 diverges to �1.

8.7.3 Perovich Method

In 1997, S. Perovich proposed59 an elegant solution, completely analytical in the

case c2 [0, 1], by solving the transcendental equation:

56Ivar Fredholm (1886–1927) was a Swedish mathematician who distinguished himself in the

study of integral equations and the use of spectral theory. He defended his thesis in 1898 at

Uppsala University. He studied in France the Dirichlet problem, for which he put forward a new

integral approach. Dead before the discovery of the neutron, his work in applied mathematics

remains very useful in this branch of physics.

(Public domain)
57R.D.M. Garcia, C.E. Siewert:Mulstislab multi-group transport theory with Lth order anisotropic
scattering, Journal of Computational Physics, Vol. 50, n�1, 181–192 (1983).
58N.S. Garis, I. Pazsit, D.C. Sahni: Generalization of the eigenvalue problem of the one-speed
neutron transport equation in two-region systems, Progress in nuclear energy, Vol. 27, n�4,
305–334 (1992).
59S.M. Perovich: Concerning the analytical solution of the dispersion equation in the linear
transport theory, Transport Theory and Statistical Physics, 26 (6), 705–725 (1997).
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Z ¼ e f Z � 1

e f Z þ 1
with Z ¼ 1

ν
and f ¼ 2

c

whose unique solution is given in the form:

Z0 ¼ 1
f Log

T t�fð Þ
T tð Þ

 �
for t> t0, f2 [2,1[ and where:

T tð Þ ¼ N tð Þ þ dN tð Þ
dt

� �
et

N tð Þ ¼ XE t

f

h i
n¼0
�1ð Þne�nf

Xk¼n
k¼0

2k t� nfð Þkn!
k!ð Þ2 n� kð Þ! for t > 0

0 for t < 0

8>><>>:

8>>>>>>><>>>>>>>:
The solutions ν±0 of Case’s dispersion equation are then written:

ν±0 ¼ ±
1

1
f In

T t�fð Þ
T tð Þ

 �
These results, stated here without proof, show that the solution, while analytical,

remains very complex.

8.8 Asymptotic Solution for Diffusion

(Neutron thermalization 1962)

8.8.1 Exponential Relaxation of the Flux, Far from
the Source

In the case of a poorly-absorbing medium and in a region far away from sources,

there exists an asymptotic solution to the monokinetic transport equation, which

satisfies a diffusion equation. In an infinite medium, the asymptotic flux solution is

the solution to the transport equation, so far as, very far away from the source, it can

be expected that the neutrons would have all undergone several collisions (Bekurts
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and Wirtz 1964, p89). Consider the monoenergetic transport equation in a homo-

geneous isotropic medium without source terms:

~Ω:grad
���!

Φ ~r; ~Ω
� �þ Σt Φ ~r; ~Ω

� � ¼ 1

4π
ΣS

ð
4π
Φ ~r; ~Ω

0
 �

d~Ω
0

We will look for a solutionΦ ~r; ~Ω
� �

in the formϕ ~Ω
� �

e�κ r (Barjon 1993). 1/κ is,
in fact, the thermal diffusion length—and is also going to be the eigenvalue of the

transport equation, corresponding to the eigenvectorϕ ~Ω
� �

e�κ r (Nelkin in (Neutron
thermalization, 1962 pRF-5)). The perfect analogy with the Fourier transform seen

previously should be noted. By introducing this form in the transport equation

(one-dimensional to simplify calculations), and using the cosine, μ, of the collision
angle, we can write the implicit equation which governs the behavior of the angular

part of the flux:

�μκ þ Σtð Þφ μð Þ ¼ Σs

2

ðþ1
�1

φ μ0ð Þdμ0

φ(μ) can then be integrated over [�1, +1] to obtain an equation independent of

the flux:

ðþ1
�1

φ μð Þdμ ¼ Σs

2

ðþ1
�1

1

�μκ þ Σtð Þ dμ
ðþ1
�1

φ μ0ð Þdμ0

whose only solution is that the constant κ satisfies the transcendental equation:

ðþ1
�1

1

�μκ þ Σtð Þ dμ ¼
2

Σs
or : ln

1þ κ
Σt

1� κ
Σt

 !
¼ 2κ

Σs
ð8:59Þ

The linear attenuation coefficient κ varies continuously, from Σt, when there is

no scattering but only absorption, i.e., Σt¼Σa, to zero when Σa¼ 0. The case

κ< 0 does not have any physical meaning since the flux would tend to infinity.

As for the function φ(μ), it is defined up to a multiplicative constant, by:

φ μð Þ ¼ Σs

Σt � μκð Þ

Finally, the angular flux is given by:

Φ x; μð Þ ¼ Σs

4π Σt � μκð Þ α e�κ x
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The coefficient 4π has been introduced so as to satisfy the total flux equation,

integrated over 4π steradians:

Φ xð Þ ¼ 2π

ðþ1
�1

Φ x; μð Þdμ ¼ α e�κ x

which satisfies the diffusion equation: ΔΦ(x)� κ2Φ(x)¼ 0. On the other hand,

we can show that the neutron current obeys Fick’s law with D¼Σa/κ
2:

J xð Þ ¼ 2π

ðþ1
�1

Φ x; μð Þμdμ ¼ Σa

κ
αe�κ x ¼ �D grad

��!
Φ xð Þ

��� ���
In case where κ/Σt is small compared to 1 (i.e. Σa small compared to Σs), we can

find the value of κ by expanding Eq. 8.59 using a power series:

ln
1þ κ

Σt

1� κ
Σt

 !
¼ 2

κ

Σt
þ 1

3

κ

Σt

� �3

þ 1

5

κ

Σt

� �5

þ . . .

 !
¼ 2κ

Σs

leading to: 1þ 1
3

κ
Σt

 �2
þ 1

5
κ
Σt

 �4
þ . . . ¼ Σt

Σs
¼ 1þ Σa

Σs

which will be expanded up to a quartic function in κ/Σt:
κ
Σt

 �4
þ

5
3

κ
Σt

 �2
� 5 Σa

Σs
¼ 0.

which has as only positive root: κ
Σt

 �2
¼
�5

3
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
3ð Þ2�20ΣaΣs

q
2

� 3Σa

Σs
1� 9

5
Σa

Σs

 �
Hence, by using Σt¼Σa+Σs:

κ2 � 3
ΣaΣ2

t

Σt � Σa
1� 9

5

Σa

Σt � Σa

� �
� 3ΣaΣt 1� 4

5

Σa

Σt
� 13

5

Σa

Σt

� �2

þ O
Σa

Σt

� �3
 !

The diffusion coefficient can thus be obtained (Bonilla 1957, p186; Etherington

1957, p6–35):

D ¼ Σa

κ2
� 1

3Σt 1� 4
5
Σa

Σt
� 13

5
Σa

Σt

 �2
þ . . .

� �
If a P1 expansion of the scattering cross section is considered, it yields:

Σs μ0ð Þ ¼
1

2

Xl¼1
l¼0

2lþ 1ð ÞΣs, l Pl μ0ð Þ ¼
1

2
Σs, 0 þ 3

2
μ0Σs, 1
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with Σs, 1 ¼
Ðþ1
�1

P1 μ0ð ÞΣs μ0ð Þdμ0 ¼
Ðþ1
�1

μ0Σs μ0ð Þdμ0 ¼ μ0 Σs, 0. Using the addi-

tion theorem of Legendre polynomials, and realizing that the angular integration of

the complementary term having the associated Legendre polynomials is zero, we

have:

ð
4π

Σs
~Ω
0
:~Ω

 �
Φ ~Ω

0
 �

d~Ω
0 ¼

ðþ1
�1

1

2
Σs, 0 þ 3

2
μμ0Σs, 1

� �
Φ μ0ð Þdμ0

¼ 1

2
Σs, 0

ðþ1
�1
Φ μ0ð Þdμ0 þ 3

2
μ0 μΣs, 0

ðþ1
�1
μ0Φ μ0ð Þdμ0

Substituting this result in the transport equation and carrying out the same

procedure as above for the isotropic approximation P0, the implicit equation

which determines κ is found:

�μκ þ Σtð Þφ μð Þ ¼ Σs

2

ðþ1
�1

φ μ0ð Þdμ0 þ 3μ0Σs

2
μ

ðþ1
�1

μ0φ μ0ð Þdμ0 ð8:60Þ

Analyzing this equation, we observe that an angular flux of the form:

φ μð Þ ¼ α0 þ α1μ

Σt � μκð Þ

is the solution. Dividing by (Σt� μκ) and then integrating over [�1, +1], we find:

ðþ1
�1

φ μð Þdμ¼
ðþ1
�1

1

Σt�μκð Þdμ
Σs

2

ðþ1
�1

φ μ0ð Þdμ0 þ 3μ0Σs

2

ðþ1
�1

μ

Σt�μκð Þdμ
ðþ1
�1

μ0φ μ0ð Þdμ0

from which:
1

κ
ln

1þ κ
Σt

1� κ
Σt

 !
þ 3μ0

Σt

κ2
ln

1þ κ
Σt

1� κ
Σt

 !
� 2

κ

 ! Ðþ1
�1

μ0φ μ0ð Þdμ0

Ðþ1
�1

φ μ0ð Þdμ0
¼ 2

Σs

ð8:61Þ
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This equation, homogeneous over centimeters, differs from Eq. 8.59 by an

anisotropy term. Substituting the fluxφ(μ)¼ (α0 + α1μ)/(Σt� μκ) in Eq. 8.60, after

identifying the constant terms and the terms in μ the system of transcendental

equations which links κ to Σt and Σs is written:

α0 ¼ Σs

2
α0

ðþ1
�1

1

Σt � μκð Þdμþ
Σs

2
α1

ðþ1
�1

μ

Σt � μκð Þdμ

α1 ¼ 3μ0Σs

2
α0

ðþ1
�1

μ

Σt � μκð Þdμþ
3μ0Σs

2
α1

ðþ1
�1

μ2

Σt � μκð Þdμ

8>>>>>>><>>>>>>>:
It can be seen that, by defining K¼ κ/Σt, a set of integral functions containing μ

to the nth power multiplied by a Legendre polynomial is obtained:

Rational integral of Pn: IPl,n Kð Þ �
ðþ1
�1

Pl μð Þ μn

1� μKð Þ dμ ð8:62Þ

Using this definition, the system is written:

α0
α1
¼ Σs

2Σt

α0
α1
IP0,0 Kð Þ þ IP0,1 Kð Þ

� �
1 ¼ 3μ0Σs

2Σt

α0
α1
IP0,1 Kð Þ þ IP0,2 Kð Þ

� �
8>><>>:

By evaluating the ratio α0/α1 using the first equation and substituting it in the

second, a transcendental equation in K is obtained:

2

3μ0Σs
¼ 1

Σt

Σs

2Σt � Σs IP0,0 Kð Þ IP0,1 Kð Þ½ �2 þ IP0,2 Kð Þ
� �

The IPO , n(K) integrals can then be computed analytically, as well as their

limited expansions in a power series, assuming K< < 1:

IP0,0 Kð Þ ¼ 1

K
ln

1þ K

1� K

� �
¼ 2 1þ K2

3
þ K4

5
þ K6

7
þ O K8

� �� �
IP0,1 Kð Þ ¼ 1

K2
ln

1þ K

1� K

� �
� 2

K
¼ 2

K

3
þ K3

5
þ K5

7
þ O K7

� �� �
IP0,2 Kð Þ ¼ 1

K3
ln

1þ K

1� K

� �
� 2

K2
¼ 2

1

3
þ K2

5
þ K4

7
þ O K6

� �� �
¼ IP0,1 Kð Þ

K

8>>>>>>><>>>>>>>:
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By setting: δ¼Σa/Σt and substituting the limited expansion in the transcendental

equation, the following is found:

1

3μ0
¼

1� δð Þ2 K
3
þ K3

5
þ K5

7
þO K7

� � �2
1� 1� δð Þ 1þ K2

3
þ K4

5
þ K6

7
þO K8

� � � þ 1� δð Þ 1

3
þK2

5
þK4

7
þO K6

� �� �

It is interesting to note that this equation is an equation in K2 which can be

transformed by setting β¼K2/3 and retaining only the terms in β2, i.e.:

1 ¼ μ0
1� δð Þ2 β þ 18

5
β2

� �
δþ β δ� 1ð Þ þ 9

5
β2 δ� 1ð Þ þ μ0 1� δð Þ 1þ 9

5
β þ 27

7
β2

� �

which will finally be written in the form of a quadratic equation:

1þ 15

7
μ0δ

� �
β2 þ 5

9
þ μ0δ

� �
β þ 5δ

9
μ0 �

1

1� δ

� �
¼ 0

We notice that, with the other coefficients positive, the constant is negative for

small x. The only positive solution is hence given by:

βþ ¼
� 5

9
þ μ0δ

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
9
þ μ0δ

� �2 � 1þ 15

7
μ0δ

� �
5δ

9
μ0 �

1

1� δ

� �s

2 1þ 15

7
μ0δ

� �

� δ 1� μ0 þ μ0δð Þ
1� δð Þ 1þ 9

5
μ0δ

� � 1�
δ 1� μ0 þ μ0δð Þ 1þ 15

7
μ0δ

� �
5

9
1� δð Þ 1þ 9

5
μ0δ

� �2
þ . . .

26664
37775

Recalling that β ¼ K2

3
¼ κ2

3Σ2
t
¼ Σa

3Σ2
t D
¼ δ

3ΣtD
, we can calculate the diffusion coef-

ficient obtained through the limited P1 expansion of the scattering cross section:

D � 1

3Σt 1� μ0 þ μ0δð Þ 1� δð Þ 1þ 9

5
μ0δ

� �
which we will compare to the usual expression for the diffusion coefficient in the

P1 approximation of the flux and the scattering cross section:

D ¼ 1

3 Σt � Σs, 1ð Þ ¼
1

3 Σt � μ0Σs, 0ð Þ ¼
1

3Σt 1� μ0 þ μ0δð Þ
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This result is found in a different form in (Bekurts and Wirtz 1964, p91). It is
noted that the asymptotic fluxΦ(x, μ)¼ e�κ x(α0 + α1μ)/(Σt� μκ) indeed satisfies a

diffusion equation when the diffusion coefficient has the value:

D ¼ Σa

3Σ2
t β
¼ 1

3 Σt � Σs, 1ð Þ

This approach can be generalized if the scattering cross section is expanded to

the nth order by writing the flux in the form:

Φ x; μð Þ ¼ φ μð Þe�κ x ¼

Xn
j¼0

αiμ
i

Σt � μκð Þ e
�κ x

Σs x,μ0ð Þ ¼
Xn
l¼0

2lþ 1

2
Σs, l Pl μ0ð Þ

8>>>>>><>>>>>>:
Equation 8.60 is then generalized by using the addition theorem of Legendre

polynomials already discussed previously:

Xn
j¼0

αiμ
i ¼

Xn
l¼0

2lþ 1

2
Σs, l Pl μð Þ

ðþ1
�1

Pl μ
0ð Þ

Pn
j¼0

αiμ 0i

Σt � μ0κð Þ dμ
0

By introducing the integral functions IPl , j(K), this equation can be written as:

Xn
j¼0

αiμ
i ¼

Xn
l¼0

2lþ 1

2

Σs, l

Σt
Pl μð Þ

Xn
j¼0

αi IPl, j Kð Þ

Multiplying each term by Pk(μ) and integrating over [�1, +1] as described in the
methodology developed in Pn theory, n + 1 equations are obtained:

Xn
j¼0

αi

ðþ1
�1

Pk μð Þμi dμ ¼
Xn
j¼0

αi IPk, j 0ð Þ

¼
Xn
l¼0

2lþ 1

2

Σs, l

Σt

ðþ1
�1

Pk μð ÞPl μð Þdμ
Xn
j¼0

αi IPl, j Kð Þ
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Using the orthogonality property of Legendre polynomials, a system of linear

equations in terms of the flux coefficients is obtained:

Xn
j¼0

αi IPk, j 0ð Þ � Σs,k

Σt
IPk, j Kð Þ

� �
¼ 0 k ¼ 0, . . . , n

for which there exists a non-trivial solution if the determinant of the system is

zero. The integral functions IPk , j(K) possess the iterative properties associated with
Legendre polynomials:

IPk, j Kð Þ ¼ k þ 1

2k þ 1
IPkþ1, j�1 Kð Þ þ k

2k þ 1
IPk�1, j�1 Kð Þ

On the other hand, we can calculate IP0 , j(K) from integrals of lower orders by

noticing that:

�KjIP0, j Kð Þ ¼ �
ðþ1
�1

μKð Þj
1� μKð Þdμ ¼

ðþ1
�1

1� μKð Þj
1� μKð Þ dμ�

ðþ1
�1

1

1� μKð Þdμ

¼
Xj�1
k¼0

ðþ1
�1

μKð Þkdμ� IP0,0 Kð Þ ¼
Xj�1
k¼0

1� �1ð Þkþ1
 �

k þ 1
Kk � IP0,0 Kð Þ

leading to: IP0, j Kð Þ ¼ 1
Kj IP0,0 Kð Þ �Pj�1

k¼0

1� �1ð Þkþ1ð Þ
kþ1 Kk�j

Also, using the parity properties of the polynomials Pk(μ) μ
j, it can be said that:

IPk, j 0ð Þ ¼
ðþ1
�1

Pk μð Þμj dμ ¼ 0 if k þ j odd

Through the iterative formula, the power j of the μ j can be lowered until

1¼P0(μ), which helps to state the following:

IPk, j 0ð Þ ¼ 0 if k > j and IPk,k 0ð Þ ¼ 2k!Qk
j¼0

2jþ 1ð Þ
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Together, these properties show that we can compute analytically all the coef-

ficients of the determinant A(K, n) of linear system of angular flux coefficients:

IP0,0 0ð Þ�Σs,0

Σt
IP0,0 Kð Þ IP0,1 0ð Þ�Σs,0

Σt
IP0,1 Kð Þ �� � � � � IP0,n 0ð Þ�Σs,0

Σt
IP0,n Kð Þ

�Σs,1

Σt
IP1,0 Kð Þ IP1,1 0ð Þ�Σs,1

Σt
IP1,1 Kð Þ ⋮ ⋮

�Σs,2

Σt
IP2,0 Kð Þ �Σs,2

Σt
IP2,1 Kð Þ IP2,2 0ð Þ�Σs,2

Σt
IP2,2 Kð Þ

⋮ ⋱ ⋮
�Σs,n

Σt
IPn,0 Kð Þ �� � �Σs,n

Σt
IPn,n�1 Kð Þ IPn,n 0ð Þ�Σs,n

Σt
IPn,n Kð Þ

����������������

����������������
The transcendental equation A(K, n)¼ 0 gives the value of K¼ κ/Σt

(at least numerically, thanks to root-finding algorithms, if the determinant is

developed—see (Durand 1960; Traub 1964)), describing the spatial part of asymp-

totic diffusion flux. The method can be generalized to a finite medium by taking into

account two spatial components: e�κ x and e+κ x. The introduction of positive

exponentials can be considered by using IPk , j(�K), knowing that:

IPk, j �Kð Þ ¼ �1ð Þkþj IPk, j Kð Þ

The asymptotic flux is even more rapidly reached for low absorption (δ<< 1)

and when moving away from the interface (κx>> 1).

8.8.2 Finding the Dispersion Equation from
the Asymptotic Flux

It is shown that the dispersion equation can also be found directly by integrating the

integro-differential equation (Tait 1964, p 28). Starting again from the 1D transport

equation:

μ
∂Φ x; μð Þ

∂x
þ ΣtΦ x; μð Þ ¼ cΣt

2

ðþ1
�1

Φ x; μ0ð Þdμ0 ¼ cΣt

2
Φ xð Þ

Multiplying each term by: e
Σt
μ x=μ, we find:

∂ e
Σt
μ xΦ x; μð Þ

h i
∂x

¼ cΣt

2μ
e
Σt
μ xΦ xð Þ
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For μ> 0, this equation is integrated over x over the domain ]�1, x] to obtain:

e
Σt
μ xΦ x; μð Þ ¼ cΣt

2μ

ðx
�1

e
Σt
μ x
0
Φ x0ð Þdx0

Similar, for μ< 0, the integration is over [x, +1[:

�eΣt
μ xΦ x; μð Þ ¼ cΣt

2μ

ðþ1
cv

e
Σt
μ x
0
Φ x0ð Þdx0

The integrated flux Φ(x) is then calculated using these two expressions:

Φ xð Þ ¼
ðþ1
�1
Φ x; μ0ð Þdμ0

¼
ð1
0

e
�Σt

μ x
cΣt

2μ0

ðx
�1

e
Σt

μ x
0
Φ x0ð Þdx0 dμ0 �

ð0
�1
e
�Σt

μ x
cΣt

2μ0

ðþ1
cv

e
Σt

μ x
0
Φ x0ð Þdx0 dμ0

¼ cΣt

2

ð1
0

1

μ0

ðþ1
�1

e
Σt

μ x�x0j j
Φ x0ð Þdx0 dμ0 ¼ cΣt

2

ðþ1
�1

E1 Σt x� x0j jð Þ Φ x0ð Þdx0

by using the integral of the exponential function:E1 xð Þ ¼ Ðþ1
1

1
t e
�txdt. The flux in

the integral is then replaced by its Taylor expansion:

Φ x0ð Þ ¼ Φ xð Þ þ
Xþ1
n¼1

1

n!

dnΦ

dxn

����
x

x0 � xð Þn

to give :

ðþ1
�1

E1 Σt x� x0j jð Þ x0 � xð Þdx0

¼
ðþ1
0

ðþ1
1

1

t
e�tΣt x

0�xð Þ x0 � xð Þdtdx0 þ
ð0
�1

ðþ1
1

1

t
e�tΣt x�x0ð Þ x0 � xð Þdtdx0

¼
ðþ1
1

1

t3Σ2
t

ðþ1
0

e�yydy�
ðþ1
1

1

t3Σ2
t

ðþ1
0

e�yydy ¼ 0
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The dΦ/dx term is zero as well as all the odd derivative terms. Regarding the

even terms:

ðþ1
�1

E1 Σt x�x0j jð Þ 1

2kð Þ! x
0 �xð Þ2kdx0 ¼2

ðþ1
1

1

t2kþ2Σ2kþ1
t

ðþ1
0

e�y y2kdy

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Γ 2kþ1ð Þ¼ 2kð Þ!

dt¼ 2

2kþ1ð ÞΣ2kþ1
t

which allows us to write:

Φ xð Þ ¼ c Φ xð Þ þ 1

3Σ2
t

d2Φ xð Þ
dx2

þ 1

5Σ4
t

d4Φ xð Þ
dx4

þ 1

7Σ6
t

d6Φ xð Þ
dx6

þ � � �
� �

In a non-multiplicative medium where the flux would satisfy: d2Φ(x)/dx2¼
κ2Φ(x), the equation in c, κ and Σt is obtained:

1 ¼ c 1þ 1

3Σ2
t

κ2 þ 1

5Σ4
t

κ4 þ 1

7Σ6
t

κ6 þ � � �
� �

which will be expressed in the form:

κ

cΣt
¼ κ

Σt
þ κ3

3Σ3
t

þ κ5

5Σ5
t

þ κ7

7Σ7
t

þ � � �
� �

so as to obtain on the right-hand side the limited power series of tanh‐1(κ/Σt). The

previous equation can hence be rewritten in the known form of the dispersion

equation, which indeed corresponds to a closure relation for the exponential

attenuation coefficient of the asymptotic flux.

κ

Σt
¼ tanh

κ

cΣt

� �

8.8.3 Critical Absorption Limiting the Asymptotic Solution

To understand the importance of absorption with respect to the resulting asymptotic

solution, the simple case of an infinite medium without source terms, a constant

isotropic scattering cross section and an absorption cross section with a 1/v shape,
will be considered here. The kernel for scattering is separable as seen previously in

thermalization, and the scattering cross section obeys the detailed balance principle

(Neutron thermalization 1962 pRF-17):

Σs E
0 ! E; μ0ð Þ ¼ Σs,0

2
m Eð Þ where m(E) is the maxwellian distribution with

energy kT
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For the purpose of coherence, the usual coefficient of 2 (arising with expansions

in Legendre polynomials) was retained. From now on, the reduced energy y¼E/(kT)
will be used. With these assumptions, the total cross section is written:

Σt yð Þ ¼ Σs, 0

2
1þ γ

ffiffiffi
y
p� �

and m yð Þ ¼ ye�y

The Boltzmann equation is given:

μ
∂Φ x; y; μð Þ

∂x
þ Σt yð ÞΦ x; y; μð Þ ¼

ðþ1
0

dy0
ðþ1
�1

Σs y
0 ! y; μ0ð ÞΦ x; y0; μ0ð Þdμ0

With the flux expressed in the form Φ(x, y, μ)¼ e�κxΦ(y, μ), we find:

μκe�κx
∂Φ y; μð Þ

∂x
þ Σt yð Þe�κxΦ y; μð Þ ¼

ðþ1
0

dy0
ðþ1
�1

Σs, 0

2
m yð Þe�κxΦ y0; μ0ð Þdμ0

Hence after simplifying:

Φ y; μð Þ ¼ m yð Þ
μκ þ Σs,0

2
1þ γ

ffiffiffi
y
p� �h i ðþ1

0

dy0
ðþ1
�1

Σs, 0

2
Φ y0; μ0ð Þdμ0

Setting K¼ 2κ/Σs, 0 and integrating the previous equation over μ2 [�1, +1] and
over the reduced energy y, we find a particular form of the dispersion equation:

Dispersion equation with a 1=v absorption:

K ¼
ðþ1
0

ln
1þ γ

ffiffiffi
y
p þ K

1þ γ
ffiffiffi
y
p � K

� �
m yð Þ dy ¼

ðþ1
0

ln 1þ 2

ffiffiffi
y
p
γ

� �
m yð Þ dy ð8:63Þ

The integral term on the right-hand side is an increasing function with respect to

K and decreasing with respect to γ, varying from ln(1 + 2K ) for γ¼ 0, to 0 when

γ! +1. When K¼ 1, there exists a critical value γc, such that:

1 ¼
ðþ1
0

ln 1þ 2

ffiffiffi
y
p
γc

� �
m yð Þ dy

If γ> γc, the right-hand side term of the dispersion equation is always less than

K2 [0, 1]. There is then no solution to the eigenvalue problem. γc is of the order of
1, which corresponds approximately to the case where the absorption is of the same
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order of magnitude as diffusion with energy kT. It is quite easy and intuitive to

imagine that a too big absorption would impair the setting up of an asymptotic

diffusion regime. If the neutrons have a 50% chance of being absorbed, they cannot

be scattered anymore and the thermalization phase is impossible. This result has

been shown for a simple example but remains valid in the case of more physical

cross sections: the flux will not satisfy a diffusion equation in case of too strong

absorption. This fundamental assumption of diffusion, which will be discussed

again in Chap. 10, is however largely absent in physics calculations of industrial

reactors.

8.8.4 Definition of a Diffusion Coefficient from
the Transport Equation

We have seen previously that the monokinetic transport equation allows for solu-

tions of the form:

Φ x; μð Þ ¼ Φν μð Þe±xν ¼ Φk μð Þe±kx

in Case’s notations. These solutions satisfy a Helmholtz equation of the form:

ΔΦ� 1

ν2
Φ ¼ ΔΦ� k2Φ ¼ 0

This diffusion equation hence has to be able to be applied in a sufficiently large

medium such that we can assume being far from boundaries or sources that cause

transients. In a fissile homogeneous medium without external sources, the

Boltzmann equation is written:

~Ω:grad
��!

Φ ~r;E; ~Ω
� �þΣt Eð Þ Φ ~r;E; ~Ω

� �¼ Ð1
0
dE0

Ð
4πd

~Ω0 ΣS E
0 ! E; ~Ω0 ! ~Ω;

� �
Φ ~r;E0; ~Ω0
� �

þχ Eð Þ
4π

ð1
0

dE0 νΣf E0ð Þ
ð
4π
d ~Ω0 Φ ~r;E0; ~Ω0

� �
Applying a 3D spatial Fourier transform, justified by the homogeneous proper-

ties of the medium, and invariant by translation:

ϕ ~k;E; ~Ω
 �

¼
ð
~r

d~r ei
~k:~rΦ ~r;E; ~Ω

� �
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The transport equation can then be rewritten in terms of the Fourier transform ϕ:

Σt Eð Þ � i~k:~Ω
 �

ϕ ~k;E; ~Ω
 �

¼
ð1
0

dE0
ð
4π
d~Ω0 Σs E0 ! E; ~Ω0 ! ~Ω

� �
ϕ ~k;E0; ~Ω0
 �

þχ Eð Þ
4π

ð1
0

dE0 νΣf E0ð Þϕ ~k;E0
 �

This Fredholm integral equation has solutions only for some discrete values of

the vector ~k. By integrating over all directions ~Ω, we find:

Σt Eð Þϕ ~k;E
 �

� i~k:~J ~k;E
 �

¼
ð1
0

dE0 Σs E
0 ! Eð Þ ϕ ~k;E0

 �
þ χ Eð Þ

ð1
0

dE0 νΣf E0ð Þϕ ~k;E0
 �

ð8:64Þ

We introduce the Fourier transform of the current:

~J ~k;E
 �

¼
ð
4π
d ~Ω ~Ω:ϕ ~k;E0; ~Ω

 �
and the Fourier transform of the flux, integrated over angle:

ϕ ~k;E
 �

¼
ð
4π
d ~Ω ϕ ~k;E0; ~Ω

 �
as well as the scattering cross section:

Σs E
0 ! Eð Þ ¼

ð
4π
d ~Ω

ð
4π
d ~Ω0 Σs E0 ! E; ~Ω0 ! ~Ω

� �
Let us assume a linearly anisotropic collision. By expanding the scattering cross

section in terms of the cosine of the collision angle (the scalar product of the angular

direction before and after the collision μ � ~Ω
0
:~Ω), using Legendre polynomials up

to the first order term, we find:

Σs E0! E; ~Ω0:~Ω
� � ¼ Σs, 0 E0 ! Eð Þ

4π
þ 3Σs, 1 E0 ! Eð Þ ~Ω0:~Ω

4π

with the isotropic part being given by:

Σs, 0 E0! Eð Þ ¼
ð
μ
dμ Σs E

0 ! E; μð Þ
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and the first moment by:

Σs, 1 E0 ! Eð Þ ¼
ð
μ
dμ μ:Σs E

0 ! E; μð Þ

With these notations, the equation in terms of the Fourier transform of the flux

can be rewritten:

ϕ ~k;E; ~Ω
 �

¼ 1

4π

1

Σt Eð Þ � i~k:~Ω

ð1
0

dE0Σs,0 E0 ! Eð Þ ϕ
�
~k,E0

��

þ3~Ω
ð1
0

dE0 Σs,1 E0 ! Eð Þ ~J�~k,E0�þχ Eð Þ
ð1
0

dE0 νΣf E0ð Þφ�~k,E0��

Integrating this last equation over all directions ~Ω, we obtain:

ϕ ~k;E
 �

¼ Ð
4πd

~Ωϕ ~k;E; ~Ω
 �

¼
tan�1

~k
��� ���
Σt Eð Þ

0@ 1A
~k
��� ���ð1

0

dE0 Σs,0 E0 ! Eð Þ ϕ�~k;E0��
þχ Eð Þ

ð1
0

dE0 νΣf E0ð Þϕ�~k;E0��

þ i

~k
��� ��� 1�Σt Eð Þ

~k
��� ��� tan�1

~k
��� ���
Σt Eð Þ

0@ 1A
0B@

1CA�3~Ωð1
0

dE0 Σs,1 E0 ! Eð Þ ~J ~k;E0
 �
ð8:65Þ

To simplify notation, we define k � ~k
��� ��� and the scalar function below is

introduced:

J ~k;E
 �

�
~k:~J ~k;E
 �
k

¼ 1

k

ð
4π
d~Ω ~k: ~Ω:ϕ ~k;E; ~Ω

 �
From Eq. 8.64, it can be deduced that:

~k:~J ~k;E
 �

¼
Σt Eð Þϕ ~k;E

 �
� Ð1

0
dE0 Σs E

0 ! Eð Þ ϕ ~k;E0
 �

�χ Eð ÞÐ1
0
dE0 νΣf E0ð Þϕ ~k;E0

 �
i

ð8:66Þ
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which is substituted in, in Eq. 8.65, to yield:

ϕ ~k;E
 �

¼ Ð
4πd

~Ω ϕ ~k;E; ~Ω
 �

¼
Arc tan

~k
��� ���

Σt Eð Þ

0@ 1A
~k
��� ���

ð1
0

dE0Σs, 0 E0 ! Eð Þϕ�~k;E0��

þχ Eð Þ
ð1
0

dE0νΣf E0ð Þϕ�~k;E0��

þ i

~k
��� ��� 1� Σt Eð Þ

~k
��� ��� Arc tan

~k
��� ���

Σt Eð Þ

0@ 1A
0B@

1CA
� 3 ~Ω

ð1
0

dE0Σs, 1 E0 ! Eð Þ~J ~k;E0
 �

ð8:67Þ

Here again, this equation has solutions only for some complex eigenvalues of the

parameter k, which can only vary within the definition of the unique function Arc tan
(k/Σt(E))/k in the complex plane, already illustrated in Fig. 8.30. This plane is cut by

the complex straight half-lines b+iΣt , min, +i1b and c�i1,�iΣt , minc, Σt , min being

the minimum of the total cross section. This is called “Corngold’s hypothesis”, after
the work of Noel Corngold.60 Denoting the eventually complex eigenvalue of

smallest magnitude (compared to the other eigenvalues) by k0 and the associated

fundamental flux by ϕ(k0,E), Eq. 8.66 is given by (Fig. 8.31):

J k0;Eð Þ ¼ i

k0
�Σt Eð Þϕ

�
~k;E

�þ ð1
0

dE0Σs E
0 ! Eð Þ ϕ

�
~k;E0

��
þ χ Eð Þ

ð1
0

dE0 νΣf E0ð Þϕ�~k;E0�� ð8:68Þ

60Noel R. Corngold (1929–). After an undergraduate degree at Columbia in 1949, this American

theoretical physicist completed an experimental Ph.D. at Harvard in 1954. He was then sent to

Brookhaven National Laboratory to carry out an accurate measurement of the magnetic moment of

the neutron. He specialized in neutronics there. He then joined Caltech in 1966 to work in the

nuclear engineering department. As from 1966, he took a special interest in the dynamics of

systems with a large number of particles, in particular the plasmas of the small tokamak built by

Roy Gould at Caltech. He taught applied physics at Caltech from 1966 to 2002. Corngold won the

Wigner medal in 2002 for his theoretical work in neutronics.
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A diffusion coefficient can then be introduced:

D k0;Eð Þ � � i

k0

J k0;Eð Þ
ϕ k0;Eð Þ

Which, when substituted in Eq. 8.68, allows us to write:

Σt Eð Þ þ D k0;Eð Þk20
� �

ϕ k0;Eð Þ ¼
ð1
0

dE0Σs E
0 ! Eð Þ ϕ k0;E

0ð Þ

þ χ Eð Þ
ð1
0

dE0 νΣf E0ð Þφ k0;E
0ð Þ

Through the inverse Fourier transform of the previous equation, the spatial flux

spectrum:

Φ ~r;Eð Þ ¼ e�i ~k0 :~rϕ k0;Eð Þ

is the solution of the diffusion equation:

�D k0;Eð ÞΔΦ ~r;Eð Þ þ Σt Eð ÞΦ ~r;Eð Þ ¼
ð1
0

dE0Σs E
0 ! Eð Þ Φ ~r;E0ð Þ

þ χ Eð Þ
ð1
0

dE0 νΣf E0ð ÞΦ ~r;E0ð Þ

(Courtesy Corngold)
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The fundamental flux and the diffusion coefficient can be evaluated by consid-

ering Eq. 8.67. By imposing a normalization, for one neutron produced, such as:ð1
0

dE νΣf Eð Þϕ ~k;E
 �

¼ 1

and using the conventional notations:

α k;Eð Þ ¼
Arc tan k

Σt Eð Þ
 �
k

and β k;Eð Þ ¼ 1

k2
1� Σt Eð Þ

k
Arc tan

k

Σt Eð Þ
� �� �

Equation 8.67 can be rewritten in the form:

ϕ k;Eð Þ ¼ α k;Eð Þ Ð1
0

dE0 Σs,0 E0 ! Eð Þ ϕ�k;E0�þ χ Eð Þ� �
�β k;Eð Þ� 3

Ð1
0

dE0 Σs,1 E0 ! Eð Þ Ð1
0

dE00 Σs E
00 ! E0ð Þ ϕ

�
~k;E00

�
þχ E0ð Þ�Σt E

0ð Þϕ�~k;E0�Þ
The solution φ(k,E) of the previous equation is the solution to Eq. 8.67 as well if

it satisfies the normalization condition; therefore, k is the root of the function:ð1
0

dE νΣf Eð Þϕ ~k;E
 �

� 1 ¼ 0

In a supercritical medium, k is real while in a subcritical medium, k is purely

imaginary. The previous theory can be generalized without any difficulty for multi-

group. For the usual two energy groups in diffusion theory (cutoff at 0.625 eV), this

model provides, for a conventional fuel, a rapid diffusion coefficient of the order of

1.3 cm and a thermal diffusion coefficient of about 0.4 cm in the B0 approximation

(isotropic scattering cross section). Taking into account a B1 anisotropy for the

scattering cross section tends to increase the rapid diffusion coefficients to values

close to 1.45 cm.

8.9 The 3D Transport Equations

The 1D case certainly remains very interesting, at least for an analytical treatment;

however most realistic cases are three-dimensional.

In Cartesian geometry, the steady-state transport equation is written:

μ
∂Φ x; y; z; ~Ω
 �

∂x
þ η

∂Φ x; y; z; ~Ω
 �

∂y
þ ξ

∂Φ x; y; z; ~Ω
 �

∂z
þ ΣtΦ x; y; z; ~Ω

 �
¼ S x; y; z; ~Ω
 �
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with the usual notations: μ � ~Ω: ~ux , η � ~Ω: ~uy and ξ � ~Ω: ~uz , with S x; y; z; ~Ω
 �

representing the fission or scattering source of neutrons. The vectors ~u are the unit

vectors along each axis. The three cosines are related through the expression:

μ2 þ η2 þ ξ2 ¼ 1

In Cartesian geometry, the current is given by:

~J ¼
Jx
Jy
Jz

0@ 1A ¼
� 1

3Σt

∂Φ
∂x

� 1

3Σt

∂Φ
∂y

� 1

3Σt

∂Φ
∂z

0BBBBBB@

1CCCCCCA
In cylindrical geometry (Fig. 8.33), the equation is given by:

μ

r

∂ rΦ r; θ; z; ~Ω
 � �
∂r

þ η

r

∂Φ r; θ; z; ~Ω
 �

∂θ
þ ξ

∂Φ r; θ; z; ~Ω
 �

∂z
� 1

r

∂ ηΦ r; θ; z; ~Ω
 � �
∂ω

þΣtΦ r; θ; z; ~Ω
 �

¼ S r; θ; z; ~Ω
 �

Fig. 8.33 Cylindrical coordinates used in the cylindrical Boltzmann equation
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With μ � ~Ω: ~ur ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2
� �q

cosω, η � ~Ω: ~uθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2
� �q

sinω, ξ � ~Ω: ~uz .
The current is written:

~J ¼
Jr
Jθ
Jz

0@ 1A ¼
� 1

3Σt

∂Φ
∂r

� 1

3Σtr

∂Φ
∂θ

� 1

3Σt

∂Φ
∂z

0BBBBBB@

1CCCCCCA
and:

Φ r; θ;φ; ~Ω
 �

¼ Φ r; θ;φ; μ;ωð Þ ¼ Φ r; θ;φð Þ þ 3μJr þ 3ηJθ þ 3ξJz

In spherical coordinates—recall that we had already seen the coordinate repre-

sentation in Fig. 8.32, the Boltzmann equation is given by:

μ

r2

∂ r2Φ r; θ;φ; ~Ω
 � �
∂r

þ η

r sin θ

∂Φ r; θ;φ; ~Ω
 �

∂θ
þ ξ

r sin θ

∂ sin θΦ r; θ;φ; ~Ω
 � �
∂φ

þ1
r

∂ 1� μ2ð ÞΦ r; θ;φ; ~Ω
 � �

∂μ
� cot θ

r

∂ ξΦ r; θ;φ; ~Ω
 � �
∂μ

þ ΣtΦ r; θ; z; ~Ω
 �

¼ S r; θ; z; ~Ω
 �
with η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� μ2ð Þp
cosω, ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� μ2ð Þp
sinω.

The current is written:

~J ¼
Jr
Jθ
Jϕ

0@ 1A ¼
� 1

3Σt

∂Φ
∂r

� 1

3Σtr sin θ

∂Φ
∂θ

� 1

3Σtr

∂Φ
∂ϕ

0BBBBBB@

1CCCCCCA
It should be noted that:

Φ r; θ;φ; ~Ω
 �

¼ Φ r; θ;φ; μ;ωð Þ ¼ Φ r; θ;φð Þ þ 3μJr þ 3ηJθ þ 3ξJϕ
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One should be careful61 of the fact that the angle θ in spherical coordinates is

the colatitude and does not correspond to the usual definition of this angle in

cylindrical geometry. Here, it was preferred to use the colatitude as in (Lewis and

Miller 1993, p32).

During transients, the term 1
v
∂Φ tð Þ
∂t is simply added to the previous equations.

61In particular, Clarence Lee, in his very complete report in the Sn method: The discrete Sn
approximation to transport theory, Los Alamos Scientific Laboratory, LA-2595, 200 pages

(1962), used the same definition of the angle θ in spherical and cylindrical coordinates. It should

be noted that his ϕ is our θ.
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Chapter 9

Computational Neutron Transport Methods

The Boltzmann equation is difficult to solve in practical cases and only a few

textbook cases have an analytical solution. Thus, myriad numerical methods have

been set up for its resolution and will be discussed briefly in this chapter. Beginning

in 1943, with the Manhattan Project for the design of the atomic bomb in the United

States, numerical methods specific to the transport equations have been schemed for

the first computers. The Monte Carlo method is different from the other methods

since it does not solve the Boltzmann equation as such but simulates an analogous

path of neutrons in matter.

Gerald Pomraning, in Reactor Physics, vol. 1, pp. 207–257 (1966), Richard

Sanchez and N.J. McCormick, in Nuclear Science and Engineering, vol. 80, pp.

481–535 (1982).

9.1 Discrete Ordinates Method Sn

(Duderstadt and Martin 1979; Bussac and Reuss 1985; Lewis and Miller 1993;

Clark and Hansen 1964, p. 204; Baur 1985, p. 220; Bellman et al. 1969, p. 129;

Stacey 2001, p. 353; Stamm’ler and Abbate 1983, p. 191; Contrôle de la criticalité

1961, p. 83).

© Springer International Publishing AG 2017

S. Marguet, The Physics of Nuclear Reactors, DOI 10.1007/978-3-319-59560-3_9
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Bengt G. Carlson1,2,3 proposed an approach for dealing with the angular part of

the transport equation. It consists in substituting the integro-differential equation

continuous with the angle by a system of differential equations in a finite number of

directions Ω
!

n. Thus, the angular flux is represented by a set of discrete values called

the discrete ordinates (Fig. 9.1):

Bengt G. Carlson (1916–2007), founder of the discrete ordinates method (The Marguet collection,

photograph unknown)

Since Gauss, it is well-known that some wisely-chosen quadratures lead to

efficient integration of the function Φ Ω
!� �

:

1Bengt G. Carlson: Solution of the transport equation by Sn approximations, Los Alamos, report

LA-1599, (1953). Carlson (1916–2007) was a civil scientist in the Manhattan project as from 1943

for the English mission in Canada. In June 1945, he was transferred to Los Alamos National

Laboratory to perform numerical calculations on the bomb. He retired from the Theory division in

1976. For 10 years, he has continuously improved the discrete ordinates method. The initial idea is

from G. C. Wick (1943) (Stamm’ler and Abbate 1983, p. 209), but it was S. Chandrasekhar who

developed the principle in his renowned work Radiative transfer, Oxford (1950). The work of

Carlson, Lee and Lathrop has been essential to set up efficient quadratures which minimize the

number of directions in the discrete problem. According to K. D. Lathrop, the ray effect in the 2D

method has been observed in the middle of the 1960’s. This effect can be solved by adding an

angular source which adds up to zero and which transforms the discrete ordinates equations into

spherical harmonics equations. For the short story, Carlson wanted to underline the major role

played by Stanley Ulam in the development of the H-bomb compared to the (irritating and

criticized) Edward Teller in an interesting article: How Ulam set the stage, Bulletin of Atomic

Scientists, vol. 59, no. 4 (2003).
2Clarence E. Lee: The discrete Sn approximations to transport theory, Los Alamos scientific

laboratory, LA-2595 (March 1962).
3D.K. Trubey, Betty F. Maskewitz: A review of the discrete ordinates Sn method for radiation
transport calculations, Oak Ridge National Laboratory ORNL-RISC-19 (March 1968) presents a

set of applications, including a theoretical text of Carlson himself.
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ð
4π

Φ Ω
!� �

dΩ
!¼

XN
i¼1

ϖiΦ Ω
!

i

� �

where ϖi¼ 1,N are the weights of the chosen quadrature and N the number of Gauss

points of the quadrature (Grandini 1986, p. 189; Bathe 1982, p. 274). With this

angular discretization, the Boltzmann equation is equivalent to a system of

N coupled differential equations:

1

v

∂Φ ~r;E; Ω
!

i; t
� �

∂t
þ Ω
!

i :grad
��!

Φ ~r;E; Ω
!
; t

� �
þ Σt ~r;E; Ω

!
; t

� �
Φ ~r;E; Ω

!
; t

� �

¼ S ~r;E; Ω
!
; t

� �
þ
XN
j¼1

ϖj

ð1
0

dE0ΣS ~r;E0 ! E; Ω
!

j ! Ω
!

i; t
� �

Φ ~r;E0; Ω
!

j; t
� �

In this equation, there are as many Φ ~r;E; Ω
!

i; t
� �

terms as the number of

independent anglesΦ ~r;E; tð Þ � Φ ~r;E; Ω
!
; t

� �
The risk of this approach, called

the Sn method, is the fact that only the spatial distribution of these functions

Φ ~r;E; tð Þ are known, i.e. only for some chosen directions. This effect is called

the ray effect4 and can be observed readily in the case of a non-scattering

medium. Indeed, for instance, the flux due to a point source is strictly zero

for directions that do not belong to the quadrature, which is not consistent with

a constant-valued flux as expected for a given distance from the source

(Fig. 9.2).

Ω

Ω)Φ(

0 4π
2Ω 3Ω 4Ω 5Ω1Ω

Fig. 9.1 Discrete ordinates

method

4K.D. Lathrop: Ray effects in discrete ordinate equations, Nuclear Science and Engineering,

no. 32, p. 357 (1968).
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If the angular discretization is chosen randomly and does not conserve the

physics of the phenomena, some unusual flux behavior can be completely

overlooked (e.g. anisotropy). However, the ray effect is less dominant in a

reactor where the media are highly scattering and the sources are well distrib-

uted (in fact, the ray effect has been discovered more than 15 years after the

method was conceived). For the directions that are not covered, several

interpolation methods can be employed. In this case, it can be intuitively

understood that an isotropic flux is particularly adapted for such approaches

since a limited sampling is sufficient to obtain the complete distribution by

interpolation. The discrete ordinates method is an alternative to flux expansion

on a basis of functions (Legendre5 polynomials or spherical harmonics for

Fig. 9.2 The ray effect: an isotropic source is placed in a square of sides 0.2 � 0.2 cm and

emits neutrons in a square material of sides 10 cm and total cross section 0.1 cm�1. The

calculation was carried out with an S8 quadrature with ten directions per quadrant of the unit

sphere. The expected theoretical result is a uniformly-decreasing distribution from the source.

The ray effect is clearly visible around the directions of the quadrature, which are the only

zones with a non-zero flux (iconography: Emiliano Masiello from his work on the IDT code,

CEA, 2009)

5Adrien-Marie Le Gendre (1762–1833) was a brilliant French mathematician of whose life little is

known. His name is often spelt Legendre, which will be used throughout this work, although not

appropriate. The polynomial basis that bears his name is very useful for its orthogonal properties.

On a side note, it was only in 2008 that a plausible portrait of Legendre was found—until then, he

was confused with Louis Legendre, Montagnard during the French Revolution.
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instance) which will be discussed further on. In the case of a 1D problem

where the flux depends only on the variable x and μ¼ cos θ, the Gauss

quadrature is optimum for integration. It can be shown that this particular

quadrature (the Gauss points are the roots of the Legendre polynomials) is

rigorously equivalent to a Pn� 1 approximation, even though the flux moments

are not calculated as in the Pn method which will be seen later on. The

scattering operator can be expanded and projected on a spherical function

basis at order n (which should not be confused with the total number of points

in the quadrature N ), in a time-independent case (to simplify notations, but it

can also be extended to the transient case), and for one energy group (once

more, the extension to multi-group is also possible):

Ω
!

i:grad
��!

Φ ~r, Ω
!

i

� �
þ Σt ~r, Ω

!
i

� �
Φ ~r, Ω

!
i

� �
¼ S ~r, Ω

!
i

� �
þ
XN
l¼1

Xm¼þl

m¼�l

Y m
l Ω

!
i

� �
ΣS, l ~rð Þ Φm

l ~rð Þ for i ¼ 1,N

where: Φm
l ~rð Þ ¼ Ð

4π

dΩ
!

Ym
l Ω

!
i

� �
Φ ~r; Ω

!� �
¼ PN

I¼1

ϖiY
m
l Ω

!
i

� �
Φ ~r, Ω

!
i

� �
Thus, a coupled system of linear equations with respect to the angle is obtained

and expressed in matrix form as:

A cartooned version of Le Gendre, aka Legendre, found by Jean-Bernard François in 2008
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Ω
!
:grad
��!þ Σt

� �
Φ½ � ¼ R Φ½ � þ S ð9:1Þ

where:

• [Φ] is the column vector of the flux components per direction of the discrete

ordinates, which are themselves expanded as flux of the angular quadrature,

• R is the slowing-down operator matrix,

• S the source matrix,

• Ω
!
:grad
��!þ Σt

� �
the transport matrix.

Equation (9.1) must be discretized spatially, for instance using the finite differ-

ence method or the nodal method by assuming an intra-nodal flux shape, and also

discretized in energy using a multi-group approach. If scattering is isotropic, it is

simplified as:

Ω
!

i:grad
��!

Φ ~r, Ω
!

i

� �
þ Σt ~r, Ω

!
i

� �
Φ ~r, Ω

!
i

� �
¼ S ~r, Ω

!
i

� �
þ ΣS ~rð Þ

4π

XN
i¼1

ϖi Φ ~r, Ω
!

i

� �

This is logical since Φ ~rð Þ ¼PN
i¼1

ϖi Φ ~r, Ω
!

i

� �
and the number of neutrons

scattered isotropically in any direction is given as ΣS ~rð ÞΦ ~rð Þ=4π.
The current is expressed as follows:

~J ~rð Þ ¼
XN
i¼1

ϖiΩ
!

iΦ ~r, Ω
!

i

� �
In the case of a one-dimensional geometry (plane or sphere), an angular

discretization with Straight lines6 (thus the term Sn or trapezoidal quadrature) was
used such that the flux was reconstructed linearly between two values of the angle

cosine:

Φ x; μð Þ ¼ μ� μi�1

μi � μi�1

Φ x; μið Þ þ μi � μ

μi � μi�1

Φ x; μi�1ð Þ

An efficient quadrature must obey several criteria. For example, it must be

invariant by projection: for the 1D case, it is expressed by a reflective symmetry

such that if the direction μi is kept,�μi should also be so as not to bias the current in

6In the paper The early days of the Sn method, ANS transaction, vol. 66, pp. 241–242 (1992), K. D.

Lathrop uses the term Angular Segmentation for the origin of the term Sn.
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a given direction rather than the opposite. Besides, the first flux moment is the scalar

flux which is positive for any spatial and angular domains:

Φ xð Þ ¼ 2π
XN
i¼1

ϖiΦ x; μið Þ

This positive flux condition can be ensured by imposing positive weights, which

is not necessarily the case in all quadratures. The Gauss quadrature made up with

the roots of the Legendre polynomial is particularly well-suited for this purpose.

Figure 9.3 illustrates a Gauss quadrature applied to the S6 discretization. The

quadratures for odd n contain the direction π/2 which has a zero cosine, and may

lead to numerical problems in the numerical solution of the angularly discretized

equation. This is why only even order quadratures are used. The weights are

normalized such that:

Xn
i¼1

ϖi ¼
ðþ1

�1

dμ ¼ 2

The expansion order can be very high and close to a spatial discontinuity, or a

flux discontinuity for the direction μ¼ 0. In this case, space can be separated as two

mirror sub-spaces for μ> 0 and μ< 0, for which a separate Gauss quadrature is

applied. This technique is also applied in the Pn method and is called the double Pn

or Yvon’s method from the name of its inventor, and will be discussed later on. In

3D geometry, two angles are required to define a direction. Let μ , η , ε be the

0.66120.2386 0.9325

0.4679i

0.3608

0.1713i

i

Fig. 9.3 Gauss quadrature for the S6 discretization in 1D geometry
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cosines of the angles between the direction and the unit vectors of the 0xyz basis.
For a unit sphere (Fig. 9.4), these cosines are related as:

Normalization condition: μ2 þ η2 þ ε2 ¼ 1 ð9:2Þ

For a symmetric quadrature, the retained values must be invariant by a π/2
rotation and by symmetry wrt any plane of the reference frame. It can be shown

(Duderstadt and Martin 1979), by considering an octant of the sphere with positive

cosine, and expressing the normalization condition (Eq. 9.2) for the cosines of all

directions with the same μi, that these μi depend only on the first value μ1 and the

index i of the mesh as:

μi ¼ μ1 þ
2 1� 3μ21
� �
n� 2

i� 1ð Þ

This is due to the fact that by numbering these values conveniently, the follow-

ing relations are found by symmetry: (μi)i¼ 1, n¼ (ηi)i¼ 1, n¼ (εi)i¼ 1, n. Thus, the

directions can be concentrated towards the poles (μ¼ � 1) by choosing a small μ1

ξ

m1

m2
m3

m4

μ

ξ1

ξ2

ξ3

ξ4

η1 η2

η3
η4

η

Fig. 9.4 Symmetric quadrature for S8 from (Lewis and Miller 1993)
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or close to the equator (μ¼ 0) with a large μ1 (but less than 1=
ffiffiffi
3

p
according to the

formula for the computation of the μi). As for the 1D geometry, the weights are

normalized on a quarter of the sphere (�1� μ+ 1) as:

Xn nþ1ð Þ

i¼1

ϖi ¼ 2

The boundary conditions can be zero incoming flux at the surface of the medium

[Mark conditions from C.F. Mark (Stamm’ler and Abbate 1983, p. 157)]:

Φ ~rS; Ω
!

i

� �
¼ 0 for Ω

!
i:~n > 0

Examples of dedicated S8 and S10 quadratures are shown in Figs. 9.5 and 9.6.

9.2 Exact Sn Method

In 1979, Takahashi et al.7 introduced the exact Sn method also called the I
∗ method,

which is a more precise formulation of the Sn method. Let the equations in plane

geometry without source be:

μk
∂Φk

∂x
þ Σt,gΦg x; μkð Þ ¼

XG
h¼1

XK
l¼1

ωlΣs h ! g; l ! kð ÞΦh μlð Þ

where l is the index of the discretization of the quadrature and h the index for the

energy groups. The Sn exact approach consists in expanding the differential scat-

tering cross section with I∗ integrals defined as:

Σs h ! g; l ! kð Þ ¼
XM
m¼1

Σs h ! g;mð ÞI∗ k; l;mð Þ

such that: I∗ k; l;mð Þ ¼ 1

WkWlWm

ððð
I∗ μ; μ0; γð Þdμdμ0dγ,

Wk¼ μk+ 1/2� μk� 1/2, Wl¼ μl+ 1/2� μl� 1/2, Wm¼ γm+ 1/2� γm� 1/2,

I∗ μ; μ0; γð Þ ¼
1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D μ; μ0; γð Þp

0 for D < 0

8<: with D μ; μ0; γð Þ ¼ 1� μ2 � μ02 � γ2 þ 2μμ0γ

7A. Takahashi et al., Journal of Nuclear Sciences and Technology, 16, 1, 1 (1979). The NITRAN

code distributed by OECD is based on this method.
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Fig. 9.5 Fully symmetric S8 quadrature
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Fig. 9.6 S10 quadrature biased forward. It better takes into account anisotropic scattering in light

nuclei such as water (used by SCK MOL for the “concrete” benchmark in the BR1 reactor)
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γ is the cosine of the scattering angle in the laboratory frame. These integrals

satisfy:

ðþ1

�1

I∗ μ; μ0; γð Þdμ ¼
ðþ1

�1

I∗ μ; μ0; γð Þdμ0 ¼
ðþ1

�1

I∗ μ; μ0; γð Þdγ ¼ 1

The advantage of this method is that the integrals I∗(k, l,m) can be computed

analytically.8 This method is faster than the standard Sn method.

9.3 Legendre Polynomial Method

9.3.1 Theory and Application to 1D Transport

(Clark and Hansen 1964, p. 184; Soodak et al. 1962, p. 106; Stacey 2001, p. 331;

Stamm’ler and Abbate 1983, p. 18).

L. Gratton (1937) first attempted to represent the particle distribution in a

multiple scattering problem with Legendre polynomials9 or the moments method
as it was called back in the 1950’s (Goldstein 1959, p. 265; Shimizu and Aoki 1972,

p. 8). It was then employed by S. Chandrasekhar to the radiative transfer problem

(1944). In 1951, M. C. Wang and E. Guth demonstrated (with notations very similar

to those in neutronics) the equivalence of the exact solution of the integro-

differential form of the Boltzmann equation with anisotropic scattering by the

flux approximation by expansion on the Legendre polynomial basis truncated at

order n and the Gauss quadrature of order n + 1 (Electron physics 1954, p. 39).

The scattering law anisotropy can be modeled by expanding the differential

scattering cross section on the Legendre polynomial basis Pl Ω
!
:Ω
!0

� �
where Ω

!
:Ω
!0

is the scattering angle cosine:

Σs ~r; Ω
!
:Ω
!0

� �
¼ 1

4π

X1
l¼0

2lþ 1ð ÞΣs, l ~rð ÞPl Ω
!
:Ω
!0

� �
where the coefficients of the expansion (called l order moments) are given by:

8Jacques Ligou, Patrick Miazza: Numerical improvements of the exact kernel method in transport
theory, Nuclear Science and Engineering, 99, pp. 109–117 (1988).
9The main property of the Legendre polynomials is that they are orthogonal by integration [�1,

+1]. For orthogonal functions, (Sansone 1959) constitutes an excellent reference work.
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Σs, l ~rð Þ ¼
ð
4π

dΩ
! ð

4π

Σs ~r; Ω
!
:Ω
!0

� �
Pl Ω

!
:Ω
!0

� �
:dΩ
!0 ¼ 2π

ðþ1

�1

Σs ~r; μ0ð ÞPl μ0ð Þd μ0ð Þ

It is not surprising that the cross section moments, which are mathematical

coefficients, can be eventually negative. This is the case for instance of fifth order

moments for the iron cross section for energies about 1 MeV, as indicated by

(Foderaro 1971, p. 387). The possible expansion of the slowing-down operator

with the scalar product μ0 ¼ Ω
!
:Ω
!0 induces the fact this operator is invariant by

rotation. It is recalled that the Legendre polynomials are defined by a recurrence

relation (Hochstadt 1973, p. 7):

Recurrence formula for Legendre polynomials:

μPl μð Þ lþ 1

2lþ 1
Plþ1 μð Þ þ l

2lþ 1
Pl�1 μð Þ for l � 1 ð9:3Þ

The derivative of a Legendre polynomial can be easily computed as:

1� μ2
� � dPl μð Þ

dμ
¼ lþ 1ð Þ μPl μð Þ � Plþ1 μð Þ½ �

The first Legendre polynomials are:

P0 μð Þ ¼ 1 P3 μð Þ ¼ 1

2
5μ3 � 3μ
� �

P1 μð Þ ¼ μ P4 μð Þ ¼ 1

8
35μ4 � 30μ2 þ 3
� �

P2 μð Þ ¼ 1

2
3μ2 � 1
� �

P5 μð Þ ¼ 1

8
65μ5 � 70μ3 þ 15μ
� �

8>>>><>>>>:
However, their main property is that they are orthogonal, i.e.:ðþ1

�1

Pl μð ÞPm μð Þdμ ¼ 2

2lþ 1
δlm

or by integrating angularly as:

Orthogonality of the Legendre polynomials:Ð
4πPl μð ÞPm μð ÞdΩ!¼ 2π

Ð π
0
Pl μð ÞPm μð Þ sin θdθ ¼ 4π

2lþ 1
δlm

ð9:4Þ

Thus, the Legendre polynomials form a complete basis for functions defined on

the range [�1, +1]. For the first order expansion (l ¼ 0) and since P0 Ω
!
:Ω
!0

� �
¼ 1,

the differential scattering cross section moment is obtained:
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Zeroth moment of the differential scattering cross section isotropicð Þ:
Σs, 0 ~rð Þ ¼

ð
4π

dΩ
! ð

4π

Σs ~r; Ω
!
:Ω
!0

� �
P0 Ω

!
:Ω
!0

� �
dΩ
!0

¼
ð
4π

dΩ
! ð

4π

Σs ~r; Ω
!
:Ω
!0

� �
dΩ
!0 � Σs ~rð Þ ð9:5Þ

The mean cosine of the scattering angle is defined as:

Mean cosine of the scattering angle:

μ0 ~rð Þ ¼ Ð Σs ~r; Ω
!
:Ω
!0

� �
Ω
!
:Ω
!0d Ω

!
:Ω
!0

� �
Σs ~rð Þ ð9:6Þ

In several works, the mean cosine of the scattering angle is coined as μ, we have
preferentially employed μ0 as in (Blaquière 1962), to avoid any confusion with

μ ¼ Ω
!
~x ¼ cos θ. Since P1ðΩ!:Ω

!0
�
¼ Ω

!
:Ω
!0 ¼ μ0, for the first moment of the

scattering cross section, the following equation is reached:

First moment of the differential scattering cross section:

Σs, 1 ~rð Þ ¼ Ð Σs ~r; Ω
!
:Ω
!0

� �
P1 Ω

!
:Ω
!0

� �
d Ω

!
:Ω
!0

� �
¼ μ0 ~rð ÞΣs ~rð Þ ð9:7Þ

To allow for the energy variable, the differential cross section wrt angle and

energy is expressed as:

Σs ~r;E0 ! E; Ω
!
:Ω
!0

� �
¼ 1

4π

X1
l¼0

2lþ 1ð ÞΣs, l ~r;E
0 ! Eð ÞPl Ω

!
:Ω
!0

� �
If collisions are assumed isotropic, the latter is simplified as:

Σs ~r; Ω
!
:Ω
!0

� �
¼ 1

4π
Σs, 0 ~rð Þ

Thus, the differential scattering cross section no longer depends on the scattering

angle and its integration over the unit sphere (4π steradians) results in the isotropic
scattering cross section. If the collision law is assumed to be linearly anisotropic

with μ, only the first moment of the differential cross section is retained, i.e.:

Linearly varying collision law: Σs ~r; Ω
!
:Ω
!0

� �
¼ 1

4π
Σs, 0 ~rð Þ þ 3μΣs, 1 ~rð Þ½ �

¼ 1þ 3μμ0
4π

Σs, 0 ~rð Þ ð9:8Þ
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On the other hand, the fission source term is always assumed isotropic. In

practice, the expansion of the differential cross section is finite and truncated at

order n:

Σs ~r; Ω
!
:Ω
!0

� �
¼ 1

4π

Xn
l¼0

2lþ 1ð ÞΣs, l ~rð ÞPl Ω
!
:Ω
!0

� �

The Legendre polynomials with the scattering angle Pl Ω
!
:Ω
!0

� �
are more

practical for our use if expressed in terms of the directions Ω
!

and Ω
!0. Using the

additivity formula, the Legendre polynomials can be decomposed into (complex)

spherical harmonics Ym
n

~Ω
� �

and their conjugate Ym
n

~Ω
� �

:

Additive property of the spherical harmonics:

Pl Ω
!
:Ω
!0

� �
¼ 4π

2lþ 1

Xm¼þ1

m¼�1

Ym
l Ω

!� �
Ym
l Ω

!0
� �

¼ 4π

2lþ 1

Xm¼þ1

m¼�1

Ym
l Ω

!� �
Ym
l Ω

!0
� �

ð9:9Þ

It can be noted that the second part of the equation which is the conjugate of the

first part is justified since the corresponding Legendre polynomial is a real number,

and the conjugate of a real number is itself. The scattering source is thus written as:ð
4π

ΣS ~r; Ω
!0 ! Ω

!� �
Φ ~r; Ω

!0
� �

dΩ
!0

¼
ð
4π

1

4π

Xn
l¼0

2lþ 1ð ÞΣs, l ~rð Þ 4π

2lþ 1

Xm¼þ1

m¼�1

Ym
l Ω

!� �
Ym
l Ω

!0
� � !

Φ ~r; Ω
!0

� �
dΩ
!0

ð9:10Þ

With the hypothesis that the flux can also be expanded into spherical harmonics:

Φ ~r; Ω
!0

� �
¼
Xl¼þ1

l¼0

Xm¼þ1

m¼�1

Φm
l ~rð ÞYm

l Ω
!0
� �

the orthogonality property of these functions can be applied as follows:ð
4π

Ym
l Ω

!0
� �

Ym0
l0 Ω

!0
� �

dΩ
!0 ¼ δll0 δmm0
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The flux expansion is injected in Eq. (9.10), and the scattering source term

contains the flux moments after orthogonal terms have been cancelled out:ð
4π

ΣS ~r; Ω
!0 ! Ω

!� �
Φ ~r; Ω

!0
� �

dΩ
!0 ¼

Xm
l¼0

Σs, l ~rð Þ
Xm¼þ1

m¼�1

Ym
l Ω

!� �
Φm

l ~rð Þ

In 1D, the flux is logically expressed with Legendre polynomials which are the

form of the spherical harmonics in 1D. It can be noted that in this expression, the

cosine of the incident neutron angle μ ¼ cos θ ¼ Ω
!
~x is used, and not that of the

scattering angle:

Φ x; Ω
!� �

¼ 1

4π

X1
l¼0

2lþ 1ð ÞΦl xð ÞPl Ω
!
:~x

� �
¼ 1

4π

X1
l¼0

2lþ 1ð ÞΦl xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Y0
l Ω
!� �

since the plane spherical harmonics (m¼ 0):Y0
l Ω
!� �

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1ð Þ= 4πð Þp

Pl Ω
!
:~x

� �
.

Although the plane spherical harmonics Y0
l Ω
!� �

is introduced somewhat artifi-

cially here, it will be justified further in the application of the model in 1D geometry

for the angular integration in plane geometry. The flux is written in terms of μ and

by multiplying by 2π(by integration over the azimuthal angle φ)10:

10It should be remarked that some authors (including the French school (Bussac and Reuss 1985),
Pierre Benoist, and logically the CEA code APOLLO2) include the (2l+ 1) coefficient in the flux

moments, i.e.:

Φ x; μð Þ ¼
X1
l¼0

Φl xð ÞPl μð Þ

Φl xð Þ ¼ 2lþ 1

2

ðþ1

�1

Φl x; μð ÞPl μð Þdμ

8>>><>>>:
These notations, although perfectly consistent, are nonetheless less convenient since the scalar

fluxΦ0(x) is equal to half the integrated fluxΦ(x) and that ~Φ1 xð Þ is equal to3~J xð Þ=2, which are less
easily recalled. Thus, just like (Blaquière 1962; Barjon 1993; Lewis and Miller 1993), we have

chosen to extract the coefficient 2l+ 1 from the flux moments, as well as from the scattering cross

section. Besides, it should also be noted that the famous numerical transport reference work (Lewis

and Miller 1993) has chosen not to divide the angular flux by 2 and adds this factor to the

coefficients of the moments as follows:

Φ x; μð Þ ¼
X1
l¼0

2lþ 1ð ÞΦl xð ÞPl μð Þ

Φl xð Þ ¼ 1

2

ðþ1

�1

Φ x; μð ÞPl μð Þdμ

8>>>>><>>>>>:
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P1 flux expansion: Φ x;μð Þ ¼ 2πΦ x;Ω
!� �

¼ 1

2

X1
l¼0

2lþ 1ð ÞΦl xð ÞPl μð Þ ð9:11Þ

with the flux moments:

Notations: 8l Φl xð Þ¼
ðþ1

�1

Φ x;μð ÞPl μð Þdμ and Φ0 xð Þ¼
ðþ1

�1

Φ x;μð Þdμ ð9:12Þ

With these notations, the flux moments are expressed with the different integra-

tion variables as:

Flux moment :

Φl xð Þ¼
ðθ¼π

θ¼0

Φ x;cosθð ÞPl cosθð Þsinθdθ¼
ðθ¼π

θ¼0

2πΦ x;Ω
!� �

Pl Ω
!
:~x

� �
sinθdθ

¼
ðθ¼π

θ¼0

Φ x;Ω
!� �

Pl Ω
!
:~x

� � ðφ¼2π

φ¼0

sinθdθdφ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dΩ
!

¼
ð
4π

Φ x;Ω
!� �

Pl Ω
!
:~x

� �
dΩ
! ð9:13Þ

For P0 Ω
!
;~x

� �
¼ 1, the integral of the scalar flux, i.e. the integrated flux also

called the scalar flux is obtained, and corresponds to the zeroth flux moment:

Φ0 xð Þ ¼
ð
4π

Φ x; Ω
!� �

dΩ
!� Φ xð Þ

The Eq. (9.10) simplifies to:ð
Ω
!

024π
ΣS ~r;Ω

!0:Ω
!� �

Φ ~r;Ω
!0

� �
dΩ
!0¼

ð
Ω
!024π

1

4π

Xn
l¼0

2lþ1ð ÞΣs,l ~rð Þ 4π

2lþ1

Xm¼þl

m¼�l

Y m
l Ω

!0
� �

Ym
l Ω

!� �" #
1

4π

X1
p¼0

2pþ1ð ÞΦp xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
4π

2pþ1

s
Y0
p Ω

!0
� �" #

dΩ
!0

Using the orthogonality relations for the spherical harmonics, only the terms

m¼ 0 are conserved in the expansion of the Legendre polynomials with the

additivity formula of the spherical harmonics. This equation is hence simplified as:
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ð
Ω
!024π

ΣS ~r; Ω
!0:Ω

!� �
Φ ~r; Ω

!0
� �

dΩ
!0 ¼

Xn
l¼0

2lþ 1ð Þ
4π

Σs, l ~rð ÞΦl xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Y0
l Ω
!� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
pl μð Þ

¼
Xn
l¼0

2lþ 1ð Þ
4π

Σs, l ~rð ÞΦl xð ÞPl Ω
!
:~x

� �
The different expressions lead to the classical time-independent 1D transport

equation:

1Dtransport equation: μ
∂Φ x;μð Þ

∂x
þΣt xð ÞΦ x;μð Þ

¼
Xl¼1

l¼0

2lþ1

2
Σs,l xð ÞPl μð ÞΦl xð Þ þ S x;μð Þ ð9:14Þ

The source S(x, μ) is written as the integral of the multiplication rate over energy

and angle for a multiplying medium without independent sources. With the cosine

of the angle between vectors Ω
!

and Ω
!0 as μ0� cosψ , we obtain:

S x; μð Þ ¼ 1

2π

ðμ0¼þ1

μ0¼�1

dμ0
ðφ2¼2π

φ2¼0

dφ2 νΣf x; μ0ð ÞΦ x; μ0ð Þ

The neutron production cross section can also be expanded with Legendre

polynomials:

νΣf x; μ0ð Þ ¼
Xl¼1

l¼0

2lþ 1

2
νΣf , l xð ÞPl μ0ð Þ

and, it is usually assumed that this cross section is isotropic, thereby keeping only

the first term of the expansion. Therefore:

νΣf x; μ0ð Þ ¼ 1

2
νΣf , 0 xð Þ with

νΣf xð Þ ¼
ðμ0¼þ1

μ0¼�1

νΣf x; μ0ð Þdμ0 ¼
ðμ0¼þ1

μ0¼�1

1

2
νΣf , 0 xð Þdμ0 ¼ νΣf , 0 xð Þ

It can be deduced that:

610 9 Computational Neutron Transport Methods



S x; μð Þ ¼ 1

2π

ðμ0¼þ1

μ0¼�1

dμ0
ðφ2¼2π

φ2¼0

dφ2 νΣf x; μ0ð ÞΦ x; μ0ð Þ

¼ 1

2
νΣf , 0 xð Þ 1

2π

ðμ0¼þ1

μ0¼�1

dμ0
ðφ2¼2π

φ2¼0

dφ2Φ x; μ0ð Þ

¼ 1

2
νΣf , 0 xð Þ

ðμ0¼þ1

μ0¼�1

dμ0Φ x; μ0ð Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Φ xð Þ

i.e.:

S x; μð Þ ¼ 1

2
νΣf , 0 xð ÞΦ xð Þ

This angular source satisfies:

ðμ¼þ1

μ¼�1

dμ S x; μð Þ ¼
ðμ¼þ1

μ¼�1

dμ
1

2
νΣf , 0 xð ÞΦ xð Þ ¼ νΣf , 0 xð ÞΦ xð Þ

It should be noted that some authors write the transport equation using the flux

per unit solid angle (steradian) defined by:

ϕ xð Þ n=cm2=s=steradian½ � ¼
1

4π

ðμ¼þ1

μ¼�1

dμ

ðφ¼2π

φ¼0

dφϕ x; μ;φð Þ ¼ 1

2

ðμ¼þ1

μ¼�1

dμ ϕ x; μð Þ

This result holds by assuming a revolution symmetry about the 0x axis for the

medium. Thus, the fluxϕ(x, μ,φ) is independent of φ and a ½ factor is introduced.

Equation (9.14) for ϕ(x, μ) is expressed by omitting the ½ factor:

s x; μð Þ ¼ 1

2π

ðμ0¼þ1

μ0¼�1

dμ0
ðφ2¼2

φ2¼0

dφ2 νΣf x; μ0ð Þϕ x; μ0ð Þ

¼ νΣf , 0 xð Þ 1

2

ðμ0¼þ1

μ0¼�1

dμ0ϕ x; μ0ð Þ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ϕ xð Þ

¼ νΣf , 0 xð Þϕ xð Þ
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Even though the latter seems inconsistent with the result for Φ(x, μ), it should be
recalled that the integration of the following equation wrt μ:

μ
∂ϕ x; μð Þ

∂x
þ Σt xð Þ ϕ x; μð Þ ¼

Xl¼1

l¼0

2lþ 1

2
Σs, l xð Þ Pl μð Þ ϕl xð Þ þ s x; μð Þ

includes the term
Ðμ¼þ1

μ¼�1

dμϕ x; μð Þ ¼ 2ϕ xð Þ which compensates the lack of the ½

factor. Both notations are hence consistent.

The scattering term
Ð
4π

ΣS ~r; Ω
!0 ! Ω

!� �
Φ ~r; Ω

!0
� �

dΩ
!0 can also be simplified

without using the expansion on the spherical harmonics. Instead, the additivity

formula is applied directly for the Legendre polynomials thereby introducing the

associated Legendre functions (Fig. 9.7).

If applied to a 1D geometry, the differential scattering cross section is expressed

using the additivity formula for the spherical harmonics. Using the sum formula for

angles, the cosine of the scattering angle μ0 ¼ Ω
!
:Ω
!0 ¼ cosψ , that of the incident

direction μ ¼ Ω
!
:~x ¼ cos θ1 and that of the outgoing direction μ0 ¼ Ω

!0:~x ¼ cos θ2
are related as follows:

Additivity formula for the Legendre polynomials:

μ0 � cosψ ¼ cos θ1 cos θ2 þ sin θ1 sin θ2 þ cos φ1 � φ2ð Þ

Pl μ0ð Þ ¼ Pl μð ÞPl μ
0ð Þ þ 2

Xl
m¼1

l� mð Þ!
lþ mð Þ Pm

l μð ÞPm
l μ0ð Þ cos m φ1 � φ2ð Þð Þ ð9:15Þ

In this equation, Pm
l μð Þ is the associated Legendre function (Robin 1959),

defined such that:

'Ω

Ω

1

1
2

2

x

y

z

Fig. 9.7 Angles used for

the collision description
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Pm
l μð Þ ¼ �1ð Þm 1� μ2

� �m
2

dmPl μð Þ
dμm

The first few terms are written as: P0
0 μð Þ ¼ 1, P0

1 μð Þ ¼ μ, P1
1 μð Þ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� μ2ð Þp
,

P0
2 μð Þ ¼ 1

2
3μ2 � 1ð Þ, P1

2 μð Þ ¼ �3μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2ð Þp

, P2
2 μð Þ ¼ 3 1� μ2ð Þ.

With these results, the integration of the scattering rate is computed by substitut-

ing the flux and the cross section by their respective expansion:

Ð
4πΣS ~r;Ω

!0!Ω
!� �

Φ ~r;Ω
!0

� �
dΩ
!0¼

ð
4π

X
l

2lþ1

4π
Σsl xð ÞPl Ω

!
:Ω
!0

� �
Φ ~r;Ω

!0
� �

dΩ
!0

¼
ðφ2¼2π

φ2¼0

dφ2

ðμ0¼þ1

μ0¼�1

dμ0
Xn
l¼1

2lþ1

4π
Σsl xð ÞPl μð ÞPl μ

0ð ÞΦ ~r;μ0ð Þ

þ
ðμ0¼þ1

μ0¼�1

dμ0
X
l

2lþ1

4π
Σsl xð Þ 2

Xl
m¼1

l�mð Þ!
lþmð Þ P

m
l μð ÞPm

l μ0ð ÞΦ�~r;μ0� ðφ2¼2π

φ2¼0

dφ2cos m φ1�φ2ð Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

2666664

3777775
¼
X
l

2lþ1

2
Σs,l xð ÞPl μð ÞΦl xð Þ

By integration wrt φ2, the terms with the associated Legendre functions cancel

out. The remaining terms are the lth flux moments:Φl xð Þ ¼ Ðþ1

�1
Φ x; μ0ð ÞPl μ0ð Þ dμ0.

Thus, the same scattering term as Eq. (9.14) is obtained. The Pn approximation

consists in truncating the flux expansion at a finite order n:

Pn approximation of the flux: Φ x; μð Þ ¼ 1

2

Xl¼n

l¼0

2lþ 1ð ÞΦl xð Þ Pl μð Þ ð9:16Þ

The even l terms are usually called the lth order flux while the odd l terms are

called currents. The Φ1 term plays a pivotal role as it will be later seen that it

corresponds to the current J used in diffusion theory. This is also why the flux is

sometimes written as:

Φ x; μð Þ ¼ 1

2

Xn�1
2

h¼0

4hþ 1ð Þ Φ2h xð ÞP2h μð Þ þ 4hþ 3ð Þ~ψ2hþ1 xð Þ:~x P2hþ1 μð Þ

which separates the even and odd components clearly. An analysis of Eq. (9.14)

shows that it is not necessary to expand the differential scattering cross section at

orders higher than n since Φl> n¼ 0. Thus, in practice, the differential scattering

cross section is expanded at order n. An anisotropic source may also be expanded

with Legendre polynomials. The polynomial expansion being a converging process,
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the flux moments decay quickly and only the first terms can be retained. If restricted

to the first term, the flux is given by:

P1 flux approximation:

Φ x; μð Þ 	 1

2
Φ0 xð Þ P0 μð Þ þ 3Φ1 xð Þ P1 μð Þ½ � ¼ 1

2
Φ0 xð Þ þ 3μΦ1 xð Þ½ � ð9:17Þ

From the definition of Φ1 xð Þ ¼ Ðþ1

�1
Φ x; μð Þ Pl μð Þ dμ ¼ Ðþ1

�1
vn x; μð Þ

cos θ d cos θð Þ, it can be noted that this expression is simply the net number of

neutrons that travel through a cross section of 1 cm2 surface area perpendicular to

the x axis. Therefore, this corresponds to the neutron current J(x). The flux can

hence be written in terms of current as:

Φ x; Ω
!� �

¼ 1

4π
Φ0 xð Þ þ 3Ω

!
:~J xð Þ

h i
or even: Φ x; μð Þ ¼ 1

2
Φ0 xð Þ þ 3μJ xð Þ½ �

Injecting Eq. (9.17) into Eq. (9.14), we obtain (after simplifying by 1/2):

μ
∂Φ0 xð Þ
∂x

þ 3μ2
∂J xð Þ
∂x

þ ΣtΦ0 xð Þ þ 3μΣtJ xð Þ

¼ Σs, 0

ðþ1

�1

Φ0 xð Þ þ 3μ0J xð Þ½ � dμ0

þ 3Σs, 1

ðþ1

�1

μ0 Φ0 xð Þ þ 3μ0J xð Þ½ � dμ0 þ 2S x; μð Þ

It can be pointed out that the orders higher than 1 for the scattering cross section

cancel out due to the truncated flux. The integral calculation leads to the relation

between the direct flux and the neutron current:

Flux-current equation: μ
∂Φ0 xð Þ
∂x

þ 3μ2
∂J xð Þ
∂x

þ ΣtΦ0 xð Þ þ 3μΣtJ xð Þ
¼ Σs, 0 Φ0 xð Þ þ 3μΣs, 1 J xð Þ þ 2S x; μð Þ ð9:18Þ

Integrating Eq. (9.18) wrt μ over [�1, +1], the following conservation equation

is reached:

∂J xð Þ
∂x

þ ΣtΦ0 xð Þ ¼ Σs, 0 Φ0 xð Þ þ
ðþ1

�1

S x; μð Þ dμ

where
Ðþ1

�1
S x; μð Þ dμ ¼ S xð Þ is the total source intensity. This balance equation

describes the neutron balance in a volume element. It can be extended in 3D as:
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Neutron conservationequation: div~J ~rð ÞþΣt ~rð ÞΦ0 ~rð Þ¼Σs,0Φ0 ~rð ÞþS ~rð Þ ð9:19Þ

Multiplying Eq. (9.18) by P1(μ)¼ μ and integrating over [�1, +1] leads to:

∂Φ0 xð Þ
∂x

þ 3ΣtJ xð Þ ¼ 3Σs, 1 J xð Þ

or:

J xð Þ ¼ � 1

3 Σt � Σs, 1ð Þ
∂Φ0 xð Þ
∂x

Since:

Σs, 1 ¼
ðþ1

�1

P1 μ0ð ÞΣs μ0ð Þdμ0 ¼
ðþ1

�1

μ0Σs μ0ð Þdμ0 � μ0 Σs, 0

It results in the formula that relates the current to the flux gradient similar to the

Fick’s law applied to chemical diffusion or the Fourier law in heat conduction

theory:

Fick’s law: J xð Þ ¼ � 1

3 Σt � μ0 Σs, 0ð Þ
∂Φ0 xð Þ
∂x

¼ �D
∂Φ0 xð Þ
∂x

ð9:20Þ

Therefore, the P1 expansion of the Boltzmann equation leads to Fick’s law for

the current and the flux with the proportionality coefficient, called the diffusion
coefficient, being given as (Meghreblian and Holmes 1960, p. 342):

Diffusion coefficient in P1 approximation: D � 1

3 Σt � μ0 Σs, 0ð Þ ð9:21Þ

The Σtr � Σt � μ0 Σs, 0 cross section is called the transport-corrected cross
section or simply the transport cross section. The flux moments are computed by

multiplying each term of Eq. (9.14) successively by Pl(μ) , l¼ 1 to n and by

integrating on [�1, +1] (after substituting the flux by its expansion). Integrating

the first term leads to:
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ðþ1

�1

Pl μð Þμ
∂
Pn
l0¼0

2l0 þ 1ð Þ
2

Φl0 xð ÞPl0 μð Þ
∂x

dμ

¼

∂Φ1 xð Þ
∂x

for l ¼ 0

lþ 1ð Þ
2lþ 1

∂Φlþ1 xð Þ
∂x

þ l

2lþ 1

∂Φl�1 xð Þ
∂x

	 

for 1 � l � n� 1

n

2nþ 1

∂Φn�1 xð Þ
∂x

for l ¼ n

8>>>>>><>>>>>>:
using the recurrence relation for Legendre polynomials:

μPl μð Þ ¼ lþ 1

2lþ 1
Plþ1 μð Þ þ l

2lþ 1
Pl�1 μð Þ for l � 1

The integration of the second term is expressed as:ðþ1

�1

Pl μð ÞΣt xð Þ
Xn
l0¼0

2l0 þ 1ð Þ
2

Φl0 xð ÞPl0 μð Þdμ ¼ Σt xð ÞΦl xð Þ

and the terms on the RHS are written as:

ðþ1

�1

dμPl μð Þ
Xl0¼n

l0¼0

2l0 þ 1

2
Σs, l0 xð Þ Pl0 μð Þ

ðþ1

�1

Pl0 μ
0ð ÞΦ x; μ0ð Þ dμ0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Φl xð Þ

þS
�
x; μ
�

26664
37775

¼ Σs, l xð ÞΦl xð Þ þ
ðþ1

�1

Pl μð ÞS x; μð Þ dμ

Hence, Eq. (9.14) can be written as:

Pn equation system discretized with flux moments:

∂Φ1 xð Þ
∂x

þΣt xð ÞΦ0 xð Þ¼Σs,0 xð ÞΦ0 xð Þþ
ðþ1

�1

P0 μð ÞS x;μð Þ dμ
⋮
lþ1ð Þ
2lþ1

∂Φlþ1 xð Þ
∂x

þ l

2lþ1

∂Φl�1 xð Þ
∂x

þΣt xð ÞΦl xð Þ¼Σs,l xð ÞΦl xð Þþ
ðþ1

�1

Pl μð ÞS x;μð Þ dμ
⋮
n

2n�1

∂Φn xð Þ
∂x

þ n�1

2n�1

∂Φn�2 xð Þ
∂x

þΣt xð ÞΦn�1 xð Þ¼Σs,n�1 xð ÞΦn�1 xð Þþ
ðþ1

�1

Pn�1 μð ÞS x;μð Þ dμ

n

2nþ1

∂Φn�1 xð Þ
∂x

þΣt xð ÞΦn xð Þ¼Σs,n xð ÞΦn xð Þþ
ðþ1

�1

Pn μð ÞS x;μð Þ dμ

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
ð9:22Þ
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The source expansion terms Sl xð Þ ¼ Ðþ1

�1
S x; μð ÞPl μð Þ dμ are given by:

S x; μð Þ ¼ 1

2

Xl¼n

l¼0

2lþ 1ð ÞSl xð Þ Pl μð Þ

For an isotropic source, S(x, μ )¼ S(x,�μ )¼ S0(x)P0(μ)/2¼ S0(x)/2 which

describes the fact that half the number of neutrons emitted by the source travel to

the right of the slab source and the other half to the left.

The boundary conditions applied to the surface of the medium are called March-

ak11 boundary conditions for cases surrounded by vacuum (zero incoming current).

The odd flux moments cancel out, especially the current, for incoming angles

(Marchak 1959, p. 221):ð0
�1

Pl μð Þ Φ xS; μð Þ dμ ¼ 0 for l ¼ 1, 3, 5, : . . . n

This approach is identical to substituting the Legendre polynomials by μl. If the
case is symmetric (e.g. a slab with a symmetric source), symmetry considerations

can be employed to describe the conditions explicitly on the flux moments at the

slab center:

Φk 0ð Þ ¼ 0 k odd
∂Φk

∂x

����
0

¼ 0 k even

8<:
Injecting the Pn flux expansion, the Pn scattering cross section and the source in

the angular transport equation (Eq. 9.14), the resulting equation is that where two

polynomials in μ are obtained equal to each other:

μ
Xl¼n

l¼0

2lþ 1

2

∂Φl xð Þ
∂x

Pl μð Þ þ Σt xð Þ
Xl¼n

l¼0

2lþ 1

2
Φl xð ÞPl μð Þ

¼
Xl¼n

l¼0

2lþ 1

2
Σs, l xð Þ Pl μð Þ Φl xð Þ þ

Xl¼n

l¼0

2lþ 1

2
Sl xð ÞPl μð Þ

The even-flux equation is obtained by identification of the constant term (inde-

pendent of μ), which is supposed to be valid for the direction perpendicular to the

O~x axis (μ¼ 0), i.e.:

11R.E. Marchak, A note on the spherical harmonic method applied to the Milne problem for a
sphere, Phys. Rev. 71, no. 7, 443 (1947).
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Pn transport equationat μ¼0 :

Σt xð Þ
Xk¼n=2

k¼0

4kþ1

2
Φ2k xð ÞP2k 0ð Þ

" #
¼
Xk¼n=2

k¼0

4kþ1

2
Σs,2k xð Þ Φ2k xð ÞþS2k xð Þð ÞP2k 0ð Þ

ð9:23Þ

We have implemented the fact that the constant part of the odd Legendre

polynomials is equal to zero: P2k+ 1(0)¼ 0. The above equation is physically

inconsistent if the expansion is limited to a finite order, for instance by considering

the P1 expansion:

Σt xð Þ Φ0 xð Þ ¼ Σs, 0 xð Þ Φ0 xð Þ þ S0 xð Þ

This equation is very surprising since it implies that the isotropic flux could be

obtained by solving it with a local source, irrespective of the boundary conditions

surrounding the position x. It should also be noted that a zero-source problem (e.g.
by imposing a neutron current at an interface) leads to an inconsistent physical

equation Σt(x)Φ0(x)¼ Σs, 0(x) Φ0(x) implying that Σt(x) is equal to Σs , 0(x),
which is not the case except for a non-absorbing medium. Hence, the separation

of the space and angle variables leads to nonsensical results if injected over in the

initial angle-dependent equation owing to the limited-order expansion. Therefore, it

should be noted that the method consists in cancelling the n initial moments of the

transport equation written asH(Φ(x, μ))¼ 0. Yet, the gradient term μ∂Φ/∂x leads to
a polynomial form of the transport equation with degree n+ 1 assuming that the flux

is truncated at order n, and can thus be expressed as:

H Φ x; μð Þð Þ ¼
Xl¼nþ1

l¼0

2lþ 1

2
Hl xð ÞPl μð Þ ¼ 0

H Φ x; μð Þð Þ ¼ 0 )
Xl¼nþ1

l¼0

2lþ 1

2
Hl xð ÞPl μð Þ ¼ 0

,

ðþ1

�1

P0 μð Þ
Xl¼nþ1

l¼0

2lþ 1

2
Hl xð ÞPl μð Þdμ ¼ H0 xð Þ ) H0 xð Þ ¼ 0

ðþ1

�1

P1 μð Þ
Xl¼nþ1

l¼0

2lþ 1

2
Hl xð ÞPl μð Þdμ ¼ H1 xð Þ ) H1 xð Þ ¼ 0

⋮ðþ1

�1

Pn μð Þ
Xl¼nþ1

l¼0

2lþ 1

2
Hl xð ÞPl μð Þdμ ¼ Hn xð Þ ) Hn xð Þ ¼ 0

ðþ1

�1

Pnþ1 μð Þ
Xl¼nþ1

l¼0

2lþ 1

2
Hl xð ÞPl μð Þdμ ¼ nþ 1

2nþ 3

∂Φn xð Þ
∂x

6¼ 0

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
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To ensure that H(Φ(x, 0))¼ 0, the following condition must be satisfied:

Hnþ1 xð Þ ¼ nþ 1

2nþ 3

∂Φn xð Þ
∂x

¼ 0

An erroneous solution is thereby obtained where the last flux moment is constant

for any situation. Thus, the Pn solution reached by cancelling the n first moments of

the transport equation does not ensure that H(Φ(x, 0))¼ 0 (Eq. 9.23). Even if a

source were present, coupled to the flux or not, the same conclusions hold. Increas-

ing the order of the Pn expansion means that Eq. (9.23) will have better chances of

being satisfied, i.e. the method converges towards the exact solution. However, the

“paradox” remains that no truncated expansion may truly satisfy the initial equation

for each angular direction. Nevertheless, the Pn method is very interesting as it

leads to a tri-diagonal diffusion operator expressed in matrix form, and thus inhibits

ray effects which are inherent to the Sn method. It is costly in terms of computa-

tional times and led to the emergence of methods such as the SPn method. For 1D
geometries, studies have shown12 that the Legendre polynomials method was more

efficient than the usual methods such as the collision probability method, the flux

expansion in Taylor or Fourier series or the integration methods by Euler’s method,

trapezium rule or Gauss quadrature.

9.3.2 Multi-group 1D Transport and Diffusion Equivalence

The general multi-group equation (for G groups) is written as:

Ω
!
:grad
��!

Φg ~r;Ω
!� �

þΣt,gΦg ~r;Ω
!� �

¼
Xg0¼G

g0¼1

ð
Ω
!0

Σg0!g Ω
!

:Ω
!0

� �
Φg0 ~r;Ω

!� �
dΩ
!0

þχg
Xg0¼G

g0¼1

ð
Ω
!

0

νΣf ,g0 Ω
!

:Ω
!0

� �
Φg0 ~r;Ω

!� �
dΩ
!0

With the usual notations in this work, the projection of the 1D problem on the Ox
axis is:

12J. Ligou, J. Stepanek, P.A. Thomi: Forme intégrale de l’équation du transport, approximations
polynomiales et diffusion isotrope [Integral form of the transport equation, polynomial approxi-

mations and isotropic scattering], Proceedings of a seminar on numerical reactor calculations held

in Vienna by the AIEA, 17–21 January 1972, pp. 231–265 (1972).
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μ
∂Φg x; μð Þ

∂x
þ Σt,g xð ÞΦg x; μð Þ ¼

Xg0¼G

g0¼1

1

2π

ðμ0¼þ1

μ0¼1

dμ0
ðφ2¼2π

φ2¼0

Σg0!g x; μ0ð Þ Φg0 x; μ
0ð Þ

þ χg
Xg0¼G

g0¼1

1

2
Σf ,g0 xð Þ Φg0 xð Þ

with Φg xð Þ ¼ Ðμ¼þ1

μ¼1

Φg x; μð Þ dμ

The scattering term is simplified by expanding the differential scattering cross

section as:

Σg0!g x; μ0ð Þ ¼ 1

2

Xl¼1

l¼0

2lþ 1ð ÞΣg0!g, l xð Þ Pl μ0ð Þ

The addition formula for the Legendre polynomial (Eq. 9.15) is then applied to

eliminate μ0 such that:

μ
∂Φg x;μð Þ

∂x
þΣt,g xð Þ Φg x;μð Þ

¼
Xl¼1

l¼0

2lþ1

2
Pl μð Þ

Xg0¼G

g0¼1

Σg0!g xð Þ
ðμ0¼þ1

μ0¼1

dμ0 Pl μ
0ð ÞΦg0 x;μ

0ð Þ þ χg
Xg0¼G

g0¼1

1

2
Σf ,g0 xð Þ Φg0 xð Þ

The angular flux can also be expanded in Legendre polynomials as:

Φg0 x; μ
0ð Þ ¼

Xl¼1

l¼0

2lþ 1

2
Pl μ

0ð ÞΦg0, l xð Þ

Finally:

1Dmulti-group transport equation:

μ
∂Φg x; μð Þ

∂x
þ Σt,g xð ÞΦg x; μð Þ ¼

Xl¼1

l¼0

2lþ 1

2
Pl μð Þ

Xg0¼G

g0¼1

Σg0!g, l xð ÞΦg0, l xð Þ

þ χg
Xg0¼G

g0¼1

1

2
Σf ,g0 xð ÞΦg0 xð Þ ð9:24Þ
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The transfer cross section Σg 0 ! g depends on μ0 according to the studied case.

This cross section describes all the collisions except fission, i.e. elastic scattering,
inelastic scattering, (n,2n), (n,3n) reactions, etc. Scattering reactions are assumed as

being isotropic under a threshold energy estimated as 10/A2/3 MeV, where A is the

nuclear mass of the target nuclide. For hydrogenated media, it is thus justified to

assume that all elastic scatterings are isotropic even if there are scatterings with

heavy nuclides such as uranium which are below 200 keV. On the other hand,

inelastic scattering reactions are:

– Anisotropic for light nuclides such as hydrogen (but that reaction is fairly

improbable in a PWR since it is a threshold reaction at 10 MeV),
– Isotropic with a slight error for structure nuclides such as iron or zirconium,

– Isotropic for heavy nuclides.

For one-group theory, the current can be related to the integrated flux gradient

with the formula:

J xð Þ ¼ Φ1 ¼ � 1

3 Σt � Σs,1ð Þ
∂Φ0 xð Þ
∂x

By projecting the multi-group equation (Eq. 9.24) on the basis of Legendre

polynomials and by integrating over μ from �1 to +1, the flux moments are

obtained as follows (without upscattering for anisotropic cross sections, with the

assumption that Σg ’ ! g< g ’ , l� 1¼ 0):

∂Φg, 1 xð Þ
∂x

þ Σt,g xð ÞΦg, 0 xð Þ ¼
Xg0¼G

g0¼1

Σg0!g, 0 xð ÞΦg0, 0 xð Þ þ χg
Xg0¼G

g0¼1

Σf ,g0 xð ÞΦg0 xð Þ

2

3

∂Φg, 2 xð Þ
∂x

þ 1

3

∂Φg, 0 xð Þ
∂x

þ Σt,g xð ÞΦg, 1 xð Þ ¼
Xg0¼g

g0¼1

Σg0!g, 1 xð ÞΦg0, 1 xð Þ

3

5

∂Φg, 3 xð Þ
∂x

þ 2

5

∂Φg, 1 xð Þ
∂x

þ Σt,g xð ÞΦg, 2 xð Þ ¼
Xg0¼g

g0¼1

Σg0!g, 2 xð ÞΦg0, 2 xð Þ

4

7

∂Φg, 4 xð Þ
∂x

þ 3

7

∂Φg, 2 xð Þ
∂x

þ Σt,g xð ÞΦg, 3 xð Þ ¼
Xg0¼g

g0¼1

Σg0!g, 2 xð ÞΦg0, 3 xð Þ

⋮
⋮

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
The law that relates the current to the integrated flux gradient while neglecting

the term 2∂Φg , 2(x)/3∂x leads to the following equation:
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Jg xð Þ ¼ Φg,1 ¼ � 1

3 Σt,g �
Pg0¼g

g0¼1

Σg0!g, 1
Φg0,1
Φg,1

 ! ∂Φg,0 xð Þ
∂x

This relation is not very satisfactory since the current Φg , 1, that also appears at

the denominator, is not completely defined, unlike the one-group case. Therefore,

supplementary approximations must be applied to evaluate the transport-corrected

cross section:

Multi-group transport-corrected cross section: Σ tr
t,g�Σt,g�

Xg0¼g

g0¼1

Σg0!g,1
Φg0,1

Φg,1
ð9:25Þ

Historically, several approximations have been proposed. The following hypoth-

esis Σ tr
t,g 	 Σt,g � Σg!g, 1 is similar to considering that all the cross sections

Σg0 6¼ g! g , 1 are zero and that all collisions are isotropic. This approximation is

called the “diagonal transport approximation” since the scattering matrix is

assumed to be diagonal. Another solution consists in setting Σ tr
t,g 	 Σt,g�Pg}¼G

g}¼g

Σg!g}, 1 . This approximation employs a triangular slowing-down matrix for

the first moment of the slowing-down cross section and thus conserves the anisot-

ropy of neutrons scattered from group g. This approximation is called the “complete
transport approximation”. Finally, the last approach consists in setting

Σ tr
t,g 	 Σt,g �

Pg0¼g

g0¼1

Σg0!g, 1 , thereby assuming that the current does not depend on

energy, i.e. Φg0, 1/Φg, 1� 1. This hypothesis is called the “direct transport approx-
imation”. It should be pointed out that all these approximations aim at eliminating

the current contribution in the transport-corrected cross section.

Studies have shown that these three approximations are satisfactory with respect

to the exact transport equation for atoms with nuclear mass above 20. For usual

moderators such as water or carbon, the direct approximation works best. However,

the true transport cross section (Eq. 9.25) should be employed as far as possible, by

substituting the multi-group anisotropic current Φg, 1computed by a multi-group

transport code in a reference case and applied in a diffusion code for situations close

to the latter.
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9.4 SPn Method

In 1961, E. M. Gelbard proposed13 a new method called the SPn method for

Simplified Pn, which implements the fact that neutrons have a massively mono-

directional behavior. The general principle behind the method is to assume that the

flux is locally 1D, and thus the odd flux moments are replaced by vector quantities

(which are called “currents”) and the first derivatives of the odd moments are

replaced by divergence operators (on the currents), while the first derivatives of

the moments are substituted by gradients. In 1992, E. Larsen14 et al. showed that

13E. M. Gelbard: Simplified spherical harmonics equations and their use in shielding problems,
Westinghouse report WAPD-T-1182, (1961).Ely Gelbard (1924–2002) studied in New York at

Evander Childs High School (1942), then at the University of Pittsburgh. He held a PhD in physics

at the University of Chicago. During his 50-year career, he initially worked at Bettis before

moving to the applied physics division of Argonne National Laboratory where he developed and

improved several calculation methods in reactor physics, especially the SPn method in 1961 or the

synthetic method applied to Sn equations in 1969. He also worked on the Monte Carlo method, his

work in that field culminating in the co-authoring of (Spanier and Gelbard 1969). He received the

Ernest Lawrence Prize in 1969 for his contribution to numerical methods in reactor physics and the

Wigner Medal in 1995.

Ely Gelbard (1924–2002) Public domain
14E.W. Larsen, J.M. McGhee and J.E. Morel: The Simplified PN Equations as an Asymptotic Limit
of the Transport Equation, Transactions of American Nuclear Society, 66, 231 (1992). Edward

W. Larsen (1944–) defended his PhD thesis in 1971 (Completeness Results for Linear Operators in
a Hilbert Space and Problems in Neutron Transport Theory) at the Rensselaer Polytechnic

Institute of Troy (New-York). He teaches at the department of nuclear engineering of the

University of Michigan at Ann Arbor. His research areas include the transport equation and

mathematical models in neutron physics. He has obtained several awards among which the Arthur

Holly Compton Award of the ANS in 1996. He has authored or co-authored almost 300 papers,

most of which are on the transport equation, thereby making him one of the rare international

specialists in the field.
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the SPn approach is the asymptotic limit of the transport equation. In 1993,

G. Pomraning showed15 that it corresponds to the limit of the locally 1D transport

equation. This limit indicates 1D transport locally with highly-forward scattering.

Thus, instead of employing the spherical harmonics, Legendre polynomials are

used to expand the flux on a truncated basis at order n:

Φ x; μð Þ ¼ 1

2

Xl¼n

l¼0

2lþ 1ð ÞΦl xð ÞPl μð Þ

with the flux moment defined as: Φl xð Þ ¼ Ðþ1

�1

Φ x; μð ÞPl μð Þ dμ. The scattering cross

section is itself expanded with Legendre polynomials for the cosine of the collision

angle μ0 ¼ Ω
!
:Ω
!0:

Σs ~r; μ0ð Þ ¼ 1

2

Xl¼n

l¼0

2lþ 1ð ÞΣs, l ~rð ÞPl μ0ð Þ

Some authors, such as (Blaquière 1962), consider that the scattering cross

section can be simplified by expressing it as the summation of the product

of Legendre polynomials of the cosine of the two angular directions μ ¼ Ω
!
:~x and

μ0 ¼ Ω
!0:~x:

Σs x; μ0ð Þ 	 1

2

Xl¼n

l¼0

2lþ 1ð ÞΣs, l xð Þ Pl μð ÞPl μ
0ð Þ

Edward Larsen (1944–) Courtesy Larsen
15G.C. Pomraning: Asymptotic and variational derivations of the simplified Pn equations, Ann.
Nucl. Energy, vol. 20, no. 9, pp. 623–637 (1993).
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This approximation that omits some terms of the Legendre polynomials associ-

ated with the addition formula (Eq. 9.15) is not required in 1D Pn theory. Indeed,

the non-planar spherical harmonics moments of the scattering cross section sim-

plify by the equation with the cancelling of orthogonal terms with the Legendre

polynomials of the flux. Yet, it leads to the same linearized equations by simplify-

ing the notations. Therefore, by injecting these expressions in the 1D transport

equation (Eq. 9.14), and similar to the Pn technique, by choosing the n + 1 moments

of that equation wrt the first n+ 1 Legendre polynomials, the following n + 1
equations are obtained:

∂
∂x

ðþ1

�1

μΦ x;μð ÞPl μð Þ dμþΣt xð Þ
ðþ1

�1

μΦ x;μð ÞPl μð Þ dμ

¼ 1

2

Xm
k¼0

2kþ1ð ÞΣs,kΦk xð Þ
ðþ1

�1

Pk μð ÞPl μð Þ dμþ
ðþ1

�1

S x;μð ÞPl μð Þ dμ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sl xð Þ

for l¼ 0,n

This equation can be written as:

Xn
k¼1

∂
∂x

2k þ 1

2
Φk xð Þ

ðþ1

�1

μPk μð ÞPl μð Þ dμþ Σt xð ÞΦl xð Þ

¼
Xm
k¼0

Σs,kΦk xð Þδkl þ Sl xð Þ for l ¼ 0, n

Using the recurrence properties of the Legendre polynomials, the integral term is

computed as:

ðþ1

�1

μPk μð ÞPl μð Þ dμ ¼
ðþ1

�1

k þ 1

2k þ 1
Pkþ1 μð Þ þ k

2k þ 1
Pk�1 μð Þ

	 

Pl μð Þ dμ

Thus:

Xn
k¼1

∂
∂x

2k þ 1

2
Φk xð Þ

ðþ1

�1

μPk μð ÞPl μð Þ dμ

¼ lþ 1

2lþ 1
Φkþ1 xð Þδ kþ1ð Þ, l þ l

2lþ 1
Φk�1 xð Þδ k�1ð Þ, l
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Only one of these two terms can be non-zero. Usual practice is to introduce a

current vector for the odd values of l: Φ2lþ1
���! ¼ Φ2lþ1 ~x, and by expressing the

previous equations for the three space directions, a system of differential equations

is reached, for both scalar and vector quantities, as (by dropping the space

dependence):

SPn equations:

Σt�Σs,0ð ÞΦ0þ divΦ1
�! ¼ S0

1

3
grad
��!

Φ0þ Σt�Σs,1ð ÞΦ1
�!þ 2

3
grad
��!

Φ2 ¼ S1

2

5
divΦ1
�!þ Σt�Σs,2ð ÞΦ2þ 3

5
divΦ3
�! ¼ S2

⋮

2l

4lþ 1
divΦ2l�1
���!þ Σt�Σs,2lð ÞΦ2lþ 2lþ 1

4lþ 1
divΦ2lþ1
���! ¼ S2l

2lþ 1

4lþ 3
grad
��!

Φ2lþ Σt�Σs,2lþ1ð ÞΦ2lþ1
���!þ 2lþ 2

4lþ 3
grad
��!

Φ2lþ2 ¼ S2lþ1

⋮

n

2nþ 1
grad
��!

Φn�1þ Σt�Σs,nð ÞΦn
�! ¼ Sn

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð9:26Þ

These equations are very similar to the diffusion equation with the flux moment

Φ2l and its associated current momentΦ2lþ1
���!

. The SPn approach is hence equivalent

to solving (n + 1)/2 diffusion problems. It is easy to show that SP1 is equivalent to

the diffusion problem. This vector approach is not founded on the flux expansion on

spherical harmonics but stems from a variational approach using Pl Ω
!
:grad

����!� �
test

functions which were introduced by G. Pomraning16:

16Gerald C. Pomraning (1936–1999) completed his PhD in nuclear engineering at theMIT in 1962.

He worked for 7 years at General Electric and at General Atomics, and then helped in founding in

1969 the services company Science Applications International Corporation based in San Diego.

SAIC and its subsidiaries now employ more than 35,000 persons worldwide. In 1978, he joined

UCLA where his research areas were the transport equation, reactor kinetics and nuclear reactor at

large. He encompasses both the fields of physics and applied mathematics very elegantly. He

received several awards such as the Wigner Medal in 1999, and participated actively to journals in

the field: Nuclear Science and Engineering and Transport Theory and Statistical Physics. ANS
created an award that bears his name: The Gerald C. Pomraning Memorial Award, which was

attributed to Richard Sanchez from CEA in 2009. “Jerry” Pomraning has written several high

standard papers on neutron transport, but cancer took him too early. He will be remembered as

somebody who loved life, and enjoyed good food and cigars.
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Φ
�
~r, ~Ω

� ¼XL
l¼0

2lþ 1

4π
Pl Ω

!
:grad
��!� �

Φl ~rð Þ½ �

These test functions are in fact operators that deal with a space function, and

which are an extension of the Legendre polynomials in which the argument is

replaced by Ω
!
:grad
��!

, i.e.17:

P0 Ω
!
:grad
��!� �

½ � ¼ 1,P1 Ω
!
:grad
��!� �

½ � ¼ Ω
!
:grad
��!½ �,P2 Ω

!
:grad
��!� �

½ �

¼ 1

2
3 Ω

!
:grad
��!� �2

� Δ
� 

½ �,

P3 Ω
!
:grad
��!� �

½ � ¼ 1

2
Ω
!
:grad
��!

5 Ω
!
:grad
��!� �2

� 3Δ
� 

½ �, 
 
 


These functions form an incomplete orthonormal basis for which the orthogo-

nality principle is expressed as:ð
4π

dΩ
!
Pl Ω

!
:grad
��!� �

Pl0 Ω
!
:grad
��!� �

Φ ~rð Þ½ �
h i

¼ 4π

2lþ 1
δl, l0Δ

l Φ ~rð Þ½ �

where the generalized Laplace operator is written as: Δl Φ ~rð Þ½ � � Δl�1 Δ Φ ~rð Þ½ �½ �
and Δ½ � � grad

��!
:grad
��!½ �

It should be noted that the function Φ ~rð Þ must de differentiable 2 L times. Once

these operators are defined, the flux solution expressed on this basis of test functions

(Courtesy Pomraning)
17Alain Hébert: The search for superconvergence in spherical harmonics approximations, Nuclear
Science and Engineering, 154, pp. 134–173 (2006).
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(and the source terms with the same expansion) is injected in the system of

equations and multiplied successively by the Pl Ω
!
:grad

����!� �
operators. Afterwards,

integration over the unit sphere (4π) is carried out to ensure the orthogonality

condition is satisfied via a projection technique on the usual basis. The system of

equations given by Eq. (9.26) is thus obtained. Hebert developed a variational

approach for the method by constructing a functional for the even and odd flux,

where Eq. (9.26) is deduced by the stationary property of the mixed dual functional.

Although increasing the order of the method does not converge towards the

exact solution, it has been observed that SP3 or SP5 brought numerical improve-

ments wrt the exact solution or a best-estimate solution computed by the transport

method compared to the diffusion approximation. Thus, in the 1990’s, with the

increasing computational power, these methods were appreciated for dealing with

3D geometries. Nonetheless, the SPn method remains a satisfactory preconditioner

of the Pn method.

9.5 Interfaces Between Different Media

The differential equations of the Pn problem (Eq. 9.22) or even the SPn method can

be solved using the following flux expansion:

Φ x; μð Þ ¼ 1

2

Xl¼n

l¼0

2lþ 1ð ÞΦ k
l xð Þ Pl μð Þ with: Φ k

l xð Þ ¼ φl λkð Þe� Σtx
λk

Expressing the exponential coefficient in terms of Σtx is equivalent to working

with mean free paths in the space dimension, and λk is a dimensionless number

defined as the number of free paths. The general solution to the differential system

is then written as the sum of the particular solution of the equation with a source and

a general solution for the equation without source:

Φ x; μð Þ ¼ S0
2 Σt � Σs, 0ð Þ þ

Xk¼n

k¼0

Ψ kΦk xð Þ

Since ∂Φ k
l xð Þ=∂x ¼ �ΣtΦ k

l xð Þ=λk, λk satisfies the linear system of equations

obtained when the flux solution Φ k
l xð Þ is injected in Eq. (9.22):
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λ
Σt � Σs, 0ð Þ

Σt

φ0 � φ1 ¼ 0

⋮
� lφl�1 þ 2lþ 1ð Þλ Σt � Σs, lð Þ

Σt
φl � lþ 1ð Þφlþ1 ¼ 0

⋮
� n� 1ð Þ φn�2 þ 2n� 1ð Þλ Σt � Σs,n�1ð Þ

Σt
φn�1 � nφn ¼ 0

� nφn�1 þ 2nþ 1ð Þλ Σt � Σs,nð Þ
Σt

φn ¼ 0

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
This equation system has a set of non-trivial (non-zero) solutions φl¼ 0 , n only if

the determinant of the corresponding matrix is zero: det A(n, λ,Σt,Σs , l¼ 0 , n)¼ 0.

The latter is a n + 1–degree polynomial in λ for which it can be easily shown that

λ¼ 0 is a trivial solution if n + 1 is odd (i.e. n is even) since λ appears only in the

diagonal terms of the matrix. The flux behavior is non-physical with a constant

component in x, which is why, in practice, an even expansion is never used in the Pn

method. If n is odd, the determinant is polynomial with a bi-quadratic term in λ2 and
the solutions in λk are coupled as pairs of positive and negative values �λk. In the

general case of an interface between two media, n + 1 closure equations are required
to calculate the ψk¼ 0, n coefficients. Assuming that the flux is finite at infinity for

infinite media, it can be simply established that the ψk coefficients for positive

exponential terms are zero. If the λ coefficients are the roots of the determinant, the

equation is tightly coupled. Thus, an arbitrary value of φn is chosen to calculate the

φl¼ 0, n� 1 terms successively (or in matrix form). The particular case of a homo-

geneous medium where the total cross section is constant and the scattering cross

section is linearly anisotropic (only ∑s, 0 and∑s, 1 are non-zero) is often computed in

practical cases since it allows a solution for the following system:

λ
Σt � Σs, 0ð Þ

Σt

φ0 � φ1 ¼ 0

�φl�1 þ 3λ
Σt � Σs, lð Þ

Σt
φl � 2φlþ1¼ 0

⋮
� lφl�1 þ 2lþ 1ð Þλφl � lþ 1ð Þφlþ1 ¼ 0

⋮
� n� 1ð Þφn�2 þ 2n� 1ð Þλφn�1 � nφn ¼ 0

� nφn�1 þ 2nþ 1ð Þλφn ¼ 0

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
Except for the first two equations, it can be observed that the φl¼ 2, n� 1 terms

satisfy the recurrence relations of the Legendre polynomials. Jahnke and Emde

(Jahnke and Emde 1945) noted that there exists another polynomial series Wl(λ) of
degree l in λ, and defined as:
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Wl λð Þ ¼ 1

2

ðþ1

�1

Plþ1 λð Þ � Plþ1 μð Þ
λ� μ

dμ

that satisfies the same recurrence relation as the Legendre polynomials with a shift

of 1 for the indices:

lþ 1ð ÞWl λð Þ � 2lþ 1ð ÞλWl�1 λð Þ þ lWl�2 λð Þ

A study of these polynomials (W0(λ)¼ 1, W1(λ)¼ 3λ/2, W2(λ)¼ 5λ2/2� 2/3,

etc.) showed that they are not proportional to the Legendre polynomials (except

the first two), thereby leading to their use for calculating the φl¼ 2 , n� 1(λ) coeffi-
cients by fixing (Weinberg and Wigner 1958, p. 249):

φl¼2,n�1 λð Þ ¼ APl λð Þ � BWl�1 λð Þ

From the respective recurrence relations, it is easily shown that the coefficients

A and B are constant for any l� 2. Given that the equations for φl are homogeneous,

there is a degree of freedom such that A is arbitrarily chosen as A¼ 1. The

coefficient B is obtained by cancelling the n+ 1th flux moment φn+ 1, i.e.:

B ¼ Wn λð Þ
Pnþ1 λð Þ

The continuity of the different flux moments between two media allows the

establishing of a linear system of equations given that the flux is expanded at the

same order on both sides of the interface.

9.6 Spherical Harmonics Method

(Stamm’ler and Abbate 1983, p. 142; Ferziger and Zweifel 1966, p. 132;

Meghreblian and Holmes 1960, p. 338).

9.6.1 Principle

The use of Legendre polynomials is particularly well suited to one-dimensional

cases. In more general 3D cases, the spherical harmonics cannot be projected in the

plane geometry. Let us consider the complete flux expression:
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Φ ~r; Ω
!� �

¼
Xl¼þ1

l¼0

Xm¼þ1

m¼�1

Φm
l ~rð ÞYm

l Ω
!� �

The spherical harmonics are widely employed in quantum physics and in field

theory18 (description of wave functions in spherical coordinates). Thus, the equa-

tions are written with the analogy to these fields with the principal quantum number

(l ) and the secondary one (m). The normalized (to unity) spherical harmonics are

expressed as:

Ym
l Ω

!� �
¼ �1ð Þm

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� mð Þ!
l� mð Þ!

s
Pm
l μð Þeimφ for m > 0

Ym
l Ω

!� �
¼ �1ð Þ�mYm

l Ω
!� �

for � m < 0

Y0
0 Ω
!� �

¼ Y0
0 Ω

!� �
¼ 1ffiffiffiffiffi

4π
p

8>>>>>><>>>>>>:
The flux, expressed in spherical coordinates, is written as:

ΔΦ r;θ;φð Þ¼ 1

r2
∂
∂r

r2
∂Φ r;θ;φð Þ

∂r

� 
þ 1

r2
1

sinθ

∂
∂θ

sinθ
∂Φ r;θ;φð Þ

∂θ

� 
þ 1

sin2θ

∂2Φ r;θ;φð Þ
∂φ2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΔsΦ

The angular part of the Laplace operator is called the self-adjoint Laplace-

Beltrami19 operator ΔsΦ (on the unit sphere S), for which the spherical harmonics

are the eigenfunctions of:

ΔsY
m
l þ l lþ 1ð ÞYm

l ¼ 0

For l� 0 and�l�m� + l, the spherical harmonics form an orthogonal basis for

L2(S). Since the spherical harmonics Ym
l Ω

!� �
are complex numbers while the flux

are real values, the components Φm
l and Φ�m

l are related such that the combination

of two spherical harmonics of different signs is a real number:

Φ�m
l ~rð ÞY�m

l Ω
!� �

þΦm
l ~rð ÞYm

l Ω
!� �

¼ Φ�m
l ~rð ÞY�m

l Ω
!� �

þ Φm
l ~rð ÞYm

l Ω
!� �

i.e. by conjugating term by term (the conjugate of a product is the product of

conjugates):

18Jones (1985) is a complete reference for proofs on the use of spherical harmonics in field theory.
19Eugenio Beltrami (1835–1900) was an Italian mathematician and physicist who worked in both

the fields of mathematics (differential geometry and non-Euclidean geometry) and physics (optics,

thermodynamics, electromagnetism—a subject area where he introduced the modified Laplace

operator). He held the position of professor in several Italian universities and was appointed

president of the prestigious Accademia dei Lincei in 1898.
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Φ�m
l ~rð ÞY�m

l Ω
!� �

þΦm
l ~rð ÞYm

l Ω
!� �

¼Φ�m
l ~rð Þ �1ð Þ�mYm

l Ω
!� �

þΦm
l ~rð Þ �1ð ÞmY�m

l Ω
!� �

As the spherical harmonics form a complete basis, the coefficients of a given

harmonic can be identified (this is equivalent to using the orthogonality property),

such as:

Φ�m
l ¼ �1ð ÞmΦm

l

Φm
l ¼ �1ð Þ�mΦ�m

l

�
This result implies that:

Φ�m
l þ Φþm

l is real if m is even

Φ�m
l � Φþm

l is purely imaginary if m is odd

�

Eugenio Beltrami (Public domain)
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This is why some authors20 prefer a flux expansion using non-normalized

spherical harmonics:

Φ ~r; Ω
!� �

¼
Xl¼þ1

l¼0

Xl
m¼0

2lþ 1

4π
Pm
l μð Þ ψ m

l ~rð Þ cos mφð Þ þ ϕm
l sin mφð Þ� �

with:

�1ð Þm
ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�mð Þ!
l�mð Þ!

s
ψ m
l ¼

1

2
Φþm

l þΦ�m
l

� �
which is realwhenm is even

1

2
Φþm

l �Φ�m
l

� �
which is realwhenm isodd

8><>:
�1ð Þm

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�mð Þ!
l�mð Þ!

s
ϕm
l ¼

1

2i
Φþm

l þΦ�m
l

� �
which is realwhenm is even

1

2i
Φþm

l �Φ�m
l

� �
which is realwhenm is odd

8><>:

8>>>>>>>><>>>>>>>>:
It can be noted that the number of flux moments to calculate is the same in both

approaches. The scattering cross section is written in terms of spherical harmonics

using the addition theorem:

PnðΩ!:Ω
!0Þ ¼ 4π

2nþ 1

Xm¼þn

m¼�n

Y m
n Ω

!� �
Ym
n ðΩ

!0Þ

Σsð~r; Ω!; Ω
!0Þ ¼

Xl¼þ1

l¼0

2lþ 1

4π
Σs, l ~rð ÞPl μ0ð Þ

¼
Xl¼þ1

l¼0

Σs, l ~rð Þ
Xm¼þl

m¼�l

Y m
l Ω

!� �
Ym
l

�
Ω
!0�

The orthogonality property of spherical harmonics results in the Hermitian

scalar product of a harmonic with the conjugate of another harmonic:ð
4π

Ym
l Ω

!� �
Ym0
l0 Ω

!� �
dΩ
!¼ δll0 δmm0

and the projection of the differential scattering cross section on a given harmonic is

obtained:

20See in particular J. K. Fletcher: The solution of the multi-group neutron transport equation using
spherical harmonics, Nuclear Science and Engineering, 84, pp. 33–46 (1983).
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ð
Ω
!

0

Σs ~r; Ω
!
; Ω
!0

� �
Ym
l Ω

!0
� �

dΩ
!0 ¼ Σs,mY

m
l Ω

!� �

These various results lead to the calculation of the scattering operator:ð
Ω
!

0

Σs

�
~r; Ω

!
; Ω
!0�Φ�~r; Ω!0�dΩ!0 ¼

ð
Ω
!

0

�Xl¼þ1

l¼0

Σs, l ~rð Þ
Xm¼þl

m¼�l

Y m
l Ω

!� �
Ym
l Ω

!0
� ��

�Xl¼þ1

l¼0

Xm¼þl

m¼�l

Φm
l ~rð ÞYm

l Ω
!0
� ��

dΩ
!0 ¼

Xl¼þ1

l¼0

Xm¼þl

m¼�l

Σs, l ~rð ÞΦm
l ~rð ÞYm

l ðΩ
!Þ

The above resulting equation simplifies the integro-differential transport equation

as follows:

Ω
!
:
Xl¼þ1

l¼0

Xm¼þl

m¼�l

grad
��!

Φm
l ~rð ÞYm

l Ω
!� �

þ Σt

Xl¼þ1

l¼0

Xm¼þl

m¼�l

Φm
l ~rð ÞYm

l Ω
!� �

¼
Xl¼þ1

l¼0

Xm¼þl

m¼�l

Σs, l ~rð ÞΦm
l ~rð ÞYm

l Ω
!� �

þ
Xl¼þ1

l¼0

Xm¼þl

m¼�l

Sm
l ~rð ÞYm

l Ω
!� �

ð9:27Þ

If the fission source is assumed isotropic, thus:

S ~r; Ω
!� �

¼ 1

4π

vΣf ~rð Þ
keff

which is expressed under the form: S ~r; Ω
!� �

¼ 1ffiffiffiffiffi
4π

p vΣf ~rð Þ
keff

Y0
0 Ω
!� �

¼ S00 ~rð ÞY0
0 Ω
!� �

to simplify the angular integration of flux moments. Equation (9.27) includes the

products Ω
!
:Ym

l Ω
!� �

. By noting that:

Ω
!¼

sin θ cosφ ¼ sin θ

2
eiφ þ e�iφ
� �

sin θ cosφ ¼ sin θ

2i
eiφ þ e�iφ
� �

cos θ

0BBB@
1CCCA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

3
Y�1
1 � Y1

1

� �r
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

3
Y�1
1 þ Y1

1

� �r
ffiffiffiffiffiffiffiffiffiffiffi
4π

3
Y0
1

r

0BBBBBB@

1CCCCCCA
The recurrence relations for spherical harmonics can be employed (while

dropping the angular dependence Ω
!

for notations):
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cos θ Ym
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ mð Þ l� mð Þ
2l� 1ð Þ 2lþ 1ð Þ

s
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a m
l�1

Ym
l�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1þ mð Þ lþ 1� mð Þ

2lþ 1ð Þ 2l� 3ð Þ

s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a m
lþ1

Ym
lþ1

� am
l�1Y

m
l�1 þ am

lþ1Y
m
lþ1

sin θ eiφ Ym
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� m� 1ð Þ l� mð Þ
2l� 1ð Þ 2lþ 1ð Þ

s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bmþ1
l�1

Ymþ1
l�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1þ mð Þ lþ 2þ mð Þ

2lþ 1ð Þ 2lþ 3ð Þ

s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bmþ1
lþ1

Ymþ1
lþ1

� bmþ1
l�1 Y

mþ1
l�1 � bmþ1

lþ1 Y
mþ1
lþ1

sin θ e�iφ Ym
l ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ m� 1ð Þ lþ mð Þ
2l� 1ð Þ 2lþ 1ð Þ

s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cm�1
l�1

Ym�1
l�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� mþ 1ð Þ l� mþ 2ð Þ

2lþ 1ð Þ 2lþ 3ð Þ

s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cm�1
lþ1

Ym�1
lþ1

� �cm�1
l�1 Y

m�1
l�1 þ cm�1

lþ1 Y
m�1
lþ1

From the properties of conjugate terms, the recurrence laws for the harmonics

with negative m coefficients are deduced as:

cos θ Y�m
l ¼ cos θ �1ð Þ�mYm

l ¼ �1ð Þ�m am
l�1 �1ð Þ�mY�m

l�1 þ am
lþ1 �1ð Þ�mY�m

lþ1

� �
¼ am

l�1Y
�m
l�1 þ am

lþ1Y
�m
lþ1

Therefore: a�m
l�1 ¼ am

l�1 and a�m
lþ1 ¼ am

lþ1

sinθe�iφYm
l ¼ sinθe�iφ �1ð ÞmY�m

l ¼�cm�1
l�1 Y

m�1
l�1 þ cm�1

lþ1 Y
m�1
lþ1

sinθe�iφY�m
l ¼ cm�1

l�1 Y
� m�1ð Þ
l�1 � cm�1

lþ1 Y
� m�1ð Þ
lþ1 � b

� m�1ð Þ
l�1 Y

� m�1ð Þ
l�1 � b

� m�1ð Þ
lþ1 Y

� m�1ð Þ
lþ1

(

Hence: b
� m�1ð Þ
l�1 ¼ cm�1

l�1 and b
� m�1ð Þ
lþ1 ¼ cm�1

lþ1

sinθeiφYm
l ¼ sinθe�iφ �1ð ÞmY�m

l ¼bmþ1
l�1 Y

mþ1
l�1 �bmþ1

lþ1 Y
mþ1
lþ1

sinθe�iφY�m
l ¼�bmþ1

l�1 Y
� mþ1ð Þ
l�1 þbmþ1

lþ1 Y
� mþ1ð Þ
lþ1 ��c

mþ1ð Þ
l�1 Y

� mþ1ð Þ
l�1 þc

� mþ1ð Þ
lþ1 Y

� mþ1ð Þ
lþ1

(

Thus: c
� mþ1ð Þ
l�1 ¼ bmþ1

l�1 and c
� mþ1ð Þ
lþ1 ¼ bmþ1

lþ1 .

The formulae for the coefficients b and c are interchanged for negative flux

moments. Substituting these expressions in the integro-differential equations even-

tually leads to:
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Xl¼þ1

l¼0

Xm¼þl

m¼�l

∂Φm
l

∂x
1

2
bmþ1
l�1 Y

mþ1
l�1 � bmþ1

lþ1 Y
mþ1
lþ1 � cm�1

l�1 Y
m�1
l�1 þ cm�1

lþ1 Y
m�1
lþ1

� �
þ
Xl¼þ1

l¼0

Xm¼þl

m¼�l

∂Φm
l

∂y
1

2i
bmþ1
l�1 Y

mþ1
l�1 � bmþ1

lþ1 Ymþ1
lþ1 þ cm�1

l�1 Y
m�1
l�1 � cm�1

lþ1 Y
m�1
lþ1

� �
þ
Xl¼þ1

l¼0

Xm¼þl

m¼�l

∂Φm
l

∂z
am
l�1Y

m
l þ am

lþ1Y
m
lþ1

� �þΣt

Xl¼þ1

l¼0

Xm¼þl

m¼�l

Φm
l Y

m
l ¼

Xl¼þ1

l¼0

Xm¼þl

m¼�l

Φm
l Σs, lY

m
l þ

Xl¼þ1

l¼0

Xm¼þl

m¼�l

Sm
l Y

m
l

As seen previously, it is wiser to group harmonics of opposite signs so as to deal

with real values. By separating the contribution for m¼ 0 that can be calculated

directly, the three successive leakage terms (streaming) are:
Term for x:ffiffiffiffiffi

2π

3

r
Y�1
1 � Y1

1

� �∂Φ0
0

∂x
Y0
0 þ

1

2

Xl¼þ1

l¼1

Xm¼þl

m¼l

∂Φm
l

∂x
bmþ1
l�1 Y

mþ1
l�1 � bmþ1

lþ1 Y
mþ1
lþ1

�
�cm�1

l�1 Y
m�1
l�1 þ cm�1

lþ1 Y
m�1
lþ1 Þ þ

Xl¼þ1

l¼1

ffiffiffiffiffi
2π

3

r
Y�1
1 � Y�1

1

� �∂Φ0
l

∂x

þ 1

2

Xl¼þ1

l¼1

Xm¼þl

m¼l

∂Φ�m
l

∂x
cm�1
l�1 Y

� m�1ð Þ
l�1 � cm�1

lþ1 Y
� m�1ð Þ
lþ1

�

�bmþ1
l�1 Y

� mþ1ð Þ
l�1 þ bmþ1

lþ1 Y
� mþ1ð Þ
lþ1 Þ

Term for y:

i

ffiffiffiffiffi
2π

3

r
Y�1
1 þ Y1

1

� �∂Φ0
0

∂x
Y0
0 þ

1

2i

Xl¼þ1

l¼1

Xm¼þl

m¼l

∂Φm
l

∂y
bmþ1
l�1 Y

mþ1
l�1 � bmþ1

lþ1 Y
mþ1
lþ1

�
þcm�1

l�1 Y
m�1
l�1 � cm�1

lþ1 Y
mþ1
lþ1 Þ þ

Xl¼þ1

l¼1

ffiffiffiffiffi
2π

3

r
Y�1
1 þ Y1

1

� �∂Φ0
l

∂x

þ 1

2i

Xl¼þ1

l¼1

Xm¼þl

m¼l

∂Φ�m
l

∂y
cm�1
l�1 Y

� m�1ð Þ
l�1 � cm�1

lþ1 Y
� m�1ð Þ
lþ1 þ bmþ1

l�1 Y
� mþ1ð Þ
l�1

�
�bmþ1

lþ1 Y
� mþ1ð Þ
lþ1

�
Term for z:ffiffiffiffiffi

4π

3

r
Y0
1

∂Φ0
0

∂z
Y0
0 þ

Xl¼þ1

l¼1

Xm¼þl

m¼l

am
l�1

∂Φm
l

∂z
Y m
l�1 þ

∂Φ�m
l

∂z
Y�m
l�1

� 
þam

lþ1

∂Φm
l

∂z
Y m
lþ1 þ

∂Φ�m
l

∂z
Y�m
lþ1

� 
þ
Xl¼þ1

l¼1

ffiffiffiffiffi
4π

3

r
Y0
1

∂Φ0
l

∂z
ð9:28Þ
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Injecting these expressions in the integro-differential equation and by limiting

the expansion to order n, the general recurrence relation for the flux moments is

reached by identifying term-wise the coefficients of Ym
l and Y�m

l (for l� 2):

am
l

∂Φm
lþ1

∂z
þ∂Φm

l�1

∂z

� 
þ1

2

∂Φm�1
lþ1

∂x
�∂Φm�1

l�1

∂x

� 
bm
l þ ∂Φmþ1

lþ1

∂x
þ∂Φmþ1

l�1

∂x

� 
cml

	 

1

2i

∂Φm�1
lþ1

∂y
�∂Φm�1

l�1

∂y

� 
bm
l þ ∂Φmþ1

lþ1

∂y
�∂Φmþ1

l�1

∂y

� 
cml

	 

þΣtΦ

m
l ¼Σs,lΦ

m
l þSm

l

am
l

∂Φ�m
lþ1

∂z
þ∂Φ�m

l�1

∂z

� 
þ1

2

∂Φ� mþ1ð Þ
lþ1

∂x
�∂Φ� mþ1ð Þ

l�1

∂x

 !
cml þ ∂Φ� m�1ð Þ

lþ1

∂x
þ∂Φ� m�1ð Þ

l�1

∂x

 !
bm
l

" #

1

2i

∂Φ� mþ1ð Þ
lþ1

∂y
�∂Φ� mþ1ð Þ

l�1

∂y

 !
cml þ ∂Φ� m�1ð Þ

lþ1

∂y
�∂Φ� m�1ð Þ

l�1

∂y

 !
bm
l

" #
þΣtΦ

�m
l ¼Σs,lΦ

�m
l þS�m

l

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
These two equations are summed term-wise and using the real and imaginary

parts of the flux, ψ m
l and φm

l respectively, that are related to the flux moments by:

m even : Φþm
l þ Φ�m

l ¼ 2ψ m
l Φþm

l � Φ�m
l ¼ 2iφm

l

m odd : Φþm
l þ Φ�m

l ¼ 2iφm
l Φþm

l � Φ�m
l ¼ 2ψ m

l

�
a real terms system of two differential equations, one for m even, the other for m
odd, is obtained which after simplification by i (left in the formulation to clarify the

reasoning by carefully noting that 1/i¼ � i):

2am
l

∂ψ m
lþ1

∂z
þ∂ψ m

l�1

∂z

� 
þ ∂ψm�1

lþ1

∂x
�∂ψm�1

l�1

∂x

� 
bm
l þ ∂ψmþ1

lþ1

∂x
þ∂ψmþ1

l�1

∂x

� 
cml

	 

þ ∂φm�1

lþ1

∂y
�∂φm�1

l�1

∂y

� 
bm
l þ ∂φmþ1

lþ1

∂y
�∂φmþ1

l�1

∂y

� 
cml

	 

þ2
P

tψ
m
l ¼2

P
s,lψ

m
l þ2sml meven

2iam
l

∂φm
lþ1

∂z
þ∂φm

l�1

∂z

� 
þ i

∂φmþ1
lþ1

∂x
�∂φmþ1

l�1

∂x

� 
cml þ ∂φm�1

lþ1

∂x
�∂φm�1

l�1

∂x

� 
bm
l

	 

1

i

∂ψmþ1
lþ1

∂y
�∂ψmþ1

l�1

∂y

� 
cml þ ∂ψm�1

lþ1

∂y
�∂ψm�1

l�1

∂y

� 
bm
l

	 

þ2iΣtφ

m
l ¼2Σs,lφ

m
l þ2iςml modd

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
The coefficients sml and ςml stem from the expansion of the source onto spherical

harmonics: Sm
l ¼ sml þ iςml and S ~r; Ω

!� �
¼ Pl¼þn

l¼0

Pm¼þl

m¼�1

Sm
l ~rð ÞYm

l Ω
!� �

. The follow-

ing coefficients are recalled:
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am
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ mþ 1ð Þ lþ 1� mð Þ

2lþ 1ð Þ 2lþ 3ð Þ

s
bm
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� mð Þ l� m� 1ð Þ
2lþ 1ð Þ 2lþ 3ð Þ

s

cml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ mþ 1ð Þ lþ mþ 2ð Þ

2lþ 1ð Þ 2lþ 3ð Þ

s

For cylindrical or spherical geometries, the gradient operator should be modi-

fied. The coupling of the spatial derivatives of the flux moments implies that the

spherical harmonics method is costly in terms of calculations.

9.6.2 P1 Approximation

Restricting the flux expansion to order 1, it is expressed with four terms:

Φ ~r; Ω
!� �

¼ Φ0
0 ~rð ÞY0

0 Ω
!� �

þ Φ�1
1 ~rð ÞY�1

1 Ω
!� �

þΦ0
1 ~rð ÞY0

1 Ω
!� �

þ Φ1
1 ~rð ÞY1

1 Ω
!� �

Instead of identifying the coefficients of the spherical harmonics in the transport

equation as previously, this equation is projected on a particular harmonic by

multiplying by the conjugate Y0
0 , then successively by Y�1

1 , Y0
1 , and Y1

1 to reach

the moments of the equation after integration over Ω
!
. The streaming terms contain

the integration of three spherical harmonic terms. The latter can be calculated using

the following properties of spherical harmonics:

ð
Ω
!

Yn1
l1

Ω
!� �

Yn2
l2

Ω
!� �

Yn3
l3

Ω
!� �

dΩ
!¼ 0 when

m1 þ m2 þ m3 6¼ 0

or if

l1 þ l2 þ l3 oddð
Ω
!

Y0
0Y

n2
l2

Ω
!� �

Yn3
l3

Ω
!� �

dΩ
!¼ 1ffiffiffiffiffi

4π
p

ð
Ω
!
Yn2
l2

Ω
!� �

Yn3
l3

Ω
!� �

dΩ
!

since Y0
0 ¼

1ffiffiffiffiffi
4π

p

The moments projected on the basis formed by the four terms of the spherical

harmonics expansion at order P1 are obtained through these integrals using

Eq. (9.28) and the orthogonality relations:ð
4π

Y1
1 Ω
!� �

Ym
1 Ω

!� �
dΩ
!¼ 0 form 6¼ �1

ð
4π

Y0
0Y

0
0 dΩ

!¼ 1ð
4π

Y1
1 Ω
!� �

Y�1
1 Ω

!� �
dΩ
!¼ �

ð
4π

Y1
1 Ω
!� �

Y�1
1 Ω

!� �
dΩ
!¼ �1

8>>>><>>>>:
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projection on Y0
0 �

ffiffiffi
1

6

r
∂Φ1

1

∂x
�i

ffiffiffi
1

6

r
∂Φ1

1

∂y
þ

ffiffiffi
1

6

r
∂Φ�1

1

∂x
�i

ffiffiffi
1

6

r
∂Φ�1

1

∂y
þ

ffiffiffi
1

3

r
∂Φ0

1

∂z
þPtΦ

0
0¼
P

s,0Φ
0
0þS00

projection on Y�1
1

ffiffiffi
1

6

r
∂Φ0

0

∂x
þi

ffiffiffi
1

6

r
∂Φ0

0

∂y
þPtΦ

�1
1 ¼Ps,1Φ

�1
1 þS�1

1

projection on Y0
1

ffiffiffi
1

3

r
∂Φ0

0

∂z
þPtΦ

0
1¼
P

s,1Φ
0
0þS01

projection on Y1
1 �

ffiffiffi
1

6

r
∂Φ0

0

∂x
þi

ffiffiffi
1

6

r
∂Φ0

0

∂y
þPtΦ

1
1¼
P

s,1Φ
1
1þS11

8>>>>>>>>>>><>>>>>>>>>>>:
These equations deal with the real moments (Φ0

0,Φ
0
1) or complex moments (Φ�1

1 ,

Φ1
1) of the flux. The integrated flux and current, which are usual quantities used in

neutron physics, are obtained by writing:

Integrated flux: Φ ~rð Þ ¼
ð
Ω

Φ ~r; Ω
!� �

dΩ
!¼

ffiffiffiffiffi
4π

p
Φ0

0

Integrated current: ~J ~rð Þ ¼

Jx ¼
ð
Ω
!

sin θ cosφΦ ~r; Ω
!� �

dΩ
!¼

ffiffiffiffiffi
2π

3

r
Φ�1

1 � Φ1
1

� �

Jy ¼
ð
Ω
!

sin θ cosφΦ ~r; Ω
!� �

dΩ
!¼ �i

ffiffiffiffiffi
2π

3

r
Φ�1

1 þ Φ1
1

� �

Jz ¼
ð
Ω
!

cos θΦ ~r; Ω
!� �

dΩ
!¼

ffiffiffiffiffi
4π

3

r
Φ0

1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
By adding and subtracting the projections on Y�1

1 and Y1
1, Φ

�1
1 þ Φ1

1 and Φ�1
1

�Φ1
1 can be introduced, and therefore, by injecting the integrated flux and current,

we obtain:

∂Jx
∂x

þ ∂Jy
∂x

þ ∂Jz
∂z

� 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

div~J

þPtΦ ¼Ps, 0Φþ ffiffiffiffiffi
4π

p
S00

1

3

∂Φ
∂x

þ ΣtJx ¼ Σs, 1Jx þ
ffiffiffiffiffi
2π

3

r
S�1
1 � S11

� �
1

3

∂Φ
∂z

þ ΣtJz ¼ Σs, 1Jz þ
ffiffiffiffiffi
4π

3

r
S01

1

3

∂Φ
∂y

þ ΣtJy ¼ Σs, 1Jy þ
ffiffiffiffiffi
2π

3

r
S�1
1 þ S11

� �

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
These are the usual diffusion equations by using the diffusion coefficient

D� 1/(3(∑t�∑s ,1)) for the case of a non-isotropic source. It can be pointed out that

9.6 Spherical Harmonics Method 639



the streaming terms could have been written using the spherical harmonics terms Y2
0,

Y2
2, Y

0
2, Y

�2
0 and Y�2

2 if recurrence relations for spherical harmonics were employed as

was the case for the general derivation of the method discussed in the previous

paragraph. Once more, just like for the approximation by Legendre polynomials

where that paradox was discussed, the transport equation can be approximated by

the expansion of a function on
P2
l¼0

Pm¼þl

m¼�l

Y m
l thanks to the streaming term. The

number 2 in the previous formula is important as the choice of keeping only the

moments of order 1 implies that the choice is arbitrary but logical (i.e. keeping the

“first” four moments among the nine moments of the equation). Consequently, the

solution obtained does not satisfy the initial equation strictly in each angular direction.

It should be noted that at order n, the number of moments that satisfy the initial

problem is 2n+1, while 2n+3 do not, given that the total number of moments isP2
l¼0

2lþ 1ð Þ ¼ nþ 1ð Þ2. The ratio of the non-satisfactory to total moments converges

towards 0 as a 2/n series, thereby explaining why the method converges ad infinitum.
This progression also explains why the method is quickly very prohibitive in terms of

calculation time as the order increases.

9.7 Milne Problem

(Busbridge 1960).

A particular interface problem has been of interest to the scientific community at

large given that it could be solved analytically: the Milne problem (Picture 9.1).21

The latter consists of an interface between a medium and vacuum. For the sake of

simplicity, the problem will be considered for mono-kinetic cases only. Any

neutron that crosses the medium to vacuum can come back in the negative half-

space (the origin of the abscissa is placed at the interface as in Fig. 9.8) that contains

the medium. This condition is expressed as:

Φ x; μð Þ ¼ 0 for
x > 0

�1 � μ � 0

�
This non-linear problem has been studied in astrophysics to understand the

anisotropic nature of radiation that is emitted in the space vacuum. However, a

21Edward Arthur Milne (1896–1950) was a British mathematician and astrophysicist. Following

his degree in Cambridge in 1914, he started working as the assistant director of the sun physics

observatory. He taught applied mathematics at the University of Manchester from 1924 to 1928

then was awarded the mathematics chair at Oxford. Milne is particularly well-known for his work

in astrophysics where he proposed an expansion model for the universe which is different from

Einstein’s: he introduced a heterogeneous universe density that changes over time—this theory is

presently disproved by measurements.
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linear approximation, called the grey model, may be derived and is easier to solve.

The extension for an atmosphere of finite optical thickness is possible (Nonlinear

integral equations 1964, p. 345). Vacuum can be assimilated as a black body for

which the scattering cross section is zero and the total cross section tends towards

infinity. With these assumptions for a purely absorbing medium with uniform

internal source, the φl matrix is written as:

A n;λð Þ ¼

λ �1

�1 3λ �2

�2 5λ �3


 
 

0

0

�l λ 2lþ1ð Þ � lþ1ð Þ
� lþ1ð Þ λ 2lþ3ð Þ � lþ2ð Þ


 
 
 � n�1ð Þ λ 2n�1ð Þ �n
�n λ 2nþ1ð Þ

0BBBBBBBBB@

1CCCCCCCCCA

x=0
Void 

Fig. 9.8 Milne problem: neutrons leak into vacuum

Picture 9.1 Edward Arthur Milne (1896–1950) (Public domain)
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The calculation of the first few determinants leads to:

det A 0;λð Þ ¼ λ¼ P1 λð Þ
det A 1;λð Þ ¼ λ �1

�1 3λ

� 
¼ 3λ2 � 1¼ 2P2 λð Þ

det A 2;λð Þ ¼
λ �1 0

�1 3λ �2

0 �2 5λ

0@ 1A¼ 5λ 3λ2 � 1
� �� 4λ¼ 15λ3 � 5λ¼ 6P3 λð Þ

det A 3;λð Þ ¼
λ �1 0 0

�1 3λ �2 0

0 �2 5λ �3

0 0 �4 7λ

0BB@
1CCA¼ 7λ det A 2;λð Þ� 32 det A 2;λð Þ ¼ 24P4 λð Þ

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
and, more generally, by expanding the determinant along the last line to use the

tri-diagonal property of the matrix:

det A n; λð Þ ¼ 2nþ 1ð Þλ det A n� 1; λð Þ � n2 det A n� 2; λð Þ

From the formulae of the first terms, the general form can be induced as:

det A n; λð Þ ¼ nþ 1ð Þ!Pnþ1 λð Þ

which can be easily proved by recurrence as:

det A(n, λ)¼ (2n + 1)λ detA(n� 1, λ)� n2 detA(n� 2, λ)¼ (2n+ 1)λn!Pn(λ)� n2

(n� 1)!Pn� 1(λ)
Using the recurrence relation for Legendre polynomials:

λPn λð Þ ¼ nþ 1

2nþ 1ð ÞPnþ1 λð Þ þ n

2nþ 1ð ÞPn�1 λð Þ

the following equation is reached:

detA n; λð Þ ¼ 2nþ 1ð Þn! nþ 1

2nþ 1ð ÞPnþ1 λð Þ þ n

2nþ 1ð ÞPn�1 λð Þ
	 


� n2 n� 1ð Þ!Pn�1 λð Þ
¼ nþ 1ð Þ!Pn�1 λð Þ

Thus, to conclude, λk are the roots of the Legendre polynomial of order n + 1
(also known as Gauss points). The reconstructed flux solution (purely scattering

medium, source ad infinitum) is given in Fig. 9.9. It can be noted that for incoming

angles (�1� μ� 0), the solution “oscillates” about 0 while the exact solution is

strictly zero, thereby showing the difficulty of calculating interfaces with the Pn

method.
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9.8 DPn Method

In the case of an interface, the double Pn or double range Pn method from Jacques

Yvon22,23 is more precise than the usual Pnmethod by construction since it expands

the angular flux in terms of incoming and outgoing angles (Clark and Hansen 1964,

0 1

μ

-0,5 0,5-1

μ),(Φ 01

μ),(Φ 03

μ),(Φ 05

Exact transport 

solution

Fig. 9.9 Milne problem: angular flux at the interface with vacuum, in the case of purely scattering

medium with source ad infinitum

22M. Trocheris, C. Mercier, J. Yvon: Sur la répartition angulaire des vitesses des neutrons
thermiques dans un milieu hétérogène [On the angular distribution of thermal neutron speeds in

a heterogeneous medium], physics seminar at Bologna, 2 pages (September 1950), a summary of

which is given in (Yvon 1985, p. 487).
23J. Yvon: La diffusion macroscopique des neutrons, une méthode d’approximation [Macroscopic

neutron scattering, an approximation method], Journal of Nuclear Energy, 1, 4, 305 (1957).

Jacques Yvon (1903–1979) was a famous French physicist. After his studies at the Ecole Normale

Supérieure, where he obtained the physics aggregation, he became a lecturer at the University of

Strasbourg in 1938. During the war, he was deported to Germany in 1943. After the war, he joined

the CEA in 1949. He was the first head of the mathematical physics service, the precursor of the

present-day SERMA, before becoming head of the reactor studies department (1952), and director

of the physics of the atomic piles (1959–1962). During that period, he was one the main actors of

the French graphite-gas reactors. In 1962, he returned to a university career as professor of

theoretical physics at the Faculty of Sciences of Paris. Afterwards, he was appointed the high
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p. 196). The flux is then expanded with two different expressions depending on the

sign of μ (Advances Nuclear Science and Technology, vol. 5, p. 333, 1969; Stacey

2001, p. 341):

Φ x;�μð Þ ¼
Xl¼n

l¼0

2lþ 1ð Þ
2

Φ�
l xð ÞPl 2μ� 1ð Þ

with: Φ�
l xð Þ ¼ 2

Ðþ1

0

Φ x;�μð ÞPl 2μ� 1ð Þdμ. The flux moment can rewritten as:

Φl xð Þ ¼ Ð0
�1

Φ x; μð ÞPl μð Þdμþ Ðþ1

0

Φ x; μð ÞPl μð Þdμ ¼ �1ð Þl Ðþ1

0

Φ x;�μð ÞPl μð Þdμþ
Ðþ1

0

Φ x; μð ÞPl μð Þdμ
where μ� 0. By injecting these expansions into the integro-differential form of the

mono-energy transport equation and by expressing the streaming term

μ∂Φ(x,�μ)∂x as (½(2μ� 1) +½)∂Φ(x,�μ)∂x, the following equation is reached:

commissioner of atomic energy from 1970 to 1975, thereby succeeding to Francis Perrin. His

portrait is found in (Reuss 2007, p. 58). The CEA has published his complete (significant) works,

which cover more than just neutron physics (Yvon 1985).

(Courtesy CEA/Yvon)
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� 1

2
2μ� 1ð Þ þ 1

2

� 
∂Φ x;�μð Þ

∂x
þ ΣtΦ x;�μð Þ

¼
X1
l¼0

�1ð Þl 2lþ 1ð Þ
2

Σs, lPl μð Þ �1ð Þl
ðþ1

0

Φ x;�μð ÞPl μð Þdμþ
ðþ1

0

Φ
�
x; μ
�
Pl μð Þdμ

24 35
þS x;�μð Þ

This equation with a relatively artificial streaming term is useful for separating

the latter into two terms which are added and where the coefficients for the flux

derivative, i.e. (2μ� 1)/2 and 1/2, are always positive, even for μ� 0. Using these

definitions, the equation is expressed as:

�1

2
2μ� 1ð Þ

X1
p¼0

2pþ 1ð Þ
2

Pp 2μ� 1ð Þ∂Φ
�
p xð Þ
∂x

� 1

2

X1
p¼0

2pþ 1ð Þ
2

Pp 2μ� 1ð Þ∂Φ
�
p xð Þ
∂x

þ Σt

X1
p¼0

2pþ 1ð Þ
2

Pp 2μ� 1ð Þ∂Φ�
p xð Þ

¼
X1
p¼0

�1ð Þl 2lþ 1ð Þ
2

Σs, lPl μð Þ
�1ð Þl

ðþ1

0

X1
p0¼0

2p0 þ 1ð Þ
2

Pp0 2μþ 1ð ÞΦ�
p0 xð Þ

" #
Pl μð Þdμ

þ
ðþ1

0

X1
p0¼0

2p0 þ 1ð Þ
2

Pp0 2μ� 1ð ÞΦ�
p0 xð Þ

" #
Pl μð Þdμ

266666664

377777775
þ S x;�μð Þ

As for the Pn method, the recurrence formula to simplify the leakage term is:

2pþ 1ð Þ 2μ� 1ð ÞPp 2μ� 1ð Þ ¼ pþ 1ð ÞPpþ1 2μ� 1ð ÞpPp�1 2μ� 1ð Þ for n > 0

The notations can be sensibly simplified as follows:

αl,p ¼ 2l 2pþ 1ð Þ
ðþ1

0

Pl μð ÞPpþ1 2μ� 1ð Þdμ

¼ 4l

2lþ 1

2pþ 1

p
αl�1,p�1 þ lþ 1

2lþ 1

2pþ 1

p
αlþ1,p�1 � 2pþ 1

p
αl,p�1 � pþ 1ð Þ 2pþ 1ð Þ

2p� 3ð Þp αl,p�2

with the following terms to start the recurrence:

α0,0 ¼ 1, α1,0 ¼ 1,α2,0 ¼ 0, α3,0 ¼ �1, α5,0 ¼ 2, α7,0 ¼ �5, αl, 0 ¼ 4 2� lð Þ
lþ 1

αl�2,0
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αl, 1 ¼ 12l

2lþ 1
αl�2,0 � 3αl, 0 þ 3 lþ 1ð Þ

2lþ 1
αlþ1,0

�1

2

X1
p¼0

pþ1ð ÞPpþ1 2μ�1ð Þ∂Φ
�
p xð Þ
∂x

�
X1
p¼0

pPp�1 2μ�1ð Þ∂Φ
�
p xð Þ
∂x

�1

2

X1
p¼0

pþ1ð ÞPp 2μ�1ð Þ∂Φ
�
p xð Þ
∂x

þPt

X1
p¼0

2pþ1ð ÞPp 2μ�1ð ÞΦ�
p xð Þ¼

1

2

X1
p¼0

�1ð Þl
2l

2lþ1ð ÞΣs,lPl μð Þ
X
p0

αl,p0Φ
�
p0 xð Þ

 !
þ1

2

X1
p¼0

1

2l
2lþ1ð ÞΣs,lPl μð Þ

X
p0

αl,p0Φ
�
p0 xð Þ

 !
þS x;�μð Þ

The same process as for the Pn method is thereby reached and will not be further

developed:

– The previous equation is projected on a Legendre polynomial basis by multi-

plying by Pp(2μ� 1),

– Then after integration on [0, +1] and using the orthogonality relation:

ðþ1

0

Pl 2μ� 1ð ÞPm 2μ� 1ð Þdμ δl,m
2lþ 1

9.9 Semi-infinite Plane: Albedo Problem

9.9.1 Fundamentals of Discrete Eigenfunctions

Since the initial works of K. Case, G. Placzek and Hoffman (Case et al. 1953),

several authors have thoroughly studied the case of a medium, which may be

multiplying, in an infinite half-space. Semi-analytical solutions are possible for

the mono-energy problem and are useful to validate approximated numerical

methods. The 1D transport equation with an isotropic fission source is written as:

S x; Ω
!� �

¼ vΣf xð Þ
4π

Φ xð Þ i:e: S xð Þ ¼ vΣf xð Þ
2

Φ x; μð Þ

μ
∂Φ x; μð Þ

∂x
þ Σt xð ÞΦ x; μð Þ ¼

ðþ1

�1

ΣS x; μ0 ! μð Þ þ v
P

f xð Þ
2

	 

Φ x; μ0ð Þdμ0

8>>>><>>>>:
Assuming that scattering is isotropic (ΣS(x, μ0 ! μ)¼Σs, 0(x)/2) and that the cross

sections are constant, therefore, the following equation is obtained:

μ
1

Σt

∂Φ x; μð Þ
∂x

þΦ x; μð Þ ¼ c

2

ðþ1

�1

Φ x; μ0ð Þdμ0
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where c� (v∑f +∑s, 0 + 2∑n, 2n+ 3∑n, 3n+ . . .)/∑t is the average number of second-
ary neutrons emitted per collision (Stamm’ler and Abbate 1983, p. 16). The

following change in variable x¼∑tx is applied by converting distances into the

number of mean free paths, thus leading to the canonical equation:

μ
∂Φ x; μð Þ

∂x
þ Φ x; μð Þ ¼ c

2

ðþ1

�1

Φ x; μ0ð Þdμ0

The “classical” approach derived by K. M. Case (Case and Zweifel 1967;

Duderstadt and Martin 1979) assumes that the flux may be factorized in angle

and space: Φ(x, μ)�φ(x)ψ(μ). When injected in the transport equation, the

resulting equation is equivalent to a usual separation of functions which depend

either on space or the angle, and are hence constant24:

1

φ xð Þ
∂φ xð Þ
∂x

¼ �1

μ
þ c

2μψ μð Þ
ðþ1

�1

ψ μ0ð Þdμ0 ¼ �1

v

The constant was arbitrarily chosen in the form 1/v so that v has the same

“dimensions”, at least from a mathematical viewpoint, as μ (physically μ is a cosine
and thus, dimensionless). The choice for a negative constant implies that the spatial

flux φ(x) is decreasing in the half-plane. The latter is thus more physical, yet the

choice could have been to choose a positive value for an increasing flux depending

on the case. The previous expression is integrated and the following equations are

reached:

φ xð Þ ¼ e�
x
v

1� μ

v

� �
ψ v μð Þc

2

ðþ1

�1

ψ v μ0ð Þdμ0

8>>><>>>:
The angular part of the flux is indexed by v and is sometimes called the

continuous eigenfunction, normalized to unity as:

ðþ1

�1

ψ v μð Þdμ ¼ 1

24A complete history of the transport theory and the contributions of K. M. Case may be obtained

in P.F. Zweifel: Transport theory revisited, Transport Theory and Statistical Physics, 26 (1&2),

pp. 181–193 (2007).
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Therefore, ψ v μð Þ cv
2 v�μð Þ. However, it must be noted that if μ¼ v, which is

physically possible, this equation is senseless! Applying the normalization to the

flux thus computed, we obtain the dispersion equation which was discussed in the

previous chapter:

c

2
ν ln

νþ 1

ν� 1

� 
¼ 1

Considering the solution to that equation, it is known that if c< 1, two real

eigenvalues +v0 and �v0 exist and are the roots of the previous equation. For

numerical situations where +v0> 1, there is no risk that μ¼ + v0 or μ¼ � v0 and
hence, two discrete eigenfunctions are obtained:

Φþv0 x; μð Þ ¼ v0c

2 v0 � μð Þ e
þ x
v0

Φ�v0 x; μð Þ ¼ � cv0
2 �v0 � μð Þe

� x
v0 ¼ cv0

2 v0 � μð Þe
� x
v0

8><>:
If c¼ 1, the eigenvalues �v0 tend towards �1 (since B¼∑t/v tends towards

0 in the dispersion equation). From the transport equation, it can be easily proved

that two linearly-independent eigenfunctions are thus:

Φþv0!1 x; μð Þ ¼ 1

2

Φþv0!1 x; μð Þ ¼ 1

2
x; μð Þ

8><>:
The situation where v2 [�1, 1] is more delicate given that v� μ may cancel out

at the denominator (Duderstadt and Martin 1979; Glasstone and Edlund 1972,

p. 396). Using the notion of Cauchy integral [notion of the principal value Vp

(Harper 1976, p. 111; Kanwal 1971, p. 173)], it can be shown that the spectrum of

eigenfunctions25 is continuous:

ψ v μð Þ ¼ vc

2
VP

1

v� μð Þ
	 


þ A vð Þδ v� μð Þ

with:
Ðþ1

�1

VP
1

ν� μð Þ
	 


dμ ¼ lim
ε!0

ðν�ε

�1

1

ν� μð Þdμþ
ðþ1

νþε

1

ν� μð Þdμ
0@ 1A

¼ lim
ε!0

ln
νþ 1

ν� 1

� 
� ln εþ ln ε

	 


25Refer to Dowson (1978) for fundamentals on the spectrum of a linear operator.
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The function A(v) is obtained by the normalization condition:

A νð Þ ¼ 1� cν

2

ðþ1

�1

1

ν� μ
dμ ¼ 1� cν

2
ln

νþ 1

ν� 1

� 
¼ 1� cν Arg tanh νð Þ

The roots of the function A(v) correspond to the dispersion equation studied by

K. M. Case in an approximated approach as established in Chap. 8. For a source of

mono-directional neutrons in direction μ0¼ cos θ0 which radiates on an infinite slab
(Fig. 9.10), i.e. with boundary conditions Φ(0, μ)¼ δ(μ� μ0) and the flux that tends
towards zero at infinity: lim

x!þ1Φ x; μð Þ ¼ 0, the solution of the transport equation in

the slab is expressed as:

Φ x; μ; μ0ð Þ ¼ δ μ� μ0ð Þe�
x
μ0 þ c

2μ

ðx
0

dx0 e�
x�x0ð Þ
μ Φ x0; μ0ð Þ for μ � 0

Φ x;� μ; μ0ð Þ ¼ c

2μ

ðþ1

x

dx0 e�
x0�xð Þ
μ Φ x0; μ0ð Þ for � μ � 0

8>>>>>><>>>>>>:
with Φ x; μ0ð Þ ¼ Ðþ1

�1

dμ0Φ x; μ0; μ0ð Þ. Ganapol et al. published a well-documented

paper on the subject matter.26 Here, the same notations as Ganapol et al. will be

x0

Fig. 9.10 Infinite half-

space with incident mono-

directional source

26B. Ganapol, J.C. Garth, S. Woolf: Analytical neutral particle benchmark in half-space geometry,
proceedings of Conference on Mathematical methods and supercomputing in nuclear applications,

Karlsruhe, 1993, Vol. 2, pp. 284–295. Barry Ganapol (1944–) is a renowned American specialist

of the transport equation in neutron physics. After a PhD in physics at Berkeley in 1971 on the

Time dependent neutron transport theory, he works in several international laboratories in the

nuclear field: the Swiss Federal Institute for Reactor Research, the CEA Saclay from 1972 to 1974

and the Weizmann institute in Israel. Since 1976, he has been a professor at the University of

Arizona at the department of aerospace and mechanical engineering. He specialized in numerical

methods applied to neutron physics.
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employed with the use of μ0 in the angularly-integrated flux for clarity. Integrating

on the interval [0, 1] for incoming directions in the slab (μ� 0) leads to:

Φ x; μ0ð Þ ¼ e�
x
μ0 þ c

2

ðx
0

dx0E1 x� x0j jð ÞΦ x0; μ0ð Þ

and, in terms of the x-coordinate which has the same dimensions as a length:

Φ x; μ0ð Þ ¼ e�
Σtx
μ0 þ c

2

ðx
0

dx0E1 Σt x� x0j jð ÞΦ x0; μ0ð Þ

with the exponential integral: E1 xð Þ ¼ Ð1
1

e�xt=t dt. Differentiating this equation

wrt. x, the integro-differential equation for Φ(x; μ0) is reached:

∂Φ x; μ0ð Þ
∂x

þΦ x; μ0ð Þ
μ0

¼ c

2
Φ 0; μ0ð Þ

ð1
0

dμ0
Φ x; μ0ð Þ

μ

A direct analysis of the angular flux expression leads to the reciprocity relation:

μΦ x;�μ; μ0ð Þ ¼ μ0Φ x;�μ0; μð Þ

Multiplying the previous integro-differential equation by e�x/μ and integrating

the resulting equation over x2 [0, +1], the following reciprocity relation is

reached:

Φ x;�μ; μ0ð Þ ¼ c

2

μ0
μ0 þ μ

Φ x; μ0ð ÞΦ 0; μð Þ

As Ganapol points out, Φ(0, μ) is simply the function that Subrahmanyan

Chandrasekhar27 (1910–1995) employs in his treatise on radiative transfer under

27Subrahmanyan Chandrasekhar (1910–1995) was an astrophysicist of Indian origin. After his

studies at Madras, in 1933, he read his PhD in England at Trinity College, Cambridge. Afterwards,

he worked on stellar astrophysics and the radiative emission and plasma problems. He is well-

known for having determined the time at which a white dwarf collapses into itself (Chandrasekhar

limit). In 1937, he immigrates to the United States where he teaches at the University of Chicago.

In 1983, he was awarded the Physics Nobel Prize. For our subject matter, his book on radiative

transfer (1960) is the most suited.
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the notation H(μ)28 (Chandrasekhar 1960, p. 105; Busbridge 1960, p. 13; Shultis

and Faw 2000, p. 442). With these notations, the outgoing angular flux is written as:

Φ x;�μ; μ0ð Þ ¼ c

2

μ0
μ0 þ μ

H μ0ð ÞH μð Þ

The function H(μ) satisfies the non-linear integral equation:

Chandrasekhar function: H μð Þ ¼ 1þ c

2
μH μð Þ

ð1
0

H μ0ð Þ
μ0 þ μ

dμ0 with c2 0; 1½ �

ð9:29Þ

At the slab surface, the outgoing angular flux is equal to:

Φ 0;�μ; μ0ð Þ ¼ c

2μ

ðþ1

x

dx0e�
x0
μΦ x0; μ0ð Þ

Subrahmanyan Chandrasekhar (Public domain)

28Chandrasekhar defines a class of functions that are more generalH μð Þ ¼ 1þ μH μð Þ Ð1
0

Ψ μ0ð Þ
μ0 þ μ

dμ0

where Ψ is a characteristic function in the form of a polynomial in μ such that
Ð1
0

Ψ μð Þdμ � 1. A

numerical smoothening of H(μ) in terms of μ and ∑s/ ∑t is discussed in: Ronald C. Brockhoff,

J. Kenneth Shultis: A new approach for the neutron albedo, Nuclear Science and Engineering,

155, pp. 1–17 (2007).
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9.9.2 Ganapol Method by Laplace Transform

Barry Ganapol (1944–) is a renowned transport theory specialist (Courtesy Ganapol)

If μ is substituted by the complex variable 1/p, the above equation is the Laplace

transform29 of the function Φ(x0; μ0):

Φ 0;�1

p
; μ0

� 
¼ cp

2

ðþ1

x

dx0e�px0Φ x0; μ0ð Þ

The inverse of this Laplace transform can be obtained by the Bromvitch inver-

sion formula:

Φ x; μ0ð Þ ¼ 2

c

1

2πi

ðγþi1

γ�i1

1

p
Φ 0;�1

p
; μ0

� 
epxdp

The analytical angular flux solution in terms of the Chandrasekhar function is

given by:

Φ x;�1

p
; μ0

� 
¼ c

2

pμ0
μ0pþ 1

H μ0ð ÞH 1

p

� 

where: Φ x; μ0ð Þ ¼ μ0H μ0ð Þ 1

2πi

Ðγþi1

γ�i1

1

μ0pþ 1
H

1

p

� 
epxdp

29Refer to Nixon (1964) for Laplace transforms.

652 9 Computational Neutron Transport Methods



The complex integral can be calculated either with the residue theorem or by

calculating the inverse Laplace transform numerically. Ganapol extends this

approach to the flux Φ0(μ) imposed at the surface. The Φ(x, μ) flux is the angular

Green function:

Φ x; μð Þ ¼
ð1
0

Φ μ0ð ÞΦ x; μ; μ0ð Þdμ0

Thus, the outgoing flux is: Φ 0;�μð Þ ¼ c

2
H μð Þ Ð1

0

Φ0 μ0ð Þ μ0

μþ μ0
H μ0ð Þdμ0

Hence, the scalar flux in the half-space is:

Φ Xð Þ ¼ L�1
X H

1

p

� ð1
0

Φ0 μ0ð Þ μ0

1þ μ0p
H μ0ð Þdμ0

24 35

by noting that L�1
x f pð Þð Þ ¼ 1

2πi

Ðγþi1

γ�i1
f pð Þepxdp is the inverse Laplace transform.

The Milne problem has been discussed previously for a source at infinity, and

located in the right half-space, thereby creating an interface current. It can be solved

by this approach assuming that the asymptotic flux at infinity has an exponential

form given by the discrete eigenmode presented earlier:

Φ x; μð Þ ¼ Φv �μð ÞeBx ¼ Φv �μð Þe x
v0 when x ! þ1

where v0 =Σt/B is the solution to the Placzek dispersion equation discussed earlier

[expressed with the variable v0 here for consistence with Case’s notations

(Duderstadt and Martin 1979)]:

c

2
ν0 ln

ν0 þ 1

ν0 � 1

� 
¼ 1

This exponential flux, which tends to infinity at infinity, implies that the source

placed at infinity must have an infinite intensity to induce a current at the interface

(Fig. 9.11).

Duderstadt and Martin (1979) gives an approximation of the extrapolation

distance for Milne problem:

d0 ¼ 0:710446
1

c
� 0:0199

1� cð Þ3
c

þ O
1� cð Þ3

c

 ! !
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This quantity will be used in more advanced techniques for dealing with the

physics of neutron reflectors. With the direction of the coordinate system chosen as

such, the void boundary condition at the left of the interface is written for incoming

directions: Φ(x, v)¼ 0. The previous problem is obtained with a function that tends

towards 0 at infinity by constructing the following function:

Ψ x; μð Þ � Φv �μð Þe x
v0 � Φ x; μð Þ

that satisfies the same transport equation as Φ(x, μ):

μ
∂Ψ x; μð Þ

∂x
þ Ψ x; μð Þ ¼ c

2

ðþ1

�1

Ψ x; μ0ð Þdμ0

and for which the boundary condition at the interface is: Ψ (0, μ0)¼Φv(�μ). The
same calculation procedure as for the calculation of the function Ψ (x, μ) may be

applied to obtain the outgoing flux:

Ψ 0;�μð Þ ¼ c

2

� �2
v0H μð Þ

ð1
0

μ0

μ0 þ μð Þ μ0 þ v0ð ÞH μ0ð Þdμ0 ¼ Φv μð Þ � c

2

v0
μ� v0

H μð Þ
H v0ð Þ

Finally: Φ 0;�μð Þ ¼ c

2

v0
μ� v0

H μð Þ
H v0ð Þ

Then, using the same technique described earlier:

Φ xð Þ v0
H v0ð ÞL

�1
x

H 1
p

� �
v0p� 1

0@ 1A
Ganapol generalizes this approach to two adjacent half-spaces with different

properties by separating the flux as the uncollided flux and the collided flux.

Similarly, for the continuous-lethargy (u, while accounting for the slowing-down

x

Fig. 9.11 Infinite half-

space: Milne problem (from

Duderstadt and Martin

1979)
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without upscattering) transport equation, the following equation is obtained by

starting with the integro-differential equation:

μ
∂Φ x; μ; uð Þ

∂x
þ Φ x; μ; uð Þ ¼ 1

2

ðþ1

�1

dμ0
ðu
0

du0
2Σs μ0 ! μ; u0 ! uð Þ

Σt uð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f u�u0ð Þ

Φ x; μ0; u0ð Þ

The coefficient 1=2is added artificially in front of the integral term to introduce a

form of the integro-differential equation which is very similar to the kernel

employed for isotropic collision. The interface condition is a mono-energy beam

with one incident direction μ0, and with a zero-flux condition at infinity as boundary
condition:

Φ 0; μ; uð Þ ¼ δ μ� μ0ð Þδ uð Þ for μ > 0

lim
x!þ1 Φ x; μ; uð Þ ¼ 0

(

A Laplace transform with lethargy u is applied to the transport equation:

μ
∂Φ x; μ; pð Þ

∂x
þΦ x; μ; pð Þ ¼ F pð Þ

2

ðþ1

�1

dμ0Φ x; μ0; pð Þ

Φ x; μ; pð Þ ¼ δ μ� μ0ð Þ

8>><>>:
where Φ and F are the Laplace transforms of Φ and f. This transformation is

equivalent to a monoenergy equation to which the previous results obtained earlier

may be applied, especially:

Φ 0;�μ; pð Þ ¼ F pð Þ
2

μ0
μ0 þ μ

H μ0; pð ÞH μ; pð Þ at the surface

Φ x; pð Þ ¼ 1

F pð ÞL
�1
x

Φ x;�1

p
; p

� 
p

2664
3775 in the half-space

8>>>>>><>>>>>>:
where: H μ; pð Þ ¼ 1þ F pð Þ

2
μH μ; pð Þ Ð1

0

H μ; pð Þ
μ0 þ μ

dμ0 is the extension of the Chandra-

sekhar function for the image F( p). Ganapol expanded the function H(μ, p) into a

series which represents the successive collisions so as to represent the dependence

in lethargy:

H μ; pð Þ ¼
X1
n¼0

Fn pð Þhn μð Þ
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Injecting this series into the integro-differential equation on H(μ, p) leads to the

recurrence relations for the coefficients hn(μ):

h0 μð Þ ¼ 1

hn μð Þ ¼ μ

2

Xn�1

l¼0

hn�l�1 μð Þ
ð1
0

hl μ0ð Þdμ0
μ0 þ μ

8>><>>:
which results into the following when introduced in the flux expression:

Φ 0;�μ; pð Þ ¼ 1

2

μ0
μ0 þ μ

X1
n¼1

Fn pð Þ
Xn�1

l¼0

hn�l�1 μð Þhl μ0ð Þ at the surface

Φ x; pð Þ ¼ μ0
X1
n¼1

Fn pð Þ
Xn�1

l¼0

hl μ0ð ÞL�1
x

hn�l
1

p

� 
μ0pþ 1

2664
3775 in the half-space

8>>>>>>><>>>>>>>:
This formulation is interesting for calculating a flux series (pseudo-) analyti-

cally, if the inverse of the Laplace transform Fn( p) may be computed. The elastic

scattering kernel is such an example as discussed in the chapter on slowing-down:

f u� u0ð Þ ¼ c
e� u�u0ð Þ

1� α
Θ u� u0ð ÞΘ u� u0 þ εð Þ

where Θ is the Heaviside step function.30

The Laplace transform of this function is written as (Fig. 9.12):

F pð Þ ¼ c

1� α

1� e� pþ1ð Þε

pþ 1

and the kernel for the number of neutrons reaching lethargy u in exactly

n collisions31 is written using the binomial coefficients:

α
ε 1

ln=
w

0

f(w=u-u’)Fig. 9.12 Slowing-down

probability in terms of the

lethargy step (elastic

collision)

30In mathematics, the Heaviside step function is denoted as H, but Θ is used here to avoid any

confusion with the Chandrasekhar function. The Laplace transform of Θ is 1/p.
31This kernel contains the probability that was denoted N(u) in the chapter on slowing-down.
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Fn uð Þ ¼ c

1� α

� �n e�u

n� 1ð Þ!
XE u=ε½ �

k¼1

�1ð Þk Ck
n u� kεð Þn�1

where E[u/ε] is the integer part and Ck
n ¼ n!

k! n�kð Þ!is the binomial coefficient (com-

bination of k items among n). This formula counts the number of times that the

lethargy u is reached after exactly n collisions, a collision causing an increase in

lethargy by kε and a new collision leading to an increase of (n� k)ε. Using these

notations:

Φ 0;�μ; uð Þ ¼ 1

2

μ0
μ0 þ μ

X1
n¼1

Fn uð Þ
Xn�1

l¼0

hn�l�1 μð Þhl μ0ð Þ at the surface

Φ x; uð Þ ¼ δ uð Þe�
x
μ0 þ μ0

X1
n¼1

Fn uð Þ
Xn�1

l¼0

hl μ0ð Þ
Xn
l¼0

hl μ0ð ÞL�1
x

hn�l
1

p

� 
μ0pþ 1

2664
3775

8>>>>>>><>>>>>>>:
The extension to a more realistic boundary condition with a factorizable form in

angle and lethargy Φ(0, μ, u)¼φ(μ)ϕ(u), is obtained by composition of the solu-

tions for a given angle and lethargy. This extension is possible assuming that the

equation for a discrete boundary condition characterizes the partial Green function

in angle and lethargy.

9.10 Bn Method

The Bnmethod consists in expanding the differential scattering cross section on a

Legendre polynomial basis without any hypothesis on the flux. The Fourier trans-

form of the latter is (Bekurts and Wirtz 1964, p. 161; Ferziger and Zweifel 1966,

p. 182; J. Ernest Wilkins, Robert L. Hellens, Paul F. Zweifel, in Atoms for peace,

vol. V, p. 67, 1955):

φ B; μð Þ ¼
ðþ1

�1
e�iBxΦ x; μð Þdx

The parameter B in the Fourier transform can take any value (such that even the

infinite integral exists and thus, it satisfies at least lim
x!1 e�iBxΦ x; μð Þ ¼ 0), and its

choice may be interpreted physically as demonstrated by Pierre Benoist in 1964. He

defined that parameter as the macroscopic leakage from the geometry being con-

sidered. For an infinite medium, the flux can be factorized as a macroscopic flux

without angular dependence, represented by the buckling B2, and a fine periodic

flux φ ~r;E; Ω
!� �

, such that Φ ~r;E; Ω
!� �

¼ φ ~r;E; Ω
!� �

e�i, ~B,~r. This approach may
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be employed in the calculation of homogenized neutron quantities according to

strategies which will be discussed in Chap. 14.

The Fourier transform of the isotropic source term is written as:

Fourier transform of the fission source:

s B; μð Þ ¼
ðþ1

�1
e�iBxS x; μð Þdx ¼

ðþ1

�1
e�iBxS x; μð Þdx ¼ vΣf

φ0 Bð Þ
2

ð9:30Þ

Thus, a particular value may be chosen for B and denoted as Bm such that it

normalizes the Fourier transform of the fission source to one on the lethargy range,

i.e.: ðuth
0

vΣfφ0 Bmð Þdu ¼ vΣfφ0 Bmð Þuth ¼ 1

This condition corresponds to a critical medium. Multiplying each term of the

1D transport equation (Eq. 9.14) by e�iBx and integrating between�1 and +1, the

Fourier transform of the equation thus obtained includes those of the flux φ(B, μ)
and the source s(B, μ):

Fourier transform of the 1D transport equation :

�μiBþ Σt½ �φ B; μð Þ ¼
Xl¼1

l¼0

2lþ 1

2
Σs, lPl μð Þ

ðþ1

�1

Pl μ
0ð Þφ B; μ0ð Þdμ0 þ s B; μð Þ

ð9:31Þ

The Fourier transform of the flux is then expanded in Legendre polynomials:

φm B; μð Þ ¼ 1

2

Xl¼1

l¼0

2lþ 1ð Þφl Bð ÞPl μð Þ

with φl Bð Þ ¼ Ðþ1

�1
φ B; μð ÞPl μð Þdμ . Each term of Eq. (9.31) is multiplied by Pm(μ)

and then integrated between �1 and +1, thereby leading to:

φm Bð Þ ¼
Xl¼1

l¼0

2lþ 1

2
Σs, lφl Bð Þ

ðþ1

�1

Pl μð ÞPm μð Þ
Σt � μiB½ � dμ þ

ðþ1

�1

s B; μð ÞPm μð Þ
Σt � μiB½ � dμ

The infinite sum is limited to the expansion order of the scattering cross section.

The value of φm(B) is calculated by solving a linear system of equations after the

computation of the complex integrals which depend only the total cross section and

the source. It should be noted that if n is the expansion order of the scattering cross
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section (Σs , l> n¼ 0), the coefficients φm> n(B) do not depend on the scattering cross
section nor on the flux of lower orders but only on the term:ðþ1

�1

s B; μð ÞPm μð Þ
Σt � μiB½ � dμ

Hence, the Fourier transform of the flux is obtained for any order and the inverse

transform leads to the neutron flux. This process can be generalized in a multi-group

approach by retaining the energy variable and coupling the flux terms through the

scattering cross section. The matrix resolution for the groups is then carried out with

a triangular slowing-down matrix and a dense thermalization matrix. If the expan-

sion is limited to B1, the equations are expressed as:

φ0 Bð Þ ¼ 1

2
Σs,0φ0 Bð Þ

ðþ1

�1

P0 μð ÞP0 μð Þ
Σt � μiB½ � dμþ

3

2
Σs,1φ1 Bð Þ

ðþ1

�1

P1 μð ÞP1 μð Þ
Σt � μiB½ � dμþ

ðþ1

�1

s B;μð ÞP0 μð Þ
Σt � μiB½ � dμ

φ1 Bð Þ ¼ 1

2
Σs,0φ0 Bð Þ

ðþ1

�1

P0 μð ÞP1 μð Þ
Σt � μiB½ � dμþ

3

2
Σs,1φ1 Bð Þ

ðþ1

�1

P1 μð ÞP1 μð Þ
Σt � μiB½ � dμþ

ðþ1

�1

s B;μð ÞP1 μð Þ
Σt � μiB½ � dμ

8>><>>:
yet:

Ðþ1

�1

s B;μð ÞP0 μð Þ
�μiBþΣt½ �dμ¼

1

2B
s0 Bð Þ

ðþ1

�1

Σt

B

� 
þiμ

μ2þ Σt

B

� 2
" #dμ¼1

2
s0 Bð Þ2

B
Ar tan

B

Σt

� 
þ i

ðþ1

�1

μ

μ2þ Σt

B

� 2
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dμ

0

Ðþ1

�1

s B;μð ÞP1 μð Þ
�μiBþΣt½ � dμ¼

1

2B
s0 Bð Þ

ðþ1

�1

Σt

B

� 
μþ iμ2

μ2þ Σt

B

� 2
" #dμ¼ i

B
s0 Bð Þ 1�Σt

B
Arctan

B

Σt

� 	 


8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
The following equations are finally reached:

φ0 Bð Þ ¼ 1

B
Arc tan

B

Σt

� 
s0 Bð ÞþΣs,0φ0 Bð Þ½ �þ3i

B
1�Σt

B
Arc tan

B

Σt

� 	 

Σs,1φ1 Bð Þ

φ1 Bð Þ ¼ i

B
1�Σt

B
Arc tan

B

Σt

� 	 

s0 Bð ÞþΣs,0φ0 Bð Þ½ �þ3Σt

B2
1�Σt

B
Arc tan

B

Σt

� 	 

Σs,1φ1 Bð Þ

8>>><>>>:
It can be noted that the combination of the two equations results in:

φ1 Bð Þ þ i
Σt

B
φ0 Bð Þ ¼ i

B
s0 Bð Þ þ Σs, 0φ0 Bð Þ½ �

Thus, the Fourier transform of the current is a purely imaginary number (and is

simply the first flux moment):
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J Bð Þ ¼ φ1 Bð Þ ¼ i

B
s0 Bð Þ þ Σs, 0φ0 Bð Þ � Σtφ0 Bð Þ½ �

If the diffusion coefficient is defined as:

Diffusion coefficient: D Bð Þ ¼ � i

B

φ1 Bð Þ
φ0 Bð Þ ð9:32Þ

the following equation may be written:

B

i
φ1 Bð Þ ¼ D Bð ÞB2φ0 Bð Þ ¼ s0 Bð Þ þ Σs, 0φ0 Bð Þ � Σtφ0 Bð Þ

The material buckling is such that the flux φ0(Bg) corresponds to the fundamen-

tal mode solution of:

Fundamental mode: Δφ0 Bg

� �þ B2
mφ0 Bg

� � ¼ 0 ð9:33Þ

which may be injected in the previous equation for a particular value of Bgand

hence, the critical diffusion equation is reached:

�D Bg

� �
Δφ0 Bg

� �þ Σtφ0 Bg

� � ¼ s0 Bg

� �þ Σs, 0φ0 Bg

� �
Finally, the coefficient B2

g has the physical meaning of the geometrical buckling

whileD(Bg) is the diffusion coefficient associated to the fundamental mode, or even

the leakage coefficient. It should be pointed out that since φ1(B) is purely imaginary

and that φ0(B) is a pure real number, D(Bg) is real. The B1 method allows

calculation of the leakage coefficient corrected of the flux anisotropy effect, but

mostly of the buckling in fundamental mode compared to the diffusion coefficient

given by the usual 1/(3Σt) formula for a homogeneous material. For the B0

approximation of isotropic scattering, this correction may be expressed as a factor

γ(B, u) equal to (Bussac et Reuss 1985):

γ B; uð Þ ¼ 1

3

B

Σt
Arc tan

B

Σt

� 
1� B

Σt
Arc tan

B

Σt

�  	 1þ 1

15

B

Σt

� 2

þ O
B

Σt

� 4

D uð Þ ¼ 1

3Σt μð Þγ B; uð Þ in approximation B0 isotropic scatteringð Þ

8>>>>>><>>>>>>:
In the B1 approximation (Stamm’ler and Abbate 1983, p. 365), i.e. for linearly-

anisotropic scattering, the leakage coefficient is the solution to an integral equation:
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D uð Þ ¼ 1

3Σt μð Þγ B; uð Þ 1þ 3

ð
u0

Σs1 u0 ! uð ÞD u0ð Þφ0 u0ð Þ
φ0 uð Þ du

0

24 35
The B1approximation allows the leakage calculation with an equivalent preci-

sion to the P3approximation. The flux moment φ1which is imaginary in the

B1approximation can be calculated by writing φ1¼ i|φ1| so as to express the system

B1 in real form:

�iBφ1 Bð Þ þ Σtφ0 Bð Þ ¼ s0 Bð Þ þ Σs, 0φ0 Bð Þ
γ Bð ÞΣtφ1 Bð Þ � i

B

3
φ0 Bð Þ ¼ s1 Bð Þ þ Σs, 1φ1 Bð Þ

(

as:
B φ1 Bð Þj j þ Σtφ0 Bð Þ ¼ s0 Bð Þ þ Σs, 0φ0 Bð Þ
γ Bð ÞΣt φ1 Bð Þj j � B

3
φ0 Bð Þ ¼ s1 Bð Þ þ Σs, 0 φ1 Bð Þj j

(
If Σs1 ¼ μ0 Σs0δ u� u0ð Þ, the leakage coefficient may be computed analytically

since the integral simplifies into μ0 Σs0D uð Þ, i.e.:

D uð Þ ¼ 1

3 Σt μð Þγ�B; u�� μ0 Σs0

� �
This formula is similar to the one obtained in B0 approximation with a transport

cross section:

Σtr ¼ Σt μð Þγ B; uð Þ � μ0 Σs0

The Fourier transform method is useful to obtain analytical solutions for simple

cases. For instance, for an isotropic plane source, placed at the origin of an infinite

medium with constant cross sections, we have S(x)¼ δ(x)/2 given that the source

emits on both sides of the plane source. Assuming further that scattering is isotropic

and thus independent of μ0, the 1D transport equation simplifies to:

μ
∂Φ x; μð Þ

∂x
þ ΣtΦ x; μð Þ ¼ Σs, 0

2

ðþ1

�1

Φ x; μ0ð Þdμ0 þ δ xð Þ
2

S0

Applying the Fourier transform φ B; μð Þ ¼ 1

2π

Ðþ1
�1 e�iBx Φ x; μð Þdx to the previ-

ous equation results into:

�iBμφ B; μð Þ þ Σtφ B; μð Þ ¼ Σs, 0

2

ðþ1

�1

φ B; μ0ð Þdμ0 þ 1

2
S0
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This equation is integrated over μ from �1 to +1, and thus, the integration of the

Fourier transform of the flux can be calculated for the space variable:

Flux Fourier transform: φ Bð Þ
1
2
S0
Ðþ1

�1

1

Σt � iBμ0
dμ0

1� Σs,0

2

ðþ1

�1

1

Σt � iBμ0
dμ0

¼
S0
2iB

ln
Σt þ iB

Σt � iB

� 
1� Σs,0

2iB
ln

Σt þ iB

Σt � iB

� 

ð9:34Þ

The flux is then obtained by the inverse Fourier transform of the previous image:

Φ xð Þ ¼ 1

2π

ðþ1

�1
eþiBxφ Bð ÞdB

The integral term in the flux expression can be calculated as, provided that a

function with a denominator that may cancel out may be integrated (Abramowitz

and Stegun 1972)32:ðþ1

�1

1

Σt � iBμ0
dμ0 ¼ 1

iB
ln

Σt þ iB

Σt � iB

� 
¼ 2

B
Arc tan

B

Σt

� 
A similar solution is obtained by noting that the Dirac function is the Fourier

transform of one:

δ xð Þ ¼ 1

2π

ðþ1

�1
eþiBx dB

The flux solution is sought by writing the equation under the following form:

Φ x; μð Þ ¼ 1

2π

ðþ1

�1

f Bð Þ
Σt � iBμ

eþiBx dB

The introduction of such an expression may not seem very natural, but it can be

observed that the term Σt(x)� iBμ would appear if the Fourier transform was

applied. Injecting these two expressions in the differential equation leads to an

equation on f(B):

32ln 1þx
1�x

� � ¼ 2Arg tanh xð Þ, ln 1þix
1�ix

� � ¼ 2iArg tan xð Þ
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f Bð Þ ¼ f Bð ÞΣs, 0

2

ðþ1

�1

1

Σt � iBμ0
dμ0 þ 1

2

which after integration leads to:

f Bð Þ ¼ 1

2 1� Σs, 0

2iB
ln

Σt þ iB

Σt � iB

� 	 

The integrated flux results from the integration over μ:

Φ xð Þ ¼ 1

2π

ðþ1

�1

dμ

ðþ1

�1

f Bð Þ
Σt xð Þ � iBμ

eþiBx dB

¼ 1

4π

ðþ1

�1

1

1� Σs, 0

2iB
ln

Σt þ iB

Σt � iB

� 	 
 ln
Σt þ iB

Σt � iB

� 
iB

eþiBxdB

Duderstadt and Martin (1979) analyzed Eq. (9.34) in the complex space by

noting the role of the poles Σti and �Σti, and proved that the complete result for

the inverse transform is written as:

Φ xð Þ ¼ a0e
�B0x þ

ðþ1

ΣT

S Bð Þe�BxdB

where B0 is the root of:

Compatibility condition: 1� Σs, 0

2iB0

ln
Σt þ iB0

Σt � iB0

� 
¼ 0 ð9:35Þ

and A Bð Þ ¼ 1

2B 1� Σs, 0

2B
ln

Σt þ iB

Σt � iB

� 
þ Σs, 0 π

2B

� 2
" #

This analysis implies that the flux is the sum of a transient flux which cancels out
as the distance from the source increases, and an asymptotic flux towards which the

flux tends ad infinitum.
Blaquière (1962) observed that only the terms in the neighborhood of the square

root of B0 contribute significantly to the flux Φ(x), thereby leading to a perturbation
approach by setting: B¼B0 + δB and by taking the Taylor expansion of the term at

the denominator along with the use of Eq. 9.35, we obtain:

9.10 Bn Method 663



1�Σs,0

2iB
ln

Σtþ iB

Σt� iB

� 
¼ 1� Σs,0

2i B0þ δBð Þ ln
Σtþ iB0

Σt� iB0

� 
ln

1þ iδB

Σtþ iB0

1� iδB

Σt� iB0

0BB@
1CCA

	 1� Σs,0

2iB0

1þ δB

B0

� 
ln

Σtþ iB0

Σt� iB0

� 
þ iδB

Σtþ iB0

� iδB

Σt� iB0

	 

	 δB

B0

1� ΣtΣs,0

Σ2
t þB2

0

� 

8>>>>>><>>>>>>:
and ln

Σt þ iB

Σt � iB

� 
	 2iB0

Σs, 0
þ 2iΣtδB

Σ2
t þ B2

0

thus:

Φ xð Þ ¼ 1

4π

ðþ1

�1

1

1� Σs, 0

2iB
ln

Σt þ iB

Σt � iB

� 	 
 ln
Σt þ iB

Σt � iB

� 
iB

eþiBxdB

	 1

4π

ðþ1

�1

eþiBx

iδB 1� ΣtΣs, 0

Σ2
t þ B2

0

�  2iB0

Σs, 0
dB

i.e.: Φ xð Þ ¼ 1

2π

iB0

Σs, 0

1

1� ΣtΣs, 0

Σ2
t þ B2

0

�  ðþ1

�1

e�iBx

i B� B0ð Þ dB

The Fourier transform (Lavoine 1963) of:

f xð Þ ¼ e�
x
a eiB0x for x � 0

0 for x < 0

�
is F Bð Þ ¼ 1

2π

ðþ1

�1
e�iBx f xð Þdx ¼ 1

i B� B0ð Þ þ 1
a

This result is also reached (Oberhettinger 1973) by calculating the characteristic

function φ tð Þ ¼ Ðþ1

�1
f xð Þeitx dx that corresponds to the probability density f xð Þ ¼

Cp

Γ pð Þ x
p�1e�Cx and which is equal to φ tð Þ ¼ Cp

C� itð Þp. It means that the integral

1

2π

ðþ1

�1

eþiBx

i B� B0ð Þ dB is the inverse Fourier transform and is equal to eiB0x by taking

the limit as a tends towards infinity. By setting κ¼ � iB0, the asymptotic flux is

thus written as:

Φasymptotic xð Þ ¼ κ

Σs, 0

1

ΣtΣs, 0

Σ2
t þ κ2

� 1

�  e�κx

It will be seen later on that the flux in diffusion theory can be expressed as:

Φdiffusion xð Þ ¼ κ

2Σa
e�κx
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As pointed out byWeinberg andWigner (1958, p. 240), Blaquière (1962, p. 151)

and Barjon (1993, p. 107), the diffusion flux is the asymptotic solution of the

transport equation in a weakly absorbing medium and far from sources. The

transport theory predicts a more significant absorption of neutrons close to the

source. Equation (9.35) is written as follows with the new notations:

�Σs, 0

2κ
ln

Σt � κ

Σt þ κ

� 
¼ 1

i.e.:

κ

Σt
¼ tanh

κ

Σs, 0

� 
	 κ

Σs, 0
� 1

3

κ

Σs, 0

� 3

þ 2

15

κ

Σs, 0

� 5

þ . . .

thus
1

3

κ2

Σ3
s, 0

	 Σt � Σs, 0

ΣtΣs, 0
¼ Σa

ΣtΣs, 0

and, finally, in a medium where Σa	Σs , 0:

κ 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ΣaΣs, 0

p
It will be seen later on that the quantity κ, which has the dimensions of the

inverse of a length, corresponds to the inverse of the scattering distance in diffusion

theory. The previous derivations included complex numbers. Real functions are

employed by seeking the flux as a decaying exponential function in space:

Φ xð Þ ¼ Φ0e
�κx

Furthermore, the space and angle variables will be assumed to be separable as:

Φ x; μð Þ ¼ φ μð Þe�κx

Such a factorized flux satisfies the Boltzmann equation in a homogeneous

medium without sources and is called the relaxation mode. The flux and the

scattering cross sections are expanded with Legendre polynomials, and the angular

part of the flux is written as:

�μκφ μð Þ þ Σtφ μð Þ ¼ 1

2

Xn
l¼0

2lþ 1ð ÞΣs, l Pl μð Þ
ðþ1

�1

φ μ0ð ÞPl μ
0ð Þdμ0

Hence, φ(μ) is written as:

φ μð Þ ¼ 1

2

Xn
l¼0

2lþ 1ð ÞΣs, l Pl μð Þ
Σt � μκ

ðþ1

�1

φ μ0ð ÞPl μ
0ð Þdμ0
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The angular moments φl

Ðþ1

�1
φ μ0ð ÞPl μ0ð Þdμ0 are obtained by multiplying the

previous equation by Pl(μ), and then integrating over [�1, +1]. Usually, this

technique is employed to benefit from the orthogonality relations of the Legendre

polynomials. However, the term Σt� μκ in the denominator leads to the following

coefficients:

gkl αð Þ ¼ glk αð Þ ¼
ðþ1

�1

Pk μð ÞPl μð Þ
1� μα

dμ with α ¼ κ

Σt

for which the first terms are easily computed as:

g00 αð Þ ¼ Ðþ1

�1

1

1� μα
dμ ¼ 1

α
ln

1þ α

1� α

g10 αð Þ ¼ Ðþ1

�1

μ

1� μα
dμ ¼ 1

α2
ln

1þ α

1� α
� 2α

	 

g11 αð Þ ¼ Ðþ1

�1

μ2

1� μα
dμ ¼ 1

α3
ln

1þ α

1� α
� 2α

	 


g20 αð Þ ¼ Ðþ1

�1

1

2
3μ2 � 1
� �
1� μα

dμ ¼ 3

2
g10 αð Þ � 1

2
g00 αð Þ

8>>>>>>>>>>>><>>>>>>>>>>>>:
Therefore, a linear system of equations for the angular flux moments is reached:

φ0 ¼
1

2Σt
Σs, 0g00 αð Þφ0 þ 3Σs, 1g01 αð Þφ1 þ 5Σs, 2g02 αð Þφ2 þ :: . . .½ �

φ0 ¼
1

2Σt
Σs, 0g10 αð Þφ0 þ 3Σs, 1g11 αð Þφ1 þ 5Σs, 2g12 αð Þφ2 þ :: . . .½ �

: . . .

8>><>>:
These equations can be generalized as:

φk ¼
1

2Σt

Xn
l¼0

2lþ 1ð ÞΣs, lglk αð Þφl for k ¼ 1, n

In B1approximation, the expansion is limited to order 1. Recent developments in

the Bn method (consistent Bn method
33) allow for anisotropic collision probability

that accounts for periodic boundary conditions directly in the uncollided flux

calculation in plane geometry. They have shown the microscopic flux of a lattice

of slabs can be calculated without any restriction on the anisotropy order of the

collision law.

33R. Roy, A. Hébert, G. Marleau: Consistent Bn theory for slab lattices, Nuclear Science and

Engineering 115, pp. 112–128 (1993).
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9.11 Tn Method

Pafnuty Chebyshev (1821–1894), Russian mathematician who taught Markov and Lyapunov

(Public domain)

The Tnmethod consists in expanding both the flux and the scattering cross section

on the basis of Chebyshev polynomials of the first kind. This method is fairly

interesting given that the Chebyshev polynomials best approximate a function in

the Von Neumann minimax sense whereas the Legendre polynomials do so in the

least square sense. It implies that the use of Chebyshev polynomials leads to errors

which are equally distributed on the [�1, 1] range of the cosine of the scattering

angle, whereas the error due to Legendre polynomials is maximum for μ¼ 1 or � 1.

This analysis is essential as there is significant oscillation effects due to polynomials as

their orders are increased to match a given function. Such oscillations may cause

problems for incident or outgoing directions. The expression of Chebyshev poly-

nomials is given by Tn(cosθ0)¼ cos(n θ0), the first few terms being given below:

T0 μð Þ ¼ 1

T1 μð Þ ¼ μ
T2 μð Þ ¼ 2μ2 � 1

T3 μð Þ ¼ 4μ3 � 3μ
T4 μð Þ ¼ 8μ4 � 8μ2 þ 1

T5 μð Þ ¼ 16μ5 � 20μ3 þ 5μ

8<:
with the orthogonality property written as:

ðþ1

�1

Tn μð ÞTm μð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p dμ ¼
0 if n 6¼ m
π if n ¼ m ¼ 0
π

2
if n ¼ m 6¼ 0

8><>:
The Chebyshev polynomials satisfy the following recurrence relation:
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Tnþ2 μð Þ þ Tn μð Þ � 2μTnþ1 μð Þ ¼ 0

There is a strong similarity with the Pn approach since an addition formula also

exists34 such that a polynomial in μ0 can be expanded in μ and μ0 as shown by:

Tn μ0ð Þ ¼
Xn
m¼0

XE n�mð Þ=2½ �

i¼0

XE n�mð Þ=2½ �

j¼0

XE n�mð Þ=2½ �

k¼0

tn,mi, j,ksin
m φð Þ sin m φ0ð Þ Tn�m�2i μð Þ

� Tn�m�2j μ
0ð Þ � Tn�m�2k cos φ� φ0ð Þð Þ

where the coefficient tn,mi, j,k is equal to:

tn,mi,j,k¼

1 if n¼0

n

π

4 n�mð Þ! 1

2
�m

� 
Γ iþmð ÞΓ n�ið ÞΓ jþmð ÞΓ n�jð ÞΓ k�1

2

� 
Γ m�k�1

2

� 
Γ nþmð ÞΓ mð ÞΓ mð ÞΓ iþ1ð ÞΓ n�m�iþ1ð ÞΓ jþ1ð ÞΓ n�m�jþ1ð ÞΓ kþ1ð ÞΓ n�kþ1ð Þ
� 1�1

2
δ2i, n�m

� 
1�1

2
δ2j, n�m

� 
1�1

2
δ2k, m

� 
for n>0

8>>>>>><>>>>>>:
where Γ(x) is the usual real factorial. The Chebyshev polynomials are projections of

the ultraspherical harmonic functions Cα
n also known as the Gegenbauer poly-

nomials (Abramovitz and Stegun 1972; Robin 1959, p. 183), just like the Legendre

polynomials are projections of the spherical harmonics. The complex nature of the

algebraic formulae is due to the fact that few developments have been undertaken in

this field compared to the widespread use of spherical harmonics, as underlined by

Milgram. Let us consider the expansion of the flux and the scattering cross section

as Chebyshev series:

Φ x; μð Þ ¼
X1
l¼0

φl xð ÞTl μð Þ and Σs x,μ0ð Þ ¼
Xn
n¼0

Σl xð ÞTl μ0ð Þ

which are injected in the 1D transport equation in its monoenergetic form for

simplifications:

μ
∂Φ x; μð Þ

∂x
þ ΣtΦ x; μð Þ ¼ 1

4π

ð2π
0

dφ

ðþ1

�1

Σs x; μ0ð ÞΦ�x; μ0� dμ0 þ νΣf xð Þ
ð2π
0

dφ

ðþ1

�1

Φ
�
x; μ0

�
dμ0

24 35
Using the addition formula, the following equation is reached:

34M.S. Milgram: The method of the ultraspherical harmonics in particle transport, ANS Proc.

Advances on nuclear engineering computation and radiation shielding, Santa Fe (1989).
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X
l

μ
∂ϕl xð Þ
∂x

þ Σtϕl xð Þ
	 


Tl μð Þ ¼
Xn
l¼0

Σl xð Þ
Xl
m¼0

XE l�mð Þ=2½ �

i¼0

XE l�mð Þ=2½ �

j¼0

XE m=2½ �

k¼0

tn,mi, j,kTl�m�2i μð Þ

�
X
p

ϕp xð Þsin mθγl�m�2j,p,m βm�2k þ νΣf

X
l

ξl, 0ϕl xð Þ

with

γi, j,k ¼
1

2

ðþ1

�1

Ti μ
0ð ÞTj μ

0ð Þ sin k θ0ð Þdμ0 ¼ 1

2
ξiþj,k þ ξ i�jj j,k
� �

βm ¼ 1

2π

ðþ1

�1

Tm cos φ� ϕ0ð Þð Þdϕ0 ¼ δm, 0

ξl,m ¼ 0 if l isodd

8>>>>>>>><>>>>>>>>:

and
ξl,m ¼

�1ð Þ l2Γ 3

2

� 
Γ 1þ m

2

� �
Γ

3

2
þ m

2

� 
Γ

3

2
þ m

2
� l

2

� 
Γ

3

2
þ m

2
þ l

2

� 
ξl, 0 ¼

1

1� l2

8>>>>>><>>>>>>:
if l is even

The fact that βm¼ δm , 0 means that there are only even powers of sinθ, and thus,

the higher degrees of sin2θ� 1� μ2 may be employed to obtain μ2¼ (T2(μ) + 1)/2.
Using the recurrence relation, the following equation is obtained:

μmTn μð Þ ¼ 1

2m

Xm
p¼0

Cp
n T nþm�2pj j μð Þ

Finally, the coefficients of the Chebyshev polynomials are obtained by inspec-

tion of each term (which is equivalent to the use of the orthogonality relation by

multiplying the equation by Tl μð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p
and then integrating over [�1, +1]) so

as to obtain a system of coupled equations in ϕl(x) to the order n:

Tnmethod:

1

2

∂φm xð Þ
∂x

þ 1þ δm, 1ð Þφm�2 xð Þ
	 


¼
Xn
k¼0

φm xð Þ
Xn
j¼k�2

Ak, jΣs, j

φ�1 xð Þ ¼ 0 Σs,�1 ¼ Σt

φ�2 xð Þ ¼ 0 Σs,�2 ¼ νΣf

8>>><>>>:
ð9:36Þ

Milgram proposed the extension of the notations with negative indices to allow

for a similar expansion of the fission source as that of the slowing-down source in

the equation system. In 1989, Milgram calculated the first eight equations and

provided the coefficients Ak , j of the matrix. It should nevertheless be pointed out

that this method which couples the flux moments of order m and m�2 with all the

others, leads to a denser matrix than the method for which the matrix is tri-diagonal
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in 1D, thereby implying that there will be an optimum in the precision to calculation

cost ratio that is hard to appreciate at present. In a general approach, the

Gegenbauer ultrasphercial functions Cα
n (for which the Chebyshev polynomials

are degenerate as α! 0) can be directly employed at the expense of higher

computational costs and the use of symbolic calculators to evaluate the matrix

coefficients.

9.12 Fn Method

The Fn
35 method consists in expanding the flux on the following basis functions:

Φ r; μð Þ ¼ μ2
Xn
l¼0

φl rð Þ P∗
l μð Þ

where P∗
l μð Þ is the shifted Legendre polynomial Pl(2μ� 1) which was previously

discussed in Yvon’s method (DPn). The transport current of such an expansion is

given as:

J rð Þ ¼ μ2
Xn
l¼0

dφl rð Þ
dr

ð1
0

μ2P∗
l μð Þ dμ ¼ 1

3

dφ0 rð Þ
dr

þ 1

30

dφ2 rð Þ
dr

Such an expansion is particularly interesting for transport calculations in cylin-

drical geometries.

9.13 Cn Method

The Cnmethod (based on the Complementarity theory, thus the C in the name) is an

original method developed at CEA Saclay by Pierre Benoist and Alain Kavenoky on

the basis of the third form of the transport equation. This method consists in

expanding the flux Φ(μ) and the adjoint flux Φ∗(μ) on a polynomial basis over

the [0, 1] range. Let us expand the Milne problem example discussed in Chap. 8, as

in the PhD work of Alain Kavenoky. The equations at the interface of a medium and

vacuum were established for an incident flux Φ+(μ):

35B.D. Ganapol: A neutron transport benchmark in one-dimensional cylindrical geometry:
revisited, Nuclear Science and Engineering, 159, pp. 169–181 (2008).
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0 ¼
ð1
0

μ0Φþ μ0ð ÞGmc μ0; μð Þ dμ0 þ
ð0
�1

μ0Φ� μ0ð ÞGmc μ0; μð Þ dμ0 for μ > 0

Φþ μð Þ ¼
ð1
0

μ0Φþ μ0ð ÞGmc μ0; μð Þ dμ0 þ
ð0
�1

μ0Φ� μ0ð ÞGmc μ0; μð Þ dμ0 for μ < 0

8>>>>>>><>>>>>>>:
These two equations can be written in the canonical form of an integral

Fredholm equation with a symmetric kernel by posing the intermediate function f

μð Þ ¼ ffiffiffi
μ

p
Φ� �μð Þ for μ > 0:

ffiffiffi
μ

p ð1
0

μ0Φþ μ0ð ÞG μ0;μð Þ dμ0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S1 μð Þ

�
ð1
0

f μ0ð ÞH1 μ0;μð Þ dμ0 ¼ 0, H1 μ0;μð Þ ¼
ffiffiffiffiffiffiffi
μμ0

p
G �μ0;μð Þ

ffiffiffi
μ

p ð1
0

μ0Φþ μ0ð ÞG μ0;�μð Þ dμ0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S2 μð Þ

�
ð1
0

f μ0ð ÞH2 μ0;μð Þ dμ0 ¼ 0, H2 μ0;μð Þ ¼ δ μ� μ0ð Þ þ
ffiffiffiffiffiffiffi
μμ0

p
G μ0;μð Þ

ð9:37Þ

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
This canonical form allows the use of a myriad of appropriate mathematical

methods for a symmetrical kernel. The albedo can be calculated as the ratio of the

outgoing current to the incoming current:

β �

Ð0
�1

μ0Φ� μ0ð Þ dμ0

Ð1
0

μ0Φþ μ0ð Þdμ0
¼

Ð1
0

ffiffiffiffiffi
μ0

p
f μ0ð Þ dμ0

Ð1
0

μ0Φþ μ0ð Þdμ0

Normalizing the current to one
Ð1
0

μ0Φþ μ0ð Þdμ0 ¼ 1 leads to:

β ¼
ð1
0

ffiffiffiffiffi
μ0

p
f μ0ð Þ dμ0 ¼ �

ð0
�1

μ0Φ� μ0ð Þdμ0

The adjoint equation to Eq. (9.37) is defined wrt the albedo:

ffiffiffi
μ

p �
ð1
0

f∗ μ0ð ÞHi μ
0; μð Þ dμ0 ¼ 0 i ¼ 1 or 2, μ > 0 ð9:38Þ

9.13 Cn Method 671



The adjoint property is satisfied by the fact that:

8i,
ð1
0

f∗ μð ÞSi μð Þ dμ ¼
ð1
0

f∗ μð Þ dμ
ð1
0

f μ0ð ÞHi μ
0; μð Þdμ0

¼
ð1
0

f μ0ð Þ dμ0
ð1
0

f∗ μð Þ Hi μ
0; μð Þ|fflfflfflfflffl{zfflfflfflfflffl}

¼Hi μ;μ0ð Þ

dμ0 ¼
ð1
0

f μ0ð Þ
ffiffiffiffi
μ0

p
dμ0 ¼ β

The adjoint function f∗(μ) defines Φ∗(μ ) as: f∗ μð Þ � ffiffiffi
μ

p
Φ∗ �μð Þ μ > 0.

In 1952, Kahan36 and Rideau showed37 that the stationary nature of the bilinear

functional:

Kahan-Rideau functional: β f ; f∗ð Þ �
ð1
0

f μð Þ ffiffiffi
μ

p
dμþ

ð1
0

f∗ μð ÞSi μð Þ dμ

�
ð1
0

f∗ μð Þ dμ
ð1
0

f μ0ð ÞHi μ
0; μð Þdμ0 ð9:39Þ

implied that the functions f(μ) and f∗(μ) were solutions to Eqs. (9.37) and (9.38)

respectively. In fact:

δβ f ; f∗ð Þ �
ð1
0

δf∗ μð Þ dμ Si μð Þ �
ð1
0

f μ0ð ÞHi

�
μ0; μ

�
dμ0

0@ 1A
þ
ð1
0

δf μð Þ dμ ffiffiffi
μ

p �
ð1
0

f∗ μ0ð ÞHi

�
μ0; μ

�
dμ0

0@ 1A

36Théo Kahan (1904–1984) was a French physicist and pioneered the development of theoretical

methods in quantum physics and electrodynamics. With Raymond Jancel (1926–2011), he created

a research team in mathematical physics at the Institut Henri Poincaré at La Sorbonne, Paris, where

he taught for several years. He is the author of many books on modern physics as well as several

works for popularizing physics (among which a Que. sais-je [What do I know] edition on atomic

structure and another one on radio waves) and one of the first textbooks on reactor physics in

French (Kahan and Gauzit 1957). He is also the co-author of a book with Jancel on plasma

electrodynamics which has been translated to English in 1966 by the publishing company, John

Wiley. He was said to be close to Frédéric Joliot with whom he had common political views.
37T. Kahan, G. Rideau: Sur la déduction de divers principes variationnels de la théorie des
collisions �a partir d’un principe unique [On the deduction of various variational principles of

collision theory from a single principle], Journal de Physique du Radium, 13, p. 326 (1952). Also

refer to (Kahan et al. 1956).
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The works of Kahan and Rideau on the variational approximation applied to neutron physics are

grouped in this memorial of mathematical sciences, fascicle CXXXIV of 1956 (The Marguet

collection)

By substituting the definitions of f(μ), f∗(μ) and Hi(μ0, μ), the following equation
is obtained for the first expression:

β Φ,Φ∗ð Þ � �
ð0
�1

Φ μð Þμ dμ�
ð0
�1

Φ∗ μð Þμ dμ

ð1
0

Φþ μ0ð ÞG μ0;�μð Þμ0 dμ0

�
ð0
�1

Φ∗ μð Þμdμ
ð0
�1

Φ μ0ð ÞG μ0;�μð Þμ0 dμ0
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and for the second one:

β Φ,Φ∗ð Þ � �
ð0
�1

μ dμ�
ð0
�1

Φ∗ μð Þμ dμ

ð1
0

Φþ μ0ð ÞG μ0; μð Þμ0 dμ0

þ
ð0
�1

Φ∗ μð Þμdμ�
ð0
�1

Φ∗ μð Þ μ dμ

ð0
�1

Φ μ0ð ÞG μ0; μð Þμ0 dμ0

The Cn approximation consists in expanding38:

Φ μð Þ ¼
Xn
l¼0

Φlμ
l and Φ∗ μð Þ ¼

Xn
l¼0

Φ∗
l μ

l

These expressions are injected in the Kahan-Rideau functional, and the station-

ary conditions are sought by cancelling the derivatives wrt Φl and Φ∗
l . For a C0

expansion where the angular fluxes are constant: Φ(μ)¼Φ0 and Φ∗ μð Þ ¼ Φ∗
0 , and

for both formulations, we obtain the following equations:

β10 ¼ �1

2

ð1
0

μ dμ

ð1
0

Φþ μ0ð ÞG μ0; μð Þμ0 dμ

ð1
0

μ dμ

ð0
�1

G μ0; μð Þμ0 dμ

β20 ¼ �1

2

ð0
�1

μ dμ

ð1
0

Φþ μ0ð ÞG μ0; μð Þμ0 dμ

1

2
þ
ð1
0

μ dμ

ð1
0

G μ0; μð Þμ0 dμ

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
It is recalled that Φ+(μ ) is an input data in the Milne problem and that the terms

in the denominator contain the first moment of the Green function in infinite

medium, that are easily computed. A Cn approximation leads to more complicated

expressions with higher moments of the Green function.

38Historically, Kavenoky defined the Cn approximation as a truncated Taylor expansion at order

n� 1:Φ μð Þ ¼Pn
l¼1

Φlμl�1, which did not seem very wise to us for comparison with the Pn or Tn

methods, as well as for the numbering of the moments. Nevertheless, the principles remain the same.
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The Cn method proved to be as precise as, or even more, than the collision

probability method, especially for 1D problems where the Green function is easily

calculated analytically, and where the method, which deals with interface flux, is

independent of the size of the cells in the mesh. It was successfully applied by Henri

Lorain39,40,41 to deal with the exponential experiments where a neutron source is

applied to one face of a parallelepiped to measure its neutronic properties.

9.14 The SKn Method

The SKn method stems from the approach of M. Krook42 for radiative transfer

(1955). The idea was applied to neutron physics by Bernard Spinrad and

J. Sterbentz43,44 and consists in expanding the exponential term which appears in

the specific-volume form of the integral Boltzmann equation (expressed here for

isotropic scattering and source, and a homogeneous medium):

Φ ~rð Þ ¼
ð
V

d3r0
e�Σt ~r�~r0j j

4π ~r �~r0j j2 Σs, 0 ~r 0ð ÞΦ ~r 0ð Þ þ S ~r 0ð Þð Þ

The exponential expansion is carried out through the exponential integral term:

e�x ¼ xE0 xð Þ ¼ x

ð1
0

e�
x
μ

μ2
dμ 	 x

Xn
l¼1

ωl

μ2l
e
� x

μl

The weights ωl and μl are chosen such that they satisfy:

39Alain Kavenoky, Henri Lorain: Théorie de l’expérience exponentielle: application de la mé
thode Cn et des modèles synthétiques de ralentissement [Theory of the exponential experiment:

application to the Cn method and synthetic slowing-down models], technical note CEA-N-1582

(1973).
40Henri Lorain,Modèles synthétiques de ralentissement des neutrons et méthode Cn: application �a
l’interprétation des expériences exponentielles rapides [Synthetic neutron slowing-down models

and the Cn method: interpretation of fast exponential experiments], PhD thesis, University of

Orsay (1972).
41Pierre Benoist, Alain Kavenoky, Henri Lorain: The Cn method of approximating Boltzmann
equation and fast exponential problems, transactions of American Nuclear society, 14, p. 224

(1970).
42M. Krook, On the solution of equations of transfer, Astrophysics Journal 122, p. 488 (1955).
43Bernard I. Spinrad, J. S. Sterbentz, Approximations to neutron transport problems in complex
geometries, Nuclear Science and Engineering 90, pp. 431–440 (1985).
44Zekeriya AltaÇ, Bernard I. Spinrad, The SKn method I: a high-order transport approximation to
neutron transport problems, Nuclear Science and Engineering 106, pp. 471–479 (1990).
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ðþ1

0

xke�x dx ¼ Γ k þ 1ð Þ ¼
Xn
l¼1

ωl

μ2l

ðþ1

0

xkþ1 e
� x

μl dx for k ¼ 0 to 2n� 1

ωl and μl are the weights of the Gauss quadrature for the integral E0(x). The
exponential term of the uncollided flux kernel is written as follows with these

assumptions:

e�Σt ~r�~r0j j 	
Xn
l¼1

ωl

μ2l
Σt ~r �~r0j je�

Σt ~r�~r0j j
μl

The integral equation can hence be written under the following form:

Φ ~rð Þ ¼
ð
V

d3r0

Pn
l¼1

ωl

μ2
l

Σt ~r �~r0j je�
Σt ~r�~r0j j

μl

4π ~r �~r0j j2 Σs, 0 ~r0ð Þ Φ ~r0ð Þ þ S ~r0ð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q ~r0ð Þ

�
Xn
l¼1

ωlΦl ~rð Þ

with: Φl ~rð Þ � 1

Dl

ð
V

d3r0

Pn
l¼1

e
�Σt ~r�~r0j j

μl

4π ~r �~r0j j q ~r0ð Þ and Dl � μ2l
Σt

Each flux moment Φl ~rð Þ satisfies a diffusion equation such as:

�DlΔΦl ~rð Þ þ ΣtΦl ~rð Þ ¼ q ~rð Þ

The SKn equations are then expressed as:

�DlΔΦl ~rð Þ þ ΣtΦl ~rð Þ ¼ Σs

Xn
m¼1

ωmΦm ~rð Þ þ S ~rð Þ

Hence, the same number of diffusion equations as the number of moments must

be solved and carried out with a usual diffusion code, whilst the flux reconstruction

in transport theory is executed outside that diffusion code. This method is very

competitive even for heterogeneous problems using a wise implementation45 which

is initially applied to homogeneous problems: a fictitious scattering term is added

only along axis of the incident neutron (which cannot be discerned physically if

there is no scattering) such that the total cross section becomes constant, and the

optical path in the collisionless kernel is simplified.

45Bernard I. Spinrad, Zekeriya AltaÇ, The SKn method II: heterogeneous problems, Nuclear
Science and Engineering 106, pp. 480–488 (1990).
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9.15 Method of Characteristics (MOC)

(Advances Nuclear Science and Technology, vol. 12, p. 1, 1980).

9.15.1 Principle

The Method of Characteristics consists in discretizing the transport equation in

several directions such that the angular flux is approximated by a balance equation

along a “tube” associated to a trajectory T. In practice, the angular flux is discretized
by piecewise constant expansion by factorizing the space and angular direction

variables:

Flux expansion in the method of characteristics: Φ ~r; Ω
!� �

	
X
i

φi Ω
!� �

ψ i ~rð Þ

ð9:40Þ

ψ i ~rð Þ is called the characteristic function of region i. Given a direction Ω
!
, the

flux in that direction may be expressed in integral form as:

Φ ~r;Ω
!� �

¼Φ ~r� ‘Ω
!
;Ω
!� �

e
�Σt ‘ ~r�‘Ω

!� �
þ
ð‘
0

q ~r� ‘0Ω
!
;Ω
!� �

e
�Σt ‘ ~r�‘0Ω

!� �
d‘0

where the usual optical path discussed in the chapter on the Boltzmann equation is

used:

Σt ‘ ~r � ‘Ω
!� �

�
ð‘
0

Σt ~r � ‘0Ω
!� �

d‘0

If the cross section is constant in the medium, the optical path is simplified as:

e�Σt, i ‘. If the collision kernel and the sources are zero, the exponential attenuation

law of a collimated neutron beam in a given direction is obtained:

Φ ~r; Ω
!� �

¼ Φ ~r � ‘Ω
!
; Ω
!� �

e�Σt, i ‘

Furthermore, in the extreme case where the total cross section is zero (which is

the case of vacuum), the neutron flux in a direction does not change:
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Φ ~r; Ω
!� �

¼ Φ ~r � ‘Ω
!
; Ω
!� �

. The outgoing flux Φout ~r; Ω
!� �

of a medium at posi-

tion~r can be calculated from the incoming flux using the transmission equation and

the incoming flux Φin ~r; Ω
!� �

and the inner constant sources of medium i by

integrating the integro-differential equation along curvilinear coordinate ‘, with
~rin being the incident constant position for integration:

∂Φ
∂‘

¼ Ω
!
:grad
��!

Φ ~rin þ ‘Ω
!
; Ω
!� �

¼ qi Ω
!� �

� Σt, iΦ ~rin þ ‘Ω
!
; Ω
!� �

i.e.:

Transmissionequation : Φout
i ~rout ;Ω

!� �
¼Φin

i ~r�LΩ
!
;Ω
!� �

e�Σt,i Lþ1�e�Σt,i L

Σt,i
qi Ω

!� �
ð9:41Þ

In this expression, L is the length of the characteristic line that passes

through medium i and βi ~r; Ω
!� �

� 1�e�Σt, i L

Σt, i
is defined as the leakage probability

in direction Ω
!
.

A “tube” of length L is associated to the direction Ω
!
, as shown by Fig. 9.13, and

is called a characteristic. The mean flux along a characteristic can be calculated by

integrating the local flux along the path:

ΦL Ω
!� �

¼ 1

L

ð‘¼L

‘¼0

Φ ~rin þ ‘Ω
!
; Ω
!� �

d‘ ¼
Φ ~rout ; Ω

!� �
� Φ ~rin ; Ω

!� �
Σt, iL

þ
qi Ω

!� �
Σt, i

Integrating Eq. (9.41) on the volume of the cell (i.e. on all the tubes that pass

through the cell i in that direction, which is equivalent to the integration in the

transverse direction of the axis of the tubes) leads to the usual balance equation:

Fig. 9.13 Path of a

characteristic
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ViΣt, iφi Ω
!� �

¼ Vi qi Ω
!� �

þ Jini Ω
!� �

� Jouti Ω
!� �

The incoming and outgoing currents are given by:

Jini Ω
!� �

¼ Ð
Sini Ω

!� � dSin Ω
!
:~nin Φin ~r; Ω

!� �
and Jouti Ω

!� �
¼

ð
Souti Ω

!� �
dSout Ω

!
:~nout Φout ~r; Ω

!� �

Defining the transverse cross section of the tube as SL and integrating over all the

tubes, with dSin ¼ SL=Ω!:~nin and dSout ¼ SL=Ω!:~nout, the following expressions are

reached:

Jini Ω
!� �

¼
X

trajectoriesΩ
!

SLΦin ~r; Ω
!� �

and Jouti Ω
!� �

¼
X

trajectoriesΩ
!

SLΦout ~r; Ω
!� �

For paths of a given tube that are uniformly distributed, the cross section of the

tubes is constant, and the angular flux is simply calculated by the balance equation

as:

φi Ω
!� �

¼ 1

Σt, i
qi Ω

!� �
þ

X
trajectories Ω

!
SL Φin ~r; Ω

!� �
� Φout

�
~r; Ω

!�h i
Σt, i Vi

9.15.2 Heterogeneous Geometries

The calculation of the integral in the transverse direction using the transverse cross

section of tubes is equivalent to tracing equidistant rays and using the surface SL as

the weight in a quadrature formula which is the integration using the rectangle

method. This is an essential point to be noted as numerical studies46 have shown

that the global precision of the method of characteristics is limited by that of the

transverse integration method. Each characteristic intercepts a given medium along

46François Févotte: Techniques de traçage pour la méthode des caractéristiques appliquée �a la ré
solution de l’équation du transport des neutrons en domaines multidimensionnels [Tracing

methods for the method of characteristics applied to the resolution of the transport equation in

multidimensional domains], PhD thesis, Paris, 2008.

9.15 Method of Characteristics (MOC) 679



a series of segments for which the endpoints form a discrete set of points between

which the regions are assumed to be homogeneous (Fig. 9.14).

For each segment, the transmission equation is applied and thus, information is

propagated from the boundary conditions to edges of the complete geometry. The

“distance travelled” along a characteristic, which includes a costly exponential

calculation in the optical path, is called the sweep. For a given geometry, the

segments are calculated only when the geometry is analyzed and it is quite

remarkable that only the segment length is required for calculations. The angular

flux is calculated by expressing the previous equation as:

φi Ω
!� �

¼ 1

Σt,i
1� 1

Vi

X
trajectoriesΩ

!
SLβi ~r;Ω

!� �24 35qi Ω
!� �

þ
X

trajectoriesΩ
!
βi ~r;Ω

!� �
φin Ω

!� �

This form allows for the following iterative algorithm: the outgoing flux from a

mesh cell is calculated for all the directions Ω
!

using the formula:

Φout
i ~r;Ω

!� �
¼Φin

i ~r� ‘Ω
!
;Ω
!� �

þ βi ~r;Ω
!� �

qn�1
i Ω

!� �
�Σt, iΦ

in
i

�
~r� ‘Ω

!
;Ω
!�h i

Ω

Fig. 9.14 Discretizing a

lattice: The characteristic is

at the center of the mesh

cell, and indicated by an

arrow
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The outgoing flux terms are used to compute new values for Δn
i Ω

!� �
¼ P

trajectoriesΩ
!
βi ~r; Ω

!� �
φin Ω

!� �
, which allows for the flux calculation at the new

iteration:

φn
i Ω

!� �
¼ 1

Σt, i
1� 1

Vi

X
trajectories Ω

!
SL βi ~r; Ω

!� �24 35qi Ω
!� �

þ Δn
i Ω

!� �

If the geometry is paved with homogeneous cells of volume Vj, a trajectory T is the

association of an angle Ω
!

and a starting point~p chosen by scanning the perpendicular

plane to direction Ω
!
. These notations47 are practical for expressing the differential

trajectory element as d4T¼ d2Ω d2p, the flux in the volume is thus calculated as:

VjΦj ¼
ð
Vj

d3r

ð
Ω

d2Ω Φ ~r; Ω
!� �

¼
ð
T

d4T

ðþ1

�1
d‘ δ Vj; T

� �
Φ ~pþ ‘Ω

!� �

In this condensed expression, δ(Vj,T ) is equal to 1 if the trajectory passes

through the volumeVj, and 0 otherwise. A trajectory is a set of line segments Lk
between the starting point and the end point of each volume, i.e.:

rkþ1
��! ¼ rk

!� Lk Ω
!

Roy points out that it is interesting to number these line segments in the inverse

order of appearance in the trajectory for cyclic trajectories:{
 
 
,L2, L1,L0, L�1,

L�2; 
 
 
}. The mean flux along a segment is given by:

LkΦk Tð Þ ¼
ð‘¼Lk

‘¼0

Φ rkþ1
��! þ ‘Ω

!
; Ω
!� �

d‘

Hence: VjΦj ¼
Ð
T

d4T
P
k

δ Vj; Lk
� �

LkΦk Tð Þ
The same integration method can be applied for a volume that depends on the

angle of the trajectory:

Vj Ω
!� �

¼
ð
p

d2p
X
k

δ Vj,Lk
� �

Lk

47As defined by Robert Roy: The cyclic characteristics method, International Conference on the

Physics of Nuclear Science and Technology, Long Island, USA, October 1998, pp. 407–414 (1998).
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If the paving of the domain into regions does not induce any preferential

discretization such that this volume is an integer multiple of the volume of a tube,

a renormalization of the optical path must be carried out such that the volume of the

cell obtained by integration of the tubes is rigorously equal to the true volume. This

process is carried out by substituting the integrated path ‘ of a tube by:

ViP
trajectories Ω

!SL ‘ trajectoryð Þ ‘ ¼ ViÐ
p

d2p
P
k

δ Vj; Lk
� �

Lk
‘

With these notations, the flux in the segment satisfies:

dΦ rkþ1
��! þ ‘Ω

!
; Ω
!� �

d‘
þ Σt,kΦ rkþ1

��! þ ‘Ω
!
; Ω
!� �

¼ qk

Φ rkþ1
��! þ ‘Ω

!
; Ω
!� �

¼ Φ rkþ1
��!; Ω

!� �
e�Σt,k ‘ þ qk

1� e�Σt,k ‘

Σt,k

8>>><>>>:
The outgoing flux from the segment is:

Φ rk
!; Ω

!� �
¼ Φ rkþ1

��!; Ω
!� �

e�Σt,k Lk þ qk
1� e�Σt,k Lk

Σt,k

and the angularly integrated flux is given by:

LkΦk Tð Þ ¼
ð‘¼Lk

‘¼0

Φ rkþ1
��! þ ‘Ω

!
; Ω
!� �

d‘

¼ Φ rkþ1
��!; Ω

!� � 1� e�Σt,k Lk

Σt,k
þ qk
Σt,k

Lk � 1� e�Σt,k Lk

Σt,k

� 
Roy further notes that these expressions are finite when the medium is vacuum

since:

lim
Σt,k!0

1� e�Σt,k Lk

Σt,k

� 
¼ Lk and lim

Σt,k!0

1

Σt,k
Lk � 1� e�Σt,k Lk

Σt,k

� 
¼ L2k

2

These equations are valid as long as the trajectory does not pass through a

surface since the cross section of the medium is homogeneous. The balance

equation is conserved for each cell in the mesh, the only approximation consists

in assuming that the angular flux is piecewise-constant on the cell surface and that

the volume-specific flux are constant per mesh cell, thereby requiring a wise spatial

meshing. As for boundary conditions, applying void conditions at the boundary of

convex domain ensures that neutrons cannot come back in the geometry, meaning

that the trajectories stop at the outer boundary of a domain. The outgoing angular
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flux are calculated after the sweeping of a characteristic but are not used afterwards

since no neutron will contribute to the angular component of the current. However,

if the trajectories cross reflective boundary conditions or translation/rotation con-

ditions for cylindrical geometries, the outgoing angular flux at the intersection point

of the characteristic/boundary is used over to calculate the incoming angular flux.

This process is executed by the tracing of a “new” characteristic that satisfies the

boundary conditions (Snell-Descartes law for specular reflection for instance,

which reflects the trajectory by conserving the incident angle wrt the normal).

Thus, the method becomes more complex given that the different directions are

coupled to one another and cannot be traced independently. From a practical point

of view, the neutron path is tracked until an open boundary is crossed, i.e. void or a
black body, which determines the last crossed region. The angular flux of that last

region is directly injected in the appropriate region by sweeping the following

segment of the current trajectory and keeping in mind, that all geometrical data are

stored before the tracking is carried out. If the geometry is completely closed

infinite trajectories are possible due to the boundary conditions. An approach48,49

consists in choosing cyclic trajectories for which it is ensured that they cross their

starting points after a finite number of rebounds (Fig. 9.15).

Starting from a point A and tracking a neutron through its successive reflections,

it comes back to point A again. At the first iteration, the incoming flux is not known

and is assumed to be zero. DenotingΦin
A andΦout

A as the incoming and outgoing flux

at point A, ‘j as the different segments of the trajectory, by applying the transmis-

sion equation, we obtain:

Φout
A ¼ Φin

A e
�
PN
j¼1

Σt, j ‘j

þ
XN
j¼1

qj e
�Σt, j ‘j

A

Fig. 9.15 Example of a

cyclic trajectory

48Richard Sanchez, Li Mao, S. Santandrea: Treatment of boundary condition in trajectory-based
deterministic transport methods, Nuclear Science and Engineering, 140, pp. 23–50 (2002).
49M. Assawaroongruengchot, Guy Marleau: Multi-group adjoint transport solution using the
model of cyclic characteristics, Nuclear Science and Engineering, 155, pp. 37–52 (2007).
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This formula is extended to the case of multiple media crossings by using the

total length of the complete trajectory L ¼PN
j¼1

‘j and the optical path:

Σt ‘ ‘1; ‘2ð Þ ¼
ð‘¼‘2

‘¼‘1

Σt ‘ð Þd‘

Hence: Φout
A ¼ Φin

A e
�Σt ‘ 0;Lð Þ þ Ð‘¼L

‘¼0

q ‘ð Þ e�Σt ‘ ‘;Lð Þ d‘

After a complete cycle of length L, the flux at point A is obtained over again, and

hence, Φout
A ¼ Φin

A . Therefore, the explicit calculation for that flux is:

Φin
A ¼

Ð‘¼L

‘¼0

q ‘ð Þ e�Σt ‘ ‘;Lð Þ d‘

1� e�Σt ‘ 0;Lð Þ

Two successive sweeps of the trajectory are thus required to calculate all the flux

at the intersection points of the complete trajectory with the boundaries.

Ray-tracing techniques, very similar to 3D imaging, have been employed to obtain

high performance with the method of characteristics for heterogeneous media,

especially as the method can be easily parallelized. Using the inverse indexing of

segments as discussed earlier, the problem of crossing a surface described by an

albedo can be simply substituted by a transmission equation:

Φ rk
!; Ω

!� �
¼ Φ rkþ1

��!; Ω
!� �

1þ L�k β�k � 1½ �ð Þ

where β�k is the albedo of the surface of segment �k. A cyclic trajectory is a

series of finite segments {LN� 1, Ln� 2, 
 
 
 ,L2, L1,L0}, while segments with nega-

tive indexes {L�1,L�2, 
 
 
 , L�(N� 1)} are associated with intercepted surfaces with

a relative weight of L�k. For the crossing of a unique surface identified by its index

�k, a weight of L�k¼ 1 is equivalent to applying a desired albedo condition of

Φ rk
!; Ω

!� �
¼ Φ rkþ1

��!; Ω
!� �

β�k .

9.15.3 Characteristic Direction Probabilities (CDP)

On-going improvements are being elaborated for the method of characteristics. A

promising technique is that of Characteristic Direction Probabilities50. It consists

50S.G. Hong, N.Z. Cho:Method of characteristic direction probabilities for heterogeneous lattice
calculation, Nuclear Science and Engineering 132, pp. 65–77 (1999).
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in dividing a given volume into subdomains. For the traditional method of charac-
teristic, directions are considered in the whole volume and angular integration is

carried out using a quadrature. For CDP, only the cells of a subdomain that are

crossed by a given direction are coupled (unlike collision probabilities Pij for

instance). The lengths of the crossed segments are determined as in the Monte

Carlo method. The calculation of the CDP does not require an angular integration

and ray tracing is carried out only for each subdomain. The subdomains are then

coupled only through the angular flux on the common interfaces of the subdomains.

Thus, this method requires less computational time, especially for the ray tracing

part, compared to the traditional MOC or Pij methods.

We conclude on this paragraph by pointing out that the advantage of the MOC

method is that media can be discretized without the constraint of doing so along

preferential directions which would simplify the transport operator. Geometries

with complex boundaries can be treated as shown by Fig. 9.16. The windmill mesh

of the rodded (boro-silicate) PWR assembly optimizes the flux calculation in

regions with moderator by limiting the number of computational cells. A cylindri-

cal mesh would be inefficient wrt the flux precision in these regions. Besides, it

should be noted that three rows of fuel cells are added to simulate the environment

effect (Fig. 9.17).

Fig. 9.16 Windmill mesh of the rodded (boron silicate) PWR assembly (infography Denis

Kerdraon)

9.15 Method of Characteristics (MOC) 685



9.16 Even–Odd Formulation of the Transport Equation

(Advances Nuclear Science and Technology, vol. 13, p. 155, 1982; Planchard 1995,

p. 386; Stacey 2001, p. 503).

The even–odd formulation of the transport equation involves calculating the flux

to the minimization of a quadratic functional for which the stationary point is

sought.51 This method has been described in several US works and was introduced

in France by Daniel Verwaerde52 from CEA as from 1985.

Fig. 9.17 Zoom on an

elementary pattern of the

assembly on the left

51Jean-Michel Ruggieri: Méthodes numériques pour la prise en compte d’hétérogénéités locales
dans les calculs neutroniques de cœurs de réacteurs [Numerical methods to allow for local

heterogeneities in the calculation of nuclear reactor cores], PhD thesis, University of Provence

(1995). This thesis discusses the even-parity flux.
52Daniel Verwaerde (1954–). After engineering studies at Ecole Centrale Paris (1977), he joined

the Department of Applied Mathematics of the CEA/Direction of Military Applications in 1978.

He developed during 10 years programs for particle transport with the Boltzmann equation. His

works on several topics in numerical methods are worth noting: numerical methods with finite

differences and finite volumes for the cylindrical transport equation (DSN methods), acceleration

of convergence of algorithms with the “Fine mesh rebalancing” method or the Diffusion Synthetic

Acceleration, the collisionless flux methods, or discrete ordinates methods based on Lobatto-

Chebychev quadrature, discontinuous finite element methods for transport equations for which the

solution may have significant local variations, the probability method for neutron chain when the

number of neutrons is weak (Hansen), the setting up of probability equation for n neutrons (0 to

large numbers), the adjoint approach for the Boltzmann equation. His more significant contribu-

tions include the even-parity equation, the original variational formulations and the existence of

the solutions based on the Lax-Milgram lemma and the generalized Poincaré inequality proof, the

asymptotic behavior of the even flux in the diffusion equation as well as the construction of

numerical methods for continuous finite elements compatible with the even flux and the diffusion.

This list proves the extent of contributions in neutron transport. He was appointed as director of the

Department of Applied Mathematics in 1986. In 1996, he became director of the Simulation
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It is interesting as it divides the phase space into two, thereby explaining the

running speed, especially for isotropic cases.

9.16.1 Even–Odd Flux Equation

Starting from the time-independent integro-differential form of the transport equa-

tion with isotropic sources and isotropic scattering53:

Ω
!

: grad
��!

Φ ~r;E; Ω
!� �

þ Σt ~r;Eð Þ Φ ~r;E; Ω
!� �

¼ S ~r; Eð Þ þ
ð1
0

dE0ΣS ~r;E0 ! Eð Þ
ð
4π

dΩ
!0Φ ~r;E0; Ω

!0
� �

For the multi-group approximation with isotropic scattering hypothesis, the

equation for an energy group g is written as:

project after France decided to stop nuclear tests in the Pacific Ocean. This programme became

more and more important as it was on that Laser MegaJoule project and him that the “deterrent”

nature was conceived. Between 2000 and 2004, he became the director of the CEA center at

Bruyères-le-Châtel where he was in charge of the Ter@tec, which is a pole of European knowhow

for high performance computing which deals with intensive calculations for industries. Since April

2007, he is in charge of the Direction of Military Applications of the CEA.

(Courtesy Verwaerde)
53Only the isotropic case has been illustrated here, but the PhD thesis of Bruno Ackherraz

describes the derivation for anisotropic cases: Anisotropie du choc en transport des neutrons par
la méthode des éléments finis primaux [Anisotropy in neutron transport for the method of primal

finite elements], PhD thesis, University of Pierre and Marie Curie—Paris VI (1995).
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Ω
!

: grad
��!

Φg ~r; Ω
!� �

þ Σt g ~rð Þ Φg ~r; Ω
!� �

¼ Sg ~rð Þ þ Σs g ~rð Þ
ð
4π

d Ω
!0 Φg ~r; Ω

!0
� �

¼ Sg ~rð Þ þ Σs g ~rð ÞΦg ~rð Þ

Afterwards, to simplify the notations, the index g is not written in the equations.
The angular flux may be expressed as the sum of two components called the even
parity flux and the odd flux. The even–odd equation is expressed as:

Φ ~r; Ω
!� �

¼ Φþ ~r; Ω
!� �

þΦ� ~r; Ω
!� �

with:

Φþ ~r;Ω
!� �

¼ 1

2
Φ ~r;Ω

!� �
þΦ

�
~r;�Ω

!�h i
the even flux beingΦþ ~r;Ω

!� �
¼Φþ ~r;�Ω

!� �
Φ� ~r;Ω

!� �
¼ 1

2
Φ ~r;Ω

!� �
�Φ

�
~r;�Ω

!�h i
the odd flux being Φ� ~r;Ω

!� �
¼�Φ� ~r;�Ω

!� �
8><>:

It should be noted that:ð
Ω

Φ� ~r; Ω
!� �

dΩ
!¼

ð
Ω

1

2
Φ ~r; Ω

!� �
� Φ

�
~r;�Ω

!�h i
dΩ

¼ 1

2

ð2π
�2π

Φ ~r; Ω
!� �

dΩ
!�

ð2π
�2π

Φ
�
~r;�Ω

!�
dΩ
!

24 35 ¼ 0

since the following change of variable is:

ð2π
�2π

Φ ~r;�Ω
!� �

dΩ
!¼ �

ð�2π

2π

Φ ~r; Ω
!� �

dΩ
!¼

ð2π
�2π

Φ ~r; Ω
!� �

dΩ
!

The angularly-integrated scalar flux corresponds to the angular integral of the

even flux:

Φ ~rð Þ ¼
ð
Ω

Φþ ~r; Ω
!� �

dΩ
!

The neutron current is given by:
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~J ~rð Þ ¼
ð
Ω

Φ ~r; Ω
!� �

~Ω dΩ
!¼

ð
Ω

Φ� ~r; Ω
!� �

~Ω dΩ
!þ

ð
Ω

Φþ ~r; Ω
!� �

~Ω dΩ
!

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~0 since Φþ even

¼
ð
Ω

Φ� ~r; Ω
!� �

~Ω dΩ
!

The diffusion equation for angle �Ω
!

is expressed as:

�Ω
!

:grad
��!

Φ ~r;�Ω
!� �

þ Σt ~rð ÞΦ ~r;�Ω
!� �

¼ S ~rð Þ þ Σs ~rð ÞΦ ~rð Þ

Subtracting this equation from the diffusion equation expressed in Ω
!
, the

scattering term and the source which do not depend on the angle can be cancelled:

Ω
!

:grad
��!

Φ ~r; Ω
!� �

þ Ω
!

:grad
��!

Φ ~r;�Ω
!� �

þ Σt ~rð Þ Φ ~r; Ω
!� �

� Φ
�
~r;�Ω

!�� �
¼ 0

i.e. using the definition of the even flux:

Ω
!

:grad
��!

Φþ ~r; Ω
!� �

þ Σt ~rð ÞΦ� ~r; Ω
!� �

¼ 0

or even: Φ� ~r; Ω
!� �

¼ � 1

Σt ~rð Þ Ω
!

: grad
��!

Φþ ~r; Ω
!� �

The diffusion equation can then be written using only the even component of the

flux and the scalar flux, thereby leading to an elliptic formulation of the problem,

sometimes called the Feautrier formulation54:

�Ω
!

:grad
��! 1

Σt ~rð Þ Ω
!
:grad
��!

Φþ ~r; Ω
!� �	 


þ Σt ~rð ÞΦþ ~r; Ω
!� �

¼ S ~rð Þ þ Σs ~rð ÞΦ ~rð Þ

which may be expressed as:

Even flux diffusion equation :

�Ω
!

: grad
��! 1

Σt ~rð Þ Ω
!
:grad
��!

Φþ ~r; Ω
!� �	 


þ Σs ~rð Þ
Σt ~rð Þ Ω

!
: grad
��!

Φþ ~r; Ω
!� �

þ Σt ~rð Þ � Σs ~rð Þð Þ Φþ ~r; Ω
!� �

¼ S ~rð Þ ð9:42Þ

The solution to this second-order equation leads to the even flux. The neutron

current can also be defined in terms of the even flux only:

54D. Verwaerde: Les approximations déterministes de l’équation du transport des neutrons
[Deterministic approximation of the neutron transport equation], CHOCS no. 4, pp. 37–44,

CEA/DAM magazine, (December 1991).
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~J ~rð Þ ¼
ð
Ω

Ω
! 1

Σt ~rð Þ grad
��!

Φþ ~r; Ω
!� �

:Ω
!

dΩ
!

It can be noted that knowing the even flux leads to the scalar flux and the current

simply by angular integration. As for the boundary conditions, if the angular flux

has a reflective condition (Fig. 9.18):

Φ ~r; Ω
!� �

¼ Φ ~r; Ω
!0

� �
then, the even flux has the same property:

Φþ ~r; Ω
!� �

¼ Φþ ~r; Ω
!0

� �
The void condition around the domain of boundary Γ is expressed in scalar flux

as:

Φ ~r; Ω
!� �

¼ 0 for ~r2Γ and Ω
!

:~n < 0

and the even flux for outgoing directions from the domain:

�Ω
!

: grad
��!

Φþ ~r; Ω
!� �

þ Σt ~rð Þ Φþ ~r; Ω
!� �

¼ 0 for ~r2Γ and Ω
!
:~n > 0

and for incoming directions of the domain:

Void boundary conditions in terms of the even flux:

� Ω
!

:grad
��!

Φþ ~r; Ω
!� �

�Σt ~rð Þ Φþ ~r; Ω
!� �

¼ 0 for ~r2Γ and Ω
!
:~n< 0 ð9:43Þ

The even flux formulation has the advantage of requiring the resolution of the

equation on the half space of 2π solid angle due to parity considerations, since the

even flux is identical in the “mirror” half-space. Compared to the usual integro-

differential equation which necessitates the calculation of the solution for all the

directions Ω
!
, the even flux formulation requires half of the unknowns for the same

precision.55 However, the isotropic scattering hypothesis simplifies the equation

W W 'Fig. 9.18 Reflective

condition of the angular flux

55R.T. Ackroyd: Foundations of finite element applications to neutron transport, progress in

nuclear energy, Vol. 29, no. 1, pp. 43–56 (1995).
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considerably and the use of anisotropy (due to water for instance) reduces the

advantage of the even–odd formulation and thus, the computation of the solution

becomes much more complex, or even useless compared to the usual approach. It

should also be noted that the fact that there is the inverse of the total cross section

renders the use of this formulation complicated for neutron transport in vacuum.

Furthermore, this approach corresponds to the fact that the operator from Eq. (9.42)

is a self-adjoint elliptic operator (symmetrical) for which the inverse is positive, and

thus the variational approach through the minimization of a functional is applicable,

with the use of several numerical methods such as finite elements56 in the 1980’s.
The principles of the variational approach will be developed without nevertheless,

describing thoroughly the numerical methods that can be found in specific text-

books such as (Lewis and Miller 1993).

9.16.2 Variational Nodal Method of the Even–Odd
Formulation

In 1961,57 V. S. Vladimirov58 introduced the following functional:

56Especially the works of E.E. Lewis and I. Dilber: Nucl. Sci. Eng. 91, 45 (1985) and Progr. Nucl.
Energy 18, 63 (1986).
57V.S. Vladimirov: Transactions V.A. Steklov Mathematical Institute, 61 (1961) in Russian. An

English translation can be found in: Mathematical problems in the one-velocity theory of particle
transport, Atomic Energy of Canada, (1963).
58Vassili S. Vladimirov (1923–2012) was a Russian mathematician. He was a pioneer in the

analysis of complex multivariate functions and the author of a mathematical textbook for physics.

He contributed to the development of the Russian atomic bomb. Furthermore, he was also a

member of the USSR Academy of Sciences as of 1970 and was awarded the Stalin Medal in 1953,

as well as several military awards for the part he played in World War II.

(USSR Academy of Science, photograph unknown)
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Even flux functional:

F Φþ½ �¼
ð
dr3
ð
dΩ
! 1

Σt ~rð Þ Ω
!

:grad
��!

Φþ ~r;Ω
!� �h i2

�Σt ~rð Þ Φþ ~r;Ω
!� �h i2

�Σs ~rð ÞΦ2 ~rð Þ�2Φ ~rð ÞS ~rð Þ
	 


þ
ð
Γ

dΓ

ð
dΩ
!

~n:Ω
!��� ���Φþ2 ~r;Ω

!� �
ð9:44Þ

It can be proved that Eq. (9.42) is the Euler-Lagrange equation of that functional.

It will be differentiated by introducing a perturbation of the even flux and the scalar

flux as:

Φþ ~r; Ω
!� �

¼ Φþ
0 ~r; Ω

!� �
þ δΦþ ~r; Ω

!� �
Φ ~rð Þ ¼ Φ0 ~rð Þ þ δΦ ~rð Þ

8<:
F Φþ½ �¼F Φþ

0

� �þ
2
Ð
dr3
Ð
dΩ
!	 1

Σt ~rð Þ Ω
!

: grad
��!

δΦþ ~r;Ω
!� �h i

Ω
!

: grad
��!

Φþ
0 ~r;Ω

!� �h i
þΣt ~rð Þ Φþ

0

�
~rΩ
!�

δΦþ�~rΩ!�� Σs ~rð ÞΦ ~rð ÞþS ~rð Þ½ �δΦ ~rð Þ



þ Ð dr3 Ð dΩ! 1

Σt ~rð Þ Ω
!

: grad
��!

δΦþ ~r;Ω
!� �h i2

þΣt ~rð Þ δΦþ ~r;Ω
!� �h i2

�Σs ~rð Þ δΦ ~rð Þ½ �2
	 


þ2

ð
Γ

dΓ

ð
dΩ
!

~n:Ω
!

Φþ
0 ~r;Ω

!� �
δΦþ ~r;Ω

!� �
þ
ð
Γ

dΓ

ð
dΩ
!
: ~n:Ω

!��� ��� δΦþ ~r;Ω
!� �h i2

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
From a symbolic point of view, the terms in δΦþ ~r; Ω

!� �
and δΦ ~rð Þ can be

grouped together, just as δΦþ ~r; Ω
!� �h i2

and δΦ ~rð Þ½ �2, thereby ending with the

following expression:

F Φþ½ � ¼ F Φþ
0

� �þ δFþ δ2F

The first-order differential term δF is then written as:

2
Ð
dr3
Ð
dΩ
! 1

Σt ~rð Þ Ω
!

: grad
��!

δΦþ ~r; Ω
!� �h i

Ω
!

: grad
��!

Φþ
0 ~r; Ω

!� �h i	
þΣt ~rð ÞΦþ

0

�
~r; Ω

!�
δΦþ�~r; Ω!�� Σs ~rð ÞΦ0 ~rð Þ þ S ~rð Þ½ �δΦ ~rð Þ �

þ2

ð
Γ

dΓ

ð
dΩ
!

~n:Ω
!��� ��� Φþ

0 ~r; Ω
!� �

δΦþ ~r; Ω
!� �

Using:

grad
��!

fgð Þ ¼ f grad
��!

gþ ggrad
��!

f

The product of gradients in the integral kernel is substituted by:
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1

Σt ~rð Þ Ω
!

:grad
��!

δΦþ ~r; Ω
!� �h i

Ω
!

:grad
��!

Φþ
0 ~r; Ω

!� �h i
¼ Ω

!
:grad
��! 1

Σt ~rð ÞδΦ
þ ~r; Ω

!� �
Ω
!

:grad
��!

Φþ
0

�
~r; Ω

!�	 

� δΦþ ~r; Ω

!� �
:Ω
!

:
1

Σt ~rð ÞΩ
!

:grad
��!

Φþ
0 ~r; Ω

!� �
and, given that:

Ω
!

:grad
��! 1

Σt ~rð ÞδΦ
þ ~r; Ω

!� �
Ω
!

: grad
��!

Φþ
0

�
~r; Ω

!�	 

¼ divΩ

!
:

1

Σt ~rð ÞδΦ
þ ~r; Ω

!� �
Ω
!

: grad
��!

Φþ
0

�
~r; Ω

!�	 

along with the application of the Ostrogradski theorem to transform a volume

integral into a surface integral, the following equation is reached:ð
dr3
ð
dΩ
!

divΩ
!

:
1

Σt ~rð ÞδΦ
þ ~r; Ω

!� �
Ω
!

: grad
��!

Φþ
0

�
~r; Ω

!�	 

¼
ð
Γ

dΓ

ð
dΩ
!

~n:Ω
! 1

Σt ~rð ÞδΦ
þ ~r; Ω

!� �
Ω
!

: grad
��!

Φþ
0

�
~r; Ω

!�	 


Since the perturbation of the scalar flux is a consequence of the increment of the

even flux:

Φ ~rð Þ ¼ Φ0 ~rð Þ þ δΦ ~rð Þ ¼ Φ0 ~rð Þ þ
ð
dΩ
!

δΦþ ~r; Ω
!� �

the increment of the functional can be expressed as:

First-order increment of the even flux functional:

δF¼2Ðdr3ÐdΩ! �Ω
!
:

1

Σt ~rð ÞΩ
!
:grad
��!

Φþ
0 ~r;Ω

!� �
þΣt ~rð ÞΦþ

0

�
~r;Ω
!�� Σs ~rð ÞΦ0 ~rð ÞþS ~rð Þ½ �

	 

δΦþ ~r;Ω

!� �
þ2
ð
Γ

dΓ

ð
dΩ
!

~n:Ω
!��� ���Φþ

0 ~r;Ω
!� �

þ~n:Ω! 1

Σt ~rð ÞΩ
!
:grad
��!

Φþ
0

�
~r;Ω
!�	 


δΦþ ~r;Ω
!� �

þ2

ð
Γ

dΓ

ð
dΩ
!
~n:Ω
! 1

Σt ~rð ÞδΦ
þ ~r;Ω

!� �
Ω
!
:grad
��!

Φþ
0

�
~r;Ω
!�	 


δΦþ ~r;Ω
!� �

8>>>>>>>><>>>>>>>>:
ð9:45Þ

This functional is stationary wrt the even flux variations if the three increment

terms are zero. The volume term leads to the even flux equation, thereby justifying

the Vladimirov functional a posteriori:
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� Ω
!

:
1

Σt ~rð Þ Ω
!

:grad
��!

Φþ
0 ~r; Ω

!� �
þ Σt ~rð Þ Φþ

0 ~r; Ω
!� �

¼ Σs ~rð ÞΦ0 ~rð Þ þ S ~rð Þ

Cancelling the second term induces the void boundary condition of Eq. (9.43):

~n:Ω
!��� ��� Σt ~rð ÞΦþ

0 ~r; Ω
!� �

þ ~n:Ω
!

Ω
!

:grad
��!

Φþ
0 ~r; Ω

!� �
¼ 0

while cancelling the third term results in:

grad
��!

Φþ
0 ~r; Ω

!� �
~Ω ¼ 0 on the boundary Γ

This condition has no particular meaning except in plane geometry where it

implies that the even flux is flat at the interface. This is why the third term is forced

to zero by rather imposing:ð
dΩ
!

δΦþ ~r; Ω
!� �

¼ δΦ ~rð Þ ¼ 0

It means that the flux in the functional must satisfy the conditions imposed at the

surface. The numerical consequence is to choose a decomposition of the scalar flux

that satisfies the boundary conditions via the basis functions for the flux expansion.

Hence, if the even flux satisfies the condition that the first order expansion of the

Vladimirov expansion is zero, i.e. the functional is stationary, then that flux verifies
the even flux equation and its associated boundary conditions. A similar functional

may be generated for other boundary conditions (albedo, surface sources, etc.). The

analysis of the second-order term δ2F shows that the latter is positive, thereby

accounting for the fact that the minimum is sought at Φþ
0 .

9.16.3 Ritz Method

(Marchuk and Agochkov 1985, p. 25; Reddy 1984, p. 37; Strang and Fix 1973,

p. 24).

One way of treating the functional is to use the Ritz method. The even flux is

expanded on the basis of orthogonal even functions for space and angle:

Φþ ~r; Ω
!� �

¼
X
i

φþ
i f i ~r; Ω

!� �
For the space variable, the Legendre polynomials Pn(x) are employed as orthog-

onal functions, while in angle, the spherical harmonic functions are introduced. The

Legendre polynomials are calculated using the Rodrigues formula:
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Rodrigues formula: Pn xð Þ ¼ 1

2n n!

dn

dxn
x2 � 1
� �n ð9:46Þ

The spherical harmonics Ym
n θ;φð Þ are the eigenfunctions of the Laplace operator

in spherical coordinates and are expressed using the associated Legendre functions,

derived from the Legendre polynomials as follows:

Associated Legendre functions: Pm
n xð Þ ¼ �1ð Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2ð Þ

p m dm

dxm
Pn xð Þ ð9:47Þ

The spherical harmonics are normalized to 1 are given by:

Spherical harmonics: Ym
n θ;φð Þ

¼ �1ð Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ n� mð Þ!

4π nþ mð Þ!

s
Pm
n cos θð Þ eiφm ð9:48Þ

In matrix form, the following is obtained:

φþ ¼

φþ
1

φþ
2

⋮
φþ
n

0BBB@
1CCCA φþT ¼ φþ

1 ;φ
þ
2 ; : . . . ;φ

þ
n

� �

f ~r;Ω
!� �

¼

f 1 ~r;Ω
!� �

f 2 ~r;Ω
!� �

⋮
f n ~r;Ω

!� �

0BBBBBB@

1CCCCCCA f T ~r; Ω
!� �

¼ f 1 ~r; Ω
!� �

; f 2 ~r;Ω
!� �

; : . . . ; f n ~r; Ω
!� �� �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
hence, the matrix form of the even flux is:

Φþ ~r; Ω
!� �

¼ φþT f ~r; Ω
!� �

¼ f T ~r; Ω
!� �

φþ

With this notation:

Φþ ~r; Ω
!� �h i2

¼ φþT f ~r; Ω
!� �� �

f T ~r; Ω
!� �

φþ
� �

¼ φþT f ~r; Ω
!� �

f T
�
~r; Ω
!�� �

φþ

and:

Φ
�
~r

� �2 ¼ Ð dΩ! Φþ ~r; Ω
!� � ð

dΩ
!0Φþ ~r; Ω

!0
� �

¼
ð
dΩ
!

φþTf ~r; Ω
!� �� � ð

dΩ
!0 f T ~r; Ω

!0
� �

φþ
� �

¼ φþT

ð
dΩ
!
f ~r; Ω

!� � ð
dΩ
!0f T

�
~r; Ω

!0�� 
φþ
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Introducing these expressions in the functional leads to a matrix equation

known as a reduced functional:

F φ½ � ¼ φþTAφþ � 2φþTS

where A is a square symmetric matrix and S is the source column vector:

A¼ Ð d3r Ð dΩ! 1

Σt ~rð Þ Ω
!

: grad
��!

f ~r;Ω
!� �h i

Ω
!

: grad
��!

f T ~r;Ω
!� �h i

�Σt ~rð Þ f
�
~r;Ω
!�

f T
�
~r;Ω
!�	 


� Ð
d3rΣs ~rð Þ Ð dΩ!f ~r;Ω

!� � Ð
dΩ
!0 f T ~r;Ω

!0
� �

þ
ð
Γ

dΓ

ð
dΩ
!

~n:Ω
!��� ��� f T ~r;Ω

!� �
f ~r;Ω

!� �
S¼ Ð d3rS ~rð Þ Ð dΩ! f ~r;Ω

!� �

8>>>>>><>>>>>>:
With a perturbation δφ+ of the even flux vector such that:

φþ ¼ φþ
0 þ δφþ

the reduced functional is written by noting that AT¼A:

F φþ½ � ¼ φþ
0
TAφþ

0 � 2φþ
0
TS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F φþ
0½ �

þ 2δφþT Aφþ
0 � S

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δF φþ

0½ �
þ δφþTAδφþ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

δ2F φþ
0½ �

Minimizing that functional can be carried out by cancelling the first-order term

δF φþ
0

� �
, i.e. by solving the linear system:

Aφþ
0 ¼ S

Therefore, if the fluxΦþ ~r; Ω
!� �

is not known, it can be approximated by a series

of even functions for which the coefficients are the solutions to the linear system. In

practice, it can be noted that other functional may be used, especially:

F Φþ½ �¼Ð d3rÐ dΩ! 1

Σt ~rð Þ Ω
!

:grad
��!

Φþ ~r;Ω
!� �h i2

�Σt ~rð Þ Φþ ~r;Ω
!� �h i2

�Σs ~rð ÞΦ2 ~rð Þ�2Φ ~rð ÞS ~rð Þ
	 


þ2

ð
Γ

dΓ

ð
dΩ
!

~n:Ω
!��� ���Φþ ~r;Ω

!� �

which differs from Eq. (9.44) only by the surface term where the even flux is not

squared and the surface term is doubled. A nodal functional is created by

discretizing space into regions of volume Vi with interfaces Γm, and using the odd

flux at the crossing of each interface as the Lagrange multiplier [for the theory on

Lagrange multipliers in minimization, refer to (Bertsekas 1982)]:
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F Φþ
,Φ�½ � ¼

X
i

Vi

ð
dΩ
! 1

Σti
Ω
!

: grad
��!

Φþ
i

h i2
�
X

ti
Φþ

i
2 � Σs iΦ

2
i � 2Φ2

i Si

	 

þ 2

X
m

ð
Γm

dΓ

ð
dΩ
!
~n:Ω
!

Φþ
i �Φþ

j

� �
Φ�

m

where i and j are the indices of the mesh cells that touch the interfacem. Multiplying

the odd flux is useful to constraint the neutron balance in each cell. If the cross

sections are constant in each mesh cell, the mean neutron balance is guaranteed for

any function Φ+, i.e. if Φþ ¼ Φþ þ δΦþ with
Ð
d2r
Ð
dΩ
!

δΦþ ¼ 0 and that the

reduced functional is stationary wrt variation inΦþ . Then, the corresponding Euler-
Lagrange equation for the minimization of the functional is exactly equal to the

neutron balance per cell:

Σti � Σsið Þ Φþ Vi ¼
ð
Γm

dΓ~n: ~Jm ¼
ð
Vi

Si d3r ¼ sources in the volume

9.17 Variational Method for Time-Dependent Problems

The variational approach can be extended to the time-dependent Boltzmann equa-

tion.59 Let the time-dependent equation be:

1

v

∂Φ ~r; Ω
!
; t

� �
∂t

þ Ω
!

:grad
��!

Φ ~r; Ω
!
; t

� �
þ Σt ~rð ÞΦ ~r; Ω

!
; t

� �
�
ð1
0

dE0ΣS ~r;E0ð Þ
ð
4π
d Ω
!0Φ ~r;E0; Ω

!0; t
� �

¼ S ~r; Ω
!
; t

� �
The notations are simplified by removing the time dependence and using the

operator:

Σ Φ ~r; Ω
!� �h i

� Σt ~rð ÞΦ ~r; Ω
!� �

�
ð1
0

dE0ΣS ~r;E0ð Þ
ð
4π
dΩ
!0Φ ~r;E0; Ω

!0
� �

The boundary conditions of the problem can be of several types:

59R.T. Ackroyd, C.R.E. de Oliveira: A variational treatment for the time dependent Boltzmann
equation as a basis for numerical conserving neutrons, Progress in Nuclear Energy Vol. 30, no.

4, pp. 417–465 (1996).
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Φ ~rs; Ω
!
; t

� �
¼ ΦS ~rs; Ω

!
; t

� �
at surface Ss for Ω

!
:~n< 0 surface with imposed currentð Þ

Φ ~rs; Ω
!
; t

� �
¼ 0 at surface Sn for Ω

!
:~n< 0 void surfaceð Þ

Φ ~rs; Ω
!
; t

� �
¼ Φ ~rs,Ω

!_
; t

� �
at surface Sr for Ω

!
:~n¼�Ω

!_:~n reflecting surfaceð Þ

8>>><>>>:
As for the initial conditionΦ ~r; Ω

!
; 0

� �
, a zero value can be always employed by

noting that the transport equation is invariant by substituting the flux by a flux

increment Φ ~r; Ω
!
; t

� �
� Φ ~r; Ω

!
; 0

� �
, the source by a source increment and the

boundary condition ΦS ~rs; Ω
!
; t

� �
by the incrementΦS ~rs; Ω

!
; t

� �
�ΦS ~rs; Ω

!
; 0

� �
.

Ackroyd and Oliveira proposed the functional Vτ(ψ) applied to the test function ψ ,
obtained by the integration over the time interval [0, τ] and the reactor volume V:

Vτ ψð Þ¼
ðt¼τ

t¼0

dt

ð
V

d3r
1

v

∂Ψ
∂t

þΩ
!

: grad
��!

ΨþΣ Ψ½ ��S,Σ�1 1

v

∂Ψ
∂t

þΩ
!

: grad
��!

ΨþΣ Ψ½ ��S

	 
� �
þ2

ð
Sn

ð
~Ω:~n<0

Ω
!
:~n

��� ���Ψ 2dΩ
!

d2rsþ2

ð
Ss

ð
~Ω:~n<0

Ω
!
:~n

��� ��� Φs�Ψð Þ2dΩ! d2rs

8>>>><>>>>:

9>>>>=>>>>;
where f ; gh i ¼ Ð

Ω
f gdΩ

!
. Vτ(ψ) is a measure of the precision of the approximation ψ

of the exact flux Φ which is to be minimized. The error ε¼Ψ �Φ is injected in the

functional:

Vτ εð Þ¼Vτ ψð Þ�Vτ Φð Þ|fflffl{zfflffl}
0

¼
ðt¼τ

t¼0

dt

ð
V

d3r
1

v

∂ε
∂t

þΩ
!

: grad
��!

εþΣ ε½ �,Σ�1 1

v

∂ε
∂t

þΩ
!

: grad
��!

εþΣ ε½ �
	 
� �

þ2

ð
Sn[Ss

ð
~Ω:~n<0

Ω
!
:~n

��� ���ε2dΩ! d2rs

8>>>><>>>>:

9>>>>=>>>>;
Instead of minimizing Vτ(ψ), the problem is expressed such as a maximum is

sought as it is much easier numerically. Hence, the functional Kτ(ψ) to be maxi-

mized is defined as:

Kτ ψð Þ þ Vτ ψð Þ ¼
ðt¼τ

t¼0

dt

ð
V

d3r S,Σ�1 S½ �� �þ 2

ð
Ss

ð
~Ω:~n<0

Ω
!
:~n

��� ���Φ2
s dΩ
!

d2rs

8><>:
9>=>;

i.e.:
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Kτ ψð Þ ¼
ðt¼τ

t¼0

dt

2

ð
V

d3r
1

v

∂Ψ
∂t

þ Ω
!

: grad
��!

Ψ ,Σ�1 S½ �
� �

þ Ψ ; Sh i
� 

þ4

ð
SS

ð
~Ω:~n<0

Ω
!
:~n

��� ��� Φ2
s dΩ
!

d2rs

�
ð
V

d3r
1

v

∂Ψ
∂t

þ Ω
!

: grad
��!

Ψ ,Σ�1 1

v

∂Ψ
∂t

þ Ω
!

: grad
��!

Ψ

	 
� �
þ Ψ ;Σ Ψ½ �h i

� 
�2

ð
Sn[Ss

ð
~Ω:~n<0

Ω
!
:~n

��� ���Ψ 2dΩ
!

d2rs

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
�1

v

ð
V

d3r Ψ τð Þ;Ψ τð Þh i

9.18 Gauss-Seidel Method for Sources in Time-Dependent

Problems

The time-dependent multi-group integro-differential equation is written as:

1

vg

∂Φg ~r; Ω
!
; t

� �
∂t

þ Ω
!

:grad
��!

Φg ~r; Ω
!
; t

� �
þ Σt,g ~rð ÞΦg ~r; Ω

!
; t

� �
¼
XG
g0¼1

ð
4π

d Ω
!0Σg0!g

s ~r; Ω
!0 ! Ω

!� �
Φg0 ~r; Ω

!0; t
� �

þ Sg ~r; Ω
!
; t

� �

and is often treated numerically using the θ-scheme, i.e. the mutigroup flux is

substituted by the weighting of the flux over the current time step and that of the

previous step:

Φg ~r; Ω
!
; tnþ1

� �
¼ θΦnþ1

g ~r; Ω
!� �

þ 1� θð ÞΦn
g ~r; Ω

!� �
The scheme is an implicit scheme for θ¼ 1, but stability criteria allow the use of a

semi-implicit scheme with θ2 1=2; 1�½ , as in the Crank-Nicholson scheme with θ ¼ 1=2.

The latter is of order 2 in time while for any other value of θ, it is of order 1. Hence,

by omitting the variables ~r; Ω
!� �

for concision, the equation to be solved is:
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1

vg

Φmþ1
g

θΔt
þ Ω
!

: grad
��!

Φmþ1
g þ Σt,g Φmþ1

g

¼ 1� θð Þ
θ

XG
g0¼1

Σg0!g
s Φmþ1

g0 þ
XG
g0¼1

Σg0!g
s Φm

g0 þ Sm
g þ 1

vg

Φm
g

θΔt

� 1� θð Þ
θ

Ω
!

: grad
��!

Φm
g þ Σt,g Φm

g

� �
The iteration over the sources consists in benefitting of the triangular nature of

the slowing-down matrix by calculating the flux for the fast groups, and then

substituting the last flux evaluation from the higher-energy groups in the source

term of the current group. Hence, for the current group g, the equation to solve is:

1

vg

Φmþ1
g

θΔt
þ Ω
!

: grad
��!

Φmþ1
g þΣt,g Φ

mþ1
g ¼

Xg
g0¼1

Σg0!g
s Φmþ1

g0 þ
XG

g0¼gþ1

Σg0!g
s Φm

g0

þ χg
Xg
g0¼1

νΣf ,g0Φ
mþ1
g0 þ

XG
g0¼gþ1

νΣf ,g0Φ
m
g0

 !
þΔSg θð Þ

where ΔSg(θ) represents the remaining source contribution when the slowing-down

and fission sources are modeled, and it depends only on the current group and θ. It is
recalled here that the fast group is indexed by 1. This technique is called the Gauss-

Seidel iteration for sources, by analogy with the iterative method with the same

name for linear systems. This technique is also applicable in diffusion theory.

9.19 Probabilistic Approach: The Monte Carlo Method

(Baur 1985, p. 234; Chen et al. 2002; Dautray 1989; Doucet et al. 2001; Dupree and

Fraley 2002; Fishman 1995; Gentle 2005; Hoffmann and Schreiber 2002; Lapeyre

et al. 1998; Liu 2001; Robert and Casella 2004; Rubinstein 1981; Spanier and

Gelbard 1969; Williams 1979).

9.19.1 Fundamental Concepts of the Monte Carlo Method

The Monte Carlo originates from the works that led to the atomic bomb during the

1940’s. The term is attributed to John von Neumann (1903–1957), whose work on

mathematics and information technology is highly prominent, as an idealization of
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the use of random numbers as those occurring in a casino. In France, the method has

been applied by Jean-Claude Nimal60 and Jean Rastoin61 as of 196562 for neutron

transport. Historically, it is known that in 1777, Georges-Louis Leclerc, Count of

Buffon, a renowned naturalist (1707–1788) and Superintendant to the Jardin des

Plantes (botanical gardens) in Paris, proposed a recreative game whereby a needle

of length ‘is thrown randomly on the parquet (wooden flooring) with wooden strips

of width d>‘. It can be shown that the probability that the needle intersects the

parallel lines of the wooden strips is of 2‘/(π d). This probability is obtained

(slowly!) by repeating the needle throws a large number of times and by counting

the number of “winning” throws compared to the total. The choice of d¼ 2 ‘ leads
to an intersecting probability of 1/π. In general, a problem with a unique solution

Y is solved by constructing a statistical process [Markov chain (Iosifescu et al.

2007)] constituted of successive random non-correlated random states called a

60Jean-Claude Nimal. After Ecole Centrale Paris, he obtained a PhD and spent his whole career at

the CEA/SERMA where he was in charge of the group for the Monte Carlo code (TRIPOLI), fuel

cycle codes (PEPIN, FAKIR) or radioprotection codes (MERCURE, SN1D, etc.). He was

appointed Director of Research in recognition of his expertise.
61Jean Rastoin (1932–2009). After Ecole Polytechnique (admitted in 1951), he chose naval

engineering. He worked as engineer for naval constructions and weaponry (1956–1962), and

was detached at the CEA (since 1958). He was successively deputy chief of the pile radioprotec-

tion studies (1962–1970), head of service (1970–1975) and head of the department of mechanical

and thermal studies (1975–1982). Furthermore, he was also director of studies and reactor

conception (1983–1990) and administrator of the center for technical studies for mechanical

industries (CETIM in French) (1977–1980), of Sofretes (1979–1983) and Aerowatt

(1980–1985). Later on, he was appointed director of the Institute for protection and nuclear safety

(IPSN) (1990–1991), vice-president of the institute of electronics of Paris, and the Société

française des mécaniciens (SFM—French Society of Mechanical Engineers) (since 1996).

(Courtesy Rastoin)

62Jean-Claude Nimal, Jean Rastoin: Méthodes de Monte-Carlo [Monte Carlo methods], technical

report CEA-N 533 (April 1965).
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game. A random variable X for the process is called the score and the rule of the

game is defined such that the mathematical expectation of X (i.e. the mean from a

statistical viewpoint) is equal to Y. The game is repeated n independent times to

obtain a set {X1,X2, . . . ,Xn}with a mean value of:

X nð Þ ¼ 1

n

Xn
i¼1

Xi

The mathematical expectation63 of a quantity X nð Þ is hence equal to

1
n

Pn
i¼1

E Xið Þ ¼ 1

n

Xn
i¼1

Y ¼ Y and by the law of large numbers:

lim
n!1X nð Þ ¼ E X nð Þð Þ ¼ Y

The law of large numbers was established by Bernouilli in the seventeenth

century and states that the random variable X nð Þ has a Gaussian distribution of

mathematical expectation Y and of variance:

σ2
X nð Þ ¼

σ2X
n

¼
E X � E Xð Þð Þ2
� �

n
¼ E X2

� �� E Xð Þð Þ2
n

which means that the variance decreases as 1=
ffiffiffi
n

p
, which is very slow. It should also

be pointed out that the variance of the mean value is the variance of the variable

divided by the number of terms used to compute the mean. The probability p(ε)
such that X nð Þ belongs to the interval between Y� ε and Y + ε is given by Lapeyre

et al. (1998, p. 5) and Spanier and Gelbard (1969, p. 15):

p εð Þ ¼ 1ffiffiffiffiffi
2π

p
σ
X nð Þ

ðYþε

Y�ε
e

X�Yð Þ2
2σ2

X nð Þ dX ¼ erf
εffiffiffi

2
p

σ
X nð Þ

 !

This expression originates from the central limit theorem which states that the

sum of independent random variables that are identically distributed, follows a

normal distribution, i.e.:

63The mathematical expectation of a game with discrete values Xi¼ 1 , n with probabilitypi¼ 1 , n is

equal to E xð Þ ¼Pn
i¼1

piXi. Hence, the expectation of a non-biased dice with six equiprobable

indexed faces ( p¼ 1/6) is E(X)¼ (1 + 2 + 3 + 4 + 5 + 6)/6¼ 3.5. For a continuous variable: E
(X)¼ Ð

p(X)X dX.
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lim
n!1P a � X nð Þ � nE Xð Þ

σ
X nð Þ

ffiffiffi
n

p � b

 !
¼ 1ffiffiffiffiffi

2π
p

ðb
a

e�
x2

2 dx

For an uncertainty of one standard deviation σ
X nð Þ , p σ

X nð Þ
� �

¼ 0:689; for twice

the standard deviation, p 2σ
X nð Þ

� �
¼ 0:954; and for three times, p 3σ

X nð Þ
� �

¼ 0:997.

It should be noted that the central limit theorem does not bound the error but only

defines a confidence interval. For the law of large numbers and Gaussian approx-

imation, refer to (Diu et al. 2001, p. 62). The most widespread application of the

Monte Carlo method is to calculate the integral of the function f(x)between two

bounds a and b, given that the function is bounded by c (Fig. 9.19) (Clark and

Hansen 1964, p. 254):

A coordinate pair (xi, yi) is sampled randomly with a random number generator

such that x is found between a and b, and y is found between 0 and c [if the latter
samples numbers between 0 and 1 uniformly as it is often the case, this interval may

be reached using a variable change, refer especially to Gentle (2005) and Spanier

and Gelbard (1969, p. 36)] and the score is counted as:

yi > f xið Þ ) Scorei ¼ 0

yi � f xið Þ ) Scorei ¼ 1

�
In this case: Ð b

a f xð Þdx
c b� að Þ ¼ lim

n!1
1

n

Xn
i¼1

Scorei

 !

This technique also allows the calculation of multidimensional integrals (volume

integral for instance) without increasing the computational times owing to the

higher dimensions. The evaluation of the confidence interval of the calculation

Score=1

( x2 , y2 )

( x1 , y1 )

c

a b

Score=0
Fig. 9.19 Simple integral

calculation by the Monte

Carlo method
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can be carried out using a non-biased estimator for the variance. Let In ¼ c b� að Þ
1

n

Xn
i¼1

Scorei ¼ 1

n

Xn
i¼1

Xi where Xi is the non-normalized score obtained from the

random number sampling, defined as the empirical sample variance (Lapeyre et al.
1998, p. 6):

V � 1

n� 1

Xn
i¼1

Xi � In
� �2 ¼ n

n� 1
X2
i �

n

n� 1
In
� �2

V is a non-biased estimator of variance σ2. In this particular example where the

score is equal to 1 or 0, it should be pointed out that Score2i ¼ Scorei , i.e. X
2
i

¼ c b� að ÞXi for the non-normalized score, meaning that if lim
n!þ1 In ¼ I, then

lim
n!þ1V ¼ I c b� að Þ � Ið Þ. An approached 95% confidence interval (equal to two

standard deviations) is obtained by setting σ ¼ ffiffiffiffi
V

p
and by replacing σby σ in the

confidence interval given by the central limit theorem. The confidence interval

is then equal to In � 2σ=
ffiffiffi
n

p
; In þ 2σ=

ffiffiffi
n

p� �
. The standard deviation on the

integral value can also be obtained by setting up a random process for the

calculation of the integral value, e.g. by recalculating the integral L successive

times (Il¼ 1 , L) by sampling n independent scores: these are cycles of particles.
Then, the standard deviation is evaluated using the biased estimator by summing

over the square of the discrepancies, averaged by the number of evaluations L:

σ2I ¼ E I � E Ið Þð Þ2
� �

¼
XL
l¼1

Il � Il
� �2

L

Given that the function f(x) is simple to determine, a second and more efficient

computation strategy of the mean value is through:

�f ¼ 1

n

Xn
i¼1

f xið Þ

where xi is a random variable sampled uniformly from [a, b] and then calculating

the integral value using the mean, as such:

ðb
a

f xð Þdx ¼ b� að Þ �f

The standard deviation is then given by:
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σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � �f 2

n

s
with f 2 ¼ 1

n

Xn
i¼1

b� að Þf xið Þ½ �2 ¼ b� að Þ2
n

Xn
i¼1

f xið Þ½ �2

9.19.2 Application to Neutron Transport: A Simple 2D Case

(Cashwell and Everett 1959; Hébert 2009, p. 178; Spanier and Gelbard 1969;

Goertzel and Kalos, in Progress in nuclear energy, vol. 2, p. 315, 1955; Shultis

and Faw 2000, p. 408).

The first applications of the Monte Carlo method to neutron transport are

attributed to John von Neumann and Stanley Ulam in the Manhattan Project during

the World War II. In the transport chapter, it was pointed out that the collision

density can be decomposed as a uncollided flux term ΣtΦ0 ~r;E; Ω
!� �

, then the rate

of the first collision flux ΣtΦ1 ~r;E; Ω
!� �

, second collision, etc. This decomposition

is called a Von Neumann series:

ΣtΦ ~r;E; Ω
!� �

¼
X1
n¼0

ΣtΦn ~r;E; Ω
!� �

Each term of this series can be obtained from the previous one by recurrence

using the Peierls collision operator:

ΣtΦnþ1 ~r;E; Ω
!� �

¼
ð
V

K ΣtΦn½ �

Starting from a source, a Markov chain is set up by assuming that the current

event does not depend on the previous one (the neutron “forgets” the means which

brought it to its current position in the phase space ~r;E; Ω
!� �

, thus allowing the use

of the Monte Carlo method). The advantage of the Monte Carlo method resides in

the fact the Boltzmann equation is not required for simulation purposes Only the

physical phenomena such as scattering or absorption are necessary to model the

behavior of the neutron population. The neutron furthermore loses track of its

history at each collision, thereby implying that its behavior is independent of the

previous collisions. Some authors use the term analogue simulation to qualify this

approach which is close to the true physical phenomena,64 while a non-analogue
simulation is carried out by the calculation of integrals. A second advantage of the

method comes from the fact that the neutron paths are independent of one another,

64For example: B. Morillon: Méthode de Monte-Carlo non analogue, application �a la simulation
des neutrons [Non-analogue Monte Carlo method applied to neutron simulation], PhD thesis,

Paris, January 1996.
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thereby allowing the use of parallel calculators. In the 1990’s, the development of

multiprocessor computers along with massively parallel clusters has been very

beneficial to the Monte Carlo method. Finally, it must be pointed out that geome-

tries may be modeled exactly without any additional cost owing to meshes as with

deterministic methods for which computational times are proportional to at least the

number of mesh cells. Similarly, as far as the energy variable is concerned, the

Monte Carlo method allows the use of pointwise energy cross sections without any

multi-group concern. The use of the method will next be illustrated through a

simple example: the scattering of neutrons emitted by an isotropic source in a 2D
geometry containing a scattering and absorbing material. The problem is simplified

by assuming that the medium is a homogeneous mixture of n isotopes for which the
neutronic properties such as Σ i

s Eð Þ,Σ i
t Eð Þ and ξi are known (Fig. 9.20).

The first question consists in determining the direction and energy of the emitted

neutron. Since the source is isotropic, the neutron has an angular emission proba-

bility of 1/(4π) and the values of the polar and azimuthal angles θ (co-latitude) and

φ (longitude) of the emission are obtained by random sampling in the [0, π] interval
for θ and [0, 2π] for φ.

The calculation of the emission angle eθ which corresponds to the projection of

the 3D emission direction in the plane 0xy is obtained by projection of the vector Ω
!
.

The trigonometric formulae lead to the calculation of the sines and cosines of that

angle (Fig. 9.21):

sin eθ ¼ sin θ cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2θ þ sin 2θ cos 2φ

p
cos eθ ¼ cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos 2θ þ sin 2θ cos 2φ
p

8>><>>:
It should be noted that it would be wrong to draw angle eθ from the [0, 2π]

interval considering that neutrons travel only in the 0xy plane as it would lead to a

biased simulation. The 2D nature of the geometry does not imply that the neutrons

do not move in the third direction. Only the neutron density depends just on x and y.
The emitted neutron energy is evaluated by recalling the fact that the distribution of

neutrons emitted by fission is obtained empirically via theWatt spectrum. The latter
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is not a uniform law and is given by χ Eð Þ ¼ Ce�aEsh
ffiffiffiffiffiffi
bE

p
, and for which the

constant C is chosen such that
Ð 20 MeV
0

χ Eð Þ dE ¼ 1. The neutron concentration

must all be satisfied with more neutrons being available at 2MeV. Hence, a random
number x0 is also sampled from the [0, 1] interval so as to calculate the emission

energy E0 such that: ðE0

0

χ Eð Þ dE ¼ x0

The following collision position is obtained (Spanier and Gelbard 1969, p. 66),

by considering that the probability that a neutron travels a distance ‘ without any
collision is Q ‘ð Þ ¼ e�Σt‘. The first collision probability along path d ‘ is expressed
as P ‘ð Þd‘ ¼ Σtd‘ e�Σt‘, which when integrated between 0 and infinity gives 1. In

practice, infinity cannot be used for sampling random numbers. The path of the

neutron is thus limited, e.g. to ten times the mean free transport path (i.e. ‘max¼ 10/

Σt, it can be widely accepted that the neutron will be absorbed over this path), and

the probability is normalized by a constant C such that:ð10
Σt

0

CΣte
�Σt‘d‘ ¼ C 1� e�10

� � ¼ 1

For real geometries, the integral at the interface of the considered case is limited

either by defining a vacuum region around it (the neutron leaks out and is lost) or by

defining a boundary condition (symmetry, specular reflection, albedo, etc.). A

random number x1 is sampled from [0, 1] to obtain the first path ‘1:

Ω

ϕ

θ

y

z

x

ϕθ sinsin

ϕθ cossin

θcos

ϕθ cossin

ϕθθ 222 cossincos +

θ~
Ω~

Fig. 9.21 Emission angles
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ð‘1
0

CΣte
�Σt‘d‘ ¼ x1

It must be noted that ‘1is a distance travelled in 3D and the projected distance is

obtained as e‘1 ¼ ‘1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2θ þ sin 2θ cos 2φ

p
. It is now important to determine with

which isotope the neutron interacts. The probability of collision with a nuclide i is
proportional to its macroscopic contribution to the total cross section Σ i

t � Niσ i
t . It

should be noted that the target isotope must not be chosen only by its mass or

isotopic concentration in a medium. The chosen isotope j� p is sampled by

drawing a random number xtarget from [0, 1] such that:

Pj�1

i¼1

Niσ i
t

Σt
< xtarget �

Pj
i¼1

Niσ i
t

Σt

The new question is how to determine the reaction which occurs. Since the total

cross section is the sum of the scattering and absorption cross section, a random

variable is sampled from [0, 1] to decide the interaction type after normalizing it to

the total cross section. Using the same logic, the total cross section can be

decomposed into a finite number of different interactions (Fig. 9.22).

If the sampled reaction is absorption, the neutron path stops and a new particle is

sampled from the source.

The next question consists in knowing the energy to which the neutron is slowed

down after its collision during scattering, and in which direction, it is re-emitted.

From the slowing-down theory, the slowing-down probability from energy E to

energy Ek by a target with one atom is given by the flat distribution between Ek and

the minimum energy that can be reached αiEk:

P Eð ÞdE ¼ dE

Ek 1� αið Þ with αi ¼ Ai � 1

Ai þ 1

� 2

)(EΣ is )(EΣ ia

)(

)(

EΣ
EΣ

i
t

i
s0 1Score=scattering

Fig. 9.22 Random

sampling of the

interaction type
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Then, the random variable xk+ 1 can be sampled from [0, 1] to calculate Ek+ 1

after the collision such that:

xkþ1 ¼
ðEk

Ekþ1

P Eð ÞdE ¼ Ek � Ekþ1

Ek 1� αið Þ

During the thermalization phase, the calculation is more complex and is beyond

the scope of this work. It requires knowing the differential scattering cross sections

and can be computed for simple cases (free gas model), becoming very complex if

chemical bonds between are accounted for.65 The previous process is repeated for

the next path until the neutron is absorbed.

As for the emission direction of the neutron, it can be supposed that if scattering

is isotropic in the laboratory reference frame (which is acceptable for elastic

scattering at low energy), the angles φ and θ must be sampled in 3D from [0, 2π]
and [0, π] respectively. For more generality, scattering can be assumed to be

isotropic in the center of mass reference frame and the cosine of the scattering

65Jean Gonnord (1947–): Etude de phénomènes de thermalisation par la méthode de Monte-Carlo.
Application au calcul de l’absorption des neutrons par des poisons consommables dans les ré
acteurs �a eau légère [Study of thermalization phenomena using the Monte Carlo method.

Application to the calculation of neutron absorption by burnable poisons in light water reactors],

PhD thesis from University of Orsay (1973). Jean Gonnord obtained an engineering degree from

ESPCI (physics and chemical engineering school from Paris) and a PhD in atomic physics. He

joined the CEA in 1973 at the Direction of Reactor Studies where he worked on Monte Carlo, and

then moved to the Direction of Military Applications (DAM in French) after working in robotics.

He led the simulation project at CEA/DAMwhere he headed the TERA project in particular which

saw the upcoming of the TERA-10 computing machine from BULL, the fifth computer in the

world ranking and first in Europe in 2005. Later on, he worked on the TERA1000, the first petaflop

computer in Europe, conceived as partnership between CEA and BULL. Jean Gonnord is an

international expert in the fields of mathematics, information, programming and system technol-

ogies at CEA.

(Courtesy Gonnord)
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angle μk is sampled randomly in that frame. If Ψ is the latter angle, in the range

[0, π], the scattering probability for that angle which is equiprobable with the other

angle by rotation about the incident Ω
!

axis, is written as:

P Ψð ÞdΨ ¼ dΩ

4π
¼ 2πr2 sinΨ dΨ

4πr2
¼ sinΨ

2
dΨ

Due to the possible variations of angle Ψ , this probability is positive and its integral

over [0,π] is equal to 1. Therefore, a random variable xΨ is sampled in [0, +1] and such

that:

xΨ ¼
ðμk
�1

sinΨ

2
dΨ ¼ 1þ μk

2

This approach is equivalent to randomly choosing μk¼ cosΨ kin [�1, +1]. Then,

from μk¼ cosΨ k, the angle θk can be deduced in the laboratory frame using the

formula for the composition of velocities as discussed in the chapter on slowing-

down. The neutron energy after slowing-down is given by the following formula:

Ekþ1 ¼ Ek
1þ αið Þ þ 1� αið Þμk

2

� 
If scattering is not isotropic in the center of mass frame itself, the scattering

probability (i.e. the differential scattering cross section) is expanded on Legendre

polynomials Pl(μ):

p E; μð Þ ¼
Xn
l¼1

2lþ 1

2
pl Eð ÞPl μð Þ

μk is evaluated as:

ðμk
�1

p E; μð Þdμ ¼ xΨ

It should be noted that scattering does not occur in the plane itself, hence

explaining why two angles are chosen: the azimuthal angle φ assumed to be

uniformly distributed in [0, 2π], and the other angle known by other velocity

triangle (from the composition of velocity vectors) and depending only on μk.
Finally, the projection of the leakage direction in the plane is calculated just as

for the incident angle. In the case of a heterogeneous medium in 2D, space in our
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illustration as being regular along x and y (Fig. 9.23) for didactic simplicity,66 is

paved into zones. Each zone is assumed to be homogeneous.

In the case of a uniformly-distributed source in the homogeneous medium, the

starting-point of neutrons is obtained by drawing two random variables: x0in [x(1),
x(m)]and y0 in [y(1), y(n)]. Given that the compositions j can be different (each zone
has a unique composition (m, n)), the slowing-down density of neutrons below

energy Ek due to the material constitution of j is given by:

qj ¼
X
i2j

N i
j ξiσ

i
s

The contribution of the composition of j wrt the other compositions is obtained

by integrating the density over the surface of the composition j, i.e. qjAj where Aj is

the area of the zones with composition j:

Aj ¼
X
m;nð Þ¼j

xmþ1 � xmð Þ ynþ1 � yn
� �

Using the normalized densities defined as:

Qj ¼
qjAjP

k

qkAk

x(1) x(2) x(3) x(N)

y(N)

y(1)

y(2)
y(3)

(1,1) (N,1)

(1,N) (M,N)

.

.

.

…..

(m,n)

Fig. 9.23 Paving plane

space into homogeneous

zones

66From the work of R. Eyraud: Calcul de l’absorption épithermique dans les réseaux plans irré
guliers par la méthode de Monte-Carlo [Calculation of epithermal absorption in lattices with

irregular planes using the Monte Carlo method], Paris, 1967.
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The initial composition is obtained by seeking the composition k such that, from
the random variable xcompo sampled from [0, 1]:

Xk
j¼1

Qj < xcompo �
Xkþ1

j¼1

Qj

The initial region(mk, nk) is then reached by normalizing the contribution of each

region with composition k to the slowing-down density, i.e. by drawing a random

variable xm , n in the [0, 1] interval:

Qk
m,n ¼

Ak
m,nqkX

m;nð Þ¼k

Ak
m,nqk

Xmk�1

m¼1

Xnk�1

n¼1

Qk
m,n < xm,n �

Xmk

m¼1

Xnk
n¼1

Qk
m,n

8>>>>><>>>>>:
The point-source will be precisely determined by drawing a random variable xS

from the [x(mk), x(mk+ 1)] interval and yS from the [y(nk), y(nk+ 1)] interval. The

calculations would be simplified if the composition were assumed different in each

zone. It should be noted that the positions of the sources are determined with much

difficulty in Monte Carlo for complex geometries. For instance, it can be noted that

positioning points homogeneously in a sphere requires the generation of random

points in a surrounding cube and then determining if the points (generated by three

random variables along the three Cartesian axes) are encompassed in the sphere or

not. In fact, the use of the spherical reference frame for that geometry, associated to

the random variables with the radius and two angles in the frame, leads to a

non-homogeneous distribution.

The interface problem can be solved by an efficient ray-tracing method. In 3D,
the calculation of form factors of a volume wrt a point can be simplified signifi-

cantly by inscribing that volume in a simpler volume for which the solid angle can

be evaluated analytically. The analytical work of S. Cramer67 provides the analyt-

ical solid angles for an impressive amount of particular geometries. They are very

useful for determining if a direction may intercept any volume. They can be used in

a rejection criterion method to ignore unnecessary paths. When the scattering

direction is determined, at least one surface or boundary surface may be

intercepted. In the case of an internal interface of the geometry, the variation of

the total cross section in the optical path must be accounted to evaluate the next

collision point. It must be noted that it is more efficient to sample randomly a path

with the same incident direction in the neighboring cell over again rather than

67S. Cramer: Derivations of the solid angle subtended at a point by first- and second-order
surfaces and volumes as a function of elliptic integrals, Nuclear Science and Engineering,

132, pp. 217–258 (1999).
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summing the optical path. If a boundary surface is reached, void boundary condi-

tions would lead to the loss of the neutron. Translation conditions will cause the

neutron to appear with the same incident direction on the opposite face of the

geometry, while specular reflection repositions the neutron according to the Des-

cartes law of reflection (Fig. 9.24).

9.19.3 Statistical Error

The error on the mean values of interest (flux, reaction rate, etc.) can be estimated

by fractioning the large number N into L batches of size N/L neutrons rather than

studying a large number of trajectories. The values of physical quantities are

averaged for each batch and a global mean is computed over all the batches. The

empirical variance is thus obtained as an estimation of the calculation precision.

V ¼ 1

L� 1

XL
l¼1

Xl � �Xð Þ2 with : Xl ¼ L

N

XN=L
n¼1

Xn and �X ¼ 1

L

XL
l¼1

Xl

9.19.4 Calculation of Physical Quantities

Usually, the flux or the reaction rate in a given region is sought. A weight is defined

such that it represents the contribution of the particle wrt all the particles sampled.

The initial weight ω0 is 1 and varies for each event undergone by the particle. If the

same recurrence is applied to the weights as those on the collision rate, i.e.
(Métivier 2006, p. 319):

Leakage

Translation

Specular 
reflection

Fig. 9.24 Boundary

conditions of the domain
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ω1 ¼ ω0

ð
D

S P1ð ÞdP1

following the process that consists in positioning a neutron at a point-source P1of

the phase space D according to the function S(P1) (in practice, the position, energy,

and direction of the source-neutron are sampled). The collision rate at the initial

energy is equal to the source. Then, the weights are propagated using the Peierls

collision operator:

ωn ¼ ωn�1

ð
D

K Pn�1 ! Pnð ÞdPn�1

after each collision. The random variable ωnis thus an estimator of the collision rate

and E(ωn)¼ΣtΦn. If the values of the estimatorωn in a given volume are scored, the

rate of the nth collision in that volume is obtained. For N particles sampled

(Table 9.1):

ΣtΦn 	 1

N

XN
i¼1

ω i
n and ΣtΦ 	

X1
n¼1

ΣtΦn

9.19.5 Generalization, Biasing

For the general case of fission sources, the flux is required to obtain the source

positions so an initial guess is required. In practical situations, the localization of

sources is deemed known initially and a number of neutrons are sampled to

calculate the real sources, thence ignoring these cycles in the statistics according

to the problem being solved and the geometrical coupling among sources. The

biasing method is employed in non-analogue simulations for cases where the true

physical law of probability distribution are not used, e.g. by choosing a preferential
emission direction.68 A weight w is given to the neutron, which implies that it is no

longer a single neutron but rather a beam of neutrons of which the weight represents

Table 9.1 Expression of the

main estimators for physical

quantities of interest

Estimator Flux Reaction rate Current

Chord per volume ω ‘ ω ‘Σi

Collision per volume ω/Σt ωΣi/Σt

Surface quantity ω= ~Ω:~n
� �

ω

68For directional biasing, refer to R.P. Gardner, M. Mickael, K. Verghese: A new direction biasing
approach for Monte-Carlo simulation, Nuclear Science and Engineering, 98, pp. 51–63 (1988).
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the intensity. Hence, the initial weight is 1 and at each collision, it is considered that

a fraction of the beam is absorbed by multiplying the weight by 1�Σa/Σt, meaning

that the weight decreases in an absorbing medium. Unlike analogue simulation

where the neutron is ignored after its absorption, the simulation continues as if the

neutron survived the collision and its statistical weight is diminished. A threshold

s is predefined and is used conditionally to ignore any neutron with a contribution

that is too low, and for which continuing the path would be useless. If w< s, the
final weight is multiplied by 1/s and the neutron with a probability s is left out,

which is physically equivalent to grouping low-intensity beams by conserving their

total contribution at the expense of computational time. Similarly, the ratio νΣf/Σt

gives a fission reaction. During collisions, a fission neutron is selected for the next

step with probability of wνΣf/Σt (Criticality control of fissile materials 1968,

p. 137). The multiplication coefficient, for criticality applications, is obtained by

summing over all the collisions for all the simulated neutrons, i.e. the various values
of wνΣf/Σt. Another concrete example can be illustrated with the fluence of the

reactor vessel which determines the damage of the steel of the reactor vessel by fast

neutrons (Interaction radiation solids 1964). Physically, only fast neutrons leaking

from the core have a probability of reaching and thereby, damaging the vessel

which is protected by water and steel. The fission neutrons with energy lower than

1MeV have almost no chance of reaching it. Thus, it seems wise in that example not

to simulate neutrons in the complete energy spectrum but only those with energy

values above 1 MeV. The calculation is thus biased. Another approach called the

Russian roulette method (Spanier and Gelbard 1969, p. 124), consists in ignoring

neutrons that are in an uninteresting part of the phase space (“wrong” directions, too

low energy, etc.) for the required score by modifying the weight of surviving

particles such that the expectation of the weight remains unchanged. Hence, a

probability p is given to the weights of neutrons for which the simulation continues,

and 1�p for those which are ignored. With the same logic, a particle in an

interesting part of the phase space can be split (Clark and Hansen 1964, p. 272),

(Spanier and Gelbard 1969, p. 125). For fluence problems, the flux level is only of

7 1010 n/cm2/s, and it is complicated to transport neutrons that far from the core,

thereby explaining why 45% of the neutrons reaching the reactor vessel originate

from assemblies that are at the end of the assembly line that is closer to the vessel,

and that assemblies that are further way do not contribute to fluence. Furthermore,

as the neutron draws closer to the vessel, it is also interesting to assume that a

fictitious neutron has followed strictly the same direction as the reference neutron

and allowing both neutrons to live on randomly. Indeed, the weights are modified so

as to conserve the initial weight. This logic has a limit for precision given that it is

not sensible to split a neutron indefinitely as it closes on its target just to avoid

sampling neutrons from the core, given that all the neutrons created (with a

correspondingly low weight) have exactly the same history, and may cause prob-

lems of statistical independence. This process would be somehow equivalent to

calculating the flux on the reactor vessel using only one fission neutron! Similarly,

to calculate the flux on a precisely-known target (a detector), it is wise to bias the

simulation by using the adjoint flux due to that detector if it can be easily calculated
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(e.g. via a deterministic calculation that could provide that quantity69). The follow-

ing paragraphs illustrate techniques for improving counting for a detector.

9.19.6 Resonance Escape Probability Factor Calculation

The first use of the Monte Carlo method in neutron physics in France is attributed to

Régis Eyraud70 whose doctoral work in 1967 was based on the calculation of the

resonance escape probability factor and epithermal resonant absorption for slab

reactors such as those used for naval propulsion (submarines). The fuel is a lattice

of boxes containing slab fuel, and the absorbing materials have cross shapes with

hafnium. The geometry is too complex for the analytical codes of the time (ZUT,

GAROL) and required approximations on the lattice properties. Besides, the equiv-

alent US code RECAP conceived by Westinghouse at the Bettis Laboratory was not

available in France.

In these pioneering calculations, a neutron is generated by assuming that the flux

was flat spatially, with a 1/E spectrum, and the neutron history is generated by

random sampling according to the strategy that has been discussed earlier. If n is the

69For the use of deterministic-stochastic coupling using the deterministic adjoint flux to accelerate

non-analogue simulations, refer to the PhD thesis of François-Xavier Giffard: Développements
utilisant des méthodes stochastiques et déterministes pour l’analyse de systèmes nucléaires
complexes [Developments using the stochastic and deterministic methods for analyzing complex

nuclear systems], PhD thesis, University of Evry (2000).
70Régis Eyraud (1940–). After his engineering studies at Ecole Centrale de Paris (1964) and

Master’s degree in mathematics (1965), he completed a PhD at the CEA/SERMA where he

developed the first French Monte Carlo code: CARPE, the precursor of the TRIPOLI code. He

worked at the CEA until 1970, then joined Schlumberger to work on real-time information

technology. He joined the MATRA group in 1971 up to 1993 and read an MBA at HEC in 1980

(operational research, managing information technology and telecommunications). In 1993, he

founded a company for financing capital goods.

(Courtesy Eyraud)
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total number of neutrons that are simulated, a, the number of absorbed neutrons

during slowing down, the resonance escape probability factor is given by:

p ¼ 1� a

n

If the neutron is absorbed, the count is 0, otherwise if it survives resonant

captures, 1. Therefore, the variance is calculated as:

σn ¼ a 1� að Þffiffiffi
n

p

It can be noted that p can be obtained as a function of energy via an adequate

storing of capture data during slowing-down. Similarly, the spatial distribution of

absorption can also be computed, as well as the isotopic distribution. These results

are statistically more uncertain since the number of events in one zone is consid-

erably smaller than the calculation of the resonance escape probability factor for the

whole geometry.

In such calculations, the calculation of the resonance escape factor for neutrons

reaching a very low energy can be carried out by improving the computational

“efficiency” through biasing. The latter consists in never ignoring an absorbed

neutron so as not to lose the history already calculated. If random sampling leads

to the absorption of a neutron, its weight is reduced by a factor of Σa/Σt, and the

simulation goes on. If the neutron weight is wbefore the absorbing collision, it

changes to wΣa/Σt after the pseudo-absorption, while remaining unchanged if the

sampled reaction is scattering. Since the isotope by which the neutron is absorbed is

not known, this absorption is proportionally distributed according to the contribu-

tion of each isotope to the absorption rate. This biasing technique reduces the

variance of the resonance escape factor by 2 at the expense of the increase in the

processing of neutron simulations since each history lasts globally longer. This is

why neutrons with low weights are ignored since they do not significantly contrib-

ute to the required response. The weight of an ignored neutron is added to the

weight of the next emitted neutron in the same energy range (thereby conserving the

total weight of emitted neutrons in an energy group). Finally, the absorption rate in

group g is given by:

Ra,g �
ðEg

Egþ1

Σa Eð ÞΦ Eð ÞdE 	 ξc ¼
Xc
i¼0

Σa

Σt

� 
xi

wi

where xi � ~ri ; ~Ωi ;Ei

� �
represents the neutron position in the phase space, wi is the

neutron weight after i collisions and c the number of collisions in group [Eg+ 1,Eg]

(the energy groups are indexed in decreasing order as usual). If n is the total number

of simulated neutron histories:
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a ¼ E ξð Þ ¼
Xn
k¼1

ξk
n

and p ¼ 1� a

Hence, we obtain the calculation of the estimated value E(ξ) of the absorption

probability. The question of the confidence of that result remains. A simple strategy

which does not require any additional history simulation consists in artificially

dividing the total history number n into p packets of m histories, i.e.:

n ¼ mq

p new quantities are defined as

ξi ¼ 1

m

Xm
k¼1

ξ ik i ¼ 1, . . . , p

The ξi are simply attempts at evaluating ξ for a reduced number of histories. If

m is large enough, the ξi have a normal distribution according to the central limit

theorem, the distribution being more regular as the number of packets p gets larger.
The expectation of each ξi is still E(ξ). Let us define:

ξp � 1

p

Xp
k¼1

ξk and s2ξ �
1

p

Xp
k¼1

ξk
� �2 � 1

p

Xp
k¼1

ξk
� � !2

then, the probability theory indicates that the random variable:

t ¼ p� 1ð Þ ξp � E ξð Þ
Sξ

� 
is given by a Student distribution with p� 1 degrees of freedom for the random

variable t if the packet number p is large enough. This concept of subdividing the

total number of histories into packets of the same size gives a range for the

mathematical expectation being solved for. Therefore, the probability that the

estimated value be in a determined interval is approximated by the Student integral:

P ξp � bsξ
p� 1

� E ξð Þ � ξp � asξ
p� 1

� 
	
ðt¼b

t¼a

sp�1 tð Þ dt

It is thus a simple means of evaluating the precision of the estimated value using

the individual packet data.
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9.19.7 Midway Monte Carlo

The difficulty of transporting neutrons in a required region by direct simulation

decreases the quality of the statistics for a detector response (Fig. 9.25). I.V. Serov

proposed71,72 an approach called themidway Monte Carlowhich uses an interesting
domain decomposition property of the Boltzmann equation. A direct simulation

consists in sampling neutrons directly from the source and tallying those that reach

the detector (Fig. 9.26). Hence the direct flux is calculated as well as its associated

detector response (usually the absorption rate).

The adjoint simulation consists in simulating the neutron trajectories starting

from the detector with an associated adjoint source corresponding to the desired

response function and the neutron history is tracked backwards up to the true source

(Fig. 9.26). The equations satisfied by the flux and the adjoint flux are as follows

(Spanier and Gelbard 1969, p. 169):

Source

Detector
V

Fig. 9.25 Direct Monte

Carlo simulation

Source

Detector
V

Fig. 9.26 Reverse Monte

Carlo simulation

71I.V. Serov, T.M. John, J.E. Hoogenboom: A midway forward-adjoint coupling method for
neutron and photon Monte-Carlo transport, Nuclear Science and Engineering, 133, pp. 55–72

(1999).
72The practical implementations of which are illustrated in J.E. Hoogenboom: Application of the
midway Monte-Carlo method to nuclear bore hole logging, International Conference on the

Physics of Nuclear Science and Technology, Long Island, USA, October 1998, pp. 168–173.
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Ω
!
:grad
��!

Φ ~r;Ω
!
;E

� �
þΣt ~r;Ω

!
;E

� �
Φ ~r;Ω

!
;E

� �
�
ð
Ω
!
dΩ
!0
ð
E0

dE0Σs ~r;Ω
!0!Ω

!
;E0!E

� �
Φ ~r;Ω

!0;E0
� �

¼S ~r;Ω
!
;E

� �

�Ω
!
:grad
��!

Φ∗ ~r;Ω
!
;E

� �
þΦ∗ ~r;Ω

!
;E

� �
Σt ~r;Ω

!
;E

� �
�
ð
Ω
!

0

dΩ
!0
ð
E0

dE0Φ∗ ~r;Ω
!
;E

� �
Σs ~r;Ω

!!Ω
!0;E!E0

� �
¼S∗ ~r;Ω

!
;E

� �
8>>>>>><>>>>>>:

which are expressed more concisely with the absorption operator without the

gradient term:

A~Ω,E½ � � Σt �
ð
~Ω

dΩ
!0
ð
E0

dE0Σs ~r; Ω
!0 ! Ω

!
;E0 ! E

� �0B@
1CA ½ �

A∗
~Ω,E

½ � � Σt �
ð
~Ω

d~Ω

ð
E0

dE0Σs

�
~r; Ω

!! Ω
!0;E ! E0

0B@
1CA ½ �

8>>>>>>>><>>>>>>>>:
Ω
!
:grad
��!

Φ ~r; Ω
!
;E

� �
þ A~Ω,E Φ ~r; Ω

!
;E

� �h i
¼ S ~r; Ω

!
;E

� �
�Ω
!
:grad
��!

Φ∗ ~r; Ω
!
;E

� �
þ A∗

~Ω,E
Φ∗ ~r; Ω

!
;E

� �h i
¼ S∗ ~r; Ω

!
;E

� �
8<:

The adjoint equation is different from the direct equation with the presence of

the “�” sign in front of the streaming term and the transposition of the scattering

term. The operator A
Ω
!

,E
½�is not self-adjoint since A

Ω
!

,E
½ � 6¼ A∗

Ω
!

,E
½ �. However,

their double integration over energy and angle are equal:ð
~Ω

dΩ
!ð

E

dEΦ∗A~Ω,E Φ½ � ¼
ð
~Ω

dΩ
!ð

E

dEΦA∗
~Ω,E

Φ∗½ �

The total detector response is given by both formulations:

R ¼
ð
E

ð
~Ω

ð
V

S∗ ~r; Ω
!
;E

� �
Φ ~r; Ω

!
;E

� �
d~r dΩ

!
dE

R ¼
ð
E

ð
Ω
!

ð
V

Φ∗ ~r; ~Ω;E
� �

S ~r; Ω
!
;E

� �
d~r dΩ

!
dE

8>>>>><>>>>>:
Let us consider an arbitrary domain Vmid, of surface ∂Vmid, which contains the

detector but not the source. It is called the midway volume even if the surface of that
volume is not strictly halfway from the source (Fig. 9.27). Two simulations are

considered: the first one is direct and stops at the boundary surface ∂Vmid, thereby

tallying the incoming flux at that surface. The second one is adjoint, carried out as

the previous one but from the inside to calculate the adjoint flux on that surface.

The direct equation is multiplied by Φ∗ ~r; Ω
!
;E

� �
, and the adjoint equation by

Φ ~r; Ω
!
;E

� �
, then both equations are integrated term-wise over the space

720 9 Computational Neutron Transport Methods



represented by the volume Vmid, over energy and angle. The resulting equations are

subtracted term-wise:ð
E

ð
~Ω

ð
Vmid

Φ∗ ~r;Ω
!
;E

� �
Ω
!
:grad
��!

Φ
�
~r;Ω
!
;E
�þΦ∗

�
~r;Ω
!
;E
�
A~Ω,E Φ ~r;Ω

!
;E

� �h i� �
d~rd~ΩdE

¼
ð
E

ð
~Ω

ð
Vmid

S ~r;Ω
!
;E

� �
Φ∗ ~r;Ω

!
;E

� �
d~rd~ΩdE

ð
E

ð
~Ω

ð
Vmid

�Φ ~r;Ω
!
;E

� �
Ω
!
:grad
��!

Φ∗
�
~r;Ω
!
;E
�þΦ

�
~r;Ω
!
;E
�
A∗

~Ω,E
Φ∗ ~r;Ω

!
;E

� �h i� �
d~rd~ΩdE

¼
ð
E

ð
~Ω

ð
Vmid

S∗ ~r;Ω
!
;E

� �
Φ ~r;Ω

!
;E

� �
d~rd~ΩdE

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
For concision, the scalar product is denoted as:

f ; gh iV �
ð
E

ð
~Ω

ð
V

f ~r; Ω
!
;E

� �
g ~r; Ω

!
;E

� �
d~r d ~Ω dE

The term-wise subtraction leads to:

Φ∗ Ω
!
:grad
��!

Φþ ΦΩ
!
:grad
��!

Φ∗
D E

Vmid

¼ SΦ∗h iVmid
� S∗Φh iVmid

Since the direct source is outside Vmid, SΦ∗h iVmid
¼ 0. Furthermore, the

Ostrogradski theorem transforms the volume integral as a surface integral:

Φ∗ Ω
!
:grad
��!

Φþ ΦΩ
!
:grad
��!

Φ∗
D E

Vmid

¼ Ω
!
:grad
��!

ΦΦ∗ð Þ
D E

Vmid

¼
ð

∂Vmid

~n: ~Ω ΦΦ∗ d2r

Source

DetectorV
midV

midV
n

Fig. 9.27 Monte-Carlo at

midway
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Therefore, the detector response is expressed as follows, while noting that the

adjoint source is zero outside Vmid:

R ¼ S∗Φh iVmid
¼ �

ð
∂Vmid

~n: ~Ω ΦΦ∗ d2r

The surface integral on the right contains the term of incoming neutron current:

J ¼ �~n: ~Ω Φ which is stored in the direct simulation and multiplied by the adjoint

flux computed on the surface by the adjoint simulation. This method leads to the

decoupling of the problem through the calculation of the direct and adjoint prob-

lems with satisfactory statistics without requiring neutron transport to the source or

the detector, assuming that the surface is wisely chosen. The method can be

extended to coupled neutron-photon transport to obtain the photon response of

the detector. In this case, by indexing the neutron equations by n and the photon

ones by p, and by denoting the photon productions by neutrons as P, the following
equations are reached:

Ω
!
:grad
��!

Φn þ An Φn½ � ¼ S

�Ω
!
:grad
��!

Φ∗
n þ A∗

n Φ∗
n

� � ¼ P∗

Ω
!
:grad
��!

Φp þ Ap Φp

� � ¼ P

�Ω
!
:grad
��!

Φ∗
p þ A∗

p Φ∗
p

h i
¼ S∗

8>>>><>>>>:
In these expressions, S∗ is the photon response function of the detector and

R¼ hS∗ΦiV is the integrated response. An[ ]� (Σt�
Ð
ΣsdE)[ ] is the direct absorp-

tion operator and the other A[ ] operators are deduced from that definition, P∗ is the

adjoint source function of neutrons produced by adjoint photons:

P ¼
ð
~Ω0

dΩ
!0
ð
E0

dE0Σproduc ~r; Ω
!0 ! Ω

!
;E0 ! E

� �
Φn ~r; Ω

!0;E0
� �

P∗ ¼
ð
~Ω

dΩ
!0
ð
E0

dE0Φ∗
p ~r; Ω

!0;E0
� �

Σproduc ~r; Ω
!! Ω

!0;E ! E0
� �

8>>>>><>>>>>:
Applying the same integration-subtraction procedure as described earlier, the

following equations are finally written:ð
∂Vmid

~n:Ω
!

ΦnΦ
∗
n d2r ¼ SΦ∗

n

� �
Vmid

� P∗Φnh iVmidð
∂Vmid

~n:Ω
!

ΦpΦ
∗
p d2r ¼ PΦ∗

p

D E
Vmid

� S∗Φp

� �
Vmid

8>>>>><>>>>>:
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From the definition of Pand P∗, and for any volume, P∗Φnh iV ¼ PΦ∗
p

D E
V
,

thereby leading to the following equation by adding the equations term-wise, and

since SΦ∗
n

� �
Vmid

¼ 0:

R ¼ S∗Φp

� �
Vmid

¼ �
ð

∂Vmid

~n:Ω
!

ΦnΦ
∗
n d2r þ

ð
∂Vmid

~n:Ω
!

ΦpΦ
∗
p d2r

0B@
1CA

The result is very similar to the neutron transport problem.

9.19.8 Quasi-Deterministic Approximation
of the Importance Function

An efficient means of biasing Monte Carlo calculations is the use of the adjoint flux

or the importance which is calculated through reverse simulations. Nevertheless,

the problem of the statistical precision of the importance function remains when

few particles are scored in a given volume. One way of solving that problem is by

the calculation of the importance function by a deterministic code. The main

drawback is that the major advantage of the Monte Carlo method to deal with

complex geometries is no longer available. A very elegant method73 to calculate the

importance function with better precision while retaining the advantages of the

Monte Carlo method is the quasi-deterministic approximation. The geometry is

paved with n media of interest, which are indexed with Roman numerals to avoid

any confusion. A discrete transport state corresponds to one of these media to

which an energy range in a multi-group approach is associated, along with a path

direction. To simplify the illustration, we will consider only one energy group,

meaning that a medium has two states: the neutron is travelling either towards the

top or the bottom wrt the geometrical orientation. However, it should be noted that

the extension to multi-group is possible. In Fig. 9.28, the states 1 to 5 correspond to

their respective medium along with the state of a neutron moving “upwards”

(symbol *) while the states �1 to �5 correspond to the same medium for neutron

with a direction state to the bottom (symbol +).
Let us suppose that ten neutrons are sampled randomly in medium IV with an

upgoing path (state 4*) by positioning sources randomly in that medium. The

Monte Carlo simulation is then executed for one step in transport, i.e. these neutrons
are tracked until their next collision and are ignored afterwards. It can be noted that

three processes are possible:

73Thomas E. Booth: A quasi-deterministic approximation of the Monte-Carlo importance func-
tion, Nuclear Science and Engineering 104, pp. 374–384 (1990).
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– either there is a scattering which is the most probable physical case (in medium

IV or any other),

– or there is an absorption (as in Fig. 9.28 as shown by a dot at the end of the

upgoing path)

– or the neutron may stream out from the geometry through the tallying surface

located at the top of the figure in the illustrated example where the neutron is

given a tally of 1, or by another surface where the tally is worth 0.

Consider the path c: the neutron leaves the state 4* to enter the medium II where

it takes the state 2* and is scattered to state �2+. Here, the term “leaves” does not

characterize the fact of leaving the geometry but undergoing a change of state.

Therefore, the table of states of the simulated neutrons with initial state 4 * can be

completed (Table 9.2). From all the simulated neutrons, only the neutron h obtains a

⇑1

⇑2

⇑4

⇑5

⇑3

⇓−1

⇓−5

⇓− 4

⇓− 2

⇓−3

a

b

c

d

e

f

g

h

i

j

I

II

III

IV

V

Tallying surface => score=1

Fig. 9.28 Geometry for a quasi-deterministic example

Table 9.2 State table for a one step of quasi-deterministic transport for medium IV

Source

state

Outgoing

state

Considered

trajectories

Mean weight of the outgoing

state per unit source

Tally of

the path

Mean

score

4* 0) a, f, h, j p4,0 ¼ 4
10

0,0,1,0 s4,0 ¼ 1
4

4* �4+ g p4,4 ¼ 1
10

0 s4,�4 ¼ 0
1

4* �2+ c p4,�2 ¼ 1
10

0 s4,�2 ¼ 0
1

4* �1+ d, i p4,�1 ¼ 2
10

0,0 s4,�1 ¼ 0
2

4* 1* e p4,1 ¼ 1
10

0 s4,1 ¼ 0
1

4* �5+ b p4,�5 ¼ 1
10

0 s4,�5 ¼ 0
1
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tally of 1 since it crosses the tallying surface. The “sterile” probability of the state

transfer pi , j normalized to the source can thus be calculated. It is equivalent to the

number of neutrons reaching a state j divided by the total number of simulated

neutrons. In a non-multiplying medium, it is the probability to pass from state i to
state j. On the other hand, for a multiplying medium, the exact probability to pass

from state i to state j must allow for the new fission neutrons (a priori, if fission is

isotropic, ν/2 travel upwards and the same amount to the bottom, ν being an integer
value sampled randomly in the probability distribution for the production of fission

neutrons). It is thus different from the definition of pi , j that is employed. Similarly,

the mean score si , j is computed by tallying the scores 1 or 0 according to the fact

that the neutron travels through the tallying surface or not. The score averaged over

the inverse history (as for the adjoint flux), i.e. the importance Ii, can be calculated

by noting that this score is equal to that of the next events to which the scores of all

the subsequent events are added. This recurrence over time is expressed as:

Recurrence equation for the importance function: Ii ¼
X
j

pi, jsi, j þ
X
j

pi, jIj ð9:49Þ
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Picture 9.2 10 cycles
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This linear system with J¼ 2n+ 1 unknowns allows the calculation of the

importance function of each medium relative to the tallying surface. Booth points

out that the method is independent of the biasing method used for calculating pi , j
and si , j, only the numerical values of these quantities vary. Besides, simulations

with two steps can be considered, i.e. tracking neutrons for two successive colli-

sions, or even more. Thus, neutrons can be transported towards the tallying surface

for convenient considerations without debunking Eq. (9.49) which remains valid

for the corresponding numerical values of pi , j and si , j. For multi-group cases, the

media are replaced by regions that are composed of one given energy group for a

given physical medium. The phase space contains a supplementary dimension but

the formalism remains valid.

9.19.9 Example of a Monte Carlo Calculation

To illustrate this section, we present a Monte Carlo simulation (with the French

TRIPOLI code from CEA) that depicts the total flux created by a unit source placed

15
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0

50
0

10
0 90 80 70 60 50 40 30 20 10 0

Picture 9.3 100 cycles
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at the center of the reactor. The calculation is carried out for an 1/8th of the core

thanks to symmetry considerations. Between each photograph, the number of

cycles with 10,000 particles is multiplied by 10 (Pictures 9.2, 9.3, and 9.4).

The neutron transport in the multiplying medium can thus be visualized by the

increase of the flux in the core. On the last picture, pseudo-square zones that are

darker can be observed in the active core. They correspond to fresh (non-depleted)

assemblies where the flux is higher (in red). The dark zone at the periphery on the

top of the photograph is in fact a zone with low flux (in blue).
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0 90 80 70 60 50 40 30 20 10 0

Picture 9.4 1000 cycles.

Calculations by Sylvain

Rollet, EDF (2009)
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Part II

Reactor Physics



Chapter 10

Diffusion Approximation in Neutron Physics

10.1 Fick’s Law

In 1851, Adolph Eugen Fick (1829–1901), a German ophthalmologist (Photo 10.1),

postulated intuitively the relationship between a chemical concentration flux and its

gradient in a solution by analogy with Fourier’s law in heat conduction. It was only

50 years later that Albert Einstein demonstrated the accuracy of Fick’s law through

his work on Brownian motion. In neutron physics, a neutron scatters through matter

with successive collisions that reduce its energy to thermal energy, whence the

analogy with collisions of non-interacting molecules in a gas. The free scattering
path is the sum of the elementary distances covered by the neutron between each

collision (with atoms that constitute matter) from its birth till its loss through

absorption (length of the dotted line in Fig. 10.1). The mean free scattering path
λs is the mean distance normalized to one collision. It is obtained by dividing the

free scattering path by the number of collisions.

10.1.1 Evaluation of the Neutron Diffusion Coefficient

(Reuss 2003, p131)

Fick’s law linearly relates a physical quantity to its derivative. It formulates the

idea that a quantity diffuses in the direction of its gradient in the same way that salt

in salted water diffuses from zones of higher concentration to zones of lower

concentration or that heat transfers from hotter zones to cooler ones. Applying

this relation to neutron physics, the relation between the neutron current and its flux

is similar to that which exists in the heat equation between the temperature field and

© Springer International Publishing AG 2017

S. Marguet, The Physics of Nuclear Reactors, DOI 10.1007/978-3-319-59560-3_10
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neutron 

photon 

Fig. 10.1 3D neutron diffusion and collisions in matter before radiative capture

Photo 10.1 Adolph Fick invented the first contact lenses. His name remains nevertheless asso-

ciated with the two Fick’s laws
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the heat flux. The demonstration is based on various physical quantities that must be

mentioned:

• We consider an infinite medium that is fairly uniform (the total cross section Σt

~rð Þ varies weakly around ~r )
• There is no point neutron source in the medium

• Scattering is isotropic in the laboratory frame, i.e. Σs ~r; ~Ω
0 ! ~Ω;v; t

� �¼
1
4πΣs ~r;v; tð Þ;

• The flux varies slowly with position~r (a first-order Taylor expansion can be used
around a given point).

Let us consider a given point as the origin of Cartesian coordinates (x, y, z) in
which the scalar currents Jx, Jy and Jz are the components of current vector~J. Let us
now compute the current Jz using the directional contributions J�z and Jþz of the

neutron moving from the hemisphere z > 0 to that in which z < 0, and conversely.

In the absence of sources, any neutron passing by the origin comes from point ~r at
which it underwent scattering. The scattering reaction rate at ~r is given by

Σs ~r; v; tð Þ Φ ~r; v; tð Þ. Since diffusion is assumed to be isotropic, the number of

scattered neutrons from point ~r to the surface element dSz (in the xOy plane in

Fig. 10.2, close to the origin) is the product of the scattering reaction rate at time

t� r/v, where v is the speed of the neutron, multiplied by the solid angle of the

surface element as seen from the initial point ~r:

Σs ~r; v; t� r

v

� �
Φ ~r; v; t� r

v

� � ~Ω:dSz
�!

4π r2
¼ Σs ~r; v; t� r

v

� �
Φ ~r; v; t� r

v

� � cos θ dSz
4π r2

Only neutrons that have traveled distance r without collision reach the origin.

Hence, the number of neutrons scattered in direction ~Ω is multiplied by the

z

y

x

dSz

d2Ω

r

zJ

zJ

dSzcos

Ω

Fig. 10.2 Contribution of

point ~r to the flux at origin
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non-interaction probability between 0 and r, i.e. (Glasstone and Edlund 1972, p93;

Bekurts and Wirtz 1964, p104; GA tome 1 1967, p171; Planchard 1995, p5):

Non-interaction probability: e
�
Ð‘¼r

‘¼0

Σt ‘;v;t�r�‘
vð Þd‘

ð10:1Þ

with Σt(‘, v, t) the total macroscopic cross section of the medium at the current

point ~‘.
The initial hypotheses set up assume that the total and scattering cross sections,

as well as the flux, depend weakly on time and space. Hence, the phase difference in

time due to t� r/v can be neglected. This phase difference occurs as the current at

time t is the sum of the contributions from the collisions that took place earlier.

e

�
ð‘¼r

‘¼0

Σt ‘; v; t� r�‘
v

� �
d‘

� e

�
ð‘¼r

‘¼0

Σt ‘; vð Þd‘

Σs ~r; v; t� r

v

� �
Φ ~r; v; t� r

v

� � cos θ dSz
4π r2

� Σs ~r; vð ÞΦ ~r; vð Þ cos θ dSz
4π r2

8>>>><
>>>>:

If the total cross section does not vary much with the space variable, e
�
Ð‘¼r

‘¼0

Σt ‘;vð Þd‘

can be simplified as e�Σtr. In this case, the integration needs only to be done over the

positive hemisphere z> 0 using a spherical volume element d3r¼ r2 sin θ dr dθ
dφ to compute the current of neutrons passing from the upper hemisphere (z> 0) to

the lower hemisphere (z< 0), J�z :

J�z dSz ¼ Σs r ¼ 0; vð Þ dSz
4π

ð2π
φ¼0

ðπ=2
θ¼0

ð1
r¼0

e�Σtr cos θ

r2
Φ ~r; vð Þ r2 sin θdr dθ dφ

The scattering cross section was removed from the integral sign by assuming

that its variation in space is very small. The last hypothesis (slow variation of

Φ ~r; vð Þ in space) is used to substitute the function by its first-order Taylor expansion
in space:

Φ ~r;vð Þ¼Φ x;y;z;vð Þ�Φ 0;0;0;vð Þþx
∂Φ
∂x

0;0;0;vð Þþy
∂Φ
∂y

0;0;0;vð Þþz
∂Φ
∂z

0;0;0;vð Þ

This expression is inserted in the integral defining J�z , for a unit area dSz, and by
substituting x, y, z by r sin θ cosφ, r sin θ sinφ and r cos θ, with only the terms in

Φ(0, 0, 0, v) and ∂Φ(0, 0, 0, v)/∂z having a non-zero contribution:
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J�z ¼ Σs

4π

ð2π
φ¼0

ðπ=2
θ¼0

ðþ1

r¼0

e�Σtr Φ 0;0;0ð Þþ r cosθ
∂Φ
∂z

�
0;0;0

�� �
sinθ cosθ dr dθ dφ

The integral over r has an infinite upper bound but in practice, due to the term

e�Σtr, it is sufficient to integrate over a few mean free paths, i.e. λt¼ 1/Σt. Using

Φ0¼Φ(0, 0, 0, v), for the negative current, the following expression is obtained:

J�z ¼ Σs

4π
Φ0

ð2π
φ¼0

dφ

|fflfflffl{zfflfflffl}
2π

ðπ=2
θ¼0

sin 2θ

2
dθ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2
4

ðþ1

r¼0

e�Σtrdr

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1
Σt

þΣs

4π

∂Φ
∂z


 �
0

ð2π
φ¼0

dφ

|fflfflffl{zfflfflffl}
2π

ðπ=2
θ¼0

sin θ cos 2θdθ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
3

ðþ1

r¼0

re�Σtrdr

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1

Σ2
t

Thence, after simplifying: J�z ¼ Σs

Σt

Φ0

4
þ Σs

6 Σ2
t

∂Φ
∂z


 �
0

Similarly, for the positive current in the opposite direction, the following

equation is obtained with a change of sign due to the integration over the lower

hemisphere:

Jþz ¼ Σs

4π
e�ΣTr

ð2π
φ¼0

ðπ
θ¼π=2

ðþ1

r¼0

Φ0 þ r cos θ
∂Φ
∂z


 �
0

� �
sin θ cos θj jdr dθ dφ

Thus: Jþz ¼ Σs

Σt

Φ0

4
� Σs

6 Σ2
t

∂Φ
∂z


 �
0

and for the net current, the balance of the positive and negative currents:

Jz ¼ Jþz � J�z ¼ � Σs

3 Σ2
t

∂Φ
∂z


 �
0

In order to calculate Jx and Jy, z can be substituted successively by x and y. The
current vector is then expressed as:

~J ¼ � Σs

3 Σ2
t

grad
��!

Φ

The proportionality coefficient between the current and the gradient is called the

diffusion coefficient and has the same dimensions as a length and is often expressed

in cm:

Diffusion coefficient: D � Σs

3 Σ2
t

ð10:2Þ

10.1 Fick’s Law 735



If the flux is constant in space (¼Φ0), the net current is zero, which does not

imply that no neutrons travel through a given surface. Using the example illustrated

earlier, with the surface element dSz, Φ0/4 neutrons travel through the surface from

the top and the same amount from the bottom, i.e. in total, Φ0/2 neutrons passed

through the surface per unit time (and not Φ0 as might wrongly be assumed! In this

example, it is clear that the flux is a notion dealing with volumes and not surfaces).

The net current represents the balance between these two components. If it is

assumed that absorption is insignificant compared to diffusion—as is the case for

well-moderated media like water reactors—this equation can be simplified since

Σt�Σs, as Σa<<Σs:

Diffusion coefficient in a weakly-absorbing medium: D � 1

3 Σt
ð10:3Þ

Fick’s law, which expresses proportionality between the current and the flux

gradient, is written as:

Fick’s law: ~J ¼ �D grad
��!

Φ ð10:4Þ

The diffusion coefficient is worth about 1 cm for conventional media employed

in industrial reactors.

With these definitions, a neutron balance over a volume element implies that the

time variation of the neutron population is equal to the neutron source from which

absorption of neutrons is subtracted, and a leakage correction is applied at the

boundaries of the volume element, i.e.:

∂n ~r; tð Þ
∂t

� 1

v

∂Φ ~r; tð Þ
∂t

¼ S tð Þ � ΣaΦ ~r; tð Þ � div~J ~r; tð Þ
¼ S tð Þ � ΣaΦ ~r; tð Þ þ DΔΦ ~r; tð Þ

10.1.2 Discussion of the Hypotheses

Flux, scattering and total cross sections vary slowly with time: this hypothesis is
necessary to synchronize the calculation of the current with that of the scattering

rate in the neighboring space. If this hypothesis is not posited, this means that the

integral over time accounts for scattering events that occurred in the past such that

the current and the gradient of the spatial flux are no longer correlated. In a PWR,
the mean speed of neutrons is about 2500 m/s. The mean free path is of the order of

a few centimeters and travel thus lasts around 10�4 s, a duration far smaller than the

time steps used for kinetic calculations in neutron physics. Hence, this hypothesis is

verified for thermal reactors, which is not completely the case for fast reactors. This

quasi-permanent hypothesis is to be compared to point kinetics (point reactor
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model) where it is assumed that the flux may be factorized on a space function that

fits the fundamental mode and depends weakly on time, and a second function

which depends solely on time Φ ~r; tð Þ ¼ Φ ~rð Þ eω t. The validity of the Fick’s law
approximation decreases as frequency ω increases (case of large reactivity

insertion).

The physical medium is infinite: this hypothesis is required to integrate e�Σtr.

Nevertheless, since this term decreases exponentially with r, it can be safely stated

that Fick’s law is verified far from the boundaries (i.e. at a distance greater than

3λt¼ 3/Σt; this value corresponds to a distance for which e�Σtr is less than 0.05).

The physical medium is uniform: thanks to this hypothesis, the non-interaction

probability of neutrons on their path r (as given by Eq. 10.1) can be computed

analytically (in practice, it only requires that Σt does not vary much), and further-

more, the scattering cross section can be moved out of the space integral that

computes the current.

Absence of point sources of neutrons: as for the boundaries, Fick’s law is verified
far from sources (distance greater than 3λt). If sources are added, the following term
must be taken into account in the space integration:

S ~r; v; t� r

v

� � cos θ dSz
4π r2

It ensures that the current and the spatial flux gradient are not correlated.

However, a homogeneous fission source induces the following term:

χ vð ÞνΣf ~r; v; t� r=vð ÞΦ ~r; v; t� r=vð Þ cos θ dSz
4π r2

which, under the same simplifying hypotheses as the scattering cross section,

leads to:

~J vð Þ ¼ �Σs vð Þ þ χ vð ÞνΣf vð Þ
3Σ2

t

grad
��!

Φ vð Þ

It should be noted that in the thermal zone (and even below 20 keV), χ(v)¼ 0.

Therefore:

~J ¼ � Σs

3 Σ2
t

grad
��!

Φ:

In the fast zone of a PWR where χ(v)¼ 1 and νΣf<Σa<<Σs, the νΣf+Σs�Σt,

approximation is warranted.

Isotropic scattering (in the laboratory frame of reference): this is the case for

neutrons with low kinetic energy, with scattering anisotropy being prevalent at high

energy. It should be pointed out that water has high anisotropy even for high energy.
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Flux varies slowly with space: the terms in the second-order expansion of flux

Φ ~rð Þ lead to an additional identical term in J+ and J�. This term is proportional to

the second derivative of flux with respect to z and cancels out in the net current J. In

fact, Fick’s law~J ¼ �D grad
��!

Φ is valid if, for distances smaller than 3λt, the terms

in the third-order expansion of Φ are negligible. From the hypotheses, the absorp-

tion rate is small compared to the scattering rate as Σa<<Σs, and thus, Σs is

assumed equal to Σt. The diffusion coefficient D is:

D � 1

3 Σt

In the previous calculations, we supposed that the scattering collisions exhibited

spherical symmetry (isotropic). In transport theory, this approximation is not used

and collisions are taken into account with their complete anisotropic nature. The

anisotropy of a collision can be quantified using the average cosine of the scattering

angle μ0 ¼ cos ϑ. The mean scattering path λs¼ 1/Σs is thus corrected due to

anisotropy and is hence called the transport-corrected mean scattering path:

λs, tr � 1

1� μ0ð ÞΣs

To understand this transport correction, let us consider the anisotropy effect on

the displacement of neutrons undergoing successive collisions from a geometrical

point of view:

In the case of isotropic collisions, after travelling a mean scattering free path λs
following its emission, the neutron undergoes an isotropic collision that causes it to

move in any direction with equal probability. After travelling a further path λs, it
undergoes further collisionwith the same probability as previously, which can return it

to its previous position with a probability of 1/(4π). On average, the distance travelled
in a straight line by the neutron after its emission is λs, and the neutron moves about an

equilibriumposition. In the case of an anisotropic collisionwith a preferential direction

as represented in Fig. 10.3 by themajor axis of the ellipse, the neutron deviates from its

emission point through successive collisions. The projection on the axis of emission of

the neutron leads to the calculation of the average unidirectional path:

λs, tr ¼ λs þ λsμ0 þ λsμ0
2 þ λsμ0

3 þ � � � ¼ lim
n!þ1 λs

1� μ0
nþ1

1� μ0


 �
¼ λs

1� μ0

where μ0 � 1. This simple logic gives a physical meaning to the transport-

corrected mean free scattering path λs, tr which becomes the average distance by

which the neutron deviates from a straight line emanating from its emission point:

λs, tr � λs
1� μ0

¼ 1

1� μ0ð ÞΣs
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The limit of this reasoning occurs if there is absorption, the absence of which

would have brought the neutron back to its emission point after a certain time

period. The transport-corrected scattering cross section becomes:

Σs, tr � 1� μ0ð ÞΣs

By adding the scattering cross section, the transport-corrected total cross section

is:

Σt, tr � Σa þ 1� μ0ð ÞΣs ¼ Σt � μ0 Σs

In practice, the flux anisotropy induced by the anisotropy of collisions is

accounted for by an expansion of flux on the basis of spherical harmonics:

Φ ~r; ~Ω
� � ¼X1

n¼0

Xþn

m¼�n

φm
n ~rð Þ Ym

n
~Ω
� �

If this expansion is limited to the first order (terms 0 and 1), the following is

obtained:

Φ ~r; ~Ω
� � ¼ Φ ~rð Þ

4π
þ 3

4π
~Ω �~J ~rð Þ

0µ

Fig. 10.3 Isotropic scattering (on the left) and forward anisotropy (on the right). Spheres and

ellipses represent the probability density of the re-emission direction
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with:

~J ~rð Þ ¼ � 1

3 Σ transport
corrected

grad
��!

Φ ~rð Þ

Σ transport
corrected

¼ Σt � μ0 Σs et Σt ¼ Σa þ Σs

8>>>>><
>>>>>:

and, where μ0 is the average of the cosine of the scattering angle during a collision.

Thus:

D ¼ 1

3 Σt � μ0 Σsð Þ ¼
1

3 Σt � Σs, 1ð Þ ¼
1

3 Σa þ 1� μ0ð Þ Σsð Þ

Σ transport
corrected

¼ Σt � μ0 Σs is the transport-corrected cross section Σtr, often

called the “transport cross section” for simplicity. This cross section is used to

define the mean free transport path:

λtr � 1

Σtr

Use of the transport cross section in the expression of the diffusion coefficient thus

transforms the diffusion equation to a P1 approximation of the exact Boltzmann

equation. Furthermore, in the case where the current depends on the transient time,

the current J�z 0; 0; 0; tð Þ modeling can be improved by using a first-order Taylor

expansion of the flux in space and time. This means that a neutron traveling through a

surface dSz at time t originates from a collision that occurred at time t� r/v:

J�z ¼ Σs

4π

ð2π
φ¼0

ðπ=2
θ¼0

ðþ1

r¼0

e�ΣtrΦ x; y; z; t� r

v

� �
dr sin θ cos θdθdφ

¼ Σs

4π

ð2π
φ¼0

ðπ=2
θ¼0

ðþ1

r¼0

e�Σtr Φ 0;0;0; tð Þ � r

v

∂Φ
∂t


 �
t

þ r cos θ
∂Φ
∂z


 �
0

� �
dr sin θ cos θdθdφ

¼ Σs

Σt

Φ0

4
þ Σs

6 Σ2
t

∂Φ
∂z


 �
0

� Σs

4vΣ2
t

∂Φ
∂t


 �
t

� Σs

Σt

Φ0

4
þ Σs

6 Σ2
t

∂Φ
∂z


 �
0

� 1

vΣt

∂J�z
∂t


 �
t

Using reasoning similar to the stationary case for Jþz , the following equation is

obtained:

Jþz � Σs

Σt

Φ0

4
� Σs

6 Σ2
t

∂Φ
∂z


 �
0

� 1

vΣt

∂Jþz
∂t


 �
t

Hence, the net current along z: J z
net ¼ Jþz � J�z � � Σs

3 Σ2
t

∂Φ
∂z


 �
0

�
1

vΣt

∂ Jþz � J�z
� �

∂t


 �
t

740 10 Diffusion Approximation in Neutron Physics



Therefore, the net current is:

~J ~r; tð Þ ¼ �D grad
��!

Φ ~r; tð Þ þ 3

v

Σs

Σt

∂~J ~r; tð Þ
∂t

" #
with : D � Σs

3 Σ2
t

The result of (Weinberg and Wigner 1958, p233) and (Meghreblian and Holmes

1960, p352) under the usual hypothesis Σs�Σt is obtained. Combined with the

time-dependent transport equation:

1

v

∂Φ ~r; tð Þ
∂t

þ div~J ~r; tð Þ þ ΣaΦ ~r; tð Þ ¼ S tð Þ

and after substitution of~J ~rð Þ, we obtain the telegrapher’s equation by analogy with
the propagation of waves:

3D

v2
∂2Φ ~r; tð Þ

∂t2
þ 1

v
1þ 3DΣað Þ∂Φ ~r; tð Þ

∂t
¼ DΔΦ ~r; tð Þ �ΣaΦ ~r; tð Þ þ S tð Þ þ 3D

v

∂S tð Þ
∂t

ð10:5Þ

This equation is different from the usual time-dependent diffusion

approximation:

1

v

∂Φ ~r; tð Þ
∂t

¼ DΔΦ ~r; tð Þ � ΣaΦ ~r; tð Þ þ S tð Þ

In fact, the telegrapher’s equation is the exact approximation P1 of the time-

dependent transport equation. Nevertheless, the usual equation is simpler to solve

since it has no second-order time derivative.

10.1.3 The Diffusion Equation in a Force Field

Although the neutron is not influenced by electromagnetic forces, we may include

an acceleration that modifies the Boltzmann equation and hence the diffusion

equation (Akcasu et al. 1971, p37). The acceleration that can be taken into account

is that due to gravity, which has a weak influence on neutrons of very small mass,

and it has a lifetime of less than one second. This problem is more an academic than

an industrial consideration but nevertheless remains a very interesting theoretical

problem for establishing the transport equation. The variation in the neutron

population of an element of absorbing and multiplying medium is:

dn ~r; v; tð Þ
dt

þ ΣtΦ ~r; v; tð Þ ¼ S ~r; v; tð Þ
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whereS ~r; v; tð Þ is the neutron source due to fission or slowing down to speed v. If the
neutrons undergo acceleration~γ, their velocity changes between two collisions and
the time derivative must be developed with the variable components:

dn ~r; v; tð Þ
dt

¼ ∂n ~r; v; tð Þ
∂t

þ~v:grad
��!

n ~r; v; tð Þ

þ∂vx
∂t

∂n ~r; v; tð Þ
∂vx

þ ∂vy
∂t

∂n ~r; v; tð Þ
∂vy

þ ∂vz
∂t

∂n ~r; v; tð Þ
∂vz

Defining the gradient with respect to the coordinates of velocity grad
��!

v ¼
∂
∂vx

; ∂
∂vy

; ∂
∂vz

� �
, the previous equation may be summed up as:

dn ~r; v; tð Þ
dt

¼ ∂n ~r; v; tð Þ
∂t

þ~v:grad
��!

n ~r; v; tð Þ þ~γ:grad
��!

vn ~r; v; tð Þ

With similar reasoning as that used to establish the time-dependent telegrapher’s
equation, acceleration is introduced in the calculation of the neutron current by

assuming that the latter is independent of the velocity:

~J ~r; tð Þ ¼ �Dgrad
��!

Φ ~r; tð Þ þ 1

v2Σt
~γ ~r; tð Þ

Combined with the neutron balance equation:

1

v

∂Φ ~r; tð Þ
∂t

þ div~J ~r; tð Þ þ ΣaΦ ~r; tð Þ ¼ vΣfΦ ~r; tð Þ

the diffusion equation with acceleration is obtained:

1

v

∂Φ ~r; tð Þ
∂t

¼ DΔΦ ~r; tð Þ � 3D

v2
~γ ~r; tð Þ:grad��!

Φ ~r; tð Þ �ΣaΦ ~r; tð Þ þ vΣfΦ ~r; tð Þ ð10:6Þ

with div ~γ ~r; tð Þð Þ ¼ 0. Akcasu et al. (1971, p38) develops the solution for a

homogeneous slab reactor of thickness a, which is perpendicular to gravity. The 1D
diffusion equation is:

1

v

∂Φ z; tð Þ
∂t

¼ DΔΦ z; tð Þ þ 3D

v2
g
∂Φ z; tð Þ

∂z
� ΣaΦ z; tð Þ þ νΣfΦ z; tð Þ

For the stationary case, this equation is written in the canonical form:

ΔΦ zð Þ þ μ
dΦ zð Þ
dz

þ B2
mΦ zð Þ ¼ 0 with μ ¼ 3

v2
g and B2

m ¼ vΣf � Σa

D
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The eigenvectors are sought under the form: Φn zð Þ ¼ φn zð Þe�μ z
2 , and the usual

Helmholtz equation is obtained:

Δφn zð Þ þ B2
m � μ2

4


 �
φn zð Þ ¼ 0

in which the eigenfunctions that cancel out at the boundaries z¼ + a/2 and z¼ � a/2
are φn(z)¼ cos(nπ z/a). In the next chapters, we will see that the existence condition
for a positive stationary flux, called the criticality condition, hinges on the fact that

the eigenfunctions are solutions to the physical problem, i.e.:

B2
m � μ2

4
¼ π2

a2

Another problem of the same type consists in accounting for the flow of water

from the primary loop of a PWR (upward velocity of about 4 m/s) thereby dragging

the neutrons by collision, and leading to an anisotropy that favors upward directions

(distortion of the axial power). This weak effect “compensates” for gravity, causing

the neutrons to “levitate”.

10.2 Boundary Conditions for a Medium Surrounded by

a Vacuum in Diffusion Theory

Given a multiplying medium surrounded by a vacuum, the incoming current can be

calculated in diffusion theory (El-Wakil 1962, p113; Glasstone and Edlund 1972,

p104; Glasstone and Sesonske 1994, p138; Ferziger and Zweifel 1966, p34):

J�0 ¼ Σs

Σt

Φ0

4
þ Σs

6 Σ2
t

∂Φ
∂x


 �
0

Since, by definition, no neutrons return to the medium from a vacuum, it can be

deduced that the incoming current is zero, i.e.:

J�0 ¼ 0:

The extrapolation distance is defined as the length d corresponding to the

extrapolated flux according to its derivative at the medium/vacuum interface. It is

given by (Fig. 10.4):

dΦ

dx


 �
0 left

¼ �Φ0

d
< 0

When inserted in the equation for the current, it is equivalent to:
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ΣsΦ0

4 Σt
� Σs

6 Σ2
t

Φ0

d
¼ 0

That is:

Extrapolation distance in a vacuum: d ¼ 2

3 Σt
¼ 2D ð10:7Þ

The extrapolation distance is often used to avoid meshing the reflectors in core

calculations. The term zero-flux distance is sometimes used for the extrapolation

distance. It should be noted that the true flux value is not zero at any point.

Furthermore, it should also be pointed out that if there were a non-zero flux in

vacuum, it would not be possible to represent it by the diffusion equation without a

diffusion coefficient or any cross section. Only the flux in transport theory has a

physical meaning. In a 1D medium and with simple ideas, it can be shown that

transport flux is constant in a vacuum. The extrapolation distance depends solely on

the diffusion coefficient of the multiplying medium. The result can be improved

significantly if the value predicted by transport theory, d¼ 0.7104/Σtr, is used as the

extrapolation distance, as noted with Milne’s problem.

10.2.1 P1 Approximation

As seen earlier, the incoming current from a vacuum is zero and is given by:

0 ¼ J�0 ¼ Φ

4
þ D1

2
grad
��!

Φ

The outgoing current is obtained by:

0Φ

d 
0 2D x 

dz

dΦ
Medium Vacuum

Diffusion 

Exact transport

trλ0.7104

Fig. 10.4 Extrapolation

distance of the reactor

placed in a vacuum
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Jþ0 ¼ Φ

4
� D1

2
grad
��!

Φ

For one dimension (grad
��!

Φ ¼ ∂Φ=∂x), the logarithmic derivative of the flux at

the interface can be computed to obtain Marshak’s condition:

dΦ xð Þ
dx


 �
0�

Φ 0ð Þ ¼ � 1

2D1

¼ 1

2

3

1

Σt

¼ � 1

2

3
λt

� � 1

0:6667 λt

where λt is the total average mean free path. If the transport-corrected

Σa þ 1� μ0ð Þ Σsð Þ mean free path λtr is used, this is equivalent to using the P1

transport approximation. The coefficient in the formula is corrected according to

Milne’s condition:

dΦ xð Þ
dx
Φ0

� � 1

0:7104 λtr

Extrapolation of the flux through its derivative intersects the x axis at the Milne

extrapolation distance d¼ 0.7104 λtr. This quantity has a very important role, since

any boundary condition can exist for the diffusion equation at the edges of a

multiplying medium. At the extrapolation distance, the boundary condition

becomes a zero-flux condition. For power reactor cases, d is very small compared

to the characteristic dimensions of the reactor. Hence, as a first approximation, the

flux of a reactor surrounded by a vacuum becomes zero at the geometrical

boundary.

10.2.2 Rulko’s Variational Approach

Rulko et al. showed1 that it is possible to impose a Robin-type boundary condition

using the method of minimizing a functional, so as to improve the precision of the

P1 approximation. Let the neutron flux in transport theory—verifying the usual

integro-differential equation—with a single kinetic energy for the sake of clarity,

be:

1Robert P. Rulko, D. Tomalevic and E.W. Larsen: Variational P1 approximations of general-
geometry multigroup transport problems, Nuclear Science and Engineering, 121, p393–404

(1995).
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~Ω:grad
��!

Φ ~r; ~Ω
� �þ Σt ~rð ÞΦ ~r ; ~Ω

� � ¼ ð
4π

Σs ~r; ~Ω; ~Ω
0

� �
Φ ~r; ~Ω

0
� �

d~Ω
0 þ q ~rð Þ

4π
~r2V

Φ ~r; ~Ω
� � ¼ f ~r; ~Ω

� �
at the boundary Γ ¼ ∂V and for incoming directions ~Ω:~n < 0

8><
>:

Suppose that we wish to compute a reaction rate R Φð Þ ¼ 1
4π

Ð
V

d~r
Ð
4π

σ∗ ~rð ÞΦ
~r; ~Ω
� �

d ~Ω where the coefficient 1/(4π) is only a small shortcut in the notation for

the subsequent calculations. The following functional is associated with this reac-

tion rate:

H Φ;Φ∗ð Þ ¼ 1

4π

ð
V

d~r

ð
4π

σ∗ ~rð ÞΦ ~r; ~Ω
� �

d ~Ω�
ð
V

d~r

ð
4π

Φ∗ ~r; ~Ω
� �

~Ω:grad
��!

Φ ~r; ~Ω
� �þ Σt ~rð ÞΦ�~r; ~Ω�� ð

4π

Σs

�
~r; ~Ω; ~Ω

0�
Φ
�
~r; ~Ω

0�
d~Ω

0� q ~rð Þ
4π

2
4

3
5d ~Ω

þ
ð
Γ

d~S

ð
~Ω:~n<0

~Ω:~n Φ∗ ~r; ~Ω
� �þ αΦ∗

�
~r;�~Ω

�� �
Φ ~r; ~Ω
� �� f

�
~r; ~Ω

�� �
d ~Ω

In this equation, α is a degree of freedom that will be used later andΦ∗ ~r; ~Ω
� �

is

the adjoint flux that becomes zero at the boundary of the domain and satisfies the

adjoint transport equation2 with an adjoint source σ∗ ~rð Þ= 4πð Þ:

�~Ω:grad
��!

Φ∗ ~r; ~Ω
� �þΦ∗ ~r; ~Ω

� �
Σt ~rð Þ ¼

ð
4π

Σs ~r; ~Ω; ~Ω
0� �
Φ∗ ~r; ~Ω

0
� �

d~Ω
0 þ σ∗ ~rð Þ

4π
~r2V

Φ∗ ~r; ~Ω
� �¼ 0 at the boundary Γ ¼ ∂V and for outcoming directions ~Ω:~n> 0

8><
>:

It can be noticed that the functional H(Φ,Φ∗) is strictly equal to the required

reaction rate R(Φ) using the simple properties of Φ ~r; ~Ω
� �

. The latter cancels the

last two integral terms for any value of Φ∗ ~r ; ~ΩÞ�
and independently of that of α.

The construction of the functional H(Φ,Φ∗) stems from a first-order perturbation

theory. In H, if Φ is substituted by Φ + δΦ and Φ∗ by Φ∗ + δΦ∗, the following

expression is obtained for the first-order perturbation:

2By convention, products with adjoint flux will be described by notations used solely for that

method¸ i.e. the cross sections at the right of the reaction rate.
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δH Φ; δΦ;Φ∗; δΦ∗ð Þ ¼

�
ð
V

d~r

ð
4π

δΦ∗ ~Ω:grad
��!

Φ ~r; ~Ω
� �þ Σt ~rð ÞΦ�~r ; ~Ω�� ð

4π

Σs

�
~r; ~Ω; ~Ω

0�
Φ
�
~r; ~Ω

0�
d~Ω

0 � q ~rð Þ
4π

2
4

3
5d ~Ω

�
ð
Γ

d~S

ð
~Ω:~n<0

~Ω:~n
�� �� δΦ∗ ~r; ~Ω

� �þ αδΦ∗
�
~r;�~Ω

�� �
Φ ~r; ~Ω
� �� f

�
~r; ~Ω

�� �
d ~Ω

�
ð
V

d~r

ð
4π

δΦ �~Ω:grad
��!

Φ∗ ~r; ~Ω
� �þ Φ∗

�
~r ; ~Ω

�
Σt ~rð Þ �

ð
4π

Σs

�
~r; ~Ω; ~Ω

0�
Φ
�
~r; ~Ω

0�
d~Ω

0 � σ∗ ~rð Þ
4π

2
4

3
5

�
ð
Γ

d~S

ð
~Ω:~n>0

~Ω:~n δΦ ~r; ~Ω
� �þ αδΦ∗

�
~r;�~Ω

�� �
d ~Ω

An analysis of these four integral terms shows that the first and second terms

cancel out each other owing to the properties of Φ ~r; ~Ω
� �

and that the last two

cancel out thanks to the properties of Φ∗ ~r ; ~ΩÞ�
. This means that the functional

R(Φ) is approximated at order two:

H Φþ δΦ;Φ∗ þ δΦ∗ð Þ ¼ R Φð Þ þ O δ2Φ; δ2Φ∗; δΦδΦ∗
� �

Using the P1 approximation of the flux and its adjoint, we have:

Φ ~r; ~Ω
� � ¼ 1

4π
Φ ~rð Þ þ 3~Ω:~J ~rð Þ� �

Φ∗ ~r; ~Ω
� � ¼ 1

4π
Φ∗ ~rð Þ þ 3~Ω:~J∗ ~rð ÞÞ
�

8><
>:

These flux expressions satisfy the selected direct and adjoint transport equations,

i.e.:

div~J þ Σt � Σs, 0ð ÞΦ ¼ q � div~J∗þ Σt � Σs, 0ð ÞΦ∗ ¼ σ∗

1

3
grad
��!

Φþ Σt � Σs, 1ð Þ~J ¼ 0 � 1

3
grad
��!

Φ∗ þ ~J∗ Σt � Σs, 1ð Þ ¼ 0

8<
:

Since the integral terms over volumes cancel out naturally in δH(Φ, δΦ,Φ∗, δΦ∗),

only surface integral terms remain, giving the following equation:

δ~J ¼ � 1

3 Σt � Σs, 1ð Þ grad
��!

δΦ ¼ �Dgrad
��!

δΦ and δ~J∗ ¼ � grad
��!

δΦ∗
� �

D
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δH Φ;δΦ;Φ∗;δΦ∗ð Þ¼
� 1

4π

ð
Γ

d~S

ð
~Ω:~n<0

d~Ω ~Ω:~n
�� �� 1þαð ÞδΦ∗þ3 1�αð Þ ~Ω:grad

��!
δΦ∗

� �
D

h i

� 1

4π
Φ ~r; ~Ω
� ��3D

4π
~Ω:grad
��!

Φ� f

� �
� 1

16π2

ð
Γ

d~S

ð
~Ω:~n>0

~Ω:~n Φ∗þ3 ~Ω:grad
��!

Φ∗
� �

D
h i

1þαð ÞδΦ�3 1�αð ÞD~Ω:grad
��!

δΦ
h i� �

d ~Ω

Rulko points out that in order to cancel out δH at this point for any value

of Φ, Φ∗, grad
��!

δΦ and grad
��!

δΦ∗, we may artificially set up too many boundary

conditions which then constrain the system. Hence, the solutions sought are such

that they satisfy the Robin boundary conditions at surface Γ:

Φþ 3λD~n:grad
��!

δΦ ¼ Cst δΦ ¼ �3λD~n:grad
��!

δΦ

Φ∗ þ 3λ ~n:grad
��!

δΦ∗
� �

D ¼ 0 δΦ∗ ¼ �3λ ~n:grad
��!

δΦ∗
� �

D

(

With this new constraint, δH is cancelled by assuming the geometry to be a

pseudo-slab geometry (~Ω:~n � μ) such that the terms obtained from differentiation

along the axes other than the major axis may be neglected at order O(δ2). Hence,
after some mathematical calculations:

δH Φ; δΦ;Φ∗; δΦ∗ð Þ ¼

� 1

4π

ð
Γ

d~S

ðμ¼0

μ¼�1

d~Ω μj j 1� μ

λ

1� α

1þ α


 �
δΦ∗ 1

4π
Φ� 3D

4π
μ~n:grad
��!

Φ� f

� �

� 1

16π2

ð
Γ

d~S

ðμ¼1

μ¼0

μ Φ∗ þ 3μ~n:grad
��!

Φ∗D
h i

δΦ 1þ μ

λ

1� α

1þ α


 �
d ~Ω

To cancel δH systematically, we look for the solution that can cancel out the

integrals simultaneously, i.e. after analytical integration over μ:

1

2
þ 3

λ

1� α

1þ α


 �
Φþ 1þ 3

4λ

1� α

1þ α


 �
D~n:grad

��!
Φ¼ 2

ðμ¼0

μ¼�1

d~Ω μj j 1þ μj j
λ

1� α

1þ α


 �
f

1

2
þ 3

λ

1� α

1þ α


 �
Φ∗ þ 1þ 3

4λ

1� α

1þ α


 �
~n:grad
��!

Φ∗
� �

D¼ 0

8>>>>><
>>>>>:

Compatibility with the Robin boundary conditions imposes the following:
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3λ ¼
1þ 3

4λ

1� α

1þ α


 �
1

2
þ 3

λ

1� α

1þ α


 � and Cste ¼ 2

1

2
þ 3

λ

1� α

1þ α


 � ðμ¼0

μ¼�1

d~Ω μj j 1þ μj j
λ

1� α

1þ α


 �

From which the positive root of the first equation of second degree is obtained:

λ ¼ 1

1þ α

2α

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� α2

18

r !

For α¼ 1, i.e. λ¼ 2/3, the Marshak condition is obtained in its variational form:

Φþ 2D~n:grad
��!

Φ ¼ 4

ðμ¼0

μ¼�1

d~Ω μj j f

For α¼ � 0.0815, i.e. λ¼ 0.7104, we obtain the Milne condition discussed in

the chapter on the Boltzmann equation. Thanks to this original approach, Rulko

et al. showed through calculations that the constant value tends towards 0.750 in a

heuristic manner with increasing dimensions of the 1D patterns, whether slab,

sphere, or cylinder. This maybe suggests a more general unified theory.

10.3 Boundary Conditions Between Any Two Media

In the case of two media that are in contact, diffusion theory supposes the net

current to be continuous at the interface between the two media (Fig. 10.5).

The incoming current in one direction is equal to the outgoing current from the

other. ~J is continuous and, hence, so is the flux. The law of the flux continuity

implies that the outgoing current from medium 1 is equal to the incoming current

for medium 2:

Jþ1 ¼ J�2

Thus:

�D1 grad
��!

Φ1:~x ¼ �D2 grad
��!

Φ2:~x

Hence: D1
∂Φ
∂x

� �
O� ¼ D2

∂Φ
∂x

� �
Oþ

Medium 1 Medium 2

+− = 21 JJ +− = 12 JJ

Fig. 10.5 Two media in

contact
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It can be seen in diffusion theory that flux is continuous at the interface, but not

its derivative; this is not the case in exact transport theory. The gradient change at

the interface in diffusion is proportional to D1 /D2 (Fig. 10.6).

10.3.1 Notion of a Reflector Albedo

Let us consider two media separated by a surface. Medium 1 is assumed to be a

multiplicative medium while medium 2 is a reflector. The albedo β (from the Latin

meaning “whiteness”) of the reflector indexed 2 is the ratio of the outgoing current

from 2, i.e. returning to medium 1 (2! 1), to the incoming current in 2, i.e. leaving
medium 1 (1 ! 2) (Fig. 10.7).

β ¼ J�1

Jþ1

¼
Φ0

4
þ D1

2

dΦ

dx


 �
1

Φ0

4
� D1

2

dΦ

dx


 �
1

¼ Jþ2

J�2

¼
Φ0

4
þ D2

2

dΦ

dx


 �
2

Φ0

4
� D2

2

dΦ

dx


 �
2

Parameter β characterizes the reflecting medium (2) when written in the form

β¼ J+2/J�2, but it may also characterize medium 1 if written as: β¼ J�1/J+1.
Medium 1 becomes, in a way, the “reflector” of medium 2. It may be noted that

since (dΦ/dx)2< 0, β is smaller than 1 and tends towards 1 when (dΦ/dx)2 tends
towards 0, which is characteristic of a flat flux, i.e. a total reflection. This is known
as a perfect reflector or amirror, i.e. a theoretical situation that is never encountered
with true media that are always absorbing to some degree. The logarithmic deriv-

ative of the flux is usually expressed as a function of the albedo:

dΦ

dx


 �
0�

Φ0

¼ � 1

2D2

1� β

1þ β

This relation allows the substitution of a calculation with two media by a

diffusion calculation on the first medium, by imposing a boundary condition on

the logarithmic derivative of the flux. This is performed without calculating the flux

in the reflector, thereby leading to savings in computation time. For power reactors,

it is important to reduce the amount of leakage from the reactor, i.e. to obtain a flux
as flat as possible, which is possible with an albedo close to 1. In Table 10.1, it can

D1 D2

Φ2

Φ1

x0

diffusion 

transport

Fig. 10.6 Flux continuity

and discontinuity of flux

derivatives at the interface

in diffusion
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be observed that while water is the worst reflector among those illustrated, it

remains the best industrial compromise since it is also used to cool the reactor.

The radial reflector of a PWR is composed of successive materials with very

different properties: steel of the baffle, water in the by-pass, steel of the core barrel,

possibly the thermal shield that protects the reactor vessel depending on the reactor

model, water in the down-comer, the steel of the vessel and its shaft, which is of

concrete (Fig. 10.8).

We can consider that only the first 40 centimeters really influence the neutron

properties of the reflector given that it is highly improbable for a neutron at that

distance to be reflected back into the core. Nevertheless, the succession of highly

absorbing material (steel) and a scattering moderator (water) leads to difficult

homogenization calculation in diffusion theory with a homogeneous reflector

material. Furthermore, given the geometrical complexity of the circumference of

the core that includes square assemblies with a cylindrical reflector, calculation of

the reflector is very sensitive to the industrial calculation scheme. It should be

pointed out that for the European Pressurized Reactor (EPR), the vessel is

protected from fast neutrons—i.e. those causing most damage to the vessel—

using a heavy steel baffle that encloses the periphery of the active core (instead

of the by-pass in earlier designs, at the expense of the reflecting properties of the

reflector).

10.4 Diffusion Equation in Energy

The diffusion equation is a simplification of the transport equation. Let the energy-

integrated spatial flux be:

Table 10.1 Properties of some usual thermal reflectors

ρ g=cm3½ � λtr[cm] D2[cm] L[cm] β [�]

D2O (pure) 1.10 (20 	C) 2.43 0.81 160 0.97

Graphite 1.60 2.57 0.86 52 0.94

BeO (Beryllia) 2.96 1.41 0.47 30 0.93

Beryllium 1.85 1.48 0.50 21 0.91

Paraffin 0.87 2.2 0.11 2.2 0.82

H2O 1.00 (20 	C) 0.5 0.20 2.74 0.81

n
D1

D2

Fig. 10.7 Two media in

contact
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Φ ~rð Þ ¼
ð1
0

Φ ~r;Eð Þ dE ¼
ðE0

Eth

Φ ~r;Eð Þ dE

where E0 is the maximum fission energy and Eth the thermal energy. In the

remainder of this chapter, the spatial dependence (in ~r ) of Φ will no longer be

used to simplify the notation, Φ implying Φ ~rð Þ. The neutron balance in steady

state, valid for any energy E, is:

div ~J r;Eð Þ� �þ Σt Eð Þ Φ ~r;Eð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Loss of neutrons

¼ S ~r;Eð Þ þ
ð
E0
Φ ~r;E0ð Þ ΣS E0 ! Eð Þ dE0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Production of neutrons

The terms in this equation are:

div J ~r;Eð Þð Þ the leakage of neutrons from the reactor (~J r;Eð Þ ¼ �D Eð Þ grad
��!

Φ ~r;Eð Þ in diffusion theory).

Σt Eð Þ Φ ~r;Eð Þ the rate of neutrons lost at energy E (either by absorption or by

scattering) Σt(E)¼Σa(E) +Σs(E) and Σs Eð Þ ¼ ÐE0ΣS E ! E0ð Þ dE0.
S ~r;Eð Þ the source term at energy E, either by fission or from an independent

source (often a point source) at energy E (the source for starting-up reactors for

example).

180°

90° 270°

0°

Reactor vessel

Thermal shield

Core 
shielding

By-pass

Down-comer

Fig. 10.8 Transverse view of a 900 MWe PWR. An outline of the reflector of an industrial core
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Ð
E0Φ ~r;E0ð Þ ΣS E0 ! Eð Þ dE0 the scattering rate from energy E0 towards energy

E (it thus represents a source at energy E).

10.5 One-Group Diffusion Equation

(Ferziger and Zweifel 1966, p19)

Integration of the diffusion equation in energy at continuous energy leads to:Ð
Ediv J

�
~r;E

� �
dEþ ÐEΣa Eð Þ Φ ~r;Eð Þ dEþ ÐEΣS Eð Þ Φ ~r;Eð Þ dE

¼ ÐES ~r;Eð Þ dEþ ÐEÐE0ΣS E0 ! Eð Þ Φ r;E0ð Þ dE0 dE

It can be seen that with a simple change of variable, namely E to E
0
and E

0
to E,

the integral of the scattering rate is written in two similar ways:Ð
EΣS Eð Þ Φ ~r;Eð Þ dE ¼ ÐEÐE0ΣS E ! E0ð Þ dE0 Φ ~r;Eð Þ dE

¼ ÐE0
Ð
EΣS E0 ! Eð Þ dE Φ ~r;E0ð Þ dE0

Thus, the scattering cross section can be introduced in the balance equation.

Thus, after simplification, and supposing that the diffusion coefficient does not

depend on space:ð
E

� D Eð Þ ΔΦ ~r;Eð Þ dEþ
ð
E

Σa Φð Þ Φ ~r;Eð Þ dE ¼
ð
E

S ~r;Eð Þ dE

Let us consider the following definitions (called energy condensation):

S � ÐES ~r;Eð Þ dE Σa �
Ð
EΣa Eð Þ Φ ~r;Eð Þ dEÐ

EΦ ~r;Eð Þ dE
¼
Ð
EΣa Eð Þ Φ ~r;Eð Þ dE

Φ

D �
Ð
ED Eð Þ Φ ~r;Eð Þ dEÐ

EΦ ~r;Eð Þ dE
¼
Ð
ED Eð Þ Φ ~r;Eð Þ dE

Φ

8>>>><
>>>>:
The one-group [Eth,E0] diffusion equation is written with these notations as

follows:

� DΔΦþ ΣaΦ ¼ S

The source term S is broken down into:

– Fission sources νΣfΦ that produce fast neutrons at the energy of the fission

spectrum χ(E) (or for simplification E0),
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– Independent neutron sources such as the startup source with californium for the

initial loading patterns, or the secondary sources with beryllium-antimony that

are afterwards neglected.

� DΔΦþ ΣaΦ ¼ vΣfΦ

The infinite-medium multiplication factor is defined as: k1 � production
absorption ¼ vΣf

Σa

Thus: ΔΦþ k1 � 1

D

Σa

Φ ¼ 0

The migration length is defined as:

M cm½ � �
ffiffiffiffiffiffi
D

Σa

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
ED Eð Þ Φ Eð Þ dEÐ
EΣa Eð Þ Φ Eð Þ dE

s

The quantity M2¼D/Σa in [cm2] is called the migration area. The migration

pathMmust not be confused with the thermal diffusion length L � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dth=Σath

p
. The

former integrates the fact that the characteristic of the medium depends on the

incident neutron energy. The second, L, applies only to thermal neutrons. The

confusion arises from the fact that usually, the thermal flux equation is expressed

in Φth, without the “th” index as will be seen later on.

Canonical diffusion equation for one-energy group:ΔΦþ k1 � 1

M2
Φ ¼ 0 ð10:8Þ

This equation is written in the canonical form of a Helmholtz equation (histor-

ically an elliptic partial differential equation for stationary waves) as it can be

solved by myriad mathematical methods depending on the geometrical context. Let

us consider the following Helmholtz equation:

8r2V, ΔΦ rð Þ þ λ2 Φ rð Þ ¼ 0

If domain V is compact, the spectrum of the Laplace operator is a discrete set

(Dowson 1978) and the eigenmodes Φn(r), which are solutions to the equation,

form an infinite countable set such that:

8r2V, ΔΦn rð Þ þ λ2nΦn rð Þ ¼ 0 with 0 � λ20 � λ21 � λ22 � . . .

This property has some interesting consequences in the numerical analysis of

this problem to obtain the keff value for a real geometry.
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10.6 “Thermal Diffusion”

10.6.1 “Thermal” Diffusion Equation

If we focus more on thermal energy Eth which is of prime interest to the reactor

physicist since it is here that the neutron density is highest, the diffusion equation

applied at Eth is:

div ~J ~r,Ethð Þ þ Σt Ethð Þ Φ ~r,Ethð Þ ¼ S ~r,Ethð Þ þ
ð
E0
Φ ~r;E0ð Þ ΣS E

0 ! Eth

� �
dE0

The micro-reversibility principle is obtained from the non-equilibrium statistical

physics relation, called the detailed balance. It relates the probability density ω(x) of
a state x to the conditional probability P(x/x0, t), and enables observation of the

difference x0 after a time period t, since the initial state x is given by ω(x)P(x/x0, t)
¼ω(x0)P(x0/x, t). This balance is used to demonstrate the Onsager reciprocal relations

in thermodynamics. Applied to our problem, a thermal neutron has the same prob-

ability of losing as of gaining energy during a collision (only thermal neutrons can

up-scatter to higher energies after a collision on a “vibrating” atom at thermal

energy). It should be noted that this definition gives a precise idea of thermal energy,

which has not been broached until now. This is implied by the fact that the scattering

rate ΣS Ethð Þ Φ ~r,Ethð Þ is equal to ÐE0Φ ~r;E0ð Þ ΣS E0 ! Ethð Þ dE0.

That is, since ΣS Ethð Þ ¼ ÐE0ΣS Eth ! E0ð Þ dE0, and by defining Φth ¼ Φ ~r,Ethð Þ:

ΣS Ethð Þ Φth ¼
ð
E0
Φ ~r;E0ð Þ ΣS E0 ! Ethð Þ dE0

This equation is introduced in the diffusion equation expressed for Eth, giving:

�DthΔ Φth þ Σa Ethð Þ Φth ¼ Sth

with Dth¼D(Eth) and Σath ¼ Σa Ethð Þ:

Dth Δ Φth � Σath Φth þ Sth ¼ 0

Using the thermal diffusion length:

Thermal diffusion length: L cm½ � ¼
ffiffiffiffiffiffiffiffi
Dth

Σath

s
ð10:9Þ
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and, given that every absorption of a thermal neutron creates k1 more thermal

neutrons by definition3:

Sth ¼ k1 Σath Φth

Hence, the canonical thermal diffusion equation:

Thermal diffusion equation: Δ Φth þ k1 � 1

L2
Φth ¼ 0 ð10:10Þ

This thermal flux diffusion equation, also called the mono-kinetic equation, is

strictly identical to the diffusion equation averaged over one energy group but

evaluates constants D and Σa (hence L ) at thermal energy. The thermal flux

diffusion equation is also similar to the one-group flux equation assuming that the

neutrons are mono-energetic at energy Eth. This is why many authors refer to the

thermal flux diffusion equation as the one-group theory by extension. The only

difference comes from use of the following term in the equation:

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
ED Eð Þ Φ Eð Þ d Eð ÞÐ
EΣa Eð Þ Φ Eð Þ dE

s
instead of L ¼

ffiffiffiffiffiffiffiffi
Dth

Σath

s

In order to establish M, it is supposed that the flux can be separated into space

and energy terms Φ ~r;Eð Þ ¼ Φ Eð Þφ ~rð Þ. This expression naturally leads to the use

of M2 when the diffusion equation is integrated over the energy spectrum. This

hypothesis is verified for a homogeneous medium far from the boundaries.4 For a

true reactor, M is far greater than L since M also takes into account the fact that the

neutron slows down before scattering. On the other hand, L assumes that the

neutrons are at thermal energy. To reach thermal energy, a neutron must travel a

distance that slows it down from fission energy (assuming that it has not been

absorbed). It is possible to correct the transport equation to take account of

non-leakage of the neutron using Fermi’s age theory, as will be seen later.

3It must be noted that neutrons are not produced in the same place. This reasoning is valid only for

space since k1 is an average value for the reactor, and applies to any point inside it.
4Roger Naudet: Etude de la migration des neutrons dans un milieu multiplicateur en fonction de
l’intensité et de la distribution des captures [Study of neutron migration in a multiplying medium

as a function of the intensity and distribution of capture], CEA Report R2476 (1964).
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10.6.2 Interpretation of the Thermal Scattering Path

(Price et al. 1957, p168)

The thermal diffusion length is employed for didactic purposes: in the calcula-

tion of the mean square of the distance in a straight line. Let us consider a point

source of neutrons at intensity S neutrons/s. Let r be the distance “as the crow flies”

for a neutron scattering by collisions in the scattering medium until it is absorbed.

The absorption rate in a volume defined by a sphere of radius r and that at radius r
+ dr is (Fig. 10.9):

4π r2 drΦ rð ÞΣa rð Þ

Supposing the problem to be isotropic (Diu et al. 2001, p78):

�x ¼ �y ¼ �z ¼ 0 and x2 ¼ y2 ¼ z2 ¼ 1

3
r2

The absorption probability in this same zone is proportional to the absorption

reaction rate:

P rð Þ dr ¼ 4πr2dr Φ rð Þ Σa rð Þ
S

Thus:

r2 ¼
ð1
0

r2 P rð Þ dr ¼ 1

S

ð1
0

4πr4 Φ rð Þ Σa rð Þ dr

The neutron flux for a point source is expressed as:

Φ rð Þ ¼ S

4πDr
e�

ffiffiffiffiffi
Σa
D r

p
¼ S

4πDr
e�

r
L

Assuming that Σa(r) and D are constant over space:

r2 ¼ 4π

S

ð1
0

r3
S

4πD
e�

r
L Σa rð Þ dr ¼ Σa

D

ð1
0

r3 e�
r
L dr

By successive integration by parts, we obtain:ð1
0

r3 e�
r
L dr ¼ 3 L

ð1
0

r2 e�
r
L dr ¼ 6 L2

ð1
0

r e�
r
L dr ¼ 6 L4

therefore (Glasstone and Edlund 1972, p116; Meghreblian and Holmes 1960,

p225):
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Mean square distance in a straight line: r2 ¼ Σa

D
6 L4 ¼ 6 L2 ð10:11Þ

This expression imparts a geometrical meaning to L in a non-leaking (infinite)

medium. Up till now, L has simply been the inverse of an attenuation coefficient.

The mean square distance travelled in a straight line by a thermal neutron is exactly

six times the thermal scattering area. This result must not be extrapolated at �r, the
mean path value in a straight line, which is not equal to

ffiffiffi
6

p
L, but this approximation

of �r gives the correct order of magnitude of the “scattering blot”, and is more

meaningful for the engineer. Besides, the term blot implies a two dimensional

approach and is not very appropriate since the neutron has a three-dimensional

motion. Nevertheless, it is quite common to say that the neutron scatters at thermal

energy at a mean distance of two or three times the scattering path. Figure 10.10

illustrates the 3-D motion of 100 neutrons in slightly-absorbing hydrogen simulated

by a Monte Carlo method and projected in a plane. The neutrons are emitted by an

isotropic point source of 2 MeV placed at the center of space. The neutrons travel in

a straight line (figure on the left) between two anisotropic collisions with hydrogen

atoms until they are absorbed (the absorption position is represented in the figure on

the right). The circle in the right-hand figure represents a surface of area 2M2 that

experimentally validates the theoretical calculation since it may be observed that

most of these points are concentrated around that circle. A representation in two

other projection planes leads to a similar result. Although the statistical population

is low (100 neutrons!), the result is physically correct. It can also be observed that

some neutrons may have unfolded paths that are very long compared to the radius of

the scattering “smear”.

This approach has been used to study Brownian motion where it is supposed that

a particle moves freely and interacts by instantaneous collisions that scatter it

randomly in any direction with uniform probability (isotropic collision in the

r
dr

S

Fig. 10.9 Scattering and

absorbing sphere of radius

r (the picture is a 2D
projection of 3D paths!)
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laboratory frame). In this simplified model, the diffusion coefficient is inversely

proportional to the mean time between two collisions τ and is proportional to the

mean square distance (Diu et al. 2001, p79):

Diffusion coefficient for Brownian motion: D ¼ 1

6

r2

τ
ð10:12Þ

10.6.3 Deriving the Four-Factor Formula

For an infinite reactor, the diffusion equationDth Δ Φth � Σath Φth þ νΣf th Φth ¼ 0

is simplified into Σath Φth ¼ νΣf th Φth since there is no leakage. Thus, it can be

found that k1 Σath ¼ νΣf th since for a permanent critical state (k1¼ 1), the absorp-

tion Σath Φth produces k1Σath Φth new neutrons and hence k1Σath Φth ¼ νΣf th Φth.

Using the definitions of η ¼ νΣf th=Σ
fuel
ath

and of f ¼ Σfuel
ath

=Σath , and by noticing that the

neutrons are all at thermal state, i.e. ε¼ 1 and p¼ 1, the formula k1 ¼ νΣf th=Σath ¼ η
εp f is obtained.

10.7 Scattering of an Isotropic Source in a Non-Multiplying

Medium

The diffusion equation is very helpful since it can be solved analytically in several

simple geometrical cases. We will show most of these geometrical cases. The

diffusion equation is linear with respect to the source term. If G ~r0,~r
� �

is the flux

induced at~r by a unit source δ ~r0 �~r
� �

placed at ~r0, it is called the Green function

and verifies the equation:

Fig. 10.10 Illustration of the paths of neutrons in hydrogen (infography Quentin Cardon 2009)
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�D Δ G ~r0;~r
� �

þ Σa G ~r0;~r
� �

¼ δ ~r0 �~r
� �

In this case, the fluxΦ ~rð Þ ¼ Ð
~r0

G ~r0;~r
� �

S ~r0
� �

d~r0 is the solution to the source

diffusion equation in space:

�D ΔΦ ~rð Þ þ Σa Φ ~rð Þ ¼ S

The linear nature of the sources is very useful for computing the flux solution in

geometries with several sources.

10.7.1 Point Source in an Infinite Scattering Medium

Given an isotropic point source S (in thermal neutrons5 per second) located at r¼ 0,

the whole space being filled with a non-multiplying (Σf¼ 0, k1¼ 0) scattering

(D) and absorbing (Σa) medium, the thermal diffusion equation in that medium is

written for r> 0 using the spherical symmetry of the problem:

ΔΦ rð Þ � 1

L2
Φ rð Þ ¼ 1

r2
d

dr
r2
dΦ

dr


 �
� 1

L2
Φ rð Þ ¼ 0 with L2 ¼ D

Σa

The diffusion equation is not valid at r¼ 0 due to the presence of the neutron

source. It is also not valid very close to the source where, in a rigorous approach, the

transport equation should be applied (although transport itself is not valid when

“touching” the origin). The general solution of that differential equation is of the

form:

Φ rð Þ ¼ A
e
r
L

r
þ B

e�
r
L

r

The boundary condition is expressed by a physical flux that is equal to zero at

infinity, i.e.Φ(1)¼ 0, thereby leading to A¼ 0. Besides, the boundary condition on

the current—in [n/cm2/s]—can also be used to relate it to the source:

lim
r!0

4π r2J rð Þ� � ¼ lim
r!0

4π r2 �DgradΦ rð Þ½ �� � ¼ S

For an isotropic spherical geometry, the gradient is expressed as gradΦ (r)¼
∂Φ(r)/∂r and the current by:

5For fast neutrons, the scattering length L is substituted by the migration path M.
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J rð Þ ¼ �DgradΦ rð Þ ¼ DB
e�

r
L

r2
1þ r

L

� �
:

Hence: lim
r!0

4π r2J rð Þð Þ ¼ lim
r!0

4π r2DB
e�

r
L

r2
1þ r

L

� �
 �
¼ 4πDB thus:B ¼ S

4πD

Flux near a point source in a scattering and absorbing medium:

Φ rð Þ n=cm2=s½ � ¼
S n=s½ �
4πD

e�
r
L

r
ð10:13Þ

It can be seen that the flux tends to infinity when r tends towards 0 but this

solution is not physical as the diffusion equation is not valid too near the source.

However, the transport flux also tends towards infinity since the uncollided flux,

included in the total flux, is given by:

Φsc rð Þ ¼ S

4π

e�Σtr

r2

Any neutron emitted by the source is absorbed before reaching infinity, as

showed by integrating the absorption rate:

ð1
0

ΣaΦ rð Þ 4π r2 dr ¼
ð1
0

Σa

D
Sr e�

r
Ldr ¼ SΓ 2ð Þ ¼ S

Since the transport flux is larger than the diffusion flux close to the source and

given that their absorption integrals are equal, it is logically lower than the diffusion

flux far away. As seen earlier by analysis of the asymptotic transport flux, the latter

is derived from a diffusion flux but we can see that there is an attenuation coefficient

that is (slightly) greater than that for simplified diffusion. In reality, the asymptotic

difference between transport and diffusion is very small.

The flux was plotted in Fig. 10.11 for a point in the plane (Oxy) of radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. This solution is similar to the Green function of the diffusion operator

in spherical geometry (Fig. 10.12):

G ~r; ~r0
� �

¼ 1

4πD

e�
~r� ~r0j j

L

j~r � ~r0 j

The somewhat theoretical case of a non-absorbing medium is given by the

Laplace equation:
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ΔΦ rð Þ ¼ 1

r2
d

dr
r2
dΦ

dr


 �
¼ 0

where Φ(1)¼ 0 and its solution that satisfies the condition lim
r!0

�
4π r2J rð Þ� ¼ S

is:

Flux near a point source for a non-absorbing medium: Φ rð Þ
n=cm2=s
� � ¼ S n=s½ �

4πDr

ð10:14Þ

This solution is to be compared to the flux produced by a point source in a

vacuum, i.e. Φ(r)vacuum¼ S/(4π r2). It shows that beyond a distance D, the flux in a

scattering medium is smaller than the flux in a vacuum. Before D, the converse is
true since some neutrons in the scattering medium are scattered backwards by

collision and contribute to the flux. It should also be noted that the diffusion flux

is not valid close to the source for a distance of D centimeters. For the absorbing

case, the probability P(r) of the neutron being absorbed in a differential spherical

element of thickness 4π r2dr is proportional to the absorption rate:

Φ(r)

0

Fig. 10.11 Point neutron

source placed in an infinite

scattering and absorbing

medium

r

Diffusion

TransportUncollided flux

Φ
Fig. 10.12 Flux behavior

near a point source

762 10 Diffusion Approximation in Neutron Physics



P rð Þdr ¼ αΣa rð ÞΦ rð Þ4πr2dr

The proportionality coefficient is obtained by noticing that the probability of

being absorbed in an infinite space should be equal to 1:

lim
R!þ1

ð R
0

P rð Þdr ¼
ð1
0

αΣa rð Þ S

4πDr
e�

r
L 4πr2dr ¼

ð1
0

α
S

L2
re�

r
L dr ¼ αSΓ 2ð Þ ¼ 1

Thus: α ¼ 1

S

Besides, for a unit source, Σa(r)Φ(r) is a probability density. Therefore, the

probability that a neutron will be absorbed in a sphere of radius R is:

ð R
0

P rð Þ4πr2dr ¼
ð R
0

α
S

L2
re�

r
L dr ¼

ð R
0

1

L2
re�

r
L dr ¼ 1� R

L
þ 1


 �
e�

R
L

Since the probability of leaking from the sphere R is the complement in 1 of the

probability of being absorbed inside it, the leakage probability is given by:

Leakage probability from an absorbing sphere: Pleakage Rð Þ ¼ R

L
þ 1


 �
e�

R
L

ð10:15Þ

10.7.2 Anisotropic Point Source in Spherical Geometry

Using the conventional spherical coordinates:

x ¼ r sin θ cosφ, y ¼ r sin θ sinφ and z ¼ r cos θ

The Laplacian in these coordinates is written as:

ΔΦ ¼ ∂2Φ

∂r2
þ 2

r

∂Φ
∂r

þ sin 2θ

r2
∂2Φ

∂ cos θð Þ2 �
2 cos θ

r2
∂Φ

∂ cos θð Þ þ
1

r2sin 2θ

∂2Φ

∂φ2

The diffusion equation for a point source is written as:
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ΔΦ r; θ;φð Þ � 1

L2
Φ r; θ;φð Þ ¼ S x0; y0; z0ð Þ

where source S(x0, y0, z0) can be expanded as a linear combination of a Dirac

distribution δ(x0, y0, z0) and its spatial derivatives up to a certain order. It can easily
be shown by linearity of the diffusion equation that, if ψ is the solution to the

diffusion equation with source, then the derivative χ�∂α + β + γψ /∂αx∂βy∂γz is the
solution of:

Δχ � 1

L2
χ ¼ ∂αþβþγ

S x0; y0; z0ð Þ
∂α

x∂β
y∂γ

z
ð10:16Þ

Alain Checroun6 studied the general solutions to the diffusion equation with a

point source by supposing that the solution of the diffusion equation without source

in a more general case can be factorized as:

Φ r; θ;φð Þ � f cos θð Þg φð Þh rð Þ

By introducing this definition in the diffusion equation without source, hence

over the whole space except at the point source, we obtain:

fg
d2h

dr2
þ 2

r
fg
dh

dr
þ sin 2θ

r2
gh

d2f

d cos θð Þ2 �
2 cos θ

r2
gh

df

d cos θð Þ
þ 1

r2sin 2θ
fh

d2g

dφ2
� 1

L2
fgh ¼ 0

By dividing by Φ� f g h and multiplying by r2sin2θ, the following equation is

obtained:

r2sin 2θ
d2h
dr2

h
þ 2

r

dh
dr

h
þ sin 2θ

r2
d2f

f d cos θð Þ2 �
2 cos θ

r2
df

f d cos θð Þ �
1

L2

" #
¼ �1

g

d2g

dφ2
¼ m2

It is clear that the LHS depends only on r and θ, while the RHS depends only on

φ. These two terms are thus constants. First, we consider that the term d2g/dφ2 is

negative and that:

6Alain Checroun: Les sources ponctuelles de l’équation de Helmholtz en coordonnées sphériques,
journal from CETHEDEC, 5th year, 1st term 1968, No 13, pp. 9–45. The mathematical back-

ground is carried out for the Helmholtz equation of type ΔΦ(r, θ,φ) + k2 Φ(r, θ,φ)¼ 0, a situation

that is obtained for multiplying media. Alain Checroun was an assistant at the Faculty of Sciences

at Rouen, and a student of Maurice Bouix, professor at the same faculty. Bouix is the author of

numerous works on the analytical treatment of the sources of the Maxwell equation and the use of

distributions in electromagnetism.
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d2g

dφ2
þ m2g ¼ 0

the solutions of which are linear combinations of cos(mφ) and sin(mφ). These
solutions are periodic in φ and have a true physical meaning that exponential

solutions would not have if the constant were negative.

The same mathematical trick leads to:

r2
d2h
dr2

h
þ 2r

dh
dr

h
� r2

L2
¼ m2

sin 2θ
� sin 2θ

d2f

f d cos θð Þ2 þ 2 cos θ
df

f d cos θð Þ

where once again, the LHS depends only on r and the RHS depends only on θ. The
constant will be written here under the form n (n+ 1) as for the usual quantum

notation. Hence, we obtain a system of differential equations as follows:

sin 2θ
d2f

d cos θð Þ2 þ 2 cos θ
df

d cos θð Þ þ n nþ 1ð Þ � m2

sin 2θ


 �
f ¼ 0

d2g

dφ2
þ m2g ¼ 0

d2h

dr2
þ 2

r

dh

dr
� 1

L2
þ n nþ 1ð Þ

r2


 �
h ¼ 0

8>>>>>>><
>>>>>>>:

The equation in θ is simply the general Legendre equation where n is the degree
and m is the order. In mathematical references, it is often found in the following

form (Abramowitz and Stegun 1972, p332):

1� z2
� � d2w

dz2
þ 2z

dw

dz
þ ν νþ 1ð Þ � μ2

1� z2ð Þ

 �

w ¼ 0

The solution for �1� cos θ� 1 is the associated Legendre function of the

first kind Pm
n μð Þ where μ� cos θ and 0�m� n. The equation in r is a modified

spherical Bessel equation [see also (McLachlan 1948; Abramowitz and Stegun

1972, p443)] that is written as:

ρ2
d2h

dρ2
þ 2ρ

dh

dρ
� ρ2 þ n nþ 1ð Þ� �

h ¼ 0 with ρ � r

L

and its solutions are the modified spherical Bessel functions of the first kind:ffiffiffiffiffiffi
1

2

π

ρ

s
Inþ1

2
ρð Þ ¼ e�

nπ i
2 jn ρe

iπ
2

� �
with jn zð Þ ¼

ffiffiffiffiffiffi
1

2

π

z

r
Jnþ1

2
zð Þ
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of the second kind:ffiffiffiffiffiffi
1

2

π

ρ

s
I�n�1

2
ρð Þ ¼ e

3 nþ1ð Þπ i
2 yn ρe

iπ
2

� �
with yn zð Þ ¼

ffiffiffiffiffiffi
1

2

π

z

r
Ynþ1

2
zð Þ

and of the third kind:ffiffiffiffiffiffi
1

2

π

ρ

s
Knþ1

2
ρð Þ ¼ 1

2
π �1ð Þnþ1

ffiffiffiffiffiffi
1

2

π

ρ

s
Inþ1

2
ρð Þ � I�n�1

2
ρð Þ

� �

The solutions
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π= 2ρð Þp

Inþ1
2
ρð Þ and ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π= 2ρð Þp
I�n�1

2
ρð Þ form a pair that is linearly

independent for any value of n, as for the pair
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π= 2ρð Þp

Inþ1
2
ρð Þ andffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π= 2ρð Þp
Knþ1

2
ρð Þ.

To conclude, the general solution to the Helmholtz equation without source and

without any singularity on the axis Oz is written as:

Φ r; θ;φð Þwithout source ¼
X
n

X
m�n

Φm
n even cos mφð Þ þ Φm

n odd sin mφð Þ� �
Pm
n cos θð Þ

ffiffiffiffiffiffi
1

2

π

ρ

r
Knþ1

2
ρð Þ

In this expression, the functionKnþ1
2
ρð Þ tends towards 0 as it is placed further and

further away from the source, as opposed to the function Inþ1
2
ρð Þ, which tends

towards infinity far from the source.

If m ¼ 0, the odd solution is zero, i.e.Φm
n odd ¼ 0 and only the even solution is to

be kept. This solution is not valid at the origin in the presence of a Dirac source.

Checroun proposes an elegant approach that leads to a solution for the source

problem. We have seen (Eq. 10.16) that the term:

ψ m
n ¼ Φm

n even cos mφð Þ þ Φm
n odd sin mφð Þ� �

Pm
n cos θð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π= 2ρð Þ

p
Knþ1=2 ρð Þ

can be expressed using the solution ψ0
0 and its spatial derivatives of any order. If s00

is the corresponding “source” for ψ0
0, then the source sought will be expressed with

s00 and its spatial derivatives, with the same coefficients. The source s00 of the

function ψ0
0 satisfies the following diffusion equation:

Δψ0
0 �

1

L2
ψ0
0 ¼ s00

We can imagine the source as a sphere of radius a with its center at the position

of the source and set up a function corresponding to the solutions without a source

and which will be zero inside the sphere. In this case, the desired source, which is a

generalized function with the sphere as its support, is a discontinuity surface of the
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function. By taking the limit when the radius tends towards 0, the source is obtained

by considering the distribution associated with the generalized function constituted

by the source.

Let us consider the spatial Heaviside function Θ(r� a) that is zero inside the

sphere and equal to 1 outside. The function ψ Θ(r� a), where ψ is a solution to the

diffusion equation without source everywhere in space except at the position of the

point source itself, verifies the following equation:

Δ ψΘ r � að Þ½ � � 1

L2
ψ Θ r � að Þ ¼ S

where S is the generalized function with the sphere as support. Vector analysis

allows computation of Δ[ψ Θ(r� a)]:

Δ ψΘ r � að Þ½ � ¼ div grad
��!

ψΘ r � að Þð Þ
� �

¼ Θ r � að ÞΔψ þ 2
∂ψ
∂r

þ ψ

r


 �
δ r � að Þ þ ψ

dδ r � að Þ
dr

With the properties of Θ(r� a), the source of the function ψ Θ(r� a) is hence
written as:

S ¼ 2
∂ψ
∂r

þ ψ

r


 �
δ r � að Þ þ ψ

dδ r � að Þ
dr

The limit of this expression, when radius a tends towards 0 for the function ψ0
0,

is given by:

ψ0
0 rð Þ ¼

ffiffiffiffiffiffi
1

2

π

ρ

s
K1

2
ρð Þ ¼ π

2ρ
e�ρ ¼ Lπ

2r
e�

r
L

dψ0
0 rð Þ
dr

¼ �Lπ

2
e�

r
L

1

r2
þ 1

Lr


 �

The scalar product of a space function Φ that can be derived infinitely and that

decays rapidly far from the source is:

< S,Φ >� ÐÐÐ Φ x; y; zð Þ 2
∂ψ0

0

∂r
þ ψ0

0

r


 �
δ r � að Þ þ ψ0

0

dδ r � að Þ
dr


 �
dxdydz

¼ ÐÐÐ Φ x; y; zð Þ �π

r
e�

r
L

� �
δ r � að Þ þ Lπ

2r
e�

r
L
dδ r � að Þ

dr


 �
dxdydz

With a Taylor expansion in the vicinity of the source of Φ(x, y, z) and for the

exponential:
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Φ x;y;zð Þ¼Φ x0,y0,z0ð Þþr sinθ cosφ
∂Φ
∂x

����
x0

þ sinθ sinφ
∂Φ
∂y

����
y0

þ cosθ
∂Φ
∂z

����
z0

 !

þO
r2

2


 �
...

e�
r
L ¼ 1� r

L
þ 1

2

r

L

� �2
� 1

6

r

L

� �3
þ . . .

and with a volume element in spherical geometry:

dv ¼ r2dr sin θdθdφ

Therefore:

< S,Φ >¼
ðr¼þ1

r¼0

r2dr

ðθ¼π

θ¼0

sin θdθ

ðφ¼2π

φ¼0

dφ Φ x0,y0, z0ð Þ þ r sin θ cosφ
∂Φ
∂x

����
x0

þ sin θ sinφ
∂Φ
∂y

����
y0

þ cos θ
∂Φ
∂z

����
z0

 !
þ . . .

 !

� �2

L
δ r � að Þ þ dδ r � að Þ

dr


 �
Lπ

2r
1� r

L
þ 1

2

r

L

� �2
� 1

6

r

L

� �3
þ . . .


 �

Using the following property of the Dirac distribution:

< f rð Þ, δ r � að Þ >¼ f að Þ and < f rð Þ, dδ r � að Þ
dr

>¼ �df rð Þ
dr

����
a

Hence, all the terms of the integral that multiply δ(r� a) introduce a coefficient ap

with p> 1 the exponent being due to the expansion of the exponential term, and

hence, tend towards 0 when a tends towards 0. For the terms that multiply dδ(r� a)/
dr, only the constant term taken from the derivative of r2� Lπ/(2r) remains, i.e. Lπ/2.

Finally, after integration, we obtain:

lim
a!0

< S,Φ >¼
ðθ¼π

θ¼0

sin θdθ

ðφ¼2π

φ¼0

dφ �Lπ

2
Φ x0,y0, z0ð Þ


 �
¼ �2π2LΦ x0,y0, z0ð Þ

Hence, the source corresponding to the function ψ0
0 rð Þ ¼

ffiffiffiffiffiffi
1

2

π

ρ

r
K1

2
ρð Þ ¼

π

2ρ
e�ρ ¼ Lπ

2r
e�

r
L is equal to

S00 ¼ �2π2Lδ x� x0; y� y0; z� z0ð Þ
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It may be noted that this source is negative as it “compensates” for the behavior

of the spatial function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π= 2ρð Þp

K1=2 ρð Þ that tends rapidly towards infinity when ρ
tends towards 0.

Using some very complex calculations, we can compute the derivatives of the

function ψ0
0 rð Þwith respect to x, y and z, as well as the cross-derivatives and the nth

derivatives. From the previous discussions, we can deduce the source Sm
n of the

solution ψ m
n , as a function of δ and its derivatives up to the order m + n with respect

to x, y and z. Calculation of the coefficients is carried out subsequently using

recurrence relations adapted to computer programming. This approach is equivalent

to expansion of the function Φ using a basis consisting of source functions Sm
n by

calculating the moments< Sm
n ,Φ > successively. The angular parts in θ and φmay

be computed by if the angular distribution of the point source is known. In the

chapter on “Critical pile theory”, it will be seen that the previous technique can be

applied to a point source in a multiplying medium.

10.7.3 Infinite Thin Rod Source in an Infinite Scattering
Medium

Let us consider an isotropic source of thermal neutrons in the form of a thin (wire-

like or line) rod S (in neutrons per second and per cm of length of wire) situated at

r¼ 0. The whole space is filled with a non-multiplying scattering and absorbing

medium. The thermal diffusion equation in the medium is written for r> 0, using

the cylindrical symmetry of the problem:

ΔΦ rð Þ þ k1 � 1

L2
Φ rð Þ ¼ 1

r

d

dr
r
dΦ

dr


 �
� 1

L2
Φ rð Þ ¼ 0 with L2 ¼ D

Σa

1

r

d

dr
r
dΦ

dr


 �
� 1

L2
Φ rð Þ ¼ d2Φ rð Þ

dr2
þ 1

r

dΦ rð Þ
dr

� 1

L2
Φ rð Þ ¼ 0

that can be written in the form of a modified Bessel equation by multiplying by r2

(Fig. 10.13):

r2
d2Φ rð Þ
dr2

þ r
dΦ rð Þ
dr

� 1

L2
r2Φ rð Þ ¼ 0

The solution to such an equation may be written in the form:

Φ rð Þ ¼ A I0
r

L

� �
þ B K0

r

L

� �
where I0 and K0 are modified Bessel functions of the first and second kind of

order 0. Moreover, the boundary condition on current J that relates it to the source

may be used:
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lim
r!0

�
2π r J rð Þ� ¼ lim

r!0
2π r �D grad

��!
Φ rð Þ

��� ���h i� �
¼ lim

r!0
2π r D

B

L
K1

r

L

� �
 �
 �
¼ S n=cm=s½ �

Using the expansion of the Bessel function in the vicinity of 0:

K1 xð Þ ¼ γ þ Log
x

2

� �� �
I1 xð Þ þ 1

x
� x

4
þ 5x3

64
þ ::

and that of: I1 xð Þ ¼ x

2
þ x3

16
þ x5

384
þ . . .

we obtain: lim
r!0

2π r J rð Þð Þ ¼ lim
r!0

2π rD
B

L
γ þ Log

r

2L

� �� �
I1

r

L

� �
þ L

r

� �
 �
¼ 2πDB ¼ S n=cm=s½ �

Hence: B ¼ S
2πD

and: Flux of a line source: Φ rð Þ n=cm2=s½ � ¼ S n=cm=s½ �
2πD

K0

r

L

� �
ð10:17Þ

It can be noted that as in the case of a point source, the flux tends towards infinity

when r tends towards 0, and that this solution is not physical as the diffusion

equation is not valid close to the source. The transport equation is not valid either

if the distance being considered is smaller than the size of the neutron and the

transport flux also tends towards infinity very close to the source.

r

Φ (r)

Fig. 10.13 Wire-like

neutron source placed in an

infinite scattering and

absorbing medium
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10.7.4 Infinite Plane Source in an Infinite Scattering
Medium

Let S be an infinite isotropic plane source (in neutrons per second and per cm2 of

source surface) located at x¼ 0. The whole space is filled with a non-multiplying

scattering and absorbing medium (with the characteristics D and L or κ¼ 1/L ). The
diffusion equation in the medium is written as:

ΔΦ xð Þ � 1

L2
Φ xð Þ ¼ d2Φ xð Þ

dx2
� 1

L2
Φ xð Þ ¼ 0

The solution to this differential equation is of the form (Fig. 10.14):

Φ xð Þ ¼ Aeþ
x
L þ Be�

x
L ¼ Aeþκ x þ Be�κ x

The boundary condition is expressed by Φ(1)¼ 0 and Φ(�1)¼ 0. On the

right, Φ(1)¼ 0 leads to A¼ 0. At x¼ 0, the source is isotropic and induces a

current of S/2 on each side, therefore:

ΦΦ (x) 

 0 

Fig. 10.14 Plane neutron source placed in an infinite scattering and absorbing medium
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lim
x!0

J xð Þð Þ ¼ lim
x!0

�D gradΦ xð Þð Þ ¼ D
B

L
¼ S

2
hence B ¼ SL

2D

On the right: Φ xð Þ
n=cm2=s
� � ¼ S n=cm2=s½ �

2

L cm½ �
D cm½ �

e�
x
L

On the left, Φ(�1)¼ 0 leads to B¼ 0, where:Φ xð Þ ¼ Ae
x
L. The same reasoning

as for the right leads to Φ xð Þ ¼ SLe
x
L= 2Dð Þ. The two solutions to the symmetrical

flux are given by:

Flux for a plane source: Φ xð Þ ¼ S

2

L

D
e�

xj j
L ¼ S

2κD
e�κ xj j ð10:18Þ

This solution is to be compared with the flux emitted by a plane source in a

vacuum. Assuming that the diffusion equation is applicable to a vacuum, when the

absorption cross section tends towards 0, the diffusion coefficient tends towards

infinity as well as the migration length. Thus, the following equation is to be solved

for a plane geometry:

ΔΦ xð Þ ¼ 0

Its general solution with source boundary conditions is:

Φ xð Þ ¼ S

2

For a real scattering medium, the probability of a neutron being absorbed in the

range dx is proportional to the absorption rate:

P xð Þdx ¼ αΣaΦ xð Þdx ¼ αΣa
S

2

L

D
e�

x
Ldx ¼ α

S

2L
e�

x
Ldx

All neutrons are obviously absorbed between 0 and infinity, hence allowing a

normalization condition to be sought:ðþ1

0

P xð Þdx ¼ α
S

2
¼ 1 ) P xð Þ ¼ 1

L
e�

x
Ldx

The mean square distance travelled can thus be computed:

x2 ¼
ðþ1

0

x2P xð Þdx ¼ L2
ðþ1

0

x

L

� �2
e�

x
L
dx

L|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Γ 3ð Þ¼2

¼ 2L2
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This value is to be compared for a three-dimensional path of the neutron in

spherical geometry, i.e. r2 ¼ 6 L2. Given that:

r2 ¼ x2 þ y2 þ z2

Since x2 ¼ y2 ¼ z2 ¼ 2L2, we obtain (Fig. 10.15)

r2 ¼ x2 þ y2 þ z2 ¼ 6L2

10.7.5 Infinite Plane Source in an Infinite Scattering Slab

Let us consider another case with an isotropic infinite plane source S (in neutrons

per second and per cm2 of source surface) located at x ¼ 0, but this time, placed at

the center of a scattering and absorbing infinite slab with axes y and z. The latter is a
non-multiplying medium (with propertiesD and L ). The flux is sought such that it is
equal to zero at the boundaries of the scattering wall. The diffusion equation for the

medium is written as for the previous case, except that this time, the boundary

conditions are different. Instead of having a solution as a combination of exponen-

tial terms, for simplicity, we choose the solution in the following form (Fig. 10.16):

x

y
z

Fig. 10.15 Plane projection of the three-dimensional trajectory of the neutron
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Φ xð Þ ¼ A sh
x

L

� �
þ B ch

x

L

� �
The zero-flux boundary conditions at x¼ + a/2 and x¼ � a/2 are implemented

as:

A sh
a

2L

� �
þ B ch

a

2L

� �
¼ 0

Therefore: B ¼ �A sh a
2L

� �
ch a

2L

� � ¼ �Ath
a

2L

Assuming an isotropic source that emits S/2 neutrons/cm2/s in the positive

x direction, the current at the origin is given by:

�D
∂Φ xð Þ
∂x


 �
0

¼ �D
A

L
ch 0ð Þ þ B

L
sh 0ð Þ


 �
¼ �D

A

L
¼ S

2

Thus, the constant A is equal to: A ¼ �SL

2D

Introducing these values in the expression of the flux leads to:

2

a
−

2

a
+

Infinite slab of thickness a 

0

D, L

S 

Fig. 10.16 Plane neutron source placed at the center of an infinite scattering and absorbing slab
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Φ xð Þ ¼ �SL

2D
sh

x

L

� �
þ SL

2D

sh a
2L

� �
ch a

2L

� � ch
x

L

� �
¼ SL

2D

�sh x
L

� �
ch a

2L

� �þ sh a
2L

� �
ch x

L

� �
ch a

2L

� � !

Similar reasoning for the negative x direction and a zero-flux condition at

x¼ � a/2 leads to a general solution that is valid for any scattering wall:

Φ xð Þ ¼ SL

2D

sh a
2L � xj j

L

� �
ch a

2L

� �
0
@

1
A

This equation can also be written by using the fact that Φ 0ð Þ ¼ SL

2D
th

a

2L

� �
:

Flux for a scattering wall: Φ xð Þ ¼ Φ 0ð Þ
sh a

2L � xj j
L

� �
sh a

2L

� �
0
@

1
A ð10:19Þ

10.7.6 Uniform Source in an Infinite Scattering Slab

This case is slightly different from the previous one since the source S is now

isotropic and uniformly distributed in the slab thickness (in neutrons per second and

per cm3 of slab). The slab is scattering and absorbing with the same properties as in

the previous case. The flux is sought using a zero-flux boundary condition at the

edge of the wall (Fig. 10.17).

2

a
−

2

a
+

Infinite slab of thickness a

0

S, D, L

Fig. 10.17 Uniform

neutron source in the

volume
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Strictly speaking, the diffusion equation should not be applied in the presence of

sources as is the case here. The diffusion equation in the medium is similar to that in

the previous case. Therefore, the general solution of the homogeneous differential

equation is:

Φ xð Þ ¼ Ae
x
L þ Be�

x
L

or even: Φ(x)¼A sh (x/L ) +B ch (x/L ). A particular solution for the inhomoge-

neous equation is the trivial solution that is independent of space: Φ(x)¼ L2

S/D¼ S/Σa. The general solution to the inhomogeneous equation is the sum of

the particular solution to the inhomogeneous equation and the general solution to

the homogeneous equation:

Φ xð Þ ¼ A sh
x

L

� �
þ B ch

x

L

� �
þ S

Σa

The zero-flux boundary conditions at x¼ + a/2 induces the following equation:

A sh
a

2L

� �
þ B ch

a

2L

� �
þ S

Σa
¼ 0

The current is continuous and is equal to zero at the center by symmetry:

�D
∂Φ xð Þ
∂x


 �
0

¼ �D

 
A

L
ch

0

L


 �
þ B

L
sh

0

L


 �!
¼ �D

A

L
¼ 0 hence: A ¼ 0

The boundary conditions inserted in the flux solution lead to:

Φ xð Þ ¼ S

Σa
1� ch x

L

� �
ch a

2L

� � !

At x¼ 0, Φ 0ð Þ ¼ S

Σa
1� 1

ch a
2L

� � !
> 0 since ch a

2L

� �
> 1

Unlike the previous case for the scattering of plane source in a scattering slab,

the flux curvature is negative for a source uniformly distributed in the volume. This

situation will also be encountered for over-critical multiplying media.

10.7.7 Semi-infinite Slab Source

The isotropic source S is uniformly distributed in a semi-infinite slab for x< 0

(in neutron per second and par cm3 of slab). The x> 0 half space is scattering and
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absorbing with the same properties as the left side. Flux is sought so as to have a

0 solution at the positive infinite. In this case, the previously calculated solution for

a plane source will be used with the analogy of the slab as a successive pattern of

planes of infinitesimal thickness dy (Fig. 10.18).
Each contribution of the slice of thickness dy to the flux is given by:

Φy xð Þ ¼ SdyL

2D
e�

x�y
L

S dy representing a plane source at the point of negative y. The total flux at point
x is the sum of all contributions of these plane sources in y, assuming that the

sources do not interact with one another, i.e.:

Φ xð Þ ¼
ðy¼0

y¼�1

SdyL

2D
e�

x�y
L ¼ SL2

2D
e�

x
L

This method may be adapted if the slab has a thickness of y2� y1 where y1 and y2
are positive:

Φ xð Þ ¼
ðy¼y2

y¼y1

SdyL

2D
e�

x�y
L ¼ SL2

2D
e�

x�y2
L � e�

x�y1
L

� �

We obtain the solution for the semi-infinite slab by setting y2¼ 0 and y1¼ �1.

Hence, the method can be extended to a set of slabs with finite thickness, or even if

the slab is purely absorbing.

0

D , L

dy

xy

S, D, L

Fig. 10.18 Semi-infinite

slab source in the half plane

x< 0
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10.7.8 Extension to the Infinite Homogeneous Medium

If we seek the solution for a flux such that it is bonded over the whole space

consisting of a homogeneous absorbing non-multiplying medium and such that:

�DΔΦ xð Þ þ ΣaΦ xð Þ ¼ S xð Þ

Given any source form, the Laplacian operator in slab geometry has the

eigenfunctions e�ibx and e+ibx, thereby implying the following Fourier transform:

φ bð Þ ¼
ðþ1

�1
eibxΦ xð Þdx

s bð Þ ¼
ðþ1

�1
eibx S xð Þdx

8>>>>>><
>>>>>>:

Φ xð Þ ¼ 1

2π

ðþ1

�1
e�ibxφ bð Þdb

s xð Þ ¼ 1

2π

ðþ1

�1
e�ibx s bð Þdb

8>>>>>><
>>>>>>:

When applied to the diffusion equation, the relation between the flux and the

source is:

φ bð Þ ¼ s bð Þ
Db2 þ Σa

With the inverse transform, the following equation is obtained:

Φ xð Þ ¼ 1

2π

ðþ1

�1
e�ibx s bð Þ

Db2 þ Σa

db ¼ 1

2π

ðþ1

�1
e�ibx

ðþ1

�1
eiby S yð Þdy

Db2 þ Σa

db

¼ 1

4πκD

ðþ1

�1
dyS yð Þ

ðþ1

�1

2κ

b2 þ κ2
e�ib x�yð Þ db

with κ2¼Σa/D. The Fourier transform of the function e�κ |x| is given by:

ðþ1

�1
eibx e�κ xj j dx ¼ 2κ

b2 þ κ2
and

ðþ1

�1
e�ibx 2κ

b2 þ κ2
db ¼ 2π e�κ xj j

This is in fact the inverse transform of the flux expression. Therefore:

Φ xð Þ ¼ 1

2κD

ðþ1

�1
e�κ x�yj jS yð Þdy
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It is the convolution of the plane Green functionG ~r;~r 0ð Þ ¼ e�κ ~r�~r 0j j= 2κDð Þwith
the source, thereby confirming the linear nature of the equation. This property

allows calculation of the flux by summing the contributions from the various

sources.

10.7.9 Expansion on the Eigenfunctions of the Laplacian
Operator

Let us consider the case of a slab of thickness awith a source S(x). The flux solution
is obtained with zero-flux boundary conditions at +a/2 and�a/2. If the source is not
symmetric, it is not possible to ensure that the solution is even. The equation for

diffusion in the slab is:

ΔΦ xð Þ � 1

L2
Φ xð Þ ¼ � S xð Þ

D

The general solutions to the homogeneous equation are of the form e�
x
L and eþ

x
L,

which are eigenfunctions of the Laplacian in infinite slab geometry. However, let us

seek solutions in the form of decomposition on an orthogonal basis e�iBx and e+iBx

(or sinBx and cosBx), eigenfunctions in finite geometry. Since flux is zero at the

boundaries, functions of the form:

Φn xð Þ ¼ φn cos
nπ

a
x

� �
n odd

are solutions to the problem. The eigenfunctions of the Laplacian are orthogonal,

i.e.:

ðþa
2

�a
2

Φn xð Þ Φm xð Þ dx ¼ a

2
δn,m

The flux and the source are expanded on this particular basis:

Φ xð Þ ¼
X1
k¼1

φk Φk xð Þ and S xð Þ ¼
X1
k¼1

sk Φk xð Þ

and the latter are inserted in the diffusion equation that includes a source, i.e.:

X1
k¼1

φk �B2
k �

1

L2


 �
Φk xð Þ ¼ �

P1
k¼1

sk Φk xð Þ
D

The term-to-term identification of this expansion in a base of complete contin-

uous functions on the interval [�a/2, +a/2] leads to the flux moment of order k:
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φk ¼
sk

D B2
k þ 1

L2

� �

Bearing in mind that the source moment is obtained by: sk ¼ 2

a

ðþa
2

�a
2

Φk xð Þ S xð Þ dx:

Φ xð Þ ¼
ðþa
2

�a
2

2

a

X1
k¼1

Φk xð Þ Φk x0ð Þ
D B2

k þ 1
L2

� � S x0ð Þdx0

Duderstadt and Hamilton (1976) point out that in this way, expansion is obtained

of the plane Green function with zero flux at the boundaries of the slab:

G x; x0ð Þ ¼ 2

a

X1
k¼1

Φk xð Þ Φk x0ð Þ
D B2

k þ 1
L2

� �
This result can be extended to any homogeneous geometry with zero flux

conditions at the surface (cylinder, sphere) by substituting x coordinate by position

~r and by using the eigenfunctions of the Laplacian associated to the given

geometry. In practice, expansion is limited to a finite order. For a problem with

non-zero flux conditions at boundaries, all the eigenfunctions should be kept,

especially the sine functions in the plane.

10.7.10 Superposition of Flux Induced by Point Sources

We have just considered the case in which the flux calculation was carried out by

summing over the plane solution for a slab, and for an infinite medium. The

calculation by summing is justified so long as the diffusion equation remains linear,

i.e. the flux resulting from two different sources can be added if there is no

interaction between the latter (e.g. sources coupled by the flux). Generally, the

flux is the convolution of the Green function for the given geometry and the

independently distributed sources.

This approach can be extended by considering any independent source

(Fig. 10.19) as the sum of quasi-point sources for which the contributions convo-

luted by the spherical Green function are summed:
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Φ ~rð Þ ¼
ð
V

S ~r0
� � e�

~r�~r 0j j
L

4πDj~r �~r 0jd3r0

For illustration (Glasstone and Edlund 1972, p110), the flux at a point on the

x axis can be calculated as the contribution of the point sources forming a loop of

thickness dr in a source plane (Fig. 10.20):

r02¼ r2 + x2 where: r0dr0 ¼ rdr

Φ xð Þ ¼
ðr0¼þ1

r0¼x

e�
r0
L

4πDr0
2πr dr ¼

ðr0¼þ1

r0¼x

e�
r0
L

2D
dr0

Hence: Φ xð Þ ¼ SL

2D
e�

x
L

0 dy

x

1y 2y

S, D, L D , L

Fig. 10.19 Slab source of

finite thickness

'r

r

V

Fig. 10.20 Integration over

point sources
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Equation 10.17 is obtained as was shown earlier (Fig. 10.21).

This principle of superposing the solutions will be employed later for the case of

media having localized absorbing materials that can be modeled as negative

sources.

10.7.11 Absorbing Slab in an Infinite Source Medium

Let us consider a plane source at the center of an infinite medium with a uniformly

distributed source in the volume S; the principle of flux superposition can be applied
to calculate the flux in the medium as resulting from:

– a constant flux S/Σa in the infinite medium without taking into account the plane

source (S in n/cm3/s).

– a flux Φ xð Þ ¼ SPLe
� xj j

L = 2Dð Þ emitted by the plane with the uniformly distributed

source SP in n/cm2/s.

If the plane is absorbing (Fig. 10.22) instead of being a source, it can be assumed

that neutrons are lost and there is thus a negative source. If the flux in the plane is

equal to Φp and the thin slab has a thickness Δxp, the neutron loss is equal to the

absorption rate in the slab:

Sp ¼ ΣaΦpΔxp

thereby leading to the flux expression in the medium as:

Φ xð Þ ¼ S

Σa
� SP

2

L

D
e�

xj j
L ¼ S

Σa
� ΦpΔxp

2L
e�

xj j
L

x

'r
r

drrds π2=

Fig. 10.21 Integration over

the loops
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10.7.12 Thin Absorbing Slabs, the Galanin Method

In the concept of source sinks by A.D. Galanin7 (Galanin 1960), the absorption of

an infinitely thin slab is modeled as a negative source. We wish to compute the

effect of the flux (produced by a source at the origin) from identical absorbing slabs,

each of negligible thickness, placed in a scattering and absorbing medium. To do so,

the diffusion equation is written as follows, using the Dirac delta function δ(x) to
model the source at the origin:

�D
d2Φ xð Þ
dx2

þ ΣaΦ xð Þ þ γΦlδ x� xlð Þ ¼ Sδ xð Þ

This equation introduces an intensity coefficient γ called the Galanin coefficient8

as well as the flux of the slabs Φl at positions xl. It can be solved by applying the

Fourier transform:

Φ uð Þ ¼
ðþ1

�1
Φ xð Þe�i 2 π u xdx

which is applied to the diffusion equation, given that δ uð Þ ¼ 1,

δx�xl uð Þ ¼ e�i 2π u xl and
d2Φ

dx2
¼ 4π2u2ϕ:

Infinite medium  
 0 

Absorbing plane 

S/Σa

ΦpS, D, L

Fig. 10.22 Absorbing

plane in a source medium

7Alexei Dmitrievitch Galanin (1918–1999) was a Russian physicist. He worked in the group under

Pomerantchuk at ITEP. He also worked on field theory and is the author of three reference

manuals, one of which is on reactor physics and dates from 1960.
8In (Galanin 1960), γG has dimensions of [cm/s] and appears in the diffusion equation for the

neutron concentration. In the flux equation, γ is dimensionless and is equal to γG/v.
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Φ ¼ 1

4π2Du2 þ Σa
S� γ

X
l

Φl e
�i2π u xl

 !

Application of the inverse Fourier transform to the previous equation leads to:

Φ xð Þ ¼ SL

2D
e�

xj j
L � γL

2D

X
l

Φl e
� x�xlj j

L

The fluxes in the slabs Φm at positions xm are given by a system of linear

equations that can be solved numerically for a finite number of slabs:

8m2��1;þ1½, Φm ¼ SL

2D
e�

xj j
L � γL

2D

X
l

Φle
� xm�xlj j

L

In the particular case of an infinite lattice that is regularly spaced with slabs of

similar Galanin constant, Cassel and Williams9 devised an elegant analytical

solution that is beyond the scope of this work (Fig. 10.23).

10.7.13 Flux Transient

Supposing that a time-dependent source is imposed, the transient nature implies that

the flux will naturally depend on time. Indeed, the diffusion equation in plane

geometry with a fission source is written as:

0

S

x

LD ,

1x 2x
3xx− 2 − 1x

2Φ

− 1

− 2

Φ

3Φ

1Φ
1x

Φ

Fig. 10.23 Lattice of absorbing slabs in a scattering/absorbing medium with a source

9J.S. Cassel and M.M.R. Williams: The thermal diffusion length problem in an array of plates,
Nuclear Science and Engineering: 148, 453–457 (2004).
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1

v

∂Φ x; tð Þ
∂t

� DΔΦ x; tð Þ þ ΣaΦ x; tð Þ ¼ νΣfΦ x; tð Þ

Using the hypothesis of variable separation for space and time, the following

equation is reached:

Φ x; tð Þ ¼ ψ xð Þϕ tð Þ

Injecting this decomposition in the diffusion equation, then, separating the

problem into a term depending on time only and another only on space, we obtain:

1

φ tð Þ
∂φ tð Þ
∂t

¼ �λk
v

ψ xð Þ DΔψ xð Þ þ νΣf � Σa

� �
ψ xð Þ� � ¼ �λk

8><
>:

The choice of an arbitrarily negative constant�λk as solution to the problem will

be discussed later on. The pure spatial equation for φ(x) can be solved using an

approach with eigenfunctions of the Laplace operator for the homogeneous prob-

lem as seen earlier, i.e.:

DΔψ xð Þ þ λk
v
þ νΣf � Σa


 �
ψ xð Þ ¼ 0

with: ψ xð Þ ¼ P1
k¼1

ψ kΦk xð Þ and ΔΦk xð Þ þ B2
kΦk xð Þ ¼ 0

For a slab of thickness a, the eigenfunctions that are equal to zero at the

boundaries of the slab are of the following form:

Φk xð Þ ¼ φk cos
kπ

a
x


 �

The index and the sign of�λk are thus significant at this point since the following
boundary conditions ψ(a/2)¼ 0 and ψ(�a/2)¼ 0 will be applied:

λk ¼ v DB2
k þ Σa � νΣf

� �
k odd

The general solution is of the form:

Φ x; tð Þ ¼
X1
k¼1

φk e
�λk t Φk xð Þ

By summing only on the odd k values if the solution sought is zero at the

boundaries of the slab. Using the orthogonality property of eigenfunctions and

the initial value of the flux, the following can be inferred:

10.7 Scattering of an Isotropic Source in a Non-Multiplying Medium 785



φk ¼
2

a

ðþa
2

�a
2

Φ x; 0ð Þ Φk xð Þdx with: Φ x; 0ð Þ ¼
X1
k¼1

φk Φk xð Þ

Thus, we obtain:

Φ x; tð Þ ¼
X1
k¼1

2

a

ðþa
2

�a
2

Φ x0; 0ð Þ Φk x0ð Þdx0 e�λk t Φk xð Þ

(Duderstadt and Hamilton 1976) point out that this flux is not really separable as

a product of functions depending on space and time due to the infinite sum, despite

the hypothesis that the fundamental modes e�λk t Φk xð Þ are separable. It should also
be noted that the existence of a stationary solution requires that the coefficient λ1 be
equal to zero, leading to a criticality condition, which will be discussed in the next

chapter:

B2
1 ¼

π

a

� �2
¼ νΣf � Σa

D

Increasing the eigenvalues B2
k for increasing k values leads to an increase of

λk, thereby reducing gradually the contribution of the terms e�λk t. If the reactor

is over-critical, i.e. material buckling (νΣf�Σa)/D is greater than geometrical
buckling (the first and smallest positive eigenvalue):

νΣf � Σa

D
> B2

1 ¼
π

a

� �2
The existence of a positive λ1 is thus assured, leading to an increase in flux that

will adopt the shape of the fundamental mode with the decay of the other modes.

This phenomenon will be discussed later in the chapter on reactor kinetics. It should

be noted that if:

νΣf � Σa

D
> B2

3 ¼
3π

a


 �2

a second harmonic with coefficient λ3 will appear. For a sub-critical reactor, all

constants λk are negative and the flux, for any initial value, will tend towards 0.
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10.8 Measurement of the Scattering Path of a Moderator

by Attenuation

(Meghreblian and Holmes 1960, p226)

The equations studied earlier allow calculation of the value of L for simple

geometries, such as the plane source in infinite medium, by measuring the exponen-

tial attenuation of thermal neutrons. In reality, this theoretical situation with an

infinite hypothesis is never encountered. The usual technique set up in this case,

devised by Enrico Fermi (Stephenson 1954, p141; Barjon 1993, p18; Glasstone and

Edlund 1972, p117 and p281; Stacey 2001, p56; Glasstone and Sesonske 1994, p147;

Bekurts and Wirtz 1964, p360) consists in carrying out an experiment in which

thermal neutrons are injected at the base of a prism with a square or rectangular

cross section, and of a height much greater than the length of the side (Fig. 10.24).

The diffusion equation may then be solved for this geometry:

ΔΦ x; y; zð Þ � 1

L2
Φ x; y; zð Þ ¼ 0

such that the three space variables can be separated:

Φ x; y; zð Þ ¼ φ xð Þφ xð Þψ zð Þ

The diffusion equation can then be written in the following form:

d2ϕ
dx2

ϕ xð Þ þ
d2ϕ
dy2

ϕ yð Þ þ
d2ψ
dz2

ψ zð Þ �
1

L2
¼ 0

which has a solution only if:

d2ϕ

dx2
þ B2

xϕ xð Þ ¼ 0,
d2ϕ

dy2
þ B2

yϕ yð Þ ¼ 0 and
d2ψ

dz2
þ B2

zψ zð Þ ¼ 0

with: B2
x þ B2

y þ B2
z ¼ 1

L2

The solution is sought for the fundamental mode that is equal to zero at the

surface of the prism in directions x and y, and retaining only the decreasing

exponential along the z axis (by considering that the height c is a very large

compared to the width a and the length b). Thus, the solution that is zero at infinity

is written in the form:

Φ x; y; zð Þ �
X
k

X
m

Φkm cos kπ
x

a

� �
cos mπ

y

b

� �
e
� z

Lkm

For a column of finite extrapolated height z0, the solution may be written as:
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Φ x; y; zð Þ ¼
X
k

X
m

Φkm cos kπ
x

a

� �
cos mπ

y

b

� �
sh κkm z0 � zð Þ½ �

Due to the symmetries, it can be anticipated that coefficients Φkm are zero where

k or m are even. The source can be modeled as a plane source Sδ(x, y)/2 where the

Dirac delta for two dimensions is expanded in a Fourier series:

δ x; yð Þ ¼
X
k

X
m

4

ab
cos kπ

x

a

� �
cos mπ

y

b

� �

with:

ðþa
2

�a
2

ðþb
2

�b
2

δ x; yð Þ dxdy ¼ 1

The coefficient 2 is applied to the source since only S/2 neutrons are emitted

towards the prism. The coefficients Φkm are found by identification of the coeffi-

cients of the axial diffusion current to the source:

�D
∂Φ
∂z


 �
0

¼ D
X
k

X
m

Φkm

Lkm
cos kπ

x

a

� �
cos mπ

y

b

� �

¼ S

2

X
k

X
m

4

ab
cos kπ

x

a

� �
cos mπ

y

b

� �

where: Φkm ¼ 2SLkm
Dab

x

z
y

c

b 

a 

Fig. 10.24 Moderator prism for the measurement of L
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The fundamental mode is obtained for k¼ 1 and m¼ 1, with the other harmonics

being damped very quickly as we move further from the source. If the flux is

measured far from the source, L can be computed as:

1

L2
¼ 1

L211
� π

a

� �2
� π

b

� �2
The terms (π/a)2 and (π/b)2 are bucklings that characterize the radial leakage

from the prism. The harmonics disappear very quickly far from the source. An

experiment to measure the scattering path in graphite of nuclear quality using this

method was set up in 1966 with the French MARIUS graphite pile.10

A square-based columnwas placed at the side of theMARIUS pile and the column

was protected from parasite neutrons emanating from the pile—from the external

parts at the beginning of the column (Faraday cage effect using an electrical analogy,

cf. (Figs. 10.25 and 10.26)—using cadmium logs. Analysis showed the absence of a

harmonic of order 3 at a distance of 50 cm from the source. The scattering length of

the graphite was L¼ 51.98 
 0.36 cm as measured experimentally for reference

conditions (T¼ 20
	
C, ρ¼ 1.672 g/cm3 and pressure¼ 738.8 mm Hg) and the

absorption cross section of the graphite was σa¼ 3.92
 0.06 mbarns. A similar

analysis can be carried out with a cylinder, expressing the flux as:

Φ r; θ; zð Þ ¼
X
k

X
m

Φkm Jk Jkm
r

R

� �
cos mθð Þ sh κkm z0 � zð Þ½ �

The pulsed source method conceived by J. Horowitz and V. Raievski (Raievski

1960) is an original method to compute the scattering length. It consists in oscillating

a source in periodic fashion using a mechanical means. The resulting source has the

form eiωt S ~rð Þ. The solution to the non-stationary diffusion equation in the column:

�DΔΦ ~r; tð Þ þ ΣaΦ ~r; tð Þ ¼ �1

v

∂Φ ~r; tð Þ
∂t

has a flux solution of the form Φ r, t
���!� �

¼ eiωtφ ~rð Þ. By inserting this form in the

differential equation and assuming that there is a point source, the general solution

can be established as:

φ ~rð Þ ¼ α
eþi μr

r
þ β

e�i μr

r

with: μ2 ¼ 1
L2
þ i ωDv

10M. Sagot, G. Cuny and al: MARIUS – HECEMSAC: Mesure de la longueur de diffusion du
graphite en expériences exponentielles [Measure of graphite scattering-length in exponential

experiments], report SECMG No 29, August 1966, Nuclear Studies Center of Cadarache.
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Fig. 10.25 Longitudinal cross section and front view of the square-based graphite column placed

at the side of the Marius pile (Cadarache (France), 1966). The position of the protective cadmium

logs can be observed

Fig. 10.26 Sketch of the French MARIUS reactor. The moving train used for oscillation exper-

iments is seen
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which is usually written as: μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L2
þ m2

2
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1
L2
þ m2

2

svuut
with m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L4
þ ω

Dv

� �2r
The flux then behaves like a spherical wave of the following type:

Φ ~r; tð Þ / e
i η r

r
ei ωt�2π

λ rð Þ

with attenuation coefficient η, wavelength λ and propagation speed v:

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L2
þ m2

2

s
λ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m2 � 1
L2

s
v ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m2 � 1
L2

s

Measurement of these quantities is performed with detectors placed along the

axis of the column. This allows evaluation of the scattering length and the diffusion

coefficient. That method was applied to the same graphite column placed at the side

of the MARIUS reactor, and yielded a scattering length L¼ 51.70 
 0.25 cm,
vΣa¼ 77.2 
 0.6 s�1, a mean free path with transport correction of λtr¼ 2.497


 0.01 cm, and an absorption cross section for graphite of σa¼ 3.97
 0.03

mbarns, which is consistent with the previous exponential experiment.

10.9 Pulsed Neutron Method

The concept of using a pulsed neutron source in a scattering medium is very old. The

golden days of the physics of pulsed neutron date back to 1955–1965. Indeed, study

of neutron thermalization in a scattering medium may be readily performed by an

experimenter having a neutron source and an adequate counting/acquisition system.

The French CEA thus carried out several measurements of graphite to obtain its

properties, in support of the French UNGG program. Furthermore, similar measure-

ments were carried out on water for comparison with foreign laboratories and for the

design of methods. In this context, the work of V. Raievski and J. Horowitz for

measuring the asymptotic diffusion coefficient of heavy water published on the

occasion of the Atoms for Peace conference at Geneva in 1955 may be cited.

The pulsed neutron method was first employed by Manley et al.11, who used it to

measure prompt neutron lifetime in water and the cross section of hydrogen. The

results were published in 1942 in Physical Review and before the interruption in

publications on nuclear energy due to the Manhattan project. The pulsed neutron

11Manley, Haworth, Lubke, The mean life of neutron in water and the hydrogen capture cross-
section, Physical review 61, 152 (1942).
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method was extensively developed in the United States after the war.12 France

followed in the 1960s.

In 1955, J. Lehner and G.M. Wing13,14 proposed a complete theoretical approach

for the spectrum (in the mathematical sense) of functions that are solutions to the

neutron transport equation for neutrons, with an asymptotic slowing-down operator

in the case of an infinite slab. G. MiltonWing took over and developed an analytical

solution for the kinetic transport problem in Chap. 8 of his book of 1962: An
introduction to transport theory (Wing 1962). S. Albertoni and B. Montagnini15

reviewed the main results and extended them to other forms of operators in an

excellent paper published in 1965 during the IAEA symposium at Karlsruhe on the

physics of pulsed neutrons. Lehner and Wing showed that the neutron flux solution

of the slowing-down equation in kinetics can be decomposed using a spectrum of

functions (in distribution terms), and consisting of:

– a continuous spectrum in the complex half-space of eigenvalues for which the

real part is less than�Σtv0, where v0 is the speed of the neutron and Σt is the total

cross section of the slab,

– a finite number of strictly positive eigenvalues.

Wing showed in his book that neutron density can be written as (Wing 1962, p125):

n z; μ; tð Þ ¼
Xm
i¼1

e βi�1ð Þ t Xsj
k¼1

f ;Ψ∗
i,k

� �
Ψi,k z; μð Þ þ e�t ζ z; μ; tð Þ

The function ζ(z, μ, t) accounts for the continuous spectrum while the discrete

spectrum of eigenvalues λi¼ βi� 1 appears under the summation sign. The func-

tion ζ(z, μ, t) is bounded by:

ζ z; μ; tð Þj j < D1 z; μð Þ t2ln2t

The calculation of this bound is extremely important since it leads to the

affirmation that:

lim
t!þ1 e�t ζ z; μ; tð Þ ¼ 0

The decay of the function ζ(z, μ, t) over time is a very complex problem, but it is

reasonable to suppose that it is rapidly negligible compared to the largest discrete

eigenvalue. Thus, in the end, we may consider that neutron density behaves as

12Franck D. Judge: Neutron transport theory in pulsed multiplying assemblies, PhD at The

Renselaer Polytechnic Institute, august 1963.
13J. Lehner, G.M. Wing, On the spectrum of an asymmetric operator arising in the transport
theory of neutrons, Communications on Pure Applied Mathematics Vol. 8, pp217–234 (1955).
14J. Lehner, G.M. Wing, Solution of the linearized Boltzmann equation for the slab geometry,
Duke Mathematical Journal Vol. 23, pp125–142 (1956).
15S. Albertoni, B. Montagnini, Some spectral properties of the transport equation and their
relevance to the theory of pulsed neutron experiments, Pulsed Neutron Research, Proceedings of

a symposium, Karlsruhe, 10–14 May 1965, Volume 1, pp239–272.
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emax λið Þ t, whilst noticing that all values of λi are negative. For a finite medium,

Lehner and Wing showed that the continuous spectrum degenerates into a spectrum

with complex discrete eigenvalues, while conserving strictly real eigenvalues above

�Σtv0. This remark removes the problem of the continuous spectrum in an asymp-

totic approach over long periods.

It is also very interesting to compare this theory with treatment of the 1D

transport equation as a function of the cosine of the scattering angle μ in the theory

of Lafore and Millot or of Case for the solution of the dispersion equation.

In a finite medium, in which flux may be factorized as an infinite sum of

decreasing exponentials, flux behaves “very quickly” as a unique decreasing expo-

nential. This property is used to write:

Φ ~r;E; tð Þ / Φ ~rð Þ Φλ Eð Þe�λ t

The letter Φ is always used regardless of its dependence (space, energy or time)

so as to simplify the notations (thereby avoiding the use of too many letters!).

The time-dependent equation under its diffusion form is:

1

v

∂Φ ~r;E; tð Þ
∂t

� D ~r;Eð ÞΔΦ ~r;E; tð Þ þ Σt ~r;Eð ÞΦ ~r;E; tð Þ ¼ð
E
0

dE
0
Σs ~r;E

0 ! E
� �

Φ ~r;E
0
; t

� �
þ S ~r;E; tð Þ

In a non-multiplying medium, the source is zero. The RHS of the equation is the

slowing-down operator:

R Φ½ � �
ð
E
0

dE
0
Σs ~r;E

0 ! E
� �

Φ ~r;E
0
; t

� �

The equation for diffusion without source can be overwritten by distinguishing

the scattering reactions from absorption in the total cross section:

1

v

∂Φ ~r;E; tð Þ
∂t

� D ~r;Eð ÞΔΦ ~r;E; tð Þ þ Σa ~r;Eð ÞΦ ~r;E; tð Þ ¼
R Φ½ � � Σs ~r;Eð ÞΦ ~r;E; tð Þ � H Φ½ �

Assuming that the spatial part of the flux obeys the fundamental mode, i.e.:

ΔΦ ~rð Þ þ B2Φ ~rð Þ ¼ 0

By injecting this form of the flux in the diffusion equation, the following is

obtained:
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�λ

v
þ DB2 þ Σa


 �
Φλ Eð Þ ¼ H Φλ Eð Þ½ �

This equation is for the eigenfunction in energy. By integrating it for all

energies, the following property of the H operator may be employed:ð
E

H Φλ Eð Þ½ � dE ¼ 0

Since by definition: ð
E

dE
0
Σs E

0 ! E
� �

¼ Σs E
0

� �

By considering that absorption has a pure 1/v form, we obtain:

�λþ DvB2 þ vTΣa kTð Þ ¼ 0

since Dv �

Ð
v

n vð ÞDvdvÐ
v

n vð Þdv
For an infinite medium (B2¼ 0), the solution is a pure Maxwellian flux given

that:

�λ+ vTΣa(kT)¼ 0 and thus H[Φλ(E)]¼ 0

For cases where B2> 0, the flux is shifted towards lower energies: this is

called cooling of the neutron spectrum. In the opposite case where B2< 0, the flux is

shifted towards the higher energies; this is called hardening orwarming of the spectrum.

Dv B2
� �

can be expressed as a continuous function of buckling in its polynomial form:

Dv B2
� � ¼ D0 � CB2 � FB4 þ : . . .

Thus, the following expanded expression for the eigenvalue:

λ B2
� � ¼ v0Σa kTð Þ þ D0B

2 � CB4 þ FB6 þ : . . .

Several authors have thus employed this formulation to experimentally measure:

– the neutron lifetime in the moderator being considered (1/v0Σa(kT)),
– the asymptotic diffusion coefficient16 D0 cm2=s½ �, not to be confused with the usual

diffusion coefficient, which is expressed in cm,

– the cooling coefficient C cm4=s½ �,
– or the coefficient F cm6=s½ � which is negative for water.

16Some authors simply call this the diffusion coefficient, but adding the term asymptotic avoids

confusion.
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In his review of pulsed neutrons experiments,17 K.H. Beckurts presents the two

main methods of measuring λ(B2). For B2> 0, the size of the moderator being studied

is varied to change the buckling. It should be noted that it is difficult to conduct

experimental measurement of very extensive buckling, which occurs in small reactors.

The buckling forB2< 0 can bemeasured by gradually poisoning themoderatorwith an

absorbing material; this can be quite easily achieved for example by adding boric acid

to the water. The spatial attenuation coefficient κ, such that Φ ~r;Eð Þ ¼ e�κzΦκ Eð Þ,
then depends on the absorption of the medium (Figs. 10.27 and 10.28):

κ2 ¼ A1Σa kTð Þ þ A2Σ2
a kTð Þ þ . . .

Fig. 10.27 Schematic of the functions α and κ2. Adapted from Henry C. Honeck: Brookhaven

Conference, volume IV, p1208 (1962)

17K.H. Beckurts, Review of pulsed neutron experiments, Pulsed Neutron Research, proceedings of
a symposium, Karlsruhe, 10–14 May 1965, Volume 1, pp3–34.
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These experimental measurements can be compared to theoretical calculations

using an explicit representation for the slowing-down operator (e.g. the Nelkin

model)—this was a vast area of research in the 1960s.

Fig. 10.28 The enlarged alpha versus B square curve for water. Adapted from K.H. Beckurts,

Karlsruhe Conference, Vol. 1, p 10 (Beckurts 1965)
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In France, at the beginning of the 60’s, for his PhD Gérard Cuny18 performed

experiments to determine 1/v0Σa(kT)[μs] and D0 TH2Oð Þ cm2=s½ � by modifying the

buckling of a vessel of water, for which the height was varied. The parameter

C could not be measured due to the unsophisticated counting system of the time,

C being calculable only if 1/v0Σa(kT)[μs] and D0 TH2Oð Þ cm2=s½ � are known with

sufficient precision. The value of his work lies in analysis of the error on the

eigenvalue due to the count rate and on the precision concerning time for the

permanent regime to be established. This measuring technique was later used by

the CEA at Cadarache19 for graphite with V. Deniz and M. Sagot. The measurements

for D0 TH2Oð Þ cm2=s½ � are consistent with the existing literature at that time, especially

those of Dardel and N.G. Sj€ostrand, who set the standards for such experiments.

Two conferences are indispensable for the historical review of pulsed neutrons.

The first one on the thermalization of neutrons took place at Brookhaven (April 30 to

May 2, 1962) and involved the greatest names in the field: Corngold, Sj€ostrand,
Starr, Beckurts, etc. Volumes III and IV dealing with the theoretical aspects are

extremely useful. The second was the major meeting organized by the IAEA at

Karlsruhe (May 10–14, 1965), which gives a more recent overview of the field.

10.10 Diffusion in a Homogeneous Slab

Let us consider the calculation of the flux at two energy groups in an infinite slab

due to an incident flux of monokinetic neutrons (source S at energy E0¼ 10 MeV
for instance) perpendicular to the slab. The energy spectrum is discretized into two

groups: fast at [10MeV, 0.625 eV[ and thermal at [0.625 eV, 0 eV[ by assuming that

there is no upscattering from the thermal group to the fast group. Thus, the diffusion

equation is written for two energy groups as (Fig. 10.29):

�D1ΔΦ1 þ Σa1 þ Σ1!2ð ÞΦ1 ¼ S δ xð Þ
�D2ΔΦ2 þ Σa2Φ2 ¼ Σ1!2Φ1

�

18Gérard Cuny (1936–?). After his BSc at Marseille, he was part of the first group of MSc students

in Reactor Physics in 1962. Later, for his PhD, he worked at the CEA in the team of Proserpine at

the Service for critical experiments of CEA/Saclay of D. Breton. In 1965, he was the co-author of a

collective work on the analysis of graphite and beryllium oxide by pulsed neutrons. Paul Reuss

indicates that Gérard Cuny passed away at a young age but supplies no further information.
19G. Cuny, V. Deniz, J. Lalande, J.G. Le Ho and M. Sagot, Etude du graphite et de l’oxyde de
beryllium par la method de la source pulse de neutrons, [A study of graphite and beryllium oxide

using the neutron pulse source method], Pulsed Neutron Research, Proceedings of a symposium,

Karlsruhe, May 10–14, 1965, Volume 1, pp89–104.
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a differential system that is solved by seeking the flux solutions that cancel

one another out at infinity. If we set κ21 ¼ Σa1 þ Σ1!2ð Þ=D1, κ22 ¼ Σa2=D1 and

Σt1¼Σa1 +Σ1! 2, by considering that the source is a neutron current in the positive

direction (abscissa) (Jþ1 0ð Þ ¼ S) and supposing that the thermal flux is zero at the

origin, we obtain:

Φ1 xð Þ ¼ S

κ1D1

e�κ1x

Φ2 xð Þ ¼ Σ1!2 S

κ1D1D2 κ21 � κ22
� � e�κ2x � e�κ1xð Þ

8>><
>>:

These results lead to several remarks: the fast flux decays exponentially and

conserves the current at the origin as imposed by the boundary condition. The fast

flux at the origin is equal to S= κ1D1ð Þ ¼ S=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σa1 þ Σ1!2ð ÞD1

p
. For pure water at

20 	C, (Barjon 1993) gives D1� 1.16 cm, Σ1! 2� 0.043 cm�1 and Σa1<<Σ1! 2,

which means that the fast flux at the origin is larger than the flux S.
This result may be taken to show that fast neutrons with energy of less thanE0 are

back-scattered by the water slab and leak in the vacuum. These neutrons traveling

through the surface of the slab towards the left must be counted with neutrons at

E0¼ 10 MeV traveling towards the right. The rise in the thermal flux is physical and

predicts the leakage of thermal neutrons towards the vacuum. This is the albedo effect

that will be discussed in more detail in the chapter on the reflector.

The solution obtained can be improved by noticing that 10 MeV neutrons will

always move from left to right since in the case of a collision that changes their

direction, eventually towards the rear, they would lose their energy. This reasoning

implies that there is no 10 MeV neutron able to escape towards the vacuum,

meaning that the current J�0 x ¼ 0ð Þ ¼ J�0 xð Þ ¼ 0, where 0 indicates energy E0.

Hence, the positive flux and currents can be calculated precisely in the water slab.

The latter flux and current are attenuated exponentially due to absorption and

scattering:

x

Vacuum

[ ]scmn
S

// 2

[ ]/sn/cmΦ 22

[ ]/sn/cmΦ 21

Fig. 10.29 Scattering in a slab of water in two-group theory : fast and thermal flux along the depth

in the slab
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Φ0 xð Þ ¼ Φ0 0ð Þ e�Σt0x ¼ Se�Σt0x

Jþ0 xð Þ ¼ Jþ0 0ð Þ e�Σt0x ¼ Se�Σt0x

�

It may be noted that neutrons at this energy are mono-directional, and that flux

and current are the same. This result is trivial in transport theory and is compatible

with the diffusion equation only if:

J xð Þ ¼ Jþ0 xð Þ � J�0 xð Þ|fflffl{zfflffl}
0

¼ Se�Σt0x ¼ �D0 gradΦ0 ¼ D0Σt0Se
�Σt0x

for which equality is possible only by imposing as the diffusion coefficient D0 ¼
1/Σt0, i.e. the mean free path. This result, which is diverges greatly from the

traditional theory (D ¼ 1/(3Σt)), proves that diffusion is only applicable by con-

struction if the flux results from a diffusing process. This is not the case for a beam

of neutrons. In any case, it is not correct to write the diffusion equation for the flux

Φ0, however far the source be. Assuming this artificial diffusion coefficient D0, the

flux at 10 MeV obeys a classical transport equation with κ20 ¼ Σa0 þ Σ0!1ð Þ=D0:

�D0ΔΦ0 þ Σa0 þ Σ0!1ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Σt0

Φ0 ¼ S δ xð Þ with Φ0 xð Þ ¼ S

κ0D0

e�κ0x ¼ Se�Σt0x as a

solution

Since a particular energy E0 for the fast group has been defined, the fast group

is defined as ] 10MeV, 0.625 eV[ where the first bound is excluded. The equation

in this new group must contain a source term for scattering reaction rates of

energy E0 to group 1:

�D1ΔΦ1 þ Σa1 þ Σ1!2ð ÞΦ1 ¼ Σ0!1Φ0 ¼ Σ0!1 Se
�Σt0x

for which the solution is zero at 0 and which is written as κ21 ¼ Σa1 þ Σ1!2ð Þ=D1:

Φ1 xð Þ ¼ Σ0!1 S

D1 κ21 � Σ2
t0

� � e�Σt0x � e�κ1x
� �

Assuming that there is no scattering directly from energy E0 to group 2 (this is

not completely physically correct for slowing-down with hydrogen from water but

remains very acceptable in terms of order of magnitude20), the diffusion equation in

the thermal group is unchanged. Its solution is given by:

20Assuming that the slowing-down law is uniform with energy, Paul Reuss points out that the

probability of a neutron dropping straight from 10MeV to below 0.625MeV isΔE/E0¼ 0.625/107,

which is negligible.
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Φ2 xð Þ ¼ Σ0!1Σ1!2 S

D1D2 κ21 � Σ2
t0

� � e�κ2x � e�κ1x

κ22 � κ21
� � � e�κ2x � e�Σt0x

κ22 � Σ2
t0

� � !

These results remain a two-energy group calculation but integrate a source at

energy E0 as evaluated by transport (Fig. 10.30). It is known from theory that the

flux Φ1 and Φ2 are false as we tend towards the source at least three times the mean

free path of the neutron. Hence, we cannot place too much trust in the value for the

completed total flux as given by Φtotal ¼ Φ transport
0 þ Φdiffusion

1 þ Φdiffusion
2 close to

the source.

Diffusion theory predicts that the neutron current in the negative direction

(leakage from the slab) can be computed with a neutron balance on the slab for

both the fast and thermal groups. This balance is synonymous with the fact that the

number of fast neutrons leaking from the slab is the difference between the fast

source and the number of fast neutrons absorbed or scattered in the thermal group:

ðþ1

0

� D1ΔΦ1 xð Þdx ¼
ðþ1

0

Σ0!1 Se
�Σt0xdx�

ðþ1

0

Σa1 þ Σ1!2ð ÞΦ1 xð Þdx

¼ Σ0!1

Σt0
S 1� Σa1 þ Σ1!2ð Þ

κ1D1 κ1 þ Σt0ð Þ
� �

¼ Σ0!1

κ1 þ Σt0ð ÞS

This leakage can also be calculated by evaluating the net fast current at the

interface for which the outward normal is�~x. It can be noticed that the positive fast
current Jþ1 0ð Þ is zero as vacuum does not send back any neutrons in the active

region:

J�1 0ð Þ¼�J net
1 0ð Þ¼�D1 grad

��!
Φ1 xð Þ: �~xð Þj0¼

Σ0!1

κ21�Σ2
t0

� �S κ1�Σt0ð Þ¼ Σ0!1

κ1þΣt0ð ÞS

[ ]scmn
S

// 2

x 

[ ]/sn/cmΦ 20

[ ]/sn/cmΦ 22

Vacuum 

[ ]/sn/cmΦ 21

Fig. 10.30 Scattering in a slab of water in two-group diffusion theory + transport source
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These two calculations are indeed similar thanks to the Ostrogradski theorem

that simplifies the calculation of the Laplacian term. Similarly, the thermal leakage

can be also computed:

J�2 0ð Þ¼�J net
2 0ð Þ¼�D2 grad

��!
Φ2 xð Þ: �~xð Þj0¼

Σ0!1Σ1!2

D1 κ21�Σ2
t0

� � 1

κ2þΣt0
� 1

κ2þκ1


 �
S

The total albedo of the slab of water can be computed as follows, withJþ0 0ð Þ ¼ S:

βmur ¼
J�1 0ð Þ þ J�2 0ð Þ

Jþ0 0ð Þ ¼ Σ0!1

κ1 þ Σt0ð Þ þ
Σ0!1Σ1!2

D1 κ21 � Σ2
t0

� � 1

κ2 þ Σt0
� 1

κ2 þ κ1


 �

Imposing zero-flux conditions for Φ1 and Φ2 at the interface is in fact quite

artificial. The choice could have been to cancel these fluxes at the extrapolated

surfaces for the fast and thermal groups, which will not have the same values. Since

the current is not zero at the interface, the flux in transport theory cannot be zero

either, which implies that there cannot be a zero flux at the interface between a

fissile zone and a vacuum. Since Jþ1 0ð Þ ¼ 0 and Jþ2 0ð Þ ¼ 0, a more “physical”

solution (with all the limitations that diffusion theory implies) could be one that

ensures that J�1 0ð Þ ¼ Φ1 0ð Þ and J�2 0ð Þ ¼ Φ2 0ð Þ. After calculations, we obtain:

Φ1 xð Þ ¼ Σ0!1 S

D1 κ21 � Σ2
t0

� � e�Σt0x � 1þ Σt0D1

1þ Σt0κ1
e�κ1x


 �

Φ2 xð Þ ¼ Σ0!1Σ1!2S

D1D2 κ21 � Σ2
t0

� � 1

κ22 � Σ2
t0

� � e�Σt0x � 1þ κ1D2

1þ κ2D2

e�κ2x


 � 
8>>><
>>>:

þ 1

κ21 � κ22
� � 1þ Σt0D1

1þ κ1D1

e�κ1x � 1þ Σt0D2

1þ κ2D2

e�κ2x


 �!

This result must be interpreted with caution. We chose the fast and thermal flux

such that at the interface, the diffusion current is equal to the flux. In fact, transport

theory does not relate the current to the flux gradient. Using such an approach, the

neutron leakage is modified and hence the albedo of the slab of water (Fig. 10.31).

These various calculations demonstrate the limits of diffusion theory and the

difficulty of calculating a reflector such that its behavior in diffusion theory remains

the same as a real reflector by conserving the results obtained via transport theory.

This issue of transport-diffusion equivalence will be discussed later.
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10.11 Source Thermalization Transient in Diffusion

Theory

10.11.1 Infinite Medium

Let us consider the time-dependent solution for a flux that is imposed by a source in

a non-multiplying infinite medium. This flux verifies the equation in an infinite

medium with our usual notations:

1

v

∂Φ ~r;E; tð Þ
∂t

¼ � Σs Eð Þ þ Σa Eð Þð ÞΦ ~r;E; tð Þ

þ
ð1
0

Σs E
0 ! E

� �
Φ ~r;E

0
; t

� �
dE

0 þ S ~r;E; tð Þ

A small trick consists in writing the slowing-down operator in a symmetric form

by dividing the flux and the source by a Maxwell function in energy. It may be

recalled that the Maxwell function is the solution to the thermalization equation

without absorption:

φ ~r;E; tð Þ � Φ ~r;E; tð Þffiffiffiffiffiffiffiffiffiffiffi
m Eð Þp and s ~r;E; tð Þ � S ~r;E; tð Þffiffiffiffiffiffiffiffiffiffiffi

m Eð Þp
These new quantities are called the symmetrized flux and symmetrized source.

This leads to the diffusion equation in infinite medium in the following form:

[ ]scmnS
// 2

x 
Void 

[ ]/sn/cmΦ 20

[ ]/sn/cmΦ 21

[ ]/sn/cmΦ 22

Fig. 10.31 Scattering in a slab in two-group diffusion theory in a slab of water + transport source

+ transport boundary conditions
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∂φ ~r;E; tð Þ
∂t

¼ �v Σs Eð Þ þ Σa Eð Þð Þφ ~r;E; tð Þ þ v
ffiffiffiffiffiffiffiffiffiffiffi
m Eð Þ

p

�
ð1
0

Σs E
0 ! E

� � φ ~r;E
0
; t

� �ffiffiffiffiffiffiffiffiffiffiffiffi
m E

0� �q dE
0 þ s ~r;E; tð Þ

The symmetrized slowing-down operator may now be introduced as:

RE φ½ � � v
ffiffiffiffiffiffiffiffiffiffiffi
m Eð Þ

p ð1
0

Σs E
0 ! E

� � φ ~r;E
0
; t

� �ffiffiffiffiffiffiffiffiffiffiffiffi
m E

0� �q dE
0 �

ð1
0

K E
0 ! E

� �
φ ~r;E

0
; t

� �
dE

0

And by extension, the Boltzmann operator will be symmetric and real, and thus

self-adjoint:

HE φ½ � �
ð1
0

K E
0 ! E

� �
� v Σs Eð Þ þ Σa Eð Þð Þδ E� E

0
� �n o

φ ~r;E
0
; t

� �
dE

0

Introducing the Dirac function entails that the loss terms are included in the

integral on energy. The solutions to the homogeneous equation (without any source

term) and without leakage will be sought as an expansion in space over the

eigenfunctions of the Boltzmann operator.

10.11.2 Finite Medium

By modelling the leakage term under the form: D Eð ÞΔφ ~r;E; tð Þ, the diffusion

equation in a finite medium is written as:

∂φ ~r;E; tð Þ
∂t

¼ HE þ vD Eð ÞΔf g φ½ � þ s ~r;E; tð Þ

It should be noted that the operator {HE+ vD(E)Δ} [] is always symmetric and

real, and hence is self-adjoint. For a case with leakage, the symmetrized flux and the

source may be developed along the spatial modes of the diffusion equation in the

geometry of material buckling B2 being considered:

ΔΦn ~rð Þ þ B2Φn ~rð Þ ¼ 0 n ¼ 0, ::, þ1 with Φn ~rSð Þ ¼ 0 at the surface of the

geometry.

i.e.: φ ~r;E; tð Þ ¼ P1
n¼0

φn E; tð ÞΦn ~rð Þ and s ~r;E; tð Þ ¼ P1
n¼0

sn E; tð ÞΦn ~rð Þ
The termΦ0 ~rð Þ is the fundamental mode, and is always positive on the geometry.

Hence, every moment of the symmetrized flux satisfies the equation:
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∂φn E; tð Þ
∂t

¼ HE � vD Eð ÞB2
� �

φn E; tð Þ½ � þ sn E; tð Þ

Assuming that the moments can be factorized in time and space as follows:

φn E; tð Þ ¼
X1
l¼0

al,nψ l Eð Þe�λl t

The coefficients al , n are obtained using a given initial condition. Injecting that

expansion in the homogeneous equation without source, we obtain:

�
X1
l¼0

λlal,nψ l Eð Þe�λlt ¼
X1
l¼0

al,ne
�λlt HE � vD Eð ÞB2
� �

ψ l Eð Þ½ �

This is possible at any given time t only if:

HE � vD Eð ÞB2
� �

ψ l Eð Þ½ � þ λlψ l Eð Þ ¼ 0

10.11.3 Expansion on Eigenfunctions

The expansion of φn(E, t) is valid only if the eigenfunctions ψ l(E) of the Boltzmann

operator (without leakage for the time being) form a complete basis. The operator

being self-adjoint, these functions form an orthogonal basis, as will be shown in

Chap. 12, such that by normalizing them correctly:

ð1
0

ψ l Eð Þψ l0 Eð ÞdE ¼ δl, l0

M. Ohanian21 studied the eigenvalues of the homogeneous and inhomogeneous

problem from an analytical and numerical viewpoint. For an infinite medium

without leakage, the problem is equivalent to the following eigenvalue problem:

ð1
0

K E
0 ! E

� �
� v Σs Eð Þ þ Σa Eð Þð Þδ E� E

0
� �n o

ψ l E
0

� �
dE

0 þ λlψ l Eð Þ ¼ 0

The particular case of a non-absorbing medium, Σa(E)� 0, is simple to study

since by the definition of Σs Eð Þ � Ð1
0

Σs E ! E
0� �
dE

0
, we can easily show that the

first eigenfunction is equal to ψ0 Eð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
m Eð Þp

. This corresponds to the smallest

21Mihran J. Ohonian: Eigenfunction analysis of hydrogeneous neutron spectra, PhD from the

Rensselaer Polytechnic Institute, Troy, New York, USA (1963).
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eigenvalue λ0¼ 0 according to the detailed balance seen in the chapter on thermal-

ization. The eigenvalues are ordered such that λ0< λ1< λ2 � � � < λl< λl+ 1< � � �.
Similarly, if the absorption cross section is inversely proportional to speed, i.e.
vΣa(E)� v0Σa(E0) it can be shown that the smallest eigenvalue is λ0¼ v0Σa(E0) and

that ψ0 Eð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
m Eð Þp

is the associated eigenfunction. Given that the absorption

term becomes constant in energy, it can be easily shown that the eigenvalues of the

problem with absorption inversely proportional to speed can be deduced from the

“zero absorption” case by:

λl ¼ v0Σa E0ð Þ þ λΣa¼0
l

This implies that the eigenfunctions are the same in both cases. However, in the

general case where absorption varies in any way with speed, there is no direct

relation with the eigenvalues of the problem without absorption. The Maxwell flux

is no longer an eigenfunction of the general problem. If we consider the problem

without any absorption, the problem is written under the more convenient form as

follows:

ð1
0

K E
0 ! E

� �
ψ l E

0
� �

dE
0 ¼ vΣs Eð Þ � λΣa¼0

l ψ l Eð Þ

implying an analysis carried out in transport theory by K. M. Case, as explained in

Chap. 9. If λΣa¼0
l 6¼ vΣs Eð Þ for any energy value, a discrete spectrum of infinite

eigenvalues is obtained, associated with a discrete spectrum of eigenfunctions in

the conventional framework of the theory of eigenfunctions of an operator. If

λΣa¼0
l ¼ vΣs Eð Þ, the RHS can be equal to zero while the LHS is not, thereby leading

to a singular behavior of the eigenfunction ψ l(E). Given that the physical quantity

vΣs(E) has a minimum value for a minimum energy in the case of a real moderator,

as in cases where that quantity increases with energy, any value of λΣa¼0
l included in

the range min
E

vΣs Eð Þ;þ1
� �

corresponds to a particular energy ~E for which

λΣa¼0
l ¼ vΣs

~E
� �

. The value λΣa¼0
l ¼ min

E
vΣs Eð Þ is the limit of the discrete spectrum

that defines a maximum order L which is not infinite and thus, cannot lead to a

complete basis of eigenfunctions. Consequently, the discrete spectrum of

eigenfunctions limited to order L cannot generate a complete basis in the strict

mathematical sense, yet, since there exists a continuous spectrum of eigenvalues

that depend on energy, the solution including both the discrete and continuous

spectrum can be written as:
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φn E; tð Þ ¼
XL
l¼0

al,nψ l Eð Þe�λlt þ
ðþ1

min
E

vΣs Eð Þ

An t; λð Þψ E; λð Þdλ

It is more practical to use the following notation:

φn E; tð Þ ¼
X1
l¼0

al,n tð Þψ l Eð Þ

for which the coefficients al , n(t) satisfy:

X1
l¼0

dal,n tð Þ
dt

ψ l Eð Þ ¼
X1
l¼0

al,n tð ÞHE ψ l Eð Þ½ �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�λlψ l Eð Þ

þsl,n tð Þψ l Eð Þ

i.e.:
dal,n tð Þ

dt
� λlal,n tð Þ ¼ sl,n tð Þ

with sl,n tð Þ � Ð1
0

sn E; tð Þψ l Eð ÞdE.

10.11.4 Case of a Pulsed Source

The case of a pulsed source at time t0 as given by sl(t)� slδ(t� t0) leads to

al tð Þ ¼ sle
�λl t�t0ð Þ, which thus has a symmetrized flux solution:

φ E; tð Þ ¼
X1
l¼0

sle
�λl t�t0ð Þψ l Eð Þ

For a constant source in time S(E) as from t0 (thus forming a Heaviside step

function), the response of a pulsed source can be integrated over time:

φ Eð Þ¼ Ðþ1

t¼t0

φ E; tð Þdt¼P1
l¼0

sl
ψ l Eð Þ
λl

with sl ¼
Ð1
0

s Eð Þψ l Eð ÞdE¼ Ð1
0

S Eð Þffiffiffiffiffiffiffiffi
m Eð Þ

p ψ l Eð ÞdE

By reverting back to the flux variable for a pulsed source, and by determining the

smallest eigenvalue λ0¼ v0Σa(E0) for the case of absorption varying with the

inverse of speed—corresponding to the Maxwell eigenfunction ψ0 Eð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
m Eð Þp

,

we can write:
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Φ E; tð Þ ¼ a0m Eð Þe�v0Σa E0ð Þ t�t0ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
m Eð Þ

p X1
l¼1

alψ l Eð Þe� v0Σa E0ð ÞþλΣa¼0
l½ � t�t0ð Þ

This demonstrates the asymptotic nature of the Maxwell spectrum as time

increases. The case for no absorption (v0Σa(E0)� 0) indeed leads to a Maxwell

spectrum that cannot be simplified and that is independent of the detailed form of

the slowing-down operator. The latter impacts only the non-zero eigenvalues and their

associated eigenfunctions. On the other hand, the case with absorption shows expo-

nential decay of the spectrum; the first term is the longest to decay and is proportional

to the Maxwell distribution. If the source is mono-kinetic at energy E0 and such that:

s E; tð Þ � S E; tð Þffiffiffiffiffiffiffiffiffiffiffi
m Eð Þp � S0δ E� E0ð Þδ t� t0ð Þffiffiffiffiffiffiffiffiffiffiffi

m Eð Þp
the response to a pulse is written as:

Φ E;tð Þ¼S0m Eð Þe�v0Σa E0ð Þ t�t0ð ÞþS0

ffiffiffiffiffiffiffiffiffiffiffi
m Eð Þpffiffiffiffiffiffiffiffiffiffiffiffiffi
m E0ð Þp X1

l¼1

ψ l E0ð Þψ l Eð Þe� v0Σa E0ð ÞþλΣa¼0
l½ � t�t0ð Þ

The permanent solution to a constant source in the form of a Heaviside step

function of intensity S0Θ(t� t0) is written as follows after integration over the range
[t0, +1[:

Φ Eð Þ ¼ S0
v0Σa E0ð Þm Eð Þ þ S0

ffiffiffiffiffiffiffiffiffiffiffi
m Eð Þpffiffiffiffiffiffiffiffiffiffiffiffiffi
m E0ð Þp X1

l¼1

ψ l E0ð Þψ l Eð Þ
v0Σa E0ð Þ þ λΣa¼0

l

� �
For a finite medium, accounting for leakages leads to the operator {HE� vD(E)

B2}[], which is self-adjoint but has eigenvalues and eigenfunctions that are different

from the operator without leakage HE[], as seen earlier. When the cross section is

inversely proportional to speed, the first eigenfunction for a finite medium no longer

corresponds to a Maxwell distribution. Given that μl and φl are the eigenvalues and

eigenfunctions of the operator with leakages, the flux solution is written as follows

(similar to calculations carried out earlier):

Φ E; tð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
m Eð Þp P1

l¼0

blϕl Eð Þe�μl t�t0ð Þ with bl �
Ð1
0

s Eð Þϕl Eð ÞdE

Not only is the permanent asymptotic solution not a Maxwell distribution (as ϕ0

Eð Þ 6¼ ffiffiffiffiffiffiffiffiffiffiffi
m Eð Þp

), but it also depends on the slowing-down kernel used, through the

eigenvalues and eigenfunctions of that kernel. It should be borne in mind that leakages

disrupt the equilibrium of the detailed balance, thereby hindering the establishment of

a pure Maxwell distribution of neutrons, even when absorption is zero.
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10.12 Polykinetic Diffusion

All the previous analytical calculations were carried out for monokinetic thermal

neutrons or at two energy groups. In a reactor, the real situation is much more

complex. If we consider a neutron that is emitted at a given energy, it loses energy

by successive collisions. Since the properties of matter depend on energy (namely,

the scattering length L and the diffusion coefficient D), the energy range is

discretized to better describe neutron scattering. For a fission reactor, a further

difficulty resides in the fact that neutrons are emitted with a fast spectrum. During

fission, the energy of neutrons is distributed between 0 and 20MeV. The fraction of
neutrons emitted can be represented by energy groups using several functions. The

Watt spectrum models the true spectral distribution of emitted neutrons from fissile

nuclides using an empirical mathematical function:

χ Eð Þ ¼ Ce�aEsh
ffiffiffiffiffiffi
bE

p

with: a¼ 1.012 MeV�1 and b¼ 2.249 MeV�1 for the isotope 235
92U. The mean

energy of neutrons is given by:

�E ¼
Ð
χ Eð ÞEdEÐ
χ Eð ÞdE ¼ 2:01 MeV:

The energy range is discretized in energy groups where the bounds are

(G groups, the index increases with decreasing energy in usual applications):

Efission¼ E0> E1> E2> . . . > Eg� 1> Eg> . . . > Eth and by defining the

characteristics of the material, condensed in energy:

Σg ¼
Ð Eg�1

Eg
Σ Eð Þ Φ Eð Þ dEÐ Eg�1

Eg
Φ Eð Þ dE

Dg ¼
Ð Eg�1

Eg
D Eð Þ Φ Eð Þ dEÐ Eg�1

Eg
Φ Eð Þ dE

Σg!g0 ¼
Ð Eg�1

Eg
dE

Ð Eg0�1

Eg0
dE0 Σ E ! E0ð Þ Φ Eð ÞÐ Eg�1

Eg
Φ Eð Þ dE

theGmultigroup diffusion equations can be written for a non-multiplyingmedium as:

� div Dggrad Φg

� �þ Σ g
a Φg þ

X
g0 6¼g

Σg!g0 Φg ¼
X
g0 6¼g

Σg0!g Φg0

The term
P
g0 6¼g

Σg0!g Φg0 represents the transfers from faster groups, and eventu-

ally from more thermal groups in case of upscattering. For instance, the diffusion

equations at 3 energy groups (fast, epithermal, thermal with upscattering towards

the epithermal group), are written as:
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ΔΦ1 � 1

L21
Φ1 ¼ 0

ΔΦ2 � 1

L22
Φ2 ¼ � 1

L21!2

Φ1 � 1

L23!2

Φ3

ΔΦ3 � 1

L23
Φ3 ¼ � 1

L21!3

Φ1 � 1

L22!3

Φ2

8>>>>>><
>>>>>>:

with

L21 ¼
D1

Σt1

L22 ¼
D2

Σt2
, L21!2 ¼

D2

Σ1!2

, L23!2 ¼
D2

Σ3!2

L23 ¼
D3

Σt3
, L21!3 ¼

D3

Σ1!3

, L22!3 ¼
D3

Σ2!3

8>>>>><
>>>>>:

Calculation of the neutron constants of materials condensed in energy depends

on the energy variation of the properties as well as the neutron spectrum Φ(E).
These diffusion constants can be obtained either by experimental measurements as

discussed in the previous paragraph or by calculation from numerical simulations

dealing with neutron transport in different materials. For example, we can calculate

the fast [ 20 MeV, 1 MeV ], epithermal [ 1 MeV, 0.4 eV ] and thermal [ 0.4 eV,
10�11 MeV ] flux resulting from the attenuation of a beam of monokinetic neutrons

in a slab of water, steel or concrete (at 2 MeV for our case22) as computed by the

Monte Carlo method. A source of 1000 neutrons per second is imposed in a cubic

driver zone called the “fuel” that feeds neutrons to a scattering medium along the

x axis, and for which we compute the attenuation properties. The reflective condi-

tions imposed on the boundaries of the pattern (except for the edge where there is

vacuum) leads to a calculation representative of an infinite medium (Figs. 10.32 and

10.33).

Y

X Void

O

10 cm

10 cm

Fuel section

Medium studied (water, steel, concrete, etc.)

Fig. 10.32 Numerical modeling of the attenuation in a scattering medium

22From the work of Michel Tommy-Martin (EDF, 2005).
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If it were a surface source, the theoretical net fast current obtained (J1> 1 MeV)

would be
1000 neutrons of 2MeV=s

100 cm2
¼ 10 n=cm2=s. In our case, the reflective

conditions around a cubic source result in a source/medium interface through

which a net current of 1000 neutrons per second passes, and in the existence of a
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Fig. 10.33 Attenuation of 2 MeV neutrons in water (blue), in concrete (purple) and in steel

(black) [the x-axis is the penetration depth in cm and the y-axis is the thermal flux in n/cm2/s]
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non-zero current from the medium to the source. The current from the source to the

medium is hence 1000 neutrons/s larger than the inverse current, the net current

being equal to J¼ J�� J+. This effect is due to the back-scattering (reflector effect)
of some fast neutrons that are slowed down with heavy nuclides but are not

absorbed. It may be observed that the fast flux is rapidly attenuated by an expo-

nential decay that depends on the penetration depth, thus being consistent with the

diffusion theory (with the flux having the form of Φ1 xð Þ ¼ Φ1 0ð Þ e�x=L1 ). As steel

is a poor moderator, the epithermal flux is larger than that in water, which slows

down neutrons efficiently, and that in concrete, which also contains water. Neu-

trons, slowed down by the hydrogen in water, lose almost all their energy, and in

some very rare cases, end up in the thermal domain without passing through the

epithermal energy domain. It is clear that the rise in thermal flux is very apparent in

the cases of water and concrete. Thermal neutrons are almost completely absorbed by

steel, which is a very efficient thermal absorbing material used in the control rods of

PWR, and in the barrel of the EPR to protect the vessel. Due to the high atomic mass

of its constituent atoms, steel is less efficient than water (which contains hydrogen

that is a very good moderator) in attenuating fast neutrons, but the successive layers

of water (that efficiently thermalize fast neutrons) and steel (that efficiently absorbs

thermal neutrons, thermalized by the water used as a shield) ensure global protection.

Finally, it should be noted that the epithermal and thermal flux are greater than the

fast flux that induced their emission, since there is a neutron concentration at low

energies which accumulates until they disappear by thermal absorption.

The choice of using monokinetic neutrons at the mean energy of the fission

spectrum leads to a bias with respect to the true Watt spectrum, which modifies the

global attenuation of fast neutrons.

Numerical neutron shooting experiments in moderators simulate experiments in

piles that attenuate neutrons without being hindered by radial leakages, given that

reflective boundary conditions are applied at the interface. It should be noted that

the radial leakages of a non-reflective pile with zero-flux at the exterior radial

surface (such as the previously described Marius experiment) are characterized by

buckling 2(π/a)2. The smaller the pile, the greater the buckling, which strongly

impacts the measurements. However, the difficulty in modeling is due to the fact

that the group-wise fluxes are highly perturbed by subsequent increases in energy of

the neutrons by thermalization close to the source, rendering calculation of atten-

uation coefficients by scattering prone to uncertainties. These flux variations (for

instance thermal flux) are very abrupt on small layers. Besides, they do not exhibit

exponential behavior, whence the difficulty of assimilating them in the absence of a

very fine spatial solution.

Figure 10.34 shows the impact of the neutron spectrum (injection of

monokinetic neutrons of 2 MeV in the first case, and that due to the Watt spectrum

in the second case) on attenuation and the difficulty in defining the appropriate

scattering lengths. Regression calculation on the first 5 centimeters, and applied to

the fast flux, leads to discrepancies of more than 50% on L1. This type of analysis,
where the interface effects are neglected, nonetheless leads to computation of the

attenuation coefficients (in cm�1) or scattering lengths (the inverse of the
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attenuation coefficient) that are particularly useful for fluence subjects or radiopro-

tection (Tables 10.2 and 10.3).

The scattering lengths at 3 energy groups (Table 10.4) show that concrete

behaves like low-density water towards neutrons. The other isotopes in concrete

are quite inefficient in slowing down neutrons. Graphite and heavy water, with low

absorption that allows for high values of thermal scattering lengths (more than

50 cm), behave as “ideal moderators”. In homogeneous problems, without neutron

guides, these values of the scattering lengths entail calculations of the same order of

magnitude as the attenuated flux, which are realistic. The attenuation problems in
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Fig. 10.34 Effect of neutron energy on attenuation in water

Table 10.2 Fast diffusion length L1 for various materials in contact with a source of uranium 235

L1 [cm] for each material Neutrons of 2 MeV Watt neutrons

Pure steel 6.7 7.0

Stainless steel 6.5 6.8

Concrete 7.2 10.7

Light water 4 7

Graphite 7.8 11.8

Heavy water 4.6 7.7

Heat conductor 161.3 153.8

Table 10.3 Epithermal diffusion length L2 for various materials

L2 [cm] 0.2 MeV 0.4 MeV 1 MeV 2 MeV Watt

Pure steel 21.5 26.4 29.1 31.8 30.2

Stainless steel 15.2 19.0 22.9 24.7 23.2

Concrete 5.0 5.1 5.8 7.8 10.5

Light water 1.5 1.8 2.6 4.1 6.2

Graphite 6.4 6.6 7.2 8.9 11.3

Heavy water 5.6 5.7 5.8 6.1 6.9
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concrete are central to the question of decommissioning of nuclear reactors. Indeed,

some fast neutrons may propagate very far in the core, especially if they are favored

by neutron guides, i.e. slices or paths oriented towards the reactors, and necessary

for introducing the instrumentation in the core for instance. Besides, these neutron

guides may propagate neutrons over structures comprising steel that contains

cobalt, which produces redoubtable 60Co through radioactivity. In addition, through
neutron activation, cobalt creates the gamma γ radiation that constitutes one of the

principal sources of dose effects in radioprotection. At such distances from the core,

deterministic calculations are not sufficiently precise and may even be inefficient.

In the end, only Monte Carlo calculations with large number of particles can give an

idea of geometrical and point-wise effects.

Table 10.4 Thermal diffusion length L3 for various materials

L3[cm] 0.2 MeV 0.4 MeV 1 MeV 2 MeV Watt

Concrete 9.6 9.6 9.9 10.5 11.4

Light water 2.8 2.9 3.2 4.3 6.0

Graphite 53.8 53.8 54 54.6 11.3

Heavy water 96.2 96.2 96.2 96.2 94.3
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Chapter 11

Nuclear Reactor Reactivity

The reactivity of the core is the most global parameter that helps to understand the

behavior of a reactor. The precise calculation of core reactivity is the major concern

of neutron physicists and engineers and the branch of physics that deals with it must

be well understood. Defining it is not as easy as it may initially seem.

11.1 Multiplication Factor of a Chain Reaction

11.1.1 Deterministic Approach to Chain Reactions

For a neutron emitted by fission, α is the probability that it will penetrate the new

fissile nuclide. Given that v is the mean number of neutrons generated by fission,

some of these undergo sterile capture, for instance radiative capture (n, γ) on the
238
92U isotope. Finally, for each absorbed neutron, there will be η¼ νσf / (σf + σc) new
neutrons since the probability of the nuclide fissioning is α¼ σf / (σf+ σc). η is the

number of neutrons produced per absorbed neutron. It is thus inherently smaller

than v. The effective multiplication factor (keff, pronounced “k effective”) is the

product of the probability of the number of neutrons emitted by absorption by the

probability of them penetrating the nuclide, i.e. keff¼ α η. By its very definition, the
neutron population changes as a geometric progression of common ratio keff:

N initial
neutrons

! keff N
first

generation

! k2eff N

second
generation

! k3eff N

third
generation

! � � �

If keff is greater than one, the multiplication reaction increases rapidly and the

reactor is said to be over-critical. The more keff exceeds 1, the greater the increase in
the nuclear power. If keff is far larger than 1, nuclear explosion occurs (keeping in
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mind that keff cannot be greater than v, the average number of neutrons produced by

fission). Ultimately, the temperature increase deforms the fissile medium and the

loss of geometry arrests the phenomenon. Where keff is less than 1, the reaction is

“choked” and the reactor is said to be subcritical and the neutron population tends

to 0. If keff is strictly equal to 1, the neutron population is stable: the reactor is

critical. The term “critical” has a precise meaning in this context but may be

misunderstood by the layman, for whom it normally signals danger. It must

therefore be used with care in non-specialist discussions. By definition keff is
dimensionless. Neutron physicists use a quantity derived from keff known as

reactivity; it is always denoted by the Greek letter ρ and is computed as follows:

Definition of reactivity: ρ �½ � �
keff � 1

keff
ð11:1Þ

In practice, reactivity is far less than 1 and is quantified in per cent mille
[hundred-thousandths] (1 pcm ¼ 10�5

[�]). Use of the criterion expressing keff in
relation to 1 appears an extremely mathematical approach, and one might well

wonder how an actual reactor may be built such that its keff is exactly equal to

1. Nevertheless, as we will see, variation in this parameter can be very small in

terms of the reasonable variation of physical parameters; in other words, reasonable
variation in keff results in slow and controllable variation in the physical parameters.

The meanings of criticality and multiplicity must be clearly distinguished. A

physical medium is said to be under-multiplying/over-multiplying if the number

c of secondary neutrons produced by a neutron-nuclide collision is smaller/greater
than one respectively for all collision points and for all speeds of the incident

neutron. Physically, an under-multiplying medium cannot ensure that a chain

reaction is maintained. In a self-multiplying medium (i.e. the number of neutrons

produced is equal to 1), leakage within the system may be expected to hinder a

permanent chain reaction. These results can be demonstrated mathematically in

transport theory. The mathematical work of P. Nelson (Fitzgibbon and Walker

1977, p. 173) showed that in diffusion theory, an under-multiplying homogeneous

medium induces subcriticality, although there are not as yet any firm conclusions

regarding the case of a self-multiplying medium.

11.1.2 Stochastic Approach to Chain Reaction

In the previous approach, it was assumed that the number of neutrons emitted by

fission was constant between each generation (¼ �
v). In reality, the phenomenon is

more complex: the integer number v ranges between 1 and 6, creating fluctuation

over generations. This stochastic model of the transport equation and its impact on

neutron kinetics have been studied by various authors since the 1960s, including
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Austin Blaquière and Victor Raı̈evski in France, and more recently, Richard

Sanchez,1 whose works are summarized here for an infinite medium.

Richard Sanchez (circa 2005) (Courtesy Sanchez)

The probability of obtaining m neutrons after g generations, assuming a starting

figure of n, is expressed as Pn ,m(g). To compute the extinction probability q of a

chain reaction associated with a given neutron, it must be noted that the probability

of neutron capture is P1 , 0(1), and that neutrons can generate either one (in the case

of fission that rarely emits one neutron) or several particles (in conventional fission

where several neutrons are emitted) with a probability of P1 ,m(1), and so on in a

chain reaction.

1Richard Sanchez: An analysis of the stochasticity of the transport equation, Transport Theory and
Statistical Physics, volume 26 (4 and 5), 469–505 (1997). Richard Sanchez (1946–) studied at the

Polytechnic School of Barcelona. He completed his PhD at the CEA/SERMA [CEA/Department

of Reactors and Applied Mathematics] in 1974, which was followed by a higher doctorate in 1974.

He subsequently worked for 5 years at the University of Seattle in the United States, and obtained a

further PhD in Nuclear Engineering at the University of Washington in 1981. His PhD in 1979 at

CEA/SERMA [Schémas approchés de résolution de l’Equation intégrale du transport �a deux
dimensions (Approximate schemes for the solving of the integral transport equation in two

dimensions)] shows his expertise in the field of numerical models in neutron physics. He was

behind several improvements of the APOLLO2 code, and is a worldwide expert in transport

theory; he has authored more than fifty papers in prestigious professional journals such as Nuclear

Science and Engineering or Transport Theory and Statistical Physics, making him the most

renowned French neutron scientist at international level. In 2002, he was appointed Director of

Research at CEA where he supervised more than twenty doctorates in the transport theory field. He

is also associate professor at the Georgia Institute of Technology. Thanks to his proverbial speed of

speech and his exceptional character, he is one of the most outstanding figures in French neutron

physics.
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Hence, the probability P2 , 2(1) represents the behavior of two initial neutrons and

two processes may be involved:

– either one of the two initial particles is absorbed and the other produces two

neutrons by fission (two symmetrical processes),

– or each neutron produces one neutron after fission.

q is therefore characterized by the Hansen2 equation:

Hansen equation: q ¼ P1,0 1ð Þ þ
X
m>0

P1,m 1ð Þ qm ¼
X
m�0

P1,m 1ð Þ qm � G qð Þ

ð11:2Þ

Mathematical analysis of the function G(x) shows that it is always equal to 1 for
x¼ 1 and its derivative at that point, dG xð Þ=dxj1 ¼

P
m�0

mP1,m 1ð Þ ¼ �
m, is equal to

the mean number of neutrons per generation.3

Physically, the extinction probability may be expected to be smaller than

1 where
�
m > 1, and even equal to zero, but the realistic plot from Fig. 11.1 shows

that this is not the case. The probabilities Pn ,m(g) may be computed sequentially,

since ongoing events are in fact independent of past events (captures do not modify

the cross sections of the material being considered):

Pn,m gþ g0ð Þ ¼
X
k�0

Pn,k gð ÞPk,m g0ð Þ

Pnþn0,m gð Þ ¼
Xm0¼m

m0¼0

Pn0,m0 gð ÞPn,m�m0 gð Þ

8>>><
>>>: and

P0,m gð Þ ¼ δ0,m
Pn,m 0ð Þ ¼ δn,m

�

These formulae are used to calculate in a recursive manner all the probabilities

as a function of the basic probabilities after one generation P1 ,m(1). These proba-

bilities depend on the cross sections of the materials in which the neutrons exist. G
(x) may be extended:

2Gordon E. Hansen: American physicist who worked at Los Alamos during the 2nd World War.

His work on nuclear bomb ignition became famous through the Hansen equation. He wrote many

interesting papers in literature relative to criticality. He further married Marian Konopinski, the

sister of Emil John Konopinski, the famous specialist of the beta decay.
3By definition, a generation involves the loss of the generating neutrons, but the same reasoning

may be followed in considering a collision (the generation time is the time between two collisions).

In this case, scattering should be viewed as a process that produces a new neutron, just like a fission

that produces only one neutron, and the number
�
m coincides with the definition of c secondary

neutrons as seen previously, i.e. the number of neutrons produced by collision. In this second

approach, the probability of sterile capture P1 , 0(1)�Σc/Σt can be computed, as well as the

probabilities of fertile captures P1 , 1(1)� (Σs+ p(1)Σf)/Σt, P1 ,m� 2(1)� p(m)Σf /Σt, where p(m) is
the probability of emission of m neutrons by fission, as seen in Chap. 2.
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Gn g; xð Þ �
X
m�0

Pn,m gð Þxm

and satisfies the following recurrence relations:

Gnþn0 g; xð Þ ¼ Gn g; xð ÞGn0 g; xð Þ
Gn gþ g0; xð Þ ¼ Gn g;G1 g0; xð Þð Þ

�
and

G0 g; xð Þ ¼ 1

Gn 0; xð Þ ¼ xn

�

thus: G1(g, x)¼GoGo . . . . . oG(x)�Gg(x) and Gn(g, x)¼ (Gn(g, x))
n

The extinction probability qn(g)¼Gn(g, 0) associated with the probabilities

Pn ,m(g) thus verifies that qn(g)¼ [q1(g)]
n and q1(g)¼G(q1(g� 1))¼ . . . ¼ Gn(δn , 0).

Hence:

q ¼ lim
g!1 q1 gð Þ ¼ lim

g!1Gg 0ð Þ ¼ G1 0ð Þ

The value of G1(0) is obtained by a fixed point iteration on the equation G(x)¼
x and leads to the smallest root of Fig. 11.1. If

�
m > 1, the chain reaction dies out

with a non-zero probability. If
�
m � 1, the chain reaction dies out in a finite number

of generations with a probability of G1(0)¼ 1, i.e. with certainty. The mean

number of neutrons at generation g and the variance thereof are given by:

Nn gð Þ ¼ nN1 gð Þ ¼ n
�
mg

σn gð Þ½ �2 ¼ n σ1 gð Þ½ �2 ¼ nσ2
�
m

g�1 �mg � 1�
m� 1

8<
:

These results follow from the fact that as regards the mean and variance

associated with Gn(g, x), the mean of a sum of random variables is equal to the

sum of the mean values, and similarly, the variance of a sum of independent random

)(xG

1<m
1>m

1

Fig. 11.1 Generating

function G(x) (after
R. Sanchez)
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variables is equal to the sum of variances. Further, for a mean random variable m of

variance σ2 and of generating function G(x), we obtain:

�
m ¼ G0 1ð Þ, σ2 ¼ G00 1ð Þ � �

m
�
m� 1
� �

Since G1(g, x)¼Gg(x), the following recurrence relations are obtained:

N1 gð Þ ¼ �
mN1 g� 1ð Þ, σ21 gð Þ ¼ �

m2 σ21 g� 1ð Þ þ σ2
�
mg�1

The reduced variance is: bσn gð Þ½ �2 ¼ σn gð Þ½ �2
Nn gð Þ½ �2 ¼

σ2

n

1��
m�g

�
m

�
m� 1
� �

Sanchez points out the seemingly astonishing fact that an infinite self-

multiplying system (
�
m ¼ 1) cannot maintain a chain reaction indefinitely, which

is unusual since the limit lim
g!1Nn gð Þ ¼ n becomes constant between two genera-

tions. However, while the probability of an infinite chain reaction is zero, the

number of neutrons in that chain tends to infinity, as well as reduced variance,

thus removing any contradiction. A further surprising fact is that even in an over-

multiplying system, there is a non-zero probability of the reaction dying out for a

small number of neutrons probably after few generations, due to the variability of

the number of neutrons emitted by fission. However, this result is not obtained if

this number is taken to be constant (¼ �
v) in the classical deterministic approach,

although increase in a significant population cannot be stopped solely by statistical

considerations. Furthermore, we must consider that all states having a finite number

m of neutrons may only be transients, since according to Markovian analysis, they

can appear only a finite number of times. Consequently, the probability of such a

state tends to zero when the number of generations tends to infinity, regardless of

the value of
�
m. Hence, for

�
m > 1, either the chain can die out statistically for a small

number of neutrons or the system tends to infinity as predicted by the deterministic

analysis. The possible use of this statistical approach will be discussed later with

regard to neutron noise analysis (Table 11.1).

Table 11.1 Asymptotic behavior of a chain reaction

�
m lim

g!1Nn gð Þ lim
g!1 bσn gð Þ½ �2 lim

g!1 qn gð Þ
�
m > 1 1 σ2

n
1�

m
�
m�1
� � <1 Either the chain reactions die out after some

generations or they tend to infinity
�
m ¼ 1 n constant 1 1 As above, but the probability of diverging

chains tends to 0. The reduced variance

increases linearly with the number of gener-

ations and tends to infinity
�
m < 1 1 1 1 All chain reactions die out after a finite

number of generations
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11.2 “Four-factor” Formula

The four-factor formula is a mnemonic calculation method in physics and is of

significant historical interest since it was used to calculate the Fermi pile by careful

evaluation of each factor without discounting the leakage term, as will be discussed.

The neutron life cycle is shown in Fig. 11.2 where for an absorbed neutron, the

following are quantified:

– excess neutrons provided by fast fission (ε),
– leakage during slowing-down (non-leakage probability Pr),

– neutrons lost in the resonant captures (escape probability p),
– leakage in the thermal domain (non-leakage probability Pth)

– sterile captures (thermal utilization factor f ).

For an infinite reactor without leakage, the non-leakage probabilities are equal

to 1 (Pr¼Pth¼ 1), and thus the “four-factor” formula is obtained and keff is named

k1 (k infinite) (Etherington 1957, pp. 6–121):

Four-factor formula: k1 ¼ ηεp f ð11:3Þ

If keff< 1 (subcritical), the neutron population may be kept stable by introducing

a source S (neutrons/s). If ‘ is the neutron lifetime, i.e. S ‘ is the mean number of

neutrons produced in the medium over time ‘, at the second generation, after time ‘,

η neutrons resulting from absorption of a 

thermal neutron

ηηεε (fissions by fast neutrons)

ηεε Pr )P(ε r−1η leakage during slowing-down

ηεε Pr p p)(Pε r −1η capture in the resonances, 

especially those of 238U

ηεε Pr p Pth

ηεε Pr p Pth f f)(PpPε thr −1η capture other than in the fuel

(structures, boron…)

fPpPk threff εη=

New absorptions in the fuel

η

)P(pPε thr −1η leakage in the thermal 

zone

Fig. 11.2 The neutron life cycle
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there will be keff S ‘ neutrons, by the very definition of keff. Over the same time

period, S ‘ new neutrons will be produced, and so on, as depicted in Fig. 11.3:

The number of neutrons present in the medium after an infinite number of

generations is thus given by (Bonilla 1957, p. 171):

ntotal ¼ S ‘ 1þ keff þ k2eff þ � � � þ k n
eff þ � � �

� �
¼ S ‘

1� keff

Hence the flux level is proportional to the source intensity. This situation occurs

in a power reactor in which to start-up the core, a primary 252
98Cf source is introduced

(and subsequently removed) and secondary sources are used. It should be noted that

the previous formula has no meaning for a critical reactor in which an independent

source cannot induce a permanent regime.

11.2.1 Detailed Analysis of the Four-factor Formula

With the four-factor formula, the multiplication factor can be written as a function

of four quantities that are representative of the fuel: η, ε, p and f. Some authors4

represent neutron production schematically in a highly didactic fashion, adding an

energy dimension, for better understanding the four-factor formula. The x-axis in

this scheme represents successive generations of neutrons over time while the

y-axis corresponds to the energy of the neutrons, with the behavior of the latter

simplified by assuming that absorptions occur only at thermal energy and that

fissions produce mono-energy neutrons at energy E0. The four-factor formula

idealizes the behavior of neutrons by limiting the possibilities of interaction with

matter in specific energy domains (Bonilla 1957, p. 173) (Fig. 11.4).

S Skeff Skeff
2 Skeff

3

S Skeff Skeff
2

SkeffS

Fig. 11.3 Neutron multiplication in a subcritical state with a source

4See for example (Blaquière 1962).
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11.2.1.1 Fuel Multiplication Factor η

When a neutron causes a fission, v neutrons are emitted on average (Table 11.2).

However, when a neutron is absorbed at the thermal energy, it does not necessarily

induce a fission reaction since it has a given probability of causing a (n, γ) reaction.
The relevant quantity is thus the number of neutrons emitted per neutron absorbed

in the fuel. This number, η, is the fuel multiplication factor. If Σa and Σf are

respectively the absorption and fission cross sections of the fuel, η¼ ν Σf /Σa.

Recall that Σa¼ Σf+Σc.

In a thermal reactor, the fissile isotope (e.g. 23592U) is generally associated with a

non-fissile isotope (in thermal, e.g. 238
92U that is fertile), and η is then obtained by

weighing the respective fission rates of the η values of the fissile isotopes in the fuel.
η can be computed as a function of 235

92U enrichment.

Table 11.3 shows that η� 1, which is the number of excess neutrons in relation

to the neutron needed to maintain the chain reaction, increases with enrichment. η
depends significantly on the incident neutron energy: the plot of η for the isotopes
235
92U , 23892U and 239

94Pu illustrates this phenomenon (cf. Figs. 11.5, 11.6 and 11.7). In

particular, it can be seen that η is equal to 0 for the 238
92U isotope up to a given

threshold of 1 MeV, since this isotope is fissile only at fast energies (despite having

η

thE

0E
1 absorbed

neutron 

ηε

fpηε( )p−1ηε

)1( fp −ηε

Generations

Energy thE

Fig. 11.4 The four-factor

formula represented with an

energy scheme

Table 11.2 Mean number of

neutrons and fuel

multiplication factor for

major fissile isotopes

v η
233
92U 2.55 2.29

235
92U 2.47 2.09

238
92U 2.56 0

239
94Pu 2.91 2.10

Table 11.3 The fuel

multiplication factor as a

function of fuel enrichment

235
92U=Utotal (%) η

0.71 (natural uranium) 1.34

1.4 1.60

5 1.88

20 2.08

100 2.09
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a non-zero value of v, which does not impact the fission reaction rate since the cross

section of 238
92U is very small and below 2 MeV).

Further, at high energies, η and v are equal to one another due to the fact that the
capture cross section becomes negligible at high energy even if it no longer has an

inverse-speed law variation (which is generally applied at low at intermediate

energies). To optimize the number of neutrons generated, it is best to have a fast

spectrum: high value of η and small capture cross sections as well as 238
92U which

becomes fissile.

For a mixture of isotopes, the fuel multiplication factor is given by the formula:

η ¼

P
i2fuel

viΣ i
fP

i2fuel
Σ i
a

¼
X
i2fuel

ηi
Σ i
aP

i2fuel
Σ i
a

This parameter, which naturally depends on the incident neutron energy, is equal

to 2 at low energy and increases as of 0.1 MeV to values approaching 4 at 10 MeV.

5

4

3

2

1

0

1e–5 1e–4 0.001 0.01 0.1 1 10 100 1000 1e4 1e5 1e6 1e7 (in eV)
E

U235 from JEFF 3.0 from Local
MT=452 : (z,...) nubar T Neutron production
MT=102 : (z,g) radiative capture Eta (U235)

Fig. 11.5 η (dark) and ν (light) for 235
92U (from JEFF 3.0)

824 11 Nuclear Reactor Reactivity



11.2.1.2 Fast Fission Factor ε

Fission neutrons can cause another fission immediately even before slowing down.

However, in a thermal reactor, this effect is small. Nevertheless, it must be taken

into account by considering that ηε fast neutrons are available per neutron captured
in the fuel. ε is the fast fission factor of the order of 1.03–1.04 for standard reactors

using natural uranium (Fig. 11.8).

At the temperatures encountered in pressurized water reactors, ε is almost

independent of temperature. It depends solely on the radius of the fuel and the

amount of 238
92U that can be considered as being constant since it is the most

abundant isotope in the fuel. (Bennet 1981, p. 81) proposes the following correla-

tion, valid for water-moderated reactors with enriched fuel:

ε �
1þ 0:690

238
92U½ �
H2O½ �

1þ 0:563
238
92U½ �
H2O½ �

in which [] represents the concentration.

U238 from JEFF 3.0 from Local
MT=452 : (z,...) nubar T Neutron production
MT=18 : (z,fission) total fission Eta (U238)
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E

Fig. 11.6 η (dark) and v (light) pour 238
92U (from JEFF 3.0)
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11.2.1.3 Neutron Slowing-down: Escape Probability Factor

The neutrons are slowed down by inelastic collisions at high energy then by elastic

collision on light nuclides (H, D, Be or C) in the moderator. At high energies,

capture by materials used in the nuclear reactor (fuel cladding, various structures) is

negligible. However, when neutrons are slowed down to energies of a few tens of

electronVolts, they reach the region in which capture resonances or traps are

present, if the medium contains a resonant absorbing isotope such as 238
92U or

232
90Th. If we define p as the probability of escaping resonant capture, there are

Pu239 from JEFF 3.0 from Local

MT=452 : (z,...) nubar T Neutron production
MT=102 : (z,g) radiative capture Eta (Pu239)
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1e–5 1e–4 0.001 0.01 0.1 1 10 100 1000 1e4 1e5 1e6 1e7 3e7 (in eV)
E

Fig. 11.7 η (red) and v (green) for 239
94Pu (from JEFF 3.0)
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Fig. 11.8 Effect of radius of a natural uranium rod on the fast fission factor [after (Kahan and

Gauzit 1957)]
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only η ε p neutrons available in the thermal energy range per neutron absorbed in the

fuel. In a reactor with uranium 3.2% enriched with 235
92U , p is of the order of 0.7.

p can be calculated analytically under some simplifying assumptions as seen

previously. It contains the resonance integral of the resonant isotope.

11.2.1.4 Thermal Range: The Thermal Utilization Factor

(Bonilla 1957, p. 207)

In the thermal energy range, the absorption (capture + fission) cross section of

the fuel is very large, but the absorption cross sections of the moderator and

structure materials (zirconium cladding, boron in water, assembly grids) are not

negligible (1/v law). There is competition between useful absorption in the fuel and

parasitic capture in other materials. f is defined as the thermal utilization factor, the
ratio between the number of neutrons absorbed in the fuel and the total number of

neutrons absorbed. IfΦfuel, Φmod andΦstructure are the mean thermal flux in the fuel,

moderator and different materials (cladding, guides, plugs, etc.) respectively; σ fuel
a ,

σmod
a and σstructurea the microscopic absorption cross sections; Nfuel, Nmod and

Nstructure the number of nuclides per cm3; Vfuel, Vmod and Vstructure the volumes of

these different materials:

f ¼ Nfuel σ fuel
a Vfuel Φfuel

Nfuel σ
fuel
a VfuelΦfuelþNmod σmod

a VmodΦmodþ
X

structures

Nstructure σ
structure
a Vstructure Φstructure

Finally, for each thermal neutron absorbed in the fuel, after each complete cycle,

η ε p f¼ k1 neutrons are available for absorption at the next cycle. If k1, the global
multiplication factor in infinite medium, is greater than or equal to 1, it is possible to
maintain a chain reaction in such a medium assumed to be infinite (if k1> 1, it is

divergent, and if k1¼ 1, it is self-supporting). For a true set-up with finite dimen-

sions, it is necessary that k1> 1 to compensate for neutron leakage from the reactor

volume, and more commonly, to compensate for the creation of absorbing fission

products in order to produce energy for an industrially viable period.

11.2.2 Technological Moderation Ratio Effect on the Four-
factor Formula

The technological moderation ratio is defined as the ratio of moderator volume

(which quantifies moderation) to the fuel volume (which quantifies the ability to

generate neutrons). Variation in k1 can be plotted in relation to this ratio as shown

in Fig. 11.9. It may be seen that the escape probability factor p tends towards 1 as

the moderation ratio tends towards infinity. This means that if the moderator

volume increases indefinitely, or the fuel volume tends towards 0, the neutron is

no longer able to interact geometrically with the fuel and be captured by
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it. According to the same logic, the thermal utilization factor f tends towards

0 under the same conditions. For a given fuel, η and ε may be considered almost

constant (however, this reasoning has its limits when moderation tends towards 0 or

infinity, although such cases have no practical applications!). As a function of the

moderation ratio, k1 has a maximum value, which for pressurized water reactors is

around 4. Reactor designers seek to attain this optimal level to the utmost since it is

the value that allows maximum utilization of the expensive fuel when in the core.

11.3 Allowing for Leakages in a Finite Reactor

Leakage occurs in finite reactors due to neutrons that travel out of the reactor by

scattering without being absorbed. If no reflector directs these neutrons back

towards the core, they are lost for the chain reaction. The scheme shown previously

helps account for this phenomenon (Fig. 11.10) via non-leakage probabilities in the

fast (Pr) and thermal (Pth) energy domains. It should be noted that a scheme using

two energy groups (fast and thermal) is commonly used, but that this may be

extended to several groups.

The above diagram contains non-leakage probabilities for the geometrical

domain of the reactor. In two-group theory, these probabilities are given as follows.

Pr ¼ 1= 1þ L2rB
2

� �
is the non-leakage probability of the neutron during its slowing-

down until it reaches the thermal group cut-down, Lr being the diffusion length

integrated over the fast group. Pth¼ 1/(1 + Lth
2B) is the non-leakage probability of

p (Vmod / Vfuel)

f (Vmod / Vfuel)

M Vmod / Vfuel
0

∞kfp ,,,,εη

f thermal utilization factor

∞k infinite multiplication factor

M optimum neutron utilization

Vfuel fuel volume

p escape probability factor

η fuel multiplication factor

ε fast fission factor

Vmod moderator volume

1

ε (Vmod / Vfuel)

η(Vmod / Vfuel)

k∞ (Vmod / Vfuel)

Fig. 11.9 Variation of the multiplication factor with the moderation ratio
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the neutron in the thermal group, with Lth being the scattering length integrated over
the thermal group. The quantity Lth should not be confused with the classical

diffusion length L, which is valid for neutrons that are completely thermalized

(at 0.0253 eV). L2th corresponds rather to a migration area averaged over the thermal

group only. Fermi’s age theory, which will be discussed below, can be used to

calculate the non-leakage probabilities Pr and Pth. In a PWR, the fast non-leakage
probability Pr is around 0.97 and the thermal non-leakage probability, Pth, is around

0.99.

11.4 Two-group Multiplication Factor

When knowledge of cross sections was sufficiently advanced, physicists rendered

flux calculation in the reactor more complex using a two-energy-group method in

order to more accurately estimate the neutron population. It is especially important

to determine this figure for a water-moderated reactor in which neutrons are emitted

at fast energies and “disappear” at thermal energies. How does this phenomenon

modify k1? If we separate the neutron population into two separate groups, the fast

and thermal energy groups, it must be remembered that the previous representation

intuitively defines the ratio of the number of thermal neutrons to a generation

divided by the number of thermal neutrons at the subsequent generation, since the

“input” in Fig. 11.10 (left) is a neutron at thermal energy and the scheme ends with

the absorption of a neutron at thermal energy. Inside a reactor, the phenomenon is

obviously infinitely more complex than this schematic version. Using two energy

groups leads to a further complexity with a cut-off energy that is situated between

0E

1 neutron

Escape probability p

Fast non-leakage probability rP

Thermal non-leakage probability thP

thE
new neutronseffthr kPPk =∞

thP−1 of thermal leakages

rP−1 of fast leakages

Fig. 11.10 Determining leakage in a finite reactor
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the thermal energy Eth and the fast fission energy E0. In 1960, E.C. Critoph5

formalized the equation for k1 in (Heavy Water Lattices, p. 49) by supposing

that the cut-off for the two groups is situated below the resonant absorption of 23892U
at energy Ec in the following manner:

k11 ¼ η Ethð Þ ε p f Ethð Þ 1� r

1� η Ecð Þ f Ecð Þ εpr

by introducing new definitions with respect to the four-factor formula. The quantity

r is the fraction of neutrons slowed down below the epithermal zone (having thus

survived a resonant absorption), and having been absorbed by producing r η(Ec)f
(Ec) new neutrons. η(Ec) is the number of neutrons produced per neutron having

survived the resonant absorption zone. This number differs from η(Eth), which is

usually employed since in practice, η depends on the incident neutron energy

through the mean number of neutrons generated, as well as the energy dependence

of cross sections. f(Ec) is the utilization factor of epithermal neutrons that have

survived the resonant absorption up to energy Ec. It differs from the usual f(Eth) for

the same reason as does η(Eth). The demonstration of the previous formula is based

on the definition of k1 that leads to considering a cut-off point in the neutron

production cycle, situated in Fig. 11.11 at the point represented by scissors. The

definition of k1 is then given as:

k11 ¼ Number of thermal neutrons at generation nþ 1

Number of thermal neutrons at generation n

Thermal neutrons created by a thermal neutron entering the sketch (from the left

on Fig. 11.11) are counted by determining all thermal neutrons produced by the

entering neutron and preventing any neutrons from reaching the cut-off value

(Fig. 11.12).

k11 ¼η Ethð Þ ε p f Ethð Þ 1�rð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{first cut�off

þη Ethð Þ η Ecð Þf Ecð Þrε2 p2 1�rð Þf Ethð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{second cut�off

þη Ethð Þη Ecð Þ2f Ecð Þ2 r2ε3 p3 1�rð Þf Ethð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{third cut-off

þ ::

1

¼ η Ethð Þ ε p f Ethð Þ 1�rð Þ 1þη Ecð Þf Ecð Þε prþ η Ecð Þf Ecð Þε prð Þ2þ η Ecð Þf Ecð Þ ε prð Þ3þ ...
h i

Since r is small, the term η(Ec)f(Ec) ε p r is less than 1.

5Eugène C. Critoph (1929–1966). B.A.S., M.A.Sc. (British Columbia) joined Atomic Energy of

Canada Ltd (AECL) in 1953 and worked in the reactor physics field till 1967. He took on several

responsibilities at the Chalk River laboratories, becoming director of the Fuel and Material branch,

then director of Reactor Physics and advanced products, and later Vice-President of AECL’s
Strategic Technology Research Management. Further, in 1986, he was awarded the W. B. Lewis

medal by the Canadian Nuclear Association for his extremely extensive research work. He

supervised an excellent book: Canada Enters the Nuclear Age, published in 1997, which recounts

the history of AECL. On a more personal note, he was believed to be extremely interested in games

and puzzles of all types.
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k11 ¼ lim
n ! þ1 η Ethð Þ ε p f Ethð Þ 1� rð Þ 1� η Ecð Þf Ecð Þ ε prð Þn

1� η Ecð Þf Ecð Þ ε pr½ �
� 	

¼ η Ethð Þε p f Ethð Þ 1� rð Þ 1

1� η Ecð Þ f Ecð Þ ε pr½ �

This calculation counts all the thermal neutrons generated by the “upper” route

for all the successive generations on the previous sketch. The thermal cut-off level

is relatively arbitrary and it could in fact have been placed at the epithermal level in

similar fashion to produce a new and equally valid definition of k1:

Eth

1 absorbed

neutron 

)( thEη

0E
εη )( thE

( )( ))(11)( thth EfrpE −−εη

)( thEf×

)( thEη×

( )r−× 1

pE th εη )(

( ) )(1)( thth EfrpE −εη

Fig. 11.11 Two-group k1 theory

)( thEη

thE

0E

1 absorbed

neutron  

εη )( thE

( ) )(1)( thth EfrpE −εη

( )r−× 1

)()()( ccth EfErpE ηεη

)()(
22

cc EfErp ηεη

( ) )(1)()()(
22

thccth EfrEfErpE −ηεη

( ) )(1)()()(
22222

thccth EfrEfErpE −ηεη

22222
)()()( ccth EfErpE ηεη

pε×

( )r−× 1 ( )r−× 1

r×
pEth εη )(

r×

Fig. 11.12 Neutron count at thermal cut-off
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k12 ¼Numberof neutrons produced by epithermal absorption atgenerationnþ 1

Numberof neutrons produced by epithermal absorption atgenerationn

k12 ¼ η Ecð Þ f Ecð Þ ε p
r

1� η Ethð Þ f Ethð Þεp 1� rð Þ

In this case, we must be careful that the input neutron in Fig. 11.13 (on the left) is

one produced after an epithermal absorption and that factor η does not appear at the
beginning of the cycle (counting the latter would be equivalent to counting neutrons

from the previous generation). Thus:

k12 ¼ η Ecð Þf Ecð Þ r ε p
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{first cut�off

þ η Ecð Þf Ecð Þr ε p 1� rð Þ η Ethð Þε p f Ethð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{second cut�off

þ :::::
z}|{third term

1

k12 ¼ lim
n!1 η Ecð Þf Ecð Þ r ε p

1� ε pη Ethð Þ f Ethð Þ �
1� r

� ��
n

1� ε pη Ethð Þf Ethð Þ 1� rð Þ½ �
� 	

¼ η Ecð Þf Ecð Þ r ε p
1

1� ε pη Ethð Þ f Ethð Þ 1� rð Þ½ �

It can be seen that the expression for the infinite multiplication coefficient differs

according to the definition of the cut-off used. This result is particularly counter-

intuitive compared to the idea that any given state of a reactor corresponds to a

specific reactivity. The problem arises since the four-factor formula is a calculation

based on specific fission neutrons (either neutrons produced after thermal absorp-

tion in the first case [k11], or else neutrons produced after epithermal absorption in

the second case, [k12]). The method consists in measuring the increase in a given

neutron population by comparing the number of particles of a given age between

two successive generations. The result consequently differs according to the actual

thE

0E

1 neutron produced

per epithermal absorption  

ε×

p×

)()( cc EEfrp ηε

)( thEη×
( )r−× 1

( ) )(1 thEfrp −ε

( ) )()()()(1
22

cththc EEEfEfrrp ηηε −

Fig. 11.13 Neutron count at epithermal cut-off
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age in question. If k1were calculated on the basis of a number of reaction rates, this

number would concern neutrons produced through all types of fission irrespective

of their origin, thus giving a single definition. To use a demographics analogy, this

approach would be the equivalent of calculating an increase in the neutron popu-

lation by counting the number of births and deaths. However, stability of the reactor

at criticality (i.e. stability of the population in the demographics analogy) is indeed

the reality that must be reflected by the two definitions of k1. Hence, it may be seen

that while the two values of k1obtained using the two cut-off values are very

different, the criticality condition in infinite medium is the same for both

approaches, and that:

k11 ¼ η Ethð Þ ε p f Ethð Þ 1� r

1� η Ecð Þf Ecð Þ εpr ¼ 1

k12 ¼ η Ecð Þf Ecð Þε p
r

1� η Ethð Þ f Ethð Þεp 1� rð Þ ¼ 1

8>><
>>:

corresponds to the same equation as:

η Ethð Þ ε p f Ethð Þ 1� rð Þ ¼ 1� η Ecð Þ f Ecð Þ εpr

Reasoning is the same regardless of the cut-off value used to count neutrons. The

criticality condition expresses the same neutron balance for any counting method.

Let us now consider a finite reactor. The leakage probabilities should be employed

outside the reactor geometry. P E0 ! Ecð Þ ¼ 1= 1þ L2s E0 ! Ecð ÞB2
� �

is the

non-leakage probability for a neutron as it slows down to the cut-off of the thermal

group, while P Ec ! Ethð Þ ¼ 1= 1þ L2s Ec ! Ethð ÞB2
� �

is the non-leakage probabil-

ity of a neutron during slowing down in the thermal group. Note that the product:

P E0 ! Ecð Þ P Ec ! Ethð Þ ¼ P E0 ! Ethð Þ ¼ 1

1þ L2s E0 ! Ethð ÞB2
� �

is the non-leakage probability of the neutron throughout its slowing down, Ls being
the slowing-down length. It should also be noted that this equation relates

L2s E0 ! Ethð Þ to L2s E0 ! Ecð Þ and L2s Ec ! Ethð Þ. PEth
¼ 1= 1þ L2B2

� �
is also

defined as the non-leakage probability of the neutron at thermal energy, with

L being the thermal scattering length. In the case of the cut-off cycle illustrated in

Fig. 11.14 by the scissors, the following is obtained:
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keff1 ¼ η Ethð Þ ε p P E0 !Ecð Þ P Ec !Ethð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P E0!Ethð Þ

Pth f Ethð Þ 1� r

1�η Ecð Þf Ecð ÞP E0 !Ecð Þ εpr

¼ η Ethð Þ ε p 1

1þL2s E0 !Ethð ÞB2

1

1þL2B2
f Ethð Þ 1� r

1� η Ecð Þf Ecð Þ 1

1þL2s E0 !Ecð ÞB2
εpr

Similarly, another cut-off situated on the epithermal track gives a different

evaluation of keff, i.e. keff2:

keff2 ¼ η Ecð Þ f Ecð ÞP E0 !Ecð Þ ε p r

1�η Ethð ÞεpP E0 !Ecð Þ P Ec !Ethð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P E0!Ethð Þ

Pth 1� rð Þf Ethð Þ

¼ η Ecð Þ f Ecð Þ 1

1þL2s E0 !Ecð ÞB2
ε p

r

1�η Ethð Þεp 1

1þL2s E0 !Ethð ÞB2

1

1þL2B2
1� rð Þf Ethð Þ

As with k1, it may be seen that the two definitions of keff are different but that the
criticality condition is identical in both cases:

η

thE

0E

1 absorbed

neutron  

εη

pεη

fPEEPEEPrp ththcc )()(1 0 →→−εη

)()( cc EfrEη×

( )r−× 1

( ))(1 0 cEEP →−×

thP×

( )thP−× 1

)( 0 cEEP →×

( ))(1 thc EEP →−×

)( thc EEP →×

Fig. 11.14 Neutron cut-off cycle located at the scissors in a two-energy-group calculation with

geometrical leakage
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keff1 ¼ 1 ) η Ethð Þ ε p f Ethð Þ 1� r

1� η E0ð Þf E0ð Þ 1

1þ L2s E0 ! Ecð ÞB2
εpr

¼ 1þ L2s E0 ! Ethð ÞB2
� �

1þ L2B2
� �

keff2 ¼ 1 ) η Ecð Þ f Ecð Þ 1

1þ L2s E0 ! Ecð ÞB2
ε pr

¼ 1� η Ethð Þεp 1

1þ L2s E0 ! Ethð ÞB2

1

1þ L2B2
1� rð Þf Ethð Þ

) η Ethð Þ ε pf Ethð Þ 	 1� r

1� η Ecð Þf Ecð Þ 1

1þ L2s E0 ! Ecð ÞB2
εpr

¼ 1þ L2s E0 ! Ethð ÞB2
� �

1þ L2B2
� �

Although it is more complicated, the previous formulae may be generalized out

in a multi-group formalism and using indices for the various probabilities and the

branching ratio by the group number being considered. For example, calculation of

k1 for 3 energy groups (one fast group noted 1, two thermal groups denoted by

2 and 3 and the thermal state corresponding to index 4) gives:

k11 ¼ η ε p f
1� r1

1� εpη1f 1r1

� 	
1� r2

1� pη2 f 2r2 1� r1ð Þ
1� εpη1f 1r1

0
BB@

1
CCA

keff 1 ¼ η ε p f P1P2P3P4

1� r1
1� εpP1η1f 1r1

� 	
1� r2

1� pP1P2η2 f 2r2 1� r1ð Þ
1� εpP1 η1f 1r1

0
BB@

1
CCA

8>>>>>>>>>>><
>>>>>>>>>>>:

11.5 Multiplication Factor Through a Reaction Rate

Balance

The ambiguous definition of the consecutive terms of the four factors has been

removed in calculation codes that discretize the energy spectrum of neutrons in

bands/groups and compute the group-wise reaction rate. In particular, the strong

hypothesis of the four-factor formula consists in localizing the resonant absorption

after having applied factor ε. It becomes more ambiguous in a multi-group

approach where fast fission is possible in several fast groups and where resonances

are located in several epithermal groups. Thus, the difference between the applica-

tion of ε and p makes the use of the four-factor formula obsolete. The effective
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multiplication factor represents the mean number of neutrons emitted by fission per

neutron emitted by fission in the reactor. It is given by the neutron balance as

follows:

Definition of keff ¼ number of neutrons emitted by fission

number of neutrons lost in reactor
ð11:4Þ

Hence, the rate at which neutrons disappear from the reactor is introduced in that

equation. It accounts for:

– neutron absorptions (fission and capture),

– absorption by excess reactions (by reaction (n,2n), (n,3n), etc.) that are not

usually counted in absorptions,

– the leakages from the reactor.

It should be noted that excess reactions are not influenced by keff since a neutron
absorbed by (n, 2n) produces two neutrons for any multiplying medium that is

considered. Indeed, this is also the case for (n, xn) reactions. The balance is written
as follows:

Leakages þ Absorptions þ Absorptions by excess reactions

¼ Productions

keff
þ Excess Productions

Absorptions by excess reactions

¼
ð

Energy

ð
reactor

Σn, 2nΦþ Σn, 3nΦþ Σn, 4nΦþ . . .ð Þd3r dE

Excess Productions ¼
ð

Energy

ð
reactor

2Σn, 2nΦþ 3Σn, 3nΦþ 4Σn, 4nΦþ . . .ð Þd3r dE

keff ¼

Ð
Energy

Ð
reactor

vΣfΦd3r dEÐ
Energy

Ð
reactor

ΣaΦ�Σn,2nΦ� 2Σn,3nΦ� 3Σn,4nΦþ . . .ð Þd3r dE þ Leakages

The previous formulation supposes that the absorption cross section does not

account for the excess production cross sections by reactions (n,2n), (n,3n), etc.
Usually, in diffusion theory with the fundamental mode, neutron leakage from the

reactor (which will be discussed later on) is expressed as:

Leakages ¼
ð

Energy

ð
reactor

�DΔΦd3r dE ¼
ð

Energy

ð
reactor

DB2
gΦd3r dE
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Inserting the migration area in one-group theory:

M2 �
Ð
DΦdEÐ
ΣaΦdE

and the definition of the infinite multiplication factor:

k1 �

Ð
Energy

Ð
reactor

vΣfΦdv dEÐ
Energy

Ð
reactor

ΣaΦdv dE

leads to the formula that relates keff and k1, without accounting for the excess

productions:

keff ¼ k1

1þM2B2
g

� �

It should be noted that the definition of k1 implies that the latter depends on the

spectrum of the reactor in question, and thus in particular on leakage therein. In

practice, the calculation of a critical configuration is carried out with buckling

corresponding to the fundamental mode.

Furthermore, it is possible to expand the expression of keff as a balance of

reaction rates (Fig. 11.15 for a UOX core and Fig. 11.16 for a MOX core, both

fuel types being equivalent in terms of cycle lengths6), specifying that:

• neutrons are produced from fissile nuclides:

– regardless of incident neutron energy (such as 235
92U , denoted as P5 for

simplification),

– that are fissile only in fast spectrum (like 238
92U , denoted P8 for the sake of

clarity),

• the absorption rate may be broken down into:

– resonant absorption on fertile nuclides (principally by 238
92U , noted as Areson),

– non-resonant absorption on fissile nuclides (effect of cross sections varying in

1/v, noted as Ath),

– absorption on non-fissile structures (grids, boron, etc., noted as Astructures),

6For details on the physics of the MOX fuel, refer to Paul Reuss: Etude physique du recyclage du
plutonium dans les réacteurs �a eau [Physical studies of the recycling of plutonium in water

reactors], PhD thesis (1979) and CEA technical report CEA-N-2098.
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Fig. 11.15 Neutron balance for a homogeneous core with a quarter fractional core management

for UOX fuel with 3.7% enrichment in 235
92U at equilibrium at EOC, with a mean burn-up of

26,250 MWd/ton (simulation of mean depletion with 500 ppm of boron)
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Fig. 11.16 Neutron balance for a homogeneous core with a quarter fractional core management

for MOX fuel with 8.65% plutonium content at equilibrium at EOC, with a mean burn-up of

25,000 MWd/ton (simulation of mean depletion with 500 ppm of boron)
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to give the following equation:

k1 ¼ Production

Absorption
¼ P5 þ P8

Areson þ Ath þ Astructures

¼ P5 þ P8

P5

P5

Ath

Ath

Areson þ Ath

Areson þ Ath

Areson þ Ath þ Astructures

From this, a precise definition of the coefficients from the four-factor formula

may be deduced:

ε ¼ P5 þ P8

P5

, η ¼ P5

Ath
, p ¼ Ath

Areson þ Ath
, f ¼ Areson þ Ath

Areson þ Ath þ Astructures

In the usual presentation of the four-factor formula, a chronological approach is

employed. Indeed, the fast fission coefficient ε is introduced as the fast fission

generator. The previous calculation introduces a distinction between target nuclei

that are basically those present in thermal reactors. In a fast reactor, all isotopes

undergo fission in the fast spectrum and the specific case of 238
92U is without

meaning. Similarly, in a water reactor, the use of plutonium in the MOX fuel

requires the introduction of production terms by fission of fissile plutonium isotopes

as well as resonant absorption on those isotopes. The thermal fissile isotopes are

hence (23592U , 239
94Pu,

241
94Pu), while the fertile ones, which after capture form an

isotope in the thermal domain, are (23892U , 23894Pu,
240
94Pu,

242
94Pu,

241
95Am).

ε¼ PfissileþPfertile

Pfissile
, η¼ Pfissile

Afissile
, p¼ Afissile

AfertileþAfissile
, f ¼ AfertileþAfissile

AfertileþAfissileþAstructure

The effect of burn-up is characterized by the appearance of fission products for

which the sterile capture must be added to the absorption terms of structures. It can

be seen that the neutrons originating from fast fissions are instantaneously recycled

in the four-factor formula via the fast fission factor ε (which is totaled using a

multiplication factor applied to the number of neutrons produced by fission). These

neutrons are not distinguished from the others in the calculation since the balance

accounts for neutrons produced by any type of fission, regardless of the form of the

incident neutron energy. The first approach is quite didactic and offers a natural

means for understanding the kinetic aspects. However, it hinges on an arbitrary

definition of fast and thermal neutrons, which is particularly well suited to thermal

reactors, for which it has been developed.

11.6 Reactivity Effects or Reactivity Difference

Analysis of how a reactor responds to any variation of a physical parameter

(temperature, composition, etc.) is often summarized in differential neutron coef-

ficients. Whilst the mathematical definition of these coefficients is very precise
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(∂keff / ∂Tcomb is the fuel Doppler effect for example), their numerical evaluation

may be quite difficult, especially for the composition of these effects: how can two

distinct reactor states be precisely compared? It is very common to use the reac-

tivity value ρ¼ (keff� 1)/keff having a critical value of 0 rather than the multiplica-

tion coefficient keff determined in comparison to 1. Under the nominal operating

conditions of a reactor, keff is very close to 1 and engineers have adopted the “bad”

(but very practical for rapid calculation) habit of evaluating reactivity using the

approximate formula ρ� keff� 1. It can be seen that for wide variations in keff, this
formula no longer gives consistent values as for the strict definition normalized by

keff. Hence, a reactivity difference between two states, A and B, is given by the

following formula:

Reactivity difference: Δρ ¼ ρB � ρA ¼ kB
eff � 1

kB
eff

� kA
eff � 1

kA
eff

¼ 1

kA
eff

� 1

kB
eff

¼ �Δ
1

keff

� 	
ð11:5Þ

However, the reactivity effect is defined as:

Reactivity effect: Δ ln keff ¼ ln kB
eff � ln kA

eff ¼ ln
kB
eff

k A
eff

ð11:6Þ

It may be seen that both definitions obey the additivity of the integral (the

relation of Chasles), i.e. ΔρAC¼ΔρAB+ΔρBC and Δ LogkeffAC¼Δ ln keffAB +
Δ ln keffBC. However, only the reactivity effect has the factorization property. If

we consider a set of states Ai, corresponding to a multiplication coefficient kAi

eff , that

is perturbed proportionally to obtain a multiplication factor of αkAi

eff , the reactivity

effect will always be:

Δ ln keff ¼ ln
αkeff
keff

¼ ln α

and it is thus independent of the initial multiplication factor, which is not the case

for the reactivity difference.

11.6.1 Comparison of the Effects on a UOX Fuel

We can illustrate the foregoing by calculating the fuel Doppler effect in infinite

lattice7 for a PWR uranium oxide pin enriched at 4.2% 235
92U and for a mean

7Fuel pin diameter: 0.82 cm, zirconium cladding diameter: 0.92 cm, lattice pitch filled with water

at 305 
C: 1.26 cm, calculated using the Wigner-Seitz method with zero-buckling.
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temperature variation of 540–286 
C (“cold” Doppler effect). Physically, reactivity

increases as fuel temperature decreases (stabilizing power of the Doppler effect in

the case of a fuel temperature excursion). Here, the goal is to quantify the variation

of the Doppler effect during the lifecycle of the fuel (e.g. between the Beginning Of
Life, BOL, and End Of Life, EOL) in a reactor up to 50,000 MWd/ton, Table 11.4).

These results show that while the reactivity effect increases slightly by 180 pcm

during the cycle, the reactivity difference increases by 453 pcm. These figures both

illustrate the same fact: the hardening of the neutron spectrum during burn-up,

which may be observed by the increase in the spectrum index (ratio of the fast flux

to the thermal flux with a cadmium cut-off at 0.625 eV). Hence, there are prefer-

ential resonant capture reactions of 238
92U and the Doppler effect increases along

the cycle.

However, the weight of this effect, which may be considered practically constant

at around 877 pcm� 90 pcm using the “reactivity effect” approach, increases

using the “reactivity difference” approach due to the significant decrease of keff. Let
us now consider the effect of boron concentration in the moderator and the impact

of adding 500 ppm of boron to the previous fuel and calculate the reactivity effect

and the difference in reactivity (Table 11.5). It may be seen that there is a hardening

of the spectrum with burn-up, resulting in a decrease in the reactivity effect of

boron, a powerful thermal absorbing material. At the same time, the reactivity

difference due to boron increases since its relative contribution in a fuel with a low

keff value increases. In conclusion, the reactivity effect may be used to reduce the

impact of the lowering of keff with regard to the differential coefficient. Nonethe-

less, the reactivity difference will give the correct differential coefficient for a

critical core where both definitions are the same, since for a small perturbation α
(close to 1) near to the critical state (keff approaching 1):

Δ ln keff ¼ ln
αkeff
keff

¼ ln α � α� 1

Δρ ¼ αkeff � 1

αkeff
� keff � 1

keff
¼ α� 1

αkeff
� α� 1

8>><
>>:

An increase in the spectrum index (hardening) of a fuel, followed by a decrease

(thermalization), would lead to a decrease in the boron reactivity effect followed by

an increase almost concomitantly.

11.6.2 Reactivity Effect of Isotopic Change

From the global reactivity effect:

Δρ ¼ ρB � ρA ¼ 1

kA
eff

� 1

kB
eff

¼ kB
eff � kA

eff

k A
eff k

B
eff
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The reactivity effect induced by change in the concentration of a single isotope is

obtained as follows:

Δρ ¼ kB
eff � kA

eff

k A
eff k

B
eff

¼
vΣ B

f

Σ B
a
� kA

eff

k A
eff

vΣ B
f

Σ B
a

¼
vΣ B

f

k A
eff

� ΣB
a

vΣB
f

¼
vΣ A

f

k A
eff

þ Δ vΣfð Þ
k A
eff

� ΣA
a þ Δ Σað Þ� �

vΣB
f

Since
vΣ A

f

k A
eff

� ΣA
a � 0, the following equation is obtained:

Δρ ¼
Δ vΣfð Þ
k A
eff

� Δ Σað Þ
vΣB

f

The contribution of an isotope i is given by:

Δρi ¼
Δ vNiσ i

fð Þ
k A
eff

� Δ Niσ i
a

� �
vΣB

f

¼
νσ i

f

k A
eff

� σ i
a

� 	
ΔNi

vΣB
f

þ
Ni

Δ νσ i
fð Þ

k A
eff

� Δσ i
a

� 	
vΣB

f

þ
ΔNi

Δ νσ i
fð Þ

k A
eff

� Δσ i
a

� 	
vΣB

f

Three terms appear: the first is directly proportional to the difference in concen-

tration ΔNi, the second is a spectral effect, i.e. a change induced by the impact of

spectrum shift on the cross sections, and the third is a second-order effect.

11.7 Calculation of Reactivity by Perturbation Theory

Estimate

(Marchuk 1959, p. 148; Planchard 1995, p. 315)

Let us consider the time-dependent Boltzmann equation without any indepen-

dent sources (i.e. only fission sources), written using the transport operator H:

H Φ½ � ¼ 1

v

∂Φ
∂t

A stationary solution exists if and only ifH[Φ0]¼ 0, thus if the transport operator

H has a zero eigenvalue. Mathematically, a parameter λ is defined such that for a

given critical value λ0, the operatorH(λ0) has a zero eigenvalue. The reactor defined
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by H(λ0) is thus the associated critical reactor for the true reactor defined by the

operator H. The critical flux Φ0 and the adjoint critical flux Φ∗
0 are defined as:

H λ0ð Þ Φ0½ � ¼ H0 Φ0½ � ¼ 0 and H∗ λ0ð Þ Φ∗
0


 � ¼ 0

Let us now consider a reactor subject to any form of mild perturbation (slight rod

insertion, small temperature increase, etc.). This reactor would be critical for a flux

solution that is also perturbed, and the perturbation δΦ0 satisfies the same boundary

conditions as Φ0:

H0 þ δH0ð Þ Φ0 þ δΦ0½ � ¼ 0 or even :

H0 Φ0½ �|fflfflffl{zfflfflffl}
0

þδH0 Φ0½ � þ H0 δΦ0½ � þ δH0 δΦ0½ � ¼ 0

This equation has an infinite number of solutions in δΦ0 since if δΦ0 is a solution

so too is δΦ0
’¼ δΦ0 + α(Φ0 + δΦ0) for any value of the constant term α. Thus,

δΦ0 can be calculated with a chosen normalization condition that does not modify

the reactivity value. However, to obtain the value of the flux perturbed by measur-

ing a local signal (e.g. in a local fuel substitution experiment), the normalization

condition must be consistent with the experiment, for instance, a constant flux at a

position in a fission chamber far removed from the perturbed region.8

By applying the operator:

< Φ∗
0 , f r;Eð Þ >¼ Ð

reactor

d3r
Ð1
0

Φ∗
0 r;Eð Þf r;Eð ÞΦ r;Eð Þ dE, the following equa-

tion is obtained:

< Φ∗
0 , δH0 Φ0½ � > þ < Φ∗

0 ,H0 δΦ0½ � > þ < Φ∗
0 , δH0 ΔΦ0½ � >¼ 0

Since < Φ∗
0 ,H0 δΦ0½ � >¼< H∗

0 Φ∗
0


 �
, δΦ0 >¼< 0, δΦ0 >¼ 0 as H∗

0 Φ∗
0


 � ¼ 0

by definition, the equation may be simplified to:

< Φ∗
0 , δH0 Φ0½ � > þ < Φ∗

0 , δH0 δΦ0½ � >¼ 0

At this point, the perturbation equation is accurate but it requires that the solution

to the critical perturbed reactor be found (to obtain δΦ0), which is not of any great

practical use. For small perturbations, the second term can be neglected:

< Φ∗
0 , δH0 δΦ0½ � >� 0. Hence:< Φ∗

0 , δH0 Φ0½ � >¼ 0. Introducing the neutron pro-

duction operator P and the loss operator K, the transport operator may be written as:

8Dominique Akl:Modèle du réacteur réduit pour le calcul de la variation du flux et de la réactivité
résultant d’une perturbation localisée dans un milieu multiplicateur �a neutrons rapides [Reduced
reactor model for calculating the flux variation and the resulting reactivity for a perturbation in a

fast-neutron multiplying medium], PhD thesis, University of Orsay (1972). Perturbation theory is

extensively used in this thesis.

846 11 Nuclear Reactor Reactivity



H0½ � ¼ λ0P½ � � K½ � ¼ P½ �
keff

� K½ �

The perturbed operator is written as:

H
0
0½ � ¼ λ

0
0P

0 ½ � � K
0 ½ � ¼ λ0 þ δλ0ð Þ P½ � þ δP½ �ð Þ � K½ � þ δK½ �ð Þ

Thus : δH½ �¼H
0
0½ ��H0½ �¼ λ0þδλ0ð Þ P½ �þδP½ �ð Þ� K½ �þδK½ �ð Þ�λ0P½ �þK½ �

�δλ0P½ �þλ0δP½ ��δK½ �

which leads to : Δλ0 ¼ < Φ∗
0 , λ0δP� δKð Þ Φ0½ � >
< Φ∗

0 ,P Φ0½ � >

or again, based on the fact that ρ¼ (keff� 1)/keff :

δρ ¼ < Φ∗
0 , δH Φ0½ � >

< Φ∗
0 ,P Φ0½ � > with δH½ � ¼ δP½ �

kef
� δK½ �

This formula is of great practical interest since only one critical flux and adjoint

flux calculation under the reference conditions is required to obtain the perturbation

in reactivity induced by a change in the transport operator, whether due to the

material composition or to a change in the cross sections. From the 1970s to the

1990s, the perturbation method was used to compensate for the weak calculation

power of computers, but during the 2000s, it has tended to be replaced by direct

calculations without approximation of the order of the perturbation.

11.8 Evolution of the Reactivity Along the Cycle

To be able to exploit a reactor during a sufficient time, it is necessary to introduce

some exceed of reactivity which must be compensated with the boron in the

beginning of cycle. The Fig. 11.17 shows the evolution of the reactivity balance

for a UOX 3.25% fuel. We shall note the weight of the saturated xenon is about

2800 pcm, that the weight of the moderating effect makes more than double during

the cycle (from 2100 to 5400 pcm), and that the boron (11,800 pcm, approximately

1300 ppm of boron) is adjusted in order to assure criticality. The loss of reactivity
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during the cycle is due to the global disappearance of the fissile nuclei (because of

fission) and to the concomitant appearance of absorbent fission products. The R rod

bank, which is slightly inserted at the top of the core in the middle of its operating

band, weighs approximately 200 pcm.

beginning of life

End of life
Fin de cyle
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200 pcm
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2100 pcm

5400 pcm
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Time
Temps
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Moderator Temperature 

Samarium

Doppler
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19800
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800
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11800
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Reactivity effects (in pcm)

o

Fig. 11.17 Reactivity effects versus time/burn up (3.25% U235 fuel, cycle natural length

11,000 MWd/t)
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Chapter 12

Critical Homogeneous Reactor Theory

The theoretical analysis of nuclear reactors began during World War II. The first

steps in the race to acquire this knowledge took place in the United States with the

construction of the Chicago Pile 1 (CP1) under the stands of the Chicago stadium.

The simplest analysis consists in supposing that the pile is a homogeneous multi-

plying material for neutrons and the neutron flux is sought for under the criticality

hypothesis. Mathematical calculations that are quite simple allow the study of the

spatial flux distribution in a one-energy group theory.

(Meghreblian and Holmes 1960, p. 160).

12.1 Introduction

The word “pile” stems from the fact that the first critical reactor in Chicago was in

fact a pile of graphite blocks which were used as a neutron-moderating material. On

the right in Picture 12.1, we see a graphite block from the Fermi pile [CP1 for

Chicago Physics One, also called West Stands Reactor (Stephenson 1954, p. 69)],

one of the rare surviving pictures from that time. In Picture 12.1, we see the “flakes”

of pure graphite bricks. The whole pile was made up of 57 layers of graphite

(350 tons) and 6 tons of uranium metal, placed in a cubic lattice within the large

graphite volume (De LaGorce 1992, p. 115; Pollard andDavidson 1956, p. 251), and

of which only one picture remains (Barnaby 1971, p. 23). Since the amount of

uranium metal available was not sufficient, 35 tons of uranium oxide were also used

to finish the lattice. The global shape of the lattice was a sphere, minus its upper part,

which was intended to become critical under a plastic cover to form a depression,

thereby decreasing the amount of air absorbing neutrons. This set-up ultimately

proved unusable, since the pile became critical even before it was completely

assembled. It was subsequently dismantled before being rebuilt at Argonne.

If we consider a volume V consisting of a homogeneous medium, and delimited

by a surface area S, the Helmholtz equation, devised by Hermann Louis Ferdinand
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Von Helmholtz1 (1821–1894), is naturally used in situations involving neutron

diffusion theory (Ferziger and Zweifel 1966, p. 31):

Picture 12.1 A graphite

block of the CP1 pile of

Chicago (1941) (Public

domain)

1Hermann Ludwig Ferdinand von Helmholtz (1821–1894). After starting out as a military doctor,

then an anatomy professor, he became a professor of physics at the University of Berlin. He then

worked on experiments in the field of electrophysiology (measurement of the nervous influx),

optics and acoustics. He is famous for his definition of potential energy.

Hermann Von Helmholtz (Public domain)
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Helmholtz equation: ΔΦ ~rð Þ þ λΦ ~rð Þ ¼ 0 ð12:1Þ

The Helmholtz equation is a particular elliptic second-order partial differential

equation, also known as the wave equation since it is formally similar to the wave

equation in quantum physics (Bonilla 1957, p. 179: Etherington 1957, pp. 6–157).
Several mathematical properties related to this eigenvalue problem can be obtained

from (Planchard 1995; Wilkinson 1965), in its time-dependent form in (Crank

1975) and on the approximation of elliptic problems with boundary conditions in

(Aubin 1972). In particular, the associated Green function that cancels out at

infinity and provides a solution to the equation:

ΔG ~rð Þ þ λG ~rð Þ ¼ �δ ~rð Þ

is written as G ~rð Þ ¼ ei
ffiffi
λ

p
r= 4πrð Þ in spherical geometry (Kanwal 1971, p. 116). For

two-dimensional geometry, the solution is G ~rð Þ ¼ iH1
0

ffiffiffi
λ

p
rj j� �

=4 where H1
0 is the

Hankel function. In general, if λ is a complex number, the root
ffiffiffi
λ

p
is chosen such

that its imaginary part is positive, so that G ~rð Þ is zero at infinity. If λ¼ω2 is a

positive real number, the solution becomes G ~rð Þ ¼ eiωr= 4πrð Þ in spherical coordi-

nates (G ~rð Þ ¼ iH1
0 ω rj jð Þ=4 in 2D). If λ¼ �κ2 is a negative real number, then G ~rð Þ

¼ e�κr= 4πrð Þ (G ~rð Þ ¼ K0 κ rj jð Þ= 2πð Þ in 2D where K0 is the modified Bessel

function).2

To outline the problem of flux decomposition, we shall recall some mathemat-

ical properties that will be useful for the following parts. The Laplacian operator

has associated eigenfunctions Φk such that:

ΔΦk ~rð Þ þ λkΦk ~rð Þ ¼ 0

The mathematical quantity λk is called an eigenvalue, and several eigenfunctions
may correspond to a given eigenvalue. The set of eigenfunctions forms a basis of

functions, which forms a natural basis for expanding any functionΦ ~rð Þ that verifies
the Helmholtz equation if it is complete. If the space variable describes a finite

volume, the set of eigenfunctions has a cardinality number—these can be indexed

by a number, although it is infinite:

Φ ~rð Þ ¼
X
k

ϕkΦk ~rð Þ

Several numerical methods may be employed to calculate the eigenvalues

efficiently—some of these will be discussed in Chap. 18, amongst which the

Rayleigh-Ritz variational method that gives the upper values and also theWeinstein

variational method for lower values, which is a more complex problem (Gould

1966).

2For a quick primer on Bessel functions, refer to (Harper 1976, p. 186).
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In reactor physics, we generally consider cases in which the flux satisfies the

boundary conditions of S surrounding a volume V. Either the flux is assumed to be

zero at the boundary, or its derivative with respect to the normal is zero, i.e. a zero
flux gradient corresponding to a flat flux at the interface (symmetry boundary

conditions):

Φ ~r 2 Sð Þ ¼ 0 or
∂Φ
∂n

~r 2 Sð Þ ¼ 0

The eigenfunctions that verify such a boundary condition form a complete basis

having a maximum rank, i.e. no individual eigenfunction is a linear combination of

the others. It can easily be shown that the eigenvalues of the Helmholtz equation

with a given boundary condition are positive real numbers. Indeed, assuming that

Φk ~rð Þ is a complex function (in the mathematical sense, i.e. Φk¼ΦR + iΦi where i
2

¼ �1), the Helmholtz equation can be multiplied by the conjugate function

Φk ¼ ΦR �iΦi, and integrated over the considered volumes (space dependence is

removed to simplify the notations):ð
V

Φk ΔΦk þ λkΦkð Þd~r ¼
ð
V

Φk ΔΦkd~r þ λk

ð
V

Φk Φkd~r ¼ 0

and:
Ð
V

Φk Φkd~r ¼
Ð
V

Φkj j2d~r � 0. The other integral is simplified using:

div Φk grad
��!

Φk

� �
¼ ΦkΔΦk þ grad

��!
Φk :grad
��!

Φk

Hence, we have:
Ð
V

Φk ΔΦkd~r ¼
Ð
V

div Φk grad
��!

Φk

� �
d~r � Ð

V

grad
��!

Φk :grad
��!

Φkd~r

From the Ostrogradski theorem, the following is obtained:
Ð
V

div Φk grad
��!

Φk

� �
d~r ¼Ð

S

Φk grad
��!

ΦkdS ¼ 0 since either the flux is zero at the boundary, and its conjugate

will also be zero, or its derivative is zero, and thus grad
��!

Φk ¼ 0. Moreover:

ð
V

grad
��!

Φk :grad
��!

Φkd~r¼
ð
V

∂ΦR

∂x

� 	2

þ ∂Φi

∂x

� 	2

þ ∂ΦR

∂y

� 	2

þ ∂Φi

∂y

� 	2

þ ∂ΦR

∂z

� 	2

þ ∂Φi

∂z

� 	2
" #

d~r�0

Hence : λk ¼

Ð
V

grad
��!

Φk :grad
��!

Φkd~rÐ
V

Φk Φkd~r
� 0

If Φk ~rð Þ verifies the Helmholtz equation and one of the boundary conditions

given before, the eigenvalues are positive real numbers, or in other words, a

Helmholtz equation with a negative coefficient λ cannot have a solution that is

zero on a finite domain. Moreover, if Φk is a solution, its conjugate Φk is also a
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solution. It can be proved that two different eigenfunctions of a bare reactor are

orthogonal to each other in the sense of the volume integral (Planchard 1995, p. 58).

Indeed, let Φi and Φj be two solutions such that:

ΔΦi þ λiΦi ¼ 0

ΔΦj þ λjΦj ¼ 0




Multiplying the first equation by Φj and the second by Φi, then subtracting one

equation from the other (term-wise) after integration, the following equation is

reached: ð
V

ΦjΔΦid~r �
ð
V

ΦiΔΦj d~r þ λi � λj
� � ð

V

ΦjΦid~r ¼ 0

ð
V

ΦjΔΦid~r �
ð
V

ΦiΔΦj d~r ¼
ð
V

�
div
�
Φj grad
��!

Φi

�� div
�
Φigrad
��!

Φj

��
d~r

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Yet

ð
S
�
Φj grad
��!

Φi � Φigrad
��!

Φj

�
dS ¼ 0

þ
ð
V

grad
��!

Φj grad
��!

Φid~r �
ð
V

grad
��!

Φi grad
��!

Φjd~r

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

ð12:2Þ

The surface integral in the equation is zero since, once more, either Φi andΦj are

both zero or their gradient is zero. Finally:

λi � λj
� � ð

V

ΦjΦid~r ¼ 0 with λi 6¼ λj

It should be noted that this orthogonal property holds only for a bare reactor, but

not for a reactor surrounded by a reflector. The eigenfunctions are known up to a

constant term, and can be normalized to obtain a basis:ð
V

ΦjΦid~r ¼ 1

The smallest eigenvalue λ0 is not degenerated and is associated to positive

eigenfunction Φ0 over the whole volume V (Planchard 1995). This particular

12.1 Introduction 853



eigenvalue depends solely on the geometry and is called geometrical buckling. The
eigenfunction associated is called the fundamental mode whereas the other func-

tions are called the flux harmonics. These can be computed analytically for simple

geometries.

12.2 The Notion of Geometrical and Material Buckling

The fundamental mode is the only solution such that Φ(r) is positive at all points of
V and Φ(r)¼ 0 for all points at the surface S. For any unit of the function Φ(r)
(in neutron theory, it is in neutrons/cm2/s), the unit of λ is the cm�2. In the case

where λ is positive, for an over-critical or critical medium, usually λ ¼ B2
g:whereB

2
g

is called geometrical buckling (B for buckling and g as it depends on geometry

only). Geometrical buckling can be computed analytically for simple geometries

and represents the radius of the flux curvature. A positive value of λ induces a

concave flux which oversees a convex domain (Fig. 12.1) whereas a negative value

of λ, e.g. a source inserted in a non-multiplying medium or a sub-critical medium,

leads to a convex flux shape which covers a concave domain (Fig. 12.2).

When the one-energy-group diffusion equation is written in its canonical form as

ΔΦ(r) + (k1� 1)Φ(r)/M2¼ 0, the quantity (k1� 1)/M2 is introduced. The latter

depends only on the type of multiplying medium (its isotopic composition) and not

the geometry. By analogy with the purely geometric equation, B2
m ¼ k1 � 1ð Þ=M2

is called material buckling when k1 is larger than 1. If k1 is lower than 1 (not to be

confused with the sub-criticality condition given by keff< 1), the following notation

κ2¼ (1� k1)/M2 is usually employed to introduce a negative sign in the diffusion

Fig. 12.1 Example of λ> 0
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equation: ΔΦ(r)� κ2Φ(r)¼ 0. Coefficient κ has the same dimensions as the inverse

of length and may be taken as an attenuation coefficient. The case k1¼ 1. exists for

a theoretical medium where the leakage is zero and the flux level is constant. It can

only be determined mathematically by a given normalization. The set of eigen-

values of the Helmholtz equation is infinite but is still countable:

0< λ0< λ1< . . . .< λn< . . . , but only the fundamental mode Φ0 corresponding

to λ0 is positive at any point in the domain but is zero at its boundaries.

12.3 Criticality Condition

Criticality allows the existence of a stable flux in time that is positive at all points of

the geometry. The following definitions are recalled:

keff ¼ production

absorptionþ leakages
¼ νΣf

Σa þ D B2
g

i:e: keff ¼ k1
1þM2B2

g

which is equivalent to normalizing the production term by keff in the diffusion

equation:

�DΔΦþ Σa Φ ¼ νΣfΦ

keff

The criticality condition is given simply by keff¼ 1, i.e.:

Criticality condition in terms of buckling: B2
g ¼

k1 � 1

M2
ð12:3Þ

Fig. 12.2 Example of λ< 0
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Material buckling (k1� 1)/M2, which is dimensionally homogeneous to the

inverse of a surface, corresponds to the flux curvature imposed by the properties

of the medium only. Equality between material and geometrical buckling, which is

a simple relation, is only of practical value if geometrical buckling can be deter-

mined analytically. This is no longer the case when the reactor geometry becomes

complex, as is the case in practical situations. In this case, the criticality condition is

expressed as a transcendental equation that relates the reactor geometry and the

physical properties of its constituents. However, it is not possible to obtain the

geometrical or material buckling from that relationship. We will consider a few

practical examples below, e.g. the annular reactor.

12.4 Notion of Critical Size: The Rod Model

12.4.1 Analysis of Criticality

The classical approach of the one-dimensional rod model will be used to illustrate

the notion of critical size [this proof has been established with different notations in
(Wing 1962)]. Let us consider a rod of length a in which neutrons move towards the

right or the left.

The number of neutrons traveling at velocity v in the positive direction of the 0x
axis is noted as n+(x) and n�(x) for the negative direction. Each neutron has a

probability of being absorbed of Σa(x) and thus, η neutrons are produced (Fig. 12.3).
The product of vn+(x) corresponds to a positive current while vn�(x) corresponds

to a negative current. For the sake of simplification, let us consider that fission is

isotropic and that η/2 neutrons are emitted to the right and the same number to the

left. The neutrons may also scatter with a probability of Σs(x). In this case, it may

also be assumed that half will scatter towards the right and the others towards the

left. The number of neutrons traveling to the right and undergoing collisions per

second over path length dx is given by:

vnþ xð Þ Σa xð Þ þ Σs xð Þ½ �dx ¼ vnþ xð ÞΣt xð Þdx

This equation implies that the complementary neutrons reach point x + dx, i.e.:

vnþ xð Þ 1� Σt xð Þdx½ � ð12:4Þ

x x+dx

)(xn+

)(xn−

0 a

Fig. 12.3 Rod geometry
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From these interactions, the balance in the positive direction is:

η

2
vnþ xð ÞΣa xð Þdxþ 1

2
vnþ xð ÞΣs xð Þdx ð12:5Þ

and thus, by construction, the same amount in the negative direction. Applying the

same logic in the negative direction gives a number of neutrons in the positive

direction produced by n�(x+ dx), i.e.:

η

2
vn� xþ dxð ÞΣa xð Þdxþ 1

2
vn� xþ dxð ÞΣs xð Þdx ð12:6Þ

According to this reasoning, the interactions due to secondary particles are not

counted, and are assumed to be of second-order importance. They can be computed

by applying a recurrence relation on the new amounts of secondary particles

computed previously. The total number of neutrons n+(x + dx) is hence given at

first order by the sum of Eqs. (12.4), (12.5) and (12.6):

vnþ xþ dxð Þ ¼ vnþ xð Þ 1� Σt xð Þdx½ � þ η

2
vnþ xð ÞΣa xð Þdx

þ1

2
vnþ xð ÞΣs xð Þdxþ η

2
vn� xþ dxð ÞΣa xð Þdx

þ1

2
vn� xþ dxð ÞΣs xð Þdx

Dividing each side by vdx and having the limit of dx tend towards 0, assuming

that the function n+(x) is continuous and its derivative exists, the following equation
is obtained:

dnþ xð Þ
dx

� �nþ xð ÞΣt xð Þ þ η

2
nþ xð Þ þ n� xð Þ½ �Σa xð Þ þ 1

2
nþ xð Þ þ n� xð Þ½ �Σs xð Þ

ð12:7Þ

Symmetrical logic can be applied to n�(x) by considering neutrons travelling to

the left from x + dx so as to evaluate the number of neutrons at point x. Hence, the
following symmetrical equation is obtained:

vn� xð Þ ¼ vn� xþ dxð Þ 1� Σt xð Þdx½ � þ η

2
vn� xþ dxð ÞΣa xð Þdx

þ1

2
vn� xþ dxð ÞΣs xð Þdxþ η

2
vnþ xþ dxð ÞΣa xð Þdx

þ1

2
vnþ xþ dxð ÞΣs xð Þdx
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i.e.:

� dn� xð Þ
dx

¼ �n� xþ dxð ÞΣt xð Þ þ η

2
nþ xð Þ þ n� xð Þ½ �Σa xð Þ þ 1

2
nþ xð Þ þ n� xð Þ½ �Σs xð Þ

ð12:8Þ

By subtracting these two equations term-wise, the usual flux attenuation equa-

tion is obtained by Φ(x)¼ v[n+(x) + n�(x)], assuming that n�(x+ dx)� n�(x):

dΦ xð Þ
dx

¼ �Σt xð ÞΦ xð Þ

The particular case in which η¼ 2 (which is physically realistic) and Σs(x)¼ 0

leads to the simpler equations:

dnþ xð Þ
dx

¼ n� xð ÞΣa xð Þ
dn� xð Þ
dx

¼ �nþ xð ÞΣa xð Þ

8><
>:

that are written in the form of a Helmholtz equation supposing a constant cross

section, as:

Helmholtz equations of the absorbing rod:

d2nþ xð Þ
dx2

þ Σ2
an

þ xð Þ ¼ 0 and
d2n� xð Þ
dx2

þ Σ2
an

� xð Þ ¼ 0 ð12:9Þ

If one neutron per second is injected at the left end of the rod (x ¼ 0), and
assuming that there is a vacuum at both ends of the rod, any neutron leaving the rod

at x ¼ a is lost and will not travel back to the right. The following boundary

conditions represent that situation:

n� að Þ ¼ 0 no neutrons reenter from the right

nþ 0ð Þ ¼ 1 neutron injected only from the left




Integrating equation (12.9) leads to the analytical solution, assuming that the

cross section is constant throughout the rod:

nþ xð Þ ¼
sin Σa x� aþ π

2Σa

� �� �
cos Σaað Þ and n� xð Þ ¼

cos Σa x� aþ π
2Σa

� �� �
cos Σaað Þ
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Similar integration with the reciprocal situation where:

n� að Þ ¼ 1 neutron injected from the right

nþ 0ð Þ ¼ 0 no neutron reenter from the left




leads to:

nþ xð Þ ¼ sin Σaxð Þ
cos Σaað Þ and n� xð Þ ¼ cos Σaxð Þ

cos Σaað Þ

The following condition is required for these quantities to be positive:

a <
π

2Σa

Length a¼ π/(2Σa) leads to the rod being exactly critical, i.e. a permanent

situation may be maintained in time with the imposed boundary conditions. If

a> π/(2Σa), the neutron concentration n+(x) becomes negative over a portion of

the rod, thereby leading to a physically inconsistent problem. Thus, the physical

significance of the critical length is shown and will be extended in three dimensions.

Let us now consider fraction f of absorbed neutrons scattering in the incident

direction of the absorbed neutron, and fraction b scattering backwards, such that:

f þ b ¼ 1

and, neglecting the scattering cross section for the sake of simplification, the

governing equations for n+(x) and n�(x) are obtained:

dnþ xð Þ
dx

¼ nþ xð Þ ηf � 1½ �Σa þ ηbn� xþ dxð ÞΣa

� dn� xð Þ
dx

¼ n� xð Þ ηf � 1½ �Σa þ ηbnþ xþ dxð ÞΣa

8><
>:

This system of equations leads to the Helmholtz equation:

d2nþ xð Þ
dx2

þ η2b2 � ηf � 1ð Þ2
h i

Σ2
an

þ xð Þ ¼ 0

Applying the same boundary conditions as in the previous example, three cases

are possible, depending on the sign of η2b2� (ηf� 1)2:
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nþ xð Þ ¼
ηb sin

x

L

� �
1

LΣa
cos

a

L

� �
� ηf � 1ð Þ sin a

L

� � , L¼ 1

Σa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2b2 � ηf � 1ð Þ2
h ir , η2b2� ηf � 1ð Þ2 > 0

nþ xð Þ ¼
ηb sh

x

L

� �
1

LΣa
ch

a

L

� �
� ηf � 1ð Þ sh

a

L

� � , L¼ 1

Σa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηf � 1ð Þ2� η2b2

h ir , η2b2� ηf � 1ð Þ2 < 0

nþ xð Þ ¼ ηb Σax

1� ηf � 1ð ÞΣaa
, η2b2� ηf � 1ð Þ2 ¼ 0

In the first solution, a critical equation is reached:

1

LΣa
cos Σa

a

L

� �
� ηf � 1ð Þ sin Σa

a

L

� �
¼ 0

and this may be written as follows:

Criticality condition for the rod: tan
a

L

� �
¼ LΣa ηf � 1ð Þ ð12:10Þ

The second situation leads to a criticality condition of the following form:

th
a

L

� �
¼ LΣa ηf � 1ð Þ

It has a solution if LΣa(ηf� 1)> 1. The third case leads to the following

criticality equation:

a ¼ 1

ηf � 1ð ÞΣa

which is physically possible only if ηf> 1. Some conclusions may be drawn from

these results. First, criticality is never possible if η< 1, and ηf> 1 is required to

ensure the existence of critical size. For that critical size, it can easily be shown that

a permanent flux solution Φ(x)¼ v[n+(x) + n�(x)] exists such that the flux is zero at

both ends; this is referred to as the fundamental mode of the critical reactor.

12.4.2 Invariant Imbedding

(Mingle 1973; Shimizu and Aoki 1972).

Analysis of the rod model leads to the introduction of another approach called

imbedding in a non-varying environment or simply the invariant imbedding
approach. This technique was introduced by the astrophysicist V. A.
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Ambartsumian3 in 1943, before being used by Subrahmanyan Chandrasekhar

(1960). However, it was Richard Bellman4 who in 1963 named, developed and

laid the generic theoretical foundations for its applications (Picture 12.2).

This method transforms a problem with two boundary conditions into an initial

value problem more easily processed by computer. With the Boltzmann or diffusion

equation, the flux exiting a wall subjected to incident radiation on the other side

may only be obtained by first computing the complete solutions within the wall.

Unlike these equations, the invariant imbedding method computes the reflection

and transmission functions dependent solely on the thickness of the wall. The idea

consists of computing a balance of the elementary contributions to the rate of

reflected neutrons per unit time, defined by:

R xð Þ � vnþ xð Þ
vn� xð Þ

3Viktor Amaszaspovitch Ambartsumian, Reports from the Academy of Sciences of the USSR,

38, 299 (1943). Ambartsumian (1908–1996) was an Armenian astrophysicist. After completing his

studies at the University of Leningrad, he worked at the Poulkovo observatory from 1928 to 1931.

After the war, he founded the Byarakan observatory and wrote a book on theoretical astrophysics

in 1952, in which he applied the invariance principle for radiation transfers that would be

generalized under the form of invariant imbedding by Bellman. He was appointed president of

the University of Erevan. His image was printed on an Armenian bank note in 1998. Note that his

name is transliterated from Armenian in several forms: Ambarzumian or Hambardzumyan.

(The Marguet collection)
4Ricard Ernest Bellman (1920–1984) was an American mathematician. After his studies at the

Brooklyn college of the University of Wisconsin, he took part in the theoretical studies at Los

Alamos on the Manhattan project. He obtained his PhD from Princeton in 1946 before teaching at

Southern California University. Bellman is famous for inventing dynamic programming, an

approach in the optimal control theory (Hamilton-Jacobi-Bellman equation). Bellman has

published some forty books in the field of operational research and mathematics! His contribution

to the nuclear field is the development of the invariant imbeddingmethod used in radiative transfer

problems. A good summary can be found in Invariant Imbedding Multipoint Boundary-Value
Problems, Journal of Mathematical analysis and Applications 24, pp. 461–466 (1968).
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R(x) is the number of neutrons reflected towards the right for one neutron emitted

to the left.

Similarly, the transmission rate T(x) is defined for one neutron emitted to the left

at a distance x of the considered point (Fig. 12.4).

Variation in R(x) in an element dx is due to at least five elementary contributions

(Fig. 12.5):

R xþ dxð Þ � 1� Σtdxð ÞR xð Þ 1� Σtdxð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

þ cþΣtdx|fflfflffl{zfflfflffl}
2

þ c�ΣtdxR xð Þ 1� Σtdxð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3

þ 1� Σtdxð ÞR xð ÞΣtdxc
þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

4

þ 1� Σtdxð ÞR xð ÞΣtdxc
�R xð Þ 1� Σtdxð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

5

þO dx2
� �

In this expression, c+ (respectively c�) is the number of secondary neutrons

emitted to the right (respectively to the left). In an isotropic case, c+¼ c�

� (νΣf+Σs)/(2Σt)¼ (ηΣa+Σs)/(2Σt). The dependence of the cross sections in

x could also be easily accounted for, and would also lead to the same dependence

for c+ and c�. The first term represents the neutrons flowing in from the left and that

do not interact in dx, each producing R(x) neutrons that are reflected to the left. The
other terms are deduced by similar considerations by counting the probabilities c+

and c� when the interaction occurs in dx. We have stopped at contribution 5 since

Picture 12.2 Richard

Bellman (Public domain)

x x+dx

)(xR

1

0 a

)(xT

0)0( =RFig. 12.4 Reflection and

transmission in the rod

model
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the subsequent ones undergoing a second collision in dx will be of second order

(proportional to (dx)2). The invariant environment term comes from the fact that the

boundary condition in x is always applied via the invariant albedo5R(x). The
behavior of neutrons outside the study zone is not simulated. For a more complex

geometry, this approach can be generalized using leakage probabilities from one

surface to the other.

By neglecting the second-order terms that are still present in the equation, the

following equation is obtained (Mingle 1973, p. 14):

R xþ dxð Þ � R xð Þ
dx

¼ dR xð Þ
dx

� Σtc
þ 1þ R xð Þð Þ � 2Σt R xð Þ þ Σtc

� R xð Þ þ R2 xð Þ� �
with the boundary condition R(0)¼ 0. This non-linear Riccati equation represents

the form of the invariant environment of the rod model. Mingle notes that the same

equation would be obtained by introducing R(x) in Eqs. (12.7) and (12.8) and then

combining them. Using the transmission rate, the differential transmission equation

is written as:

dT xð Þ
dx

¼ 2Σt c
þ � 1ð ÞT xð Þ þ Σtc

�R xð ÞT xð Þwith the boundary conditionT 0ð Þ ¼ 1

This method forms the basis of transmission theory enabling the transport

equation to be solved using an original method compared to what we have seen

previously. Blaquière uses a similar logic in his particle definition of the albedo

x x+dx

1

2

3

4

5

leftthetowards
emittedneutron1

( )xR

dxtΣ−1

dxtΣ−1

dxtΣ−1

dxtΣ
+c

−c

( )xR

( )xR

dxtΣ−1

+c

dxtΣ

dxtΣ

( )xR

( )xR dxtΣ−1

−c
dxtΣ

Fig. 12.5 Elementary

contributions of order 1 to

the reflection rate

5The albedo characterizes the reflection gain. It can be greater than 1 in a multiplicative medium.

This notion will be discussed broadly in Chap. 13 on the reflector.
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(Blaquière 1962, p. 74), where this method is very effective. The invariant imbed-

ding technique can be used in plane geometry, and though it may be extended to 1D
cylindrical and spherical geometry, it is limited in 3D. In addition, flux inside the

wall cannot be determined by this method. Its natural applications are in radioactive

protection, where only the flux transmitted through shields is required.

12.5 Fundamental Mode for a Reactor with Simple

Geometry

For some simple geometries, an analytical solution may be computed for the

fundamental mode flux for a critical reactor. These theoretical calculations are

used as verification tests for programs that can be used to handle more complex

geometries. These calculations are helpful to appreciate the flux in reactors.

12.5.1 Plane Slab

Let us consider an infinite plane slab of thickness a. The one-energy group diffusion
equation is simplified given that the flux no longer depends on the space variable

x thanks to symmetries, and is written as:

ΔΦ xð Þ þ k1 � 1

M2
Φ xð Þ ¼ d2Φ xð Þ

dx2
þ k1 � 1

M2
Φ xð Þ ¼ 0

Let the characteristic equation of the case k1> 1 be:

d2Φ

dx2
þ B2

gΦ ¼ 0 with the boundary condition: Φ �a

2

� �
¼ Φ

a

2

� �
¼ 0

The equation d2Φ=dx2 � κ2gΦ ¼ 0 has no solution that cancels out at the

boundaries of the domain. The solutions are of the form Φ (x)¼Φα sin(Bgx)
+Φβ cos(Bgx). The solution for the flux must be symmetric, implying that Φ
(�x)¼Φ (x), thus Φα ¼ 0.

Φ
a

2

� �
¼ Φ �a

2

� �
¼ 0 ) cos Bg

a

2

� �
¼ 0 ) Bg ¼ π

a
þ 2kπ

a
k integer

The expression of the flux in the slab is deduced as:

Fundamental mode of a slab: Φ xð Þ ¼ Φmax cos
π

a
x

� �
ð12:11Þ
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The geometrical buckling of the infinite slab of thickness a is given by the

formulaB2
g ¼ π2=a2. Solution Bg¼ π/a alone leads to a consistently positive—and

thus the only physically acceptable—flux solution Φ (x) (Fig. 12.6).
If no further information is available, the flux is known only up to the quantity

Φmax. This highlights the fact that there are an infinite number of solutions to the

diffusion equation. The constant Φmax can be normalized by the nuclear power

produced by the slab. The case in which k1< 1 leads to the characteristic equation

d2Φ=dx2 � κ2mΦ ¼ 0, which has a permanent solution only if an independent

neutron source buffers the system with neutrons. This is no longer the case for a

critical reactor through fission, even if the sub-critical situation with a source may

be encountered for an industrial reactor (during start-up for example). It may be

useful to normalize the flux with the mean flux since the latter can be used to

determine the power of the reactor using the formula

Power ¼ ÐÐÐ
kΣfΦ d3r ¼ kΣfΦ. The mean flux is given by:

Φ ¼

ðx¼þa
2

x¼�a
2

Φmax cos
π

a
x

� �
dx

ðx¼þa
2

x¼�a
2

dx

¼
a

π
sin

π

a
x

� �h ix¼þa
2

x¼�a
2

a
Φmax

¼ 2

π
Φmax � 0:637 Φmax

or, in symmetric fashion,Φmax ¼ πΦ=2. The multiplicative coefficient of the mean

flux (for instance, in the illustrative case, π/2) is called form factor Ω (Lamarsh and

2

a
–

2

a
+

 (x)

a

Φ1

 (x)Φ2

Fig. 12.6 Critical slab

reactor of thickness a
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Barrata 2001, p. 281). A utility company would most probably seek to optimize this

factor such that it is closer to 1, either through the design of the reactor or by using

an appropriate loading pattern, to avoid power peaks and ensure homogeneous fuel

use-up. In practice, it is completely unrealistic to design a reactor that is critical

solely by design, i.e. having a geometry that corresponds exactly to the criticality

condition of the material. In addition, a critical lattice set-up could lead to a neutron

flux that would be dangerous for the utility company. Thus, the reactor is designed

such that it is sub-critical at loading thanks to a large reserve of mobile anti-

reactivity (with boron in PWR for example). Nevertheless, poisoning of the fuel

by fission products that appear at the beginning of power production should also be

taken into account, since a reactor that is only just critical at start-up could choke up

by becoming sub-critical. Reactors are therefore designed to have a large reactivity

reserve to be able to operate for an economically viable period, and that can be

made sub-critical at start-up by adding absorbing media (boron or rods). The

effective engineering problem is thus to compute the amount of absorber (boron

concentration or rod position) required to turn the reactor critical for nominal

operation. From a calculation point of view, the solution consists in obtaining the

theoretical critical reactor for which the flux is sought such that it corresponds to a
neutron source divided by a constant value, which is given by keff, thereby leading

to:

�DΔΦ xð Þ þ Σa Φ xð Þ ¼ νΣfΦ

keff

It should be pointed out that such a reactor is a theoretical case since keff is not
equal to 1, and thus, the physical flux obtained cannot be permanent and the

diffusion equation should have a time-dependent term, as we will see later in the

discussion of kinetics. In practical cases, the absorption cross section can be

modified (by adding or subtracting boron concentrations) to calculate the keff and
through iteration, convergence can be reached for keff¼ 1. The canonical diffusion

equation is written as follows in this context:

1Dcanonical diffusion equation: ΔΦ xð Þ þ
k1
keff

� 1

M2
Φ xð Þ ¼ 0 ð12:12Þ

For the case where k1> keff, and by setting B2
m � k1=keff � 1

� �
=M2, the

eigenfunctions of the equation are cos(Bx) and sin(Bx). The flux solution is equal

to zero at the boundary of the slab and leads to the linear system of equations as

follows:
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Φ a=2ð Þ ¼ Φα sin Bm
a

2

� �
þ Φβ cos Bm

a

2

� �
¼ 0

Φ �a=2ð Þ ¼ �Φα sin Bm
a

2

� �
þ Φβ cos Bm

a

2

� �
¼ 0

8<
:

from which a non-trivial solution is obtained only if the determinant of the system is

zero:

sin Bm
a

2

� �
cos Bm

a

2

� �
� sin Bm

a

2

� �
cos Bm

a

2

� �
������

������ ¼ 0 i:e: : 2 sin Bm
a

2

� �
cos Bm

a

2

� �
¼ 0

That equation is the criticality equation from which the keff of the theoretical

critical reactor is obtained Bma/2¼ π/2, i.e.:

k1
keff

� 1

M2
¼ π

a

� �2
or even: keff ¼ k1

1þM2B2
g

with B2
g ¼

π

a

� �2

If we now try to find the flux shape by imposing the boundary conditions, for

instance, the flux at the boundaries of the slab (the currents could also have been

set), the following is obtained:

Φ a=2ð Þ ¼ Φα sin Bm
a

2

� �
þΦβ cos Bm

a

2

� �
¼ Φþ

Φ �a=2ð Þ ¼ �Φα sin Bm
a

2

� �
þ Φβ cos Bm

a

2

� �
¼ Φ�

8<
:

The linear system of two equations with two variables leads to the solutions:

Φα ¼
Φþ þ Φ�ð Þ cos Bm

a

2

� �
2 sin Bm

a

2

� �
cos Bm

a

2

� � ¼ Φþ þ Φ�ð Þ
2 sin Bm

a

2

� �
Φβ ¼

Φ� �Φþð Þ sin Bm
a

2

� �
2 sin Bm

a

2

� �
cos Bm

a

2

� � ¼ Φ� � Φþð Þ
2 cos Bm

a

2

� �

8>>>>>>><
>>>>>>>:

Since Bm depends on keff, a degree of freedom remains and can be determined by

the introduction of a further equation. The latter is obtained by imposing the current

at the left in the geometry, either at the right or with a flux normalization condition,

e.g. by imposing the average flux value on the geometry or the flux value at a

particular point in the geometry. If the maximum flux is imposed at the center, the

criticality condition is written as:
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Φ 0ð Þ ¼ Φβ ¼ Φ� � Φþð Þ
2 cos Bm

a
2

� � ¼ Φmax

that is:

k1
keff

� 1

M2

 !
¼ 2

a
arc cos

Φ� � Φþð Þ
2Φmax cos Bm

a
2

� � !2

This calculation is useful to understand that the keff of the theoretical critical

reactor depends on the flux shape in the reactor, and that the expression keff ¼ k1

= 1þM2B2
g

� �
has a physical meaning only in the fundamental mode, i.e. the flux is

zero at the boundary of the geometry. By generalizing this approach in a multi-

group setting (for G groups), the flux per group for the fundamental mode is

expressed as a linear combination of the 2G eigenfunctions, to be chosen among

the 4G functions sin(λgx), cos(λgx), sh(μgx), ch(μgx), depending on the value of keff
(hyperbolic functions are involved in all cases whereas trigonometric functions

appear only if keff> 1). There exist G boundary conditions for the flux for each

group, and the flux is zero at the boundaries, i.e. 2G conditions. The criticality

condition in the fundamental mode is then given by cancelling the determinant of

the linear system with 2G unknowns. The criticality condition of the critical reactor

with non-zero flux at the boundaries is also obtained by adding a further equation to

close the system, either by imposing the current per group at one of the boundaries

or another flux value that leads to a different solution for the keff and the flux shape,
except for the particular case where that other value is consistent from a diffusion

point of view. In reality, that situation is not really possible, especially for a code

with discretized physical values. The same logic is also valid for several zones with

different materials where the continuity of the flux and the currents at the interfaces

is assured: one closure equation at a particular point in the geometry may be used to

find the criticality condition linking the keff to the materials geometry, their prop-

erties and the flux shape in the medium.

12.5.2 Parallelepiped

(Bonilla 1957, p. 180).

Let us consider a parallelepiped of size a, b and c in the directions x, y and z. The
canonical diffusion equation is written as:

ΔΦ x; y; zð Þ þ k1 � 1

M2
Φ x; y; zð Þ ¼ ∂2Φ

∂x2
þ ∂2Φ

∂y2
þ ∂2Φ

∂z2
þ k1 � 1

M2
Φ x; y; zð Þ ¼ 0

The invariance properties thanks to the choice of the axes x, y, z and the

boundary conditions allow factorization of the flux as in:
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Φ x; y; zð Þ ¼ ϕ xð Þφ yð Þψ zð Þ

The reader should note that if the parallelepiped were surrounded by a material,

factorization would not be possible, hence the absence of a simple analytical

solution even for a problem with two homogeneous media. The diffusion equation

for the simple parallelepiped may be written as:

d2ϕ xð Þ
dx2

ϕ xð Þ þ
d2φ yð Þ
dy2

φ yð Þ þ
d2ψ zð Þ
dz2

ψ zð Þ þ k1 � 1

M2
¼ 0

The sum of the functions in x, in y, in z and a constant has a solution if and only

if:
d2ϕ

dx2
þ B2

xϕ xð Þ ¼ 0,
d2φ

dy2
þ B2

yφ yð Þ ¼ 0 and
d2ψ

dz2
þ B2

zψ zð Þ ¼ 0

where:

Criticality condition for a parallelepiped: B2
x þ B2

y þ B2
z ¼

k1 � 1

M2
ð12:13Þ

With a frame at the center of the parallelepiped, the solution is given as:

Φ x; y; zð Þ ¼ Φmax cos
πx

a

� �
cos

πy

b

� �
cos

πz

c

� �
The geometrical bucking for the parallelepiped is (Fig. 12.7):

B2
g ¼

π2

a2
þ π2

b2
þ π2

c2

x

)(xφ

yz

)(zψ

)(yϕ

a

c

b

Fig. 12.7 Critical

parallelepiped reactor of

sides a, b, c
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The minimum volume of such a critical reactor is a cube of side a. The form

factor is computed using a volume integral:

Φ¼

Φmax

ðx¼þa

2

x¼�a

2

cos
π

a
x

� �
dx

ðy¼þb

2

y¼�b

2

cos
π

b
y

� �
dy

ðz¼þc

2

z¼�c

2

cos
π

c
z

� �
dz

abc

¼ 8

π3
Φmax � 0:258 Φmax

The form factor is given by Ω¼ π3/8 and is independent of the sides of the

parallelepiped. It should also be pointed out that the flux in a slab is appreciably

flatter than that in a cube of same side. The form factor for the parallelepiped is

equal to the cube of the form factor of a slab, just as simply as a “factorization”.

Nevertheless, the infinite slab reactor remains a theoretical case of a finite real

situation.

12.5.3 Infinite Cylinder

Let us consider a cylinder of radius R for which the flux is sought for such that it

cancels out at R.

ΔΦ rð Þ þ B2
gΦ rð Þ ¼ 0

Φ Rð Þ ¼ 0




The Laplace operator in cylindrical coordinates is given as:

ΔΦ ¼ 1

r

∂
∂r

r
∂Φ
∂r

� 	
þ 1

r2
∂2Φ

∂θ2
þ ∂2Φ

∂z2

for which only the terms in r are kept thanks to the revolution symmetries. The

equation may be written as follows:

r2
d2Φ rð Þ
dr2

þ r
dΦ rð Þ
dr

þ B2
gr

2Φ rð Þ ¼ 0
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This is in fact the Bessel equation6 with the addition of the term B2
g (Hochstadt

1973, p. 180). Variable ρ¼Bgr may be changed so as to obtain a canonical Bessel

equation.7 The general solution of this modified Bessel equation is usually:

Φ rð Þ ¼ ΦJ J0 Bgr
� �þ ΦY Y0 Bgr

� �
The flux Φ(r) must be finite (¼Φmax); since as Y0(0)¼ �1, ΦY¼ 0. The

boundary condition enabling the flux to be equal to zero on the surface of the

cylinder is given by Φ(R)¼ 0, i.e. J0(BgR)¼ 0. Hence, BgR is the square root of the

function J0 (usually denoted as j0 , k i.e. the k
ith root of the function J0) and only the

first root ensures that the flux is positive at any point in the cylinder. Since J0(0)¼ 1,

the solutions to the Helmholtz equation are given as (Fig. 12.8):

Φn rð Þ ¼ ΦmaxJ0 j0,n r=R
� �

:

Only Φ1(r) is positive at any point. The geometrical buckling for an infinite

cylinder is:

6Friedrich Wilhelm Bessel (1784–1846) was a German mathematician and physicist. He is known

for the Bessel functions, despite the fact the latter were discovered by Daniel Bernoulli. At an early

age, Bessel displayed a deep interest in astronomy and became the assistant of Johann Sch€oter at
the Lilienthal observatory near Bremen, despite having no university degree. At 25, he headed the

brand-new Konigsberg observatory. In 1811, he graduated with an honorary PhD from Gottingen

University, thanks to a recommendation from Carl Gauss. While at Gottingen, Bessel undertook a

great deal of work on star mapping and prepared precise parallax calculations. In 1844, his works

on the deviation of the trajectory of Sirius led to the discovery of Sirius B (non-luminous). He

corrected the simple variance formula (dividing by n�1 instead of n, since use of the average

formula removes one degree of freedom).

(The Marguet collection)
7For further explanations on the Bessel functions, see (Watson 1980).
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B2
g ¼

j0,1
R

� 	2

� 2:405

R

� 	2

The average flux is given by the following equation:

Φ¼

ðr¼þR

r¼0

ΦmaxJ0
j0,1 r

R

� 	
2πrdr

ðr¼þR

r¼0

2πrdr

¼
2π

R

j0,1

� 	2 ðr¼þR

r¼0

j0,1 r

R
J0

j0,1 r

R

� 	
j0,1
R

dr

πR2
Φmax

Using the formula for an integral of x J0(x):

ðr¼þR

r¼0

j0,1 r

R
J0

j0,1 r

R

� 	
j0,1
R

dr ¼
ðx¼þj0,1

x¼0

x J0 xð Þ dx ¼ x J1 xð Þ½ �x¼þj0,1
x¼0

¼ j0,1 J1 j0,1
� �

i:e: : Φ ¼
2π

R

j0,1

� 	2

j0,1J1 j0,1
� �

πR2
Φmax ¼ 2J1 j0,1

� �
j0,1

Φmax � 0:416 Φmax

with j0 , 1� 2.405 and J1( j0 , 1)� 0.5. The form factor for the infinite cylinder is thus

Ω ¼ j0,1

2J1 j0,1ð Þ .

r

Φ1 (r)

R

Φ2 (r)

Fig. 12.8 Cylindrical

reactor of radius R
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12.5.4 Finite Cylinder

(Cameron 1982, p. 97).

Let us consider a finite reactor of radius R and height H.

ΔΦ r; zð Þ þ B2
gΦ r; zð Þ ¼ ∂2Φ r; zð Þ

∂r2
þ 1

r

∂Φ r; zð Þ
∂r

þ ∂2Φ r; zð Þ
∂z2

þ B2
gΦ r; zð Þ ¼ 0

Thanks to this geometry, a solution may be obtained by separating the variables

Φ(r, z)¼φ(r) ψ(z) and the diffusion equation is written as:

1

φ rð Þ
d2 φ rð Þ
dr2

þ 1

φ rð Þ r

dφ rð Þ
dr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Depends only on r

þ 1

ψ zð Þ
d2ψ zð Þ
dz2

þ B2
g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Depends only on z

¼ 0

This equation is possible if:

1

φ rð Þ
d2 φ rð Þ
dr2

þ 1

φ rð Þ
dφ rð Þ
dr

¼ A,
1

ψ zð Þ
d2 ψ zð Þ

dz
¼ C, Aþ Cþ B2

g ¼ 0

where A and C are constants. A physical solution that is equal to zero at z¼ +H/2
and z¼ �H/2 requires that C� 0. Hence:

1

Ψ zð Þ

d2 Ψ zð Þ
dz2

¼ �α2

The equation for a slab of thickness H is ψ(z)¼ψ1max cos(πz/H ).

where : A ¼ �B2
g � C ¼ �B2

g þ
π

H

� �2
Hence :

d2 φ rð Þ
dr2

þ 1

r

d φ rð Þ
dr

þ B2
g �

π2

H2

� 	
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

β2

φ rð Þ ¼ 0

This zero-order Bessel equation has the general solution: φJ J0(β r) +φY Y0(β r).
Similar logic as for the case of the infinite cylinder leads to elimination of the

function Y0(β r), which is equal to �1 at 0. Since φ(βR)¼ 0, it may be deduced

that: βR¼ j0 , 1 (Fig. 12.9).
Only the first root j0 , 1ensures a positive flux φ(r). Therefore:

φ rð Þ ¼ φ1max
J0 j0,1 r=R
� �
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Thus, the complete flux solution is reached by recalling that Φ(r, z)¼φ(r) ψ(z)
and that j0 , 1� 2.405.

Φ r; zð Þ ¼ Φmax J0
j0,1
R

r

� 	
cos π

z

H

� �

The geometrical buckling of a finite cylinder is given by:

B2
g ¼

j0,1
R

� 	2

þ π

H

� �2
Therefore, the solution of the critical equation for the finite cylinder as expressed

by:

�DΔΦ r; zð Þ þ ΣaΦ r; zð Þ ¼ νΣfΦ r; zð Þ
keff

is similar to that obtained for an infinite cylinder with a flux solution Φ(r) where the
leakage term DB2

z ¼ D π2=H2
� �

is added to the absorption:

�DΔΦ rð Þ þ Σa þ DB2
z

� �
Φ rð Þ ¼ νΣfΦ rð Þ

keff

since cos(Bzz), which represents the flux component in the calculations in two

dimensions(r, z), is the eigenfunction of the equation in z which is obtained by

setting Φ(r, z)¼ϕ(r)φ(z):

�∂2φ zð Þ
∂z2

¼ B2
zφ zð Þ

r

Φ1 (r)

R

Φ2 (r)

H

Fig. 12.9 Critical

cylindrical reactor

874 12 Critical Homogeneous Reactor Theory



Amongst other advantages, this approach allows simple calculation of the

loading pattern of the core in three dimensions using a two-dimensional calculation

(xOy plane) by including the axial leakage term DB2
z to the absorption. In other

words, the flux is assumed to be the fundamental mode. Similarly, an 1D axial

calculation may be made more representative by introducing a leakage term to the

absorption. This approach may be improved by introducing a radial leakage term

for each layer of 1D core or axial leakage for each 2D assembly, without obtaining

the accuracy of a true 3D calculation. The flux can be expressed in terms of the

mean flux by computing the dependence of the latter with respect to the maximum

flux using a triple integration (volume integration) over the volume of the cylinder:

Φ ¼

Ðr¼R

r¼0

Ðθ¼2π

θ¼0

Ðz¼þH
2

z¼�H
2

Φmax J0
j0,1
R r

� �
cos πz

H

� �
dz rdθ dr

Ðr¼R

r¼0

Ðθ¼2π

θ¼0

Ðz¼þH
2

z¼�H
2

dz rdθ dr

¼ Φmax

2π 2H
π

Ðr¼R

r¼0

J0
j0,1
R r

� �
r dr

πR2H

Using the following integration formula:
R
rJ0 (r) dr¼ r J1 (r) and the

change in variable x¼ j0 , 1 r/R:

Φ¼ Φmax

4

πR2

R2

j0,1
2

ðr¼R

r¼0

j0,1
R

r J0
j0,1
R

r

� 	
j0,1
R

dr¼Φmax

4

π j0,1
J1 j0,1
� ��0:265Φmax

The form factor obtained is Ω ¼ π j0,1
4 J1 j0,1ð Þ, i.e. the product of the form factor of

a slab and an infinite cylinder.

12.5.5 Disc

Let us consider a disc in two dimensions (r, θ) with r< R the radius of the disc, with

constant properties, but nevertheless with a boundary condition applied to its edge

depending on the angle. The diffusion equation in cylindrical coordinates is written

as:

�D
1

r

∂
∂r

r
∂Φ r; θð Þ

∂r

� 	
þ 1

r2
∂2Φ r; θð Þ

∂θ2

" #
þ ΣaΦ r; θð Þ ¼ νΣfΦ r; θð Þ

keff
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It is very effective to expand the flux as an infinite series of Chebychev poly-

nomials Tl(θ)� cos(lθ) (i.e. Fourier series), discussed earlier in the Tn form of the

Boltzmann equation:

Φ r; θð Þ ¼
X1
l¼0

Φl rð ÞTl θð Þ

The second derivative of a Chebychev polynomial is:

∂2
Tl θð Þ
∂θ2

¼ �l2 Tl θð Þ

Using flux expansion in the diffusion equation, the following equation is

obtained:

X1
l¼0

∂2Φl rð Þ
∂r2

Tl θð Þ þ 1

r

∂Φl rð Þ
∂r

Tl θð Þ � l2 þ
�B2

m

þκ2

8<
:

0
@

1
AΦl rð ÞTl θð Þ ¼ 0

with the expression of material buckling:

B2
m ¼ νΣf

Dkeff
� Σa

D
if Σa <

νΣf

keff

corresponding to a disc with positive neutron leakage and

κ2 ¼ Σa

D
� νΣf

Dkeff
if Σa >

νΣf

keff

i.e. neutrons entering through the external surface of the disc, thereby explaining

the �sign in the equation. The orthogonality properties of the Chebychev poly-

nomials are then used:

ðþ1

�1

Tn μð ÞTm μð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p dμ ¼
0 if n 6¼ m
π if n ¼ m ¼ 0
π

2
if n ¼ m 6¼ 0

8><
>:

multiplying the equation by Tl μð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p
for all values of l and integrating over

μ¼ cos θ2 [�1, 1] to obtain the equation with the flux moments:

∂2Φl rð Þ
∂r2

þ 1

r

∂Φl rð Þ
∂r

� l2 þ
�B2

m

þκ2m

8<
:

0
@

1
AΦl rð Þ ¼ 0
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It can be seen that this is a Bessel equation when it is written with the term

l2 � B2
m, and for which the general solution is α Jl(Bm r) + β Yl(Bm r), and a modified

Bessel equation when written with l2 þ κ2m, with γ Il(Bm r) + δKl(Bm r) being the

solution. The specific case where B2
m ¼ 0, i.e. Σa¼ νΣf/keff (no leakage) has a

solution of the form λ rl +ϖ r�l if l 6¼ 0, and ϑLog(r) + τ if l¼ 0. The fact that the

flux has a finite value at r¼ 0 leads to zero coefficients for β¼ δ¼ω¼ ϑ¼ 0,

thereby restricting the solutions to:

Φl rð Þ ¼
Il κm rð Þ for κm > 0 l 6¼ 0

Jl Bm rð Þ for Bm > 0 l 6¼ 0

rl for Bm ¼ 0

8<
:

The other coefficients may be determined according to the boundary condition,

and denoted as αl. For a Dirichlet condition:

Φ R; θð Þ ¼ Ψ θð Þ ¼
X1
l¼0

αlΦl Rð ÞTl θð Þ

the coefficient αl is obtained using the following orthogonality relation:

α0 ¼ 1

πΦ0 Rð Þ
ðþ1

�1

Ψ μð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p dμ

αl ¼ 2

πΦl Rð Þ
ðþ1

�1

Tl μð ÞΨ μð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p dμ

8>>>>>>><
>>>>>>>:

For Neumann boundary conditions8:

∂Φ r; θð Þ
∂r

����
R

¼ Φ θð Þ ¼
X1
l¼0

αl
dΦl rð Þ
dr

����
R

Tl θð Þ:

the derivatives of the Bessel functions of the first kind may be computed using the

following relations:

dJl Bmrð Þ
dr

¼ Bm
Jl�1 Bmrð Þ � Jlþ1 Bmrð Þ

2

dJ0 Bmrð Þ
dr

¼ �BmJ1 Bmrð Þ
dIl κmrð Þ

dr
¼ κm

Il�1 κmrð Þ þ Ilþ1 κmrð Þ
2

dI0 κmrð Þ
dr

¼ κmI1 κmrð Þ

8><
>:

8For the various types of boundary conditions, see (Wachspress 1966, p. 30).
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Thus, by conditioning similar to a Dirichlet condition:

α0 ¼ � 1

πBmJ1 BmRð Þ
ðþ1

�1

Φ μð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p dμ

αl ¼ 4

πBm Jl�1 BmRð Þ � Jlþ1 BmRð Þð Þ
ðþ1

�1

Tl μð ÞΦ μð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p dμ

8>>>>>>><
>>>>>>>:

or even:

α0 ¼ 1

πκmI1 κmRð Þ
ðþ1

�1

Φ μð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p dμ

αl ¼ 4

πκm Il�1 κmRð Þ þ Ilþ1 κmRð Þð Þ
ðþ1

�1

Tl μð ÞΦ μð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p dμ

8>>>>>>><
>>>>>>>:

A boundary condition of Robin type:

Φ R; θð Þ þ λ
∂Φ r; θð Þ

∂r

����
R

¼ φ θð Þ

may be considered by mixing both previous approaches.

12.5.6 Sphere

The diffusion equation is written as follows in spherical coordinates:

ΔΦ r; θ;φð Þ þ B2
gΦ r; θ;φð Þ ¼ 0

The Laplace operator in spherical coordinates is recalled as:

ΔΦ ¼ 1

r2
∂
∂r

r2
∂Φ
∂r

� 	
þ 1

r2 sin θ

∂
∂θ

sin θ
∂Φ
∂θ

� 	
þ 1

r2sin 2θ

∂2Φ

∂φ2

This equation has a positive mathematical solution that cancels out at the

boundaries of the reactor. This solution is expressed in terms of spherical harmonics

Ynm(θ,φ) and spherical Bessel functions jn(r) (the terms in yn(r), the second

spherical Bessel function, disappear when yn(r) tends towards �1 as r tends

towards 0).
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Φn r; θ;φð Þ ¼
j0 Bgr
� � ¼ sin Bgr

� �
Bgr

n ¼ 0

jn Bgr
� � Xn

m¼0

Ynm θ;φð Þ n � 1

8>>><
>>>:

with : jn Bgr
� � ¼

sin Bgr
� �
Bgr

n ¼ 0

Bgr
� �n � 1

Bgr
d

d Bgrð Þ
� 	n sin Bgr

� �
Bgr

n � 1

8>>><
>>>:

The spherical Bessel functions jn(r) satisfy the equation:

r2
d2jn rð Þ
dr2

þ 2r
djn rð Þ
dr

þ r2 � n nþ 1ð Þ� �
jn rð Þ ¼ 0

For a homogeneous sphere of radius R, the spherical symmetry of the flux

eliminates the dependence at angles θ and φ:

ΔΦ rð Þ þ B2
gΦ rð Þ ¼ d2Φ rð Þ

dr2
þ 2

r

dΦ rð Þ
dr

þ B2
gΦ rð Þ ¼ 0

Φ Rð Þ ¼ 0 and Φ 0ð Þ ¼ Φmax

8<
:

The solution to this problem can be obtained without any particular knowledge

of the spherical Bessel functions. A variable change with φ(r)¼ rΦ(r) leads to:

d2 φ rð Þ
dr2

þ λ φ rð Þ ¼ 0

φ 0ð Þ ¼ φ Rð Þ ¼ 0

8<
:

This is the same equation as that obtained for the plane slab geometry, and for

which only the sine function solution is kept since φ(0)¼ 0. Thus,

φ rð Þ ¼ φ1max
sin π r=Rð Þ.

Hence: Φ rð Þ ¼ φ1max

sin π
Rr
� �
r

The following equation is employed to evaluate the maximum flux at the center

of the sphere:

Φmax ¼ lim
r!0

Φ rð Þ ¼ φ1max
lim
r!0

sin π
R r
� �
r

¼ φ1max

π

R
lim
r!0

sin π
R r
� �
π
R r

¼ ϕ1max

π

R
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The solution obtained is of the form of a spherical Bessel function j0(Bgr):

Φ rð Þ ¼ Φmax

sin π
Rr
� �
π
R r

The geometrical buckling of a sphere of radius R is expressed as (Fig. 12.10):

B2
g ¼

π

R

� �2
The flux is expressed in terms of the mean flux by computing the mean flux with

respect to the maximum flux using a volume integral for the sphere:

Φ ¼

Ðr¼R

r¼0

Ðθ¼2π

θ¼0

Ðφ¼π

φ¼0

Φmax
R sin π

Rrð Þ
π r r2 sinφdφ dθ dr

Ðr¼R

r¼0

Ðθ¼2π

θ¼0

Ðφ¼π

φ¼0

r2 sinφdφ dθ dr

¼ Φmax

R

π

Ðr¼R

r¼0

sin π
Rr
� �

r dr
Ðθ¼2π

θ¼0

dθ
Ðφ¼π

φ¼0

sinφdφ

4
3
πR3

using the following change in variable: x¼ π r/R. The mean flux results from an

integration by parts:

Φ ¼ Φmax

R3

π3

4π
Ðx¼π

x¼0

x sin x dx

4
3
πR3

¼ 3

π2
Φmax � 0:304 Φmax

R

φ

θ

Fig. 12.10 Critical

spherical reactor of radius R
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The form factor for a sphere is thus Ω¼ π2/3. The sphere is the geometrical

shape having the smallest critical volume since it has the smallest surface to volume

ratio, thereby reducing leakage. Price et al. (1957, p. 166) proposes several solu-

tions for spherical geometries with distributed sources.

12.5.7 Hemisphere

The case of the hemisphere with null flux at its surface (for both the spherical and

plane surfaces) requires a fundamental mode solution that depends on the angle θ –
the flux in a homogeneous sphere depends only on r and cannot be employed. The

two-dimensional spherical harmonics Ynm(θ,φ) simplify into the first-order Legen-

dre polynomial P1(cosθ)¼ cos θ and the flux is obtained as:

Φ r; θð Þ ¼ j1 Bgr
� �

Y1 θð Þ ¼ sin Bgr
� �

Bgr
� �2 � cos Bgr

� �
Bgr

" #
cos θ

By the very definition of j1(Bgr), the flux is zero at r¼ 0. It remains null for any

angle θ at r¼R if j1(BgR)¼ 0, i.e. when BgR is the first non-zero root of the

spherical Bessel function j1(r), for j s1,1 ¼ 4:4934. The geometrical buckling of a

hemisphere is thus:

B2
g ¼

j s1,1
R2

� 4:4934

R2

It is worth mentioning that9 the criticality equation for a hemisphere:

�D
1

r2
∂
∂

r2
∂Φ
∂r

� 	
þ 1

r2 sin θ

∂
∂θ

sin θ
∂Φ
∂θ

� 	� �
þ ΣaΦ ¼ νΣfΦ

keff

may be simplified to:

�D
1

r2
∂
∂

r2
∂Φ
∂r

� 	� �
þ Σa þ DB2 rð Þ� �

Φ ¼ νΣfΦ

keff
with B2 rð Þ ¼ 2

r2

if cos θ, which represents the angular component of the flux, is the eigenfunction of:

9As done by K. Schwinkendorf and C. Eberle in: An angular leakage correction for modeling a
hemisphere using one-dimensional spherical coordinates, Nuclear Science and Engineering

143, 47–60 (2003).

12.5 Fundamental Mode for a Reactor with Simple Geometry 881



� 1

r2 sin θ

∂
∂θ

sin θ
∂Φ
∂θ

� 	� �
¼ B2 rð ÞΦ ¼ 2

r2
Φ

This implies that the flux calculation for a hemispherical geometry may be

evaluated with a 1D radial computation using a leakage correction term DB2(r)
that is added to absorption.

12.5.8 Polygon

A recent study10 has enabled determination of the geometrical buckling for regular

polygons with both numerical and experimental validation. The starting-point for

the method is to express the geometrical buckling of an n-sided polygon in the form
a2n=R

2
c , with Rc being the radius of the circumscribed circle. With Ri as the radius of

the inscribed circle, it may be readily seen that, geometrically, the buckling of the

polygon is bounded by that of the circumscribed and inscribed circles (Fig. 12.11):

j20,1
R2
c

� a2n
R2
c

� j20,1
R2
i

However, the fact that buckling of a polygon is greater than that of a circle of the

same surface area seems less obvious:

An ¼ nR2
c

2
sin

2π

n

� 	

iR

cR

Fig. 12.11 Hexagon and its

circumscribed and inscribed

circles

10M. Itagari, Y. Miyoshi: A geometric buckling expression for regular polygons II: analyses based
on the multiple reciprocity boundary element method, Nuclear Technology, 103, 392–402, 1993.
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If :
π j20,1

n R2
c

2
sin 2π

n

� � � a2n
R2
c

Given that Ri ¼ Rc cos
π
n

� �
, an is bounded by two series as given below:

π j20,1
n
2
sin 2π

n

� � � a2n �
j20,1

cos 2 π
n

� �
For the hexagon in the above example, the numerical values are

2.644� an� 2.777, and these must be compared to the limit j0 , 1¼ 2.405, which

is the buckling of a disc. Obtaining the geometrical buckling of a polygon is

important because if the whole space is paved with these polygons, the Wielandt
algorithm (Wachspress 1966, p. 20), can be employed efficiently. This algorithm

consists in accelerating the external iterations (indexed by m) of a diffusion

calculation using an estimator, λW, of the keff
11:

11The Wielandt method is detailed in A. Daneri, M. Michelini, G; Toselli: Anisotropic diffusion
calculations in generalized x,y-geometry, Proceedings of a seminar on numerical reactor calcula-

tions held in Vienna by the AIEA, 17–21 January 1972, pp. 487–496 (1972). Helmut Wielandt

(1910–2001) was a German mathematician. After his studies at the University of Berlin in 1929, he

worked as an assistant at the University of Tubingen, before attending the Kaiser Wilhelm Institute

during the war. He worked on aerodynamics problems (eigenvalue calculations for operators that

are not self-adjoint), for which he developed the algorithm that bears his name. As of 1952, he

became the editor of the prestigious Mathematische Zeitschrift, while still working at the Univer-

sity of Tubingen.

Helmut Wielandt (University of Berlin)
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�DΔΦm þ Σa � νΣf

λW

� 	
Φm ¼ 1

km�1
eff

� 1

λW

 !
νΣfΦm�1

νΣf

λW
� Σa > 0

8>>><
>>>:

Thus, by choosing λW ¼ νΣf

Σa þ DB2
g

with B2
g ¼

1

2

π j20,1
n
2
sin 2π

n

� �þ j20,1
cos 2 π

n

� �" #
, conver-

gence may be significantly accelerated.

12.5.9 Accounting for Singularities in 2D

The corners of 2D geometries lead to singularities that pose analytical difficulties in

diffusion theory. In a mono-energy approach, the diffusion equation for a domain

formed by two homogeneous sub-domains Ω¼Ω1[Ω2 is written as:

�div Dgrad
��!

Φ r; θð Þ
� �

þ ΣtΦ r; θð Þ ¼ S in Ω

Φ r; θð Þ ¼ 0 over ∂Ω

(

The required solution to this problem should (Fig. 12.12):

– cancel out at the boundary of the domain,

– be continuous at the interface Γ that separates the domains,

– lead to a singularity.

Let Ω0¼ {0� r�R, 0� θ� 2π} be a disc, with its center at the singularity, O.
The strategy consists in expanding the flux as follows:

Φ r; θð Þ ¼
X1
l¼0

Φl rð Þφl θð Þ

where φl(θ) is the continuous solution to the Sturm-Liouville problem at the

interface Γ:

2Ω

1
Ω

ΓO

0Ω

Γθ

Fig. 12.12 Singularity

between two homogeneous

domains
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d D θð Þ dφ θð Þ
dθ

� 	
dθ

þ μ2D θð Þφ θð Þ ¼ 0 in Ω

D θð Þ dφ θð Þ
dθ

����
θþΓ

¼ D θð Þ dφ θð Þ
dθ

���
θ�Γ

φ θþΓ
� � ¼ φ θ�Γ

� �
and φ 0þð Þ ¼ φ 0�ð Þ

8>>>>>>><
>>>>>>>:

It can be proven mathematically12 that the solution to this self-adjoint problem is

a sequence of positive eigenvalues, with associated eigenfunctions φl(θ) that are
orthogonal on the L2([O, 2π]) space. These functions satisfy the following orthog-

onality relation:

ð2π
0

D θð Þ φn θð Þφm θð Þ dθ ¼ δn,m

ð2π
0

D θð Þ dφn θð Þ
dθ

dφm θð Þ
dθ

dθ ¼ μ2mδn,m

8>>>>>>><
>>>>>>>:

The variational formulation for the diffusion problem is expressed so as to

determine the spatial flux moments:

F Ψ½ � ¼
ð
Ω

�div Dgrad
��!

Φ r; θð Þ
� �

þ ΣtΦ r; θð Þ
� �

Ψ r; θð Þd2Ω�
ð
Ω

SΨ r; θð Þd2Ω

The goal is to cancel out the functional by choosing the function Ψ (r, θ), which is
zero everywhere save on the disc Ω0. Using:

Ψ r; θð Þdiv Dgrad
��!

Φ r; θð Þ
� �

¼ div Ψ r; θð ÞDgrad
��!

Φ
�
r; θ
�� �

�Dgrad
��!

Φ r; θð Þ:grad��!
Ψ r; θð Þ

then, by applying the Ostrogradski theorem:ð
Ω

div Ψ r; θð ÞDgrad
��!

Φ
�
r; θ
�� �

d2Ω ¼
ð
∂Ω

Ψ r; θð ÞDgrad
��!

Φ r; θð Þ dΩ ¼ 0

12Violaine Louvet: Etude numérique de problèmes de diffusion neutronique en présence de
singularités [Numerical study of neutron diffusion problems with singularities], PhD paper at

the University of Franche-Comté, 1998.
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The variational formulation thus obtained is limited to the disc (since Ψ is zero

elsewhere):ð
Ω0

Dgrad
��!

Φ r; θð Þ:grad��!
Ψ
�
r; θ
�þ ΣtΦ

�
r; θ
�� �

Ψ r; θð Þd2Ω ¼
ð
Ω0

SΨ r; θð Þd2Ω

The trial function is set using the separation of variables principle and a

Heaviside function to cancel it outside the disc and with a particular function of

order m:

Ψ r; θð Þ ¼ Θ R� rð Þψ rð Þφm θð Þ

With this trial function and the flux expansion in the functional, the following is

reached:

ðr¼R

r¼0

rdr

ðθ¼2π

θ¼0

dθ
X1
l¼0

D θð Þ ∂Φl rð Þ
∂r

∂ψ rð Þ
∂r

φl θð Þφm θð Þ

þD θð Þ
r2

∂φl θð Þ
∂θ

∂φm θð Þ
∂θ

Φl rð Þψ rð Þ ¼
ðr¼R

r¼0

rdrψ rð Þ
ðθ¼2π

θ¼0

dθ S r; θð Þ � Σtψ rð Þ½ �φm θð Þ

The notations are simplified with: f m rð Þ ¼ Ðθ¼2π

θ¼0

dθ S r; θð Þ � Σtψ rð Þ½ �φm θð Þ
which depends solely on the trial function and the source. The orthogonality

property of the trial functions of the Sturm-Liouville operator enables further

simplifications as shown below:

ðr¼R

r¼0

rdr
∂Φm rð Þ

∂r
∂ψ rð Þ
∂r

þ μ2m
r2
Φm rð Þψ rð Þ

� �
¼
ðr¼R

r¼0

rdrf m rð Þψ rð Þ

The first term is integrated by parts, and the flux moments Φm(r) are expressed
as:

ðr¼R

r¼0

dr
d

dr
r
dΦm rð Þ

dr

� 	
� μ2m

r
Φm rð Þ þ rf m rð Þ

� �
ψ rð Þ ¼ 0

ultimately giving:

d

dr
r
dΦm rð Þ

dr

� 	
� μ2m

r2
Φm rð Þ þ f m rð Þ ¼ 0
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Louvet solves this differential equation by expanding fm(r) on a polynomial basis

(for which the terms tend towards 0 if a unit disc Ω0 is chosen):

f m rð Þ ¼
X1
l¼0

f m, l r
l

which leads to the following equation after integration and cancellation of

non-finite terms at r¼ 0:

Φm rð Þ ¼
X1
l¼0

f m, l

μ2m � lþ 2ð Þ2 r
lþ2 þ Cm r

μm

This solution tends towards infinity at the point of the singularity when μm is less

than 1. Concerning the angular part, the solution to the Sturm-Liouville problem for

the media Ω1 and Ω2 are sought for under the following form:

φ1 θð Þ ¼ α c
1 cos μθð Þ þ α s

1 sin μθð Þ
φ2 θð Þ ¼ α c

2 cos μθð Þ þ α s
2 sin μθð Þ




for which the continuity conditions for the angles θ¼ 0 and θ¼ θΓ are written as:

A :

φ1 0ð Þ ¼ α c
1 ¼ φ2 2πð Þ ¼ α c

2 cos 2πμð Þþα s
2 sin 2πμð Þ

φ1 θΓð Þ ¼ α c
1 cos μθΓð Þþα s

1 sin μθΓð Þ ¼ α c
2 cos μθΓð Þþα s

2 sin μθΓð Þ
D1α s

1μ¼�D2α c
2μ sin 2πμð ÞþD2α s

2μcos 2πμð Þ
�D1α c

1μ sin μθΓð ÞþD1α s
1 μcos μθΓð Þ ¼�D2α c

2μ sin μθΓð ÞþD2α s
2 μcos μθΓð Þ

8>><
>>:
The function φ1 is defined only on the interval [0, θΓ], whereas the function φ2 is

defined on [θΓ, 2π] alone. This linear system A of four equations with four

unknowns,α c
1 , α

s
1, α

c
2 and α s

2, has a non-trivial solution only if its determinant is

non-zero. By setting ρ¼ 2πμ, γ¼ μθΓ and δ¼D2/D1, and by developing its deter-

minant along the first column:

det Að Þ ¼
1 0 � cos ρ � sin ρ

cos γ sin γ � cos γ þ ρð Þ � sin γ þ ρð Þ
0 1 δ sin ρ �δ cos ρ

� sin γ cos γ δ sin γ þ ρð Þ �δ cos γ þ ρð Þ

��������

��������
¼ � δ2 þ 1

� �
sin γ sin ρ� γð Þ � 2δ 1� cos γ cos ρ� γð Þ½ �

For the case where the angle θΓ is an integer multiple of 2π, such that θΓ¼ 2π/n,
this determinant is written as:

detn Að Þ ¼ � δ2 þ 1
� �

sin γ sin n� 1ð Þγð Þ � 2δ 1� cos γ cos n� 1ð Þγð Þ½ �
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Introducing Chebychev polynomials of the first kind Tn(cosγ)¼ cos(nλ) and

second kind Un cos γð Þ ¼ sin nþ1ð Þλð Þ
sin γ , the determinant is expressed under the follow-

ing form (with x¼ cos γ and y¼ sin γ):

detn Að Þ ¼ � δ2 þ 1
� �

y2Un�2 xð Þ � 2δ 1� xTn�1 xð Þ½ �

Using the recurrence relation for the Chebychev polynomials, we obtain:

xTn�1 xð Þ ¼ 1

2
Tn xð Þ þ Tn�2 xð Þ½ �

It can be seen that if n is even (n¼ 2k), Tn� 2(x) and Tn(x) are polynomials that

have only even powers of x, i.e. polynomials in x2 that can be substituted by 1� y2.
Since Tn(1)¼ 1 for any value of n, it can be shown that 1� xTn� 1(x) is a polyno-
mial in y2 without a constant term. Finally, with the polynomial expansions for

n 6¼ 0:

Tn xð Þ ¼ n

2

XE n
2ð Þ

p¼0

�1ð Þp n� p� 1ð Þ!
p! n� 2pð Þ! 2xð Þn�2p

Un xð Þ ¼
XE n

2ð Þ

p¼0

�1ð Þp n� pð Þ!
p! n� 2pð Þ! 2xð Þn�2p

8>>>>>><
>>>>>>:

The following equation is obtained:

det2k Að Þ ¼ � δ2 þ 1
� �

y2Un�2 xð Þ

�δ 2� k
Xk
p¼0

�1ð Þp n� p� 1ð Þ!
p! n� 2pð Þ! 2

n�2p 1� y2
� �k�p

"

� k � 1ð Þ
Xk�1

p¼0

�1ð Þp n� p� 1ð Þ!
p! n� 2pð Þ! 2

n�2�2p 1� y2
� �k�1�p

#

Using the Newton binomial expansion, x2n can be expanded into powers ofy2:

1� y2
� �n ¼Xn

p¼0

n!

p! n� pð Þ! �1ð Þpy2p ¼ 1þ
Xn
p¼1

n!

p! n� pð Þ! �1ð Þpy2p

The sum of all the coefficients of Tn(x) and of Tn� 2(x), which is equal to 2, can

be introduced:
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det2k Að Þ ¼� δ2 þ 1
� �

y2Un�2 xð Þ

þδy2 k
Xk
p¼0

�1ð Þp n� p� 1ð Þ!
p! n� 2pð Þ!2

n�2p
Xk�p

j¼1

k� pð Þ!
j! k� p� jð Þ! �1ð Þjy2j�2

" #" #

þδy2 k� 1ð Þ
Xk�1

p¼0

�1ð Þp n� p� 1ð Þ!
p! n� 2pð Þ! 2

n�2�2p
Xk�1�p

j¼1

k� 1� pð Þ!
j! k� 1� p� jð Þ! �1ð Þjy2j�2

" #" #
¼ y2 � δ2þ 1

� �
Un�2 xð Þþ δVk y2ð Þ� �

The goal of this demanding calculation is to show that the determinant cancels

out in two cases:

y2 ¼ 0

� δ2 þ 1
� �

Un�2 xð Þ þ δVk y2ð Þ ¼ 0




The first equation highlights the fact that y2¼ sin2(μθΓ)¼ 0, i.e.
μθΓ ¼ μ 2π

2k ¼ mπ. The second is a transcendental equation in μθΓ that will be

discussed only for the case where n¼ 4, i.e. where θΓ is a right angle. The latter

case is especially interesting for the inward and outward corners of a PWR core.

det4 Að Þ ¼ � δ2 þ 1
� �

sin γ sin 3γð Þ � 2δ 1� cos γ cos 3γð Þ½ �
¼ � δ2 þ 1

� �
sin 2γ 1þ 2 cos 2γð Þð Þ

�2δ sin 2γ þ cos 2γ � cos 2γð Þcos 2γ � 2sin 2γcos 2γð Þ½ �
¼ �sin 2γ 2δ2 þ 4δþ 2

� �
cos 2γð Þ þ δ2 þ 6δþ 1

� �
The determinant becomes zero for two sets of eigenvalues:

γ ¼ μm
π

2
¼ mπ m � 1 or 2γ ¼ μmπ ¼ arccos

� δ2 þ 6δþ 1
� �
2δ2 þ 4δþ 2
� � þ 2mπ m � 0

The function f 4 δð Þ ¼ � δ2þ6δþ1ð Þ
2δ2þ4δþ2ð Þ that appears in the inverse-cosine is always

contained in the interval �1;�1=2�½ with a minimum value that occurs for f
(δ¼ 1)¼ � 1, corresponding to the homogeneous case when both media have the

same diffusion coefficient, and there is no singularity since μm¼ 1. The

conditions μm� 1 or μm¼ 0 are required to obtain a regular flux Φ(r, θ) at the

singularity for δ 6¼ 1. The first condition is always verified although this is not

always the case for the second condition. Indeed, analysis of the function f4(δ)
shows that:

2

3
� μm ¼ 1

π
arccos

� δ2 þ 6δþ 1
� �
2δ2 þ 4δþ 2
� � � 1
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Thus this first mode represents the flux singularity at the origin. For odd values

of n (this is the case for hexagons in fast reactor lattices where the angle between the
faces is equal to 2π/3), the roots of the discriminant are solutions of a transcendental

equation that cannot be factorized in a simple term, and has to be evaluated for each

case. To deal with problems at the boundaries of the reactor where the flux is

assumed to be zero on the perimeter of the corner, the latter being such that one of

its die coincides with the 2π direction by rotational symmetry of the figure, the

boundary conditions lead to:

B :
φ1 2πð Þ ¼ α c

2 cos 2πμmð Þ þ α s
2 sin 2πμmð Þ ¼ 0

φ1 θΓð Þ ¼ α c
1 cos μmθΓð Þ þ α s

1 sin μmθΓð Þ ¼ 0




This system has a non-trivial solution if:

μm ¼ mπ

θΓ

The flux, then, has a singularity if θΓ> π, which is the case of inward corners on
the perimeter of a PWR (θΓ¼ 3π/2).

D.G. Cacuci generalized this approach13 in multi-group theory to deal with

multi-corners forming singularities between several domains having constant prop-

erties (Fig. 12.13). In his approach, he develops the flux in the following form:

Φg r; θð Þ ¼
X1
l¼0

Φl,g rð Þφl,g θð Þ

where g is the index for the energy group in a multi-group approach and φl, g(θ),
with a 2π period, are the eigenfunctions of the groupwise Sturm-Liouville equation

with continuous angular pseudo-current and the continuity of φl , g(θn) (Picture

12.3).

The functions φl , g(θ) satisfy the orthogonality relation:

13Dan G. Cacuci: Two dimensional geometrical corner singularities in neutron diffusion: part 1:
analysis, Nuclear Science and Engineering, 128, 1–16 (1998). Dan Cacuci. After his Ph. D. at the

University of Columbia in 1978, he worked at Oak Ridge National Laboratory until 1988. He

taught at several US universities (California, Illinois, Michigan, Virginia). From 1993 to 2004, he

was an institute director at the nuclear center of Karlsruhe. He is also the editor of the famous

journal Nuclear Science and Engineering since 1984, as well as the huge Handbook of Nuclear
Engineering (3500 pages!) produced by Springer in 2010. Professor Cacuci is the recipient of

several prizes, including the Wigner medal, the Seaborg medal and the Lawrence medal for his

work in general on reactor physics.
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ð2π
0

Dg θð Þ φn,g θð Þφm,g θð Þ dθ ¼ Nm,gδn,m

ð2π
0

Dg θð Þ dφn,g θð Þ
dθ

dφm,g θð Þ
dθ

dθ ¼ μ2m,gNm,gδn,m

8>>>>>>><
>>>>>>>:

where Nm , g is the normalization coefficient that depends on the geometry. The

introduction of such a flux expansion in the multi-group diffusion equation:

NΩ

1θ

2Ω

2θ

1Ω

Fig. 12.13 Multi-corner

for a domain in two

dimensions

Picture 12.3 Dan Cacuci

(Courtesy Cacuci)

12.5 Fundamental Mode for a Reactor with Simple Geometry 891



�div Dg θð Þgrad��!
Φg

�
r; θ
�� �

Φg r; θð Þ þ Σt θð Þ Φg r; θð Þ

¼
XG
g0¼1

Σg0!g
s θð ÞΦg0 r; θð Þþ χg0

νΣf ,g0 θð ÞΦg0 r; θð Þ
keff

leads to a differential equation on the flux moments Φl, g(r) similar to that obtained

for a unique angle, but containing a coupling term for the energy groups. Cacuci

applied this formulation to the corners of the hexagons in the lattice of a fast reactor

and showed that the multi-group flux was continuous at the singularity, but that it

cannot be expressed analytically. In particular, the derivative of the spatial flux is

not continuous, thereby invalidating the expansion into Taylor series at the singu-

larity. However, Louvet’s numerical studies showed that for PWR, the singularities
deteriorated the order of convergence slightly for the spatial flux in a core calcu-

lation, especially for nodal methods. Hence, it is inadvisable to employ singular

functions to represent flux behavior locally, close to singularities, since this oper-

ation is both complex and time-consuming.

12.5.10 Anisotropic Point Source in a Multiplying Medium

The case of a point source in a non-multiplying medium was illustrated earlier in

the chapter “The diffusion approximation in neutronics”. The condition of:

k1 � 1

M2
< 0

comes from similar calculations. However, if B2
m � k1 � 1ð Þ=M2 > 0, the calcu-

lations are slightly different.

The diffusion equation with a point source is written as:

ΔΦ r; θ;φð Þ þ k1 � 1

M2
Φ r; θ;φð Þ ¼ S x0; y0; z0ð Þ

Using the hypothesis of separation of variables, Φ(r, θ,φ)� f(cosθ) g(φ) h(r),
this leads to a slightly different system of differential equations:

sin 2θ
d2f

d cos θð Þ2 þ 2 cos θ
df

d cos θð Þ þ n nþ 1ð Þ � m2

sin2θ

� 	
f ¼ 0

d2g

dφ2
þ m2g ¼ 0

d2h

dr2
þ 2

r

dh

dr
þ B2

m � n nþ 1ð Þ
r2

� 	
h ¼ 0

8>>>>>>><
>>>>>>>:
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The equation in r is a non-modified spherical Bessel equation of the form

(Abramowitz and Stegun 1972, p. 437):

ρ2
d2h

dρ2
þ 2ρ

dh

dρ
þ ρ2 � n nþ 1ð Þ� �

h ¼ 0 where ρ � Bmr

and for which the solution that decays at infinity is a Hankel function of the second

kind:

h 2ð Þ
n ρð Þ ¼

ffiffiffiffiffiffi
1

2

π

ρ

s
Hnþ1

2
ρð Þ

Since Hν ρð Þ ¼
ffiffiffiffiffi
2

πρ

s
e�i ρ�1

2
νπ�1

4ð Þ, h
2ð Þ
0 ρð Þ ¼

ffiffiffiffiffiffi
1

2

π

ρ

s
H1

2
ρð Þ ¼ 1

ρ
e�i ρ�π

2ð Þ ¼ i

ρ
e�iρ

can be computed.

With the same methodology as that illustrated in diffusion, by taking the limit,

the following expression is determined:

lim
a!0

< S,Φ >¼
ðθ¼π

θ¼0

sin θdθ

ðφ¼2π

φ¼0

dφ � i

Bm
Φ x0,y0, z0ð Þ

� 	
¼ � 4π i

Bm
Φ x0,y0, z0ð Þ

Thus, the source corresponding to the function ψ0
0 rð Þ ¼ i

ρ e
�iρ is given by

S00 ¼ � 4π i
Bm

δ x� x0; y� y0; z� z0ð Þ. These conclusions in a multiplying medium

are the same as in the case of diffusion in a non-multiplying medium.

12.5.11 Zero Flux Distance

In the previous cases, for simplification, flux was assumed to be zero at the limit of

the objects under consideration (e.g. at radius R for a sphere). In the case of actual

reactors, the flux (or rather its prolongation in the mathematical sense) cancels

outside the volume corresponding to the reactor at the distance where the flux

becomes zero. This distance corresponds to the position where the flux of a bare

reactor in fundamental mode would be zero (this definition differs from the

extrapolation distance, which will be discussed later). Hence, the flux is non-zero

at the reactor limits due to the presence of a medium surrounding the core, called

the reflector, the purpose of which is to reflect neutrons back into the core, as will be

seen below. The results for the flux shape are absolutely identical if, in the case of

the sphere, the radius R is substituted by R + δ (orH byH+ δ for the cylinder) in the
equations. For large reactors, δ is usually negligible compared to the size of the

reactor. In the case illustrated here, only a cylindrical finite reactor, which is very
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similar to a PWR, is considered. The flux shape in a cylindrical reactor is expressed
as:

Φmax J0
j0,1
R

r

� 	
cos

π

H
z

� �
:

The zero-flux distance for a PWR is of the order of δ� 40 cm. To simplify, it can

be assumed that the flux is zero at the same distance from the active core in both the

radial and axial directions (whereas in a real reactor, the properties of the radial and

axial reflectors are different). The flux shape is thus given by Φmax J0 ( j0 , 1 r/(R+ δ))
cos (πz/(H+2δ)). The mean flux, usually used to compute the core power, is given by:

Φ ¼

Ðr¼R

r¼0

Ðθ¼2π

θ¼0

Ðz¼þH
2

z¼�H
2

Φmax J0
j0,1
Rþδ r
� �

cos π
Hþ2δ z
� �

dz rdθ dr

π R2 H

Hence:

Φ

Φmax

¼

H þ 2δ

π
sin

π

H þ 2δ
z

� 	� �z¼þH
2

z¼�H
2

2π

ðr¼R

r¼0

J0
j0,1
Rþ δ

r

� 	
rdr

π R2 H

¼
4
H þ 2δ

π
sin

π

H þ 2δ

H

2

� 	
Rþ δ

j0,1
J1

j0,1
Rþ δ

R

� 	
R H

Assuming that δ<<H and that δ<<R, the previous formula can be expanded

using a Taylor series such that:

J1
j0,1
Rþ δ

R

� 	
� J1 j0,1

 
1� δ

R

! !
¼ J1 j0,1

� �� j0,1
δ

R
J01 j0,1
� �þ . . .

Using the recurrence relation: xJ0n xð Þ ¼ �nJn xð Þ þ xJn�1 xð Þ, we obtain:

j0,1J
0
1 j0,1
� � ¼ �J1 j0,1

� �þ j0,1 J0 j0,1
� �|fflfflfflffl{zfflfflfflffl}

0

¼ �J1 j0,1
� �

Hence: J1
j0,1
Rþ δ

R

� 	
� J1 j0,1

� �þ δ

R
J1 j0,1
� �þ . . .

Since: sin π
Hþ2δ

H
2

� �
� sin π

2
1� 2δ

H

� �� �
¼ cos 2δ

H

� � � 1� 2δ2

H2 .

By substituting in the flux expression, the following equation is obtained:
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Φ ¼
4H

1þ2δ
H

π 1� 2δ2

H2

� �
R

1þδ
R

j0,1
J1 j0,1
� �þ δ

R J1 j0,1
� �� �

R H
Φmax

Φ ¼ 4

πj0,1
J1 j0,1
� � þ 8

πj0,1

1

H
þ1

R

� 	
J1 j0,1
� �

δ þ 4

πj0,1

4

HR
þ 1

R2
� 2

H2

� 	
δ2þO δ3

� �� 	
Φmax

At order 0 in δ, the following equationΦ ¼ 4J1 j0,1
� �

Φmax= π j0,1
� �

is obtained

for a cylindrical reactor with null flux boundary conditions. The previous calcula-

tion gives the first-order term in δ and is useful for analyzing the effect of a possible
reflector around the core on flattening of the flux, a condition sought to optimize

fuel use-up and limit power peaks.

12.5.12 Annular Reactor

(Etherington 1957, pp. 6–67).

The geometry of a reactor can be made more complex depending on the

applications. However, the criticality condition cannot always be expressed in

terms of a simple formula as:

B2
g ¼

k1 � 1

M2

which has the didactic interest of separating geometrical dependences (geometrical

buckling) from material properties (material buckling), since the geometrical buck-

ling of a reactor cannot always be simply obtained. The example of the annular

reactor (Fig. 12.14) illustrates this problem very well.

The one-energy group diffusion equation in a homogeneous multiplying

medium without any further source is expressed as follows using the usual conven-

tions and simplified using the material buckling:

�DΔΦþ ΣaΦ ¼ νΣfΦ thus, ΔΦ� Σa

D
Φþ νΣf

D
Φ ¼ 0

Hence: ΔΦþ B2
mΦ ¼ 0 with B2

m ¼ k1 � 1

M2
, M2 ¼ D

Σa
and k1 ¼ νΣf

Σa

The flux shape can be computed in terms of the radius and maximum flux of the

reactor, assuming that the cylinder is infinite in the z direction, and assuming that

the flux is zero at the reactor boundaries. The flux solution is written as:

Φ rð Þ ¼ a J0 Bmrð Þ þ b Y0 Bmrð Þ

Constants a and b are determined using the boundary conditions:
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Φ Rið Þ ¼ a J0 BmRið Þ þ b Y0 BmRið Þ ¼ 0

Φ Reð Þ ¼ a J0 BmReð Þ þ b Y0 BmReð Þ ¼ 0




This linear system leads to a trivial solution a ¼ 0 and b ¼ 0, except in the case

where the two equations are related, i.e.

Criticality condition for the annular reactor:

J0 BmRið Þ Y0 BmRið Þ
J0 BmReð Þ Y0 BmReð Þ
����

���� ¼ J0 BmRið Þ Y0 BmReð Þ � J0 BmReð Þ Y0 BmRið Þ ¼ 0

ð12:14Þ

This equation, which relates the geometrical data to material data, is the criti-

cality condition. In this example, the criticality condition is a transcendental

equation that relates the geometry (with Ri and Re of the reactor) and material

properties (material buckling Bm). In the fundamental mode of this reactor, the flux

is zero at its inner and outer boundaries and may be assumed to be maximal at

radius Rmax:

Φ Rmaxð Þ ¼ a J0 BmRmaxð Þ þ b Y0 BmRmaxð Þ ¼ Φmax

In addition, the flux derivative is zero at Rmax:

∂Φ
∂r

Rmaxð Þ ¼ �a BmJ1 BmRmaxð Þ � b BmY1 BmRmaxð Þ ¼ 0

Ri

Re

z

Φ(r)

Rmax

Fig. 12.14 Critical

cylindrical annular reactor

of inner radius Ri and outer

radius Re
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With these two equations, coefficients a and b are expressed in terms of Φmax

and Rmax:

a¼
Φmax Y0 BmRmaxð Þ
0 BmY1 BmRmaxð Þ

����
����

J0 BmRmaxð Þ Y0 BmRmaxð Þ
BmJ1 BmRmaxð Þ BmY1 BmRmaxð Þ

����
����
¼ ΦmaxY1 BmRmaxð Þ
J0 BmRmaxð ÞY1 BmRmaxð Þ�J1 BmRmaxð ÞY0 BmRmaxð Þ

b¼
J0 BmRmaxð Þ Φmax

BmJ1 BmRmaxð Þ 0

����
����

J0 BmRmaxð Þ Y0 BmRmaxð Þ
BmJ1 BmRmaxð Þ BmY1 BmRmaxð Þ

����
����
¼ �ΦmaxJ1 BmRmaxð Þ
J0 BmRmaxð ÞY1 BmRmaxð Þ�J1 BmRmaxð ÞY0 BmRmaxð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Furthermore, it can be seen that, with the boundary conditions, the ratio a/b is

worth:

a

b
¼ � Y1 BmRmaxð Þ

J1 BmRmaxð Þ ¼ � Y0 BmRið Þ
J0 BmRið Þ ¼ � Y0 BmReð Þ

J0 BmReð Þ

Thus, another transcendental equation is reached that allows the calculation of

Rmax in terms of either BmRi, or BmRe, which are both equivalent thanks to the

criticality condition. Therefore, an approximation of the radius for which the

maximum flux is reached may be expressed in terms of the geometrical data and

the material buckling, assuming a “weakly annular reactor”, i.e.
δi¼Rmax�Ri<<Ri. Hence, the Bessel functions can be expanded into a Taylor

series at order 1:

Y1 BmRmaxð Þ
J1 BmRmaxð Þ ¼

Y1 Bm Ri þ δið Þð Þ
J1 Bm Ri þ δið Þð Þ �

Y1 BmRið Þ þ Bmδi Y
0
1 BmRið Þ

J1 BmRið Þ þ Bmδi J
0
1 BmRið Þ

Equating the two expressions for the ratio a/b leads to:

Y1 BmRið Þ þ Bmδi Y
0
1 BmRið Þ

J1 BmRið Þ þ Bmδi J
0
1 BmRið Þ ¼ Y0 BmRið Þ

J0 BmRið Þ

thus : δi ¼ J1 BmRið ÞY0 BmRið Þ � Y1 BmRið ÞJ0 BmRið Þ
Bm Y

0
1 BmRið ÞJ0 BmRið Þ � BcJ

0
1 BmRið ÞY0 BmRið Þ

It can be proven that if the inner radius Ri tends towards 0, δi also tends towards

0. To simplify the notations, let x ¼BmRi. The derivatives of the Bessel functions

are calculated using the recurrence relations:

Y
0
1 xð Þ ¼ �1

x
Y1 xð Þ þ Y0 xð Þ

J
0
1 xð Þ ¼ �1

x
J1 xð Þ þ J0 xð Þ

8><
>:
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In the neighborhood of 0, the Taylor series of the first Bessel functions are:

J0 xð Þ � 1� x2

4
Y0 xð Þ � 2

π
ln

x

2

� �
J0 xð Þ

h i
� 2

π
ln xð Þ

J1 xð Þ � x

2
1� x2

8

� 	
Y1 xð Þ � �1

π
Γ 1ð Þ 1

1

2
x

� 	 ¼ � 2

π x

8>>>><
>>>>:

The value of δi is approximated by:

δi �
x
2

1� x2

8

� �
2
π ln xð Þ
� �

� � 2
π x

� �
1� x2

4

� �
Bm �1

xY1 xð Þ þ Y0 xð Þ
� �

1� x2

4

� �
� Bm �1

xJ1 xð Þ þ J0 xð Þ
� �

2
π ln xð Þ

Hence : lim
x!0

δið Þ ¼ lim
x!0

x3

2
2
π ln xð Þ þ 2

π x

Bm
2
π

� � !
¼ lim

x�>0

x

Bm

� 	

Therefore, δi¼Rmax�Ri tends towards 0 when x tends towards 0, which is

intuitive since this case tends towards the infinite cylindrical reactor where the flux

is maximum at its center (except for the boundary condition on the inner radius).

Similarly, it can be shown that δe¼Re�Rmax tends towardsRe. The maximum flux

is determined with the desired power level of the reactor (with the mean flux

obtained via an integration on the reactor). This textbook case illustrates that the

criticality condition can be expressed for complex geometries (an industrial reactor)

by cancelling the determinant of the linear system of boundary conditions (equiv-

alent to seeking a non-trivial solution for which the flux has a non-zero value).

These conditions will couple the geometrical data of the reactor to the neutronic

properties of its constituent materials. On the other hand, this case also shows that

the flux is known up to a constant (either the maximum flux or the mean flux) since

the diffusion equation has an infinite number of co-linear solutions. In the case

where a non-zero flux at the boundaries is required for instance, we have:

Φ Rið Þ ¼ a J0 BmRið Þ þ b Y0 BmRið Þ ¼ Φi

Φ Reð Þ ¼ a J0 BmReð Þ þ b Y0 BmReð Þ ¼ Φe




The solution to the linear system entails the fact that the coefficients a and

b depend on the boundary conditions, on the geometry via Ri and Re, and on Bm

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=keff � 1
� �

=M2
q

by re-injecting the keff of the theoretical critical reactor.

This keff value depends on the addition of a closure relation, according to a principle
discussed in the slab case. For instance, this equation can be the maximum flux

value at a radius Rmax or the mean flux value on the whole reactor, or the current

J¼ �DgradΦ, either at Rior at Re (but not both at the same time!). Each of these

choices leads to a different value of keff.
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12.6 Any Three-Dimensional Reactor

In the general case, there is no analytical solution and only use of a computer

enables solution of the problem using iterative methods. The 2D-1D fusion method,
also called the alternate iterative flux method, is a way to reconstruct the 3D
information. The method consists in calculating the flux in a given direction

(axial one for e.g.) with a radial leakage coefficient, and each 2D layer is then

computed using the leakage at the previous step, with the iteration continuing until

convergence. It is adapted for a reactor that has a strong radial heterogeneity, but

not axially, as for a PWR. The discretized diffusion equation according to the

geometrical blocks in Cartesian geometry, is written as follows, after integration

over the blocks.:

�D
Ð
Δx

Ð
Δy dxdy

Ð
Δz

∂2Φ

∂z2
� D

ð
Δz
dz

ð
Δx

ð
Δy

 
∂2Φ

∂x2
þ ∂2Φ

∂y2

!
dxdy

þΣa

Ð
Δx

Ð
Δy

Ð
ΔzΦdxdydz¼

Ð
Δx

Ð
Δy

Ð
ΔzνΣfΦdxdydz

keff

The following equations are used to simplify the notations, and the local

geometrical buckling terms are introduced14:

Φz ¼
Ð
Δx

Ð
ΔyΦdxdy, Φxy ¼

Ð
ΔzΦ dz, Fxy ¼

Ð
ΔzνΣfΦdz

keff
, Fz ¼

Ð
Δx

Ð
ΔyνΣfΦdz

keff

B2
z ¼ �D

Ð
Δx

Ð
Δydxdy

Ð
Δz

∂2Φ

∂z2Ð
Δx

Ð
Δy

Ð
ΔzΦdxdydz

, B2
xy ¼ �D

Ð
Δzdz

Ð
Δx

Ð
Δy

 
∂2Φ

∂x2
þ ∂2Φ

∂y2

!
dxdyÐ

Δx

Ð
Δy

Ð
ΔzΦdxdydz

The 3D equation is expressed as two equations with alternate directions:

�D
Ð
Δx

Ð
Δydxdy

Ð
Δz

∂2Φz

∂z2
þ
ð
Δz

ΣaþDB2
xy

� �
Φz dz¼

ð
Δz
Fz dz

�D
Ð
Δx

Ð
Δy

∂2Φxy

∂x2
þ∂2Φxy

∂y2

 !
dxdyþ ÐΔxÐΔy ΣaþB2

z

� �
Φxy dxdydz¼

Ð
Δx

Ð
ΔyFxydxdy

8>>><
>>>:
where Φz and Φxy are 1D and 2D solutions of the diffusion equation:

14Introducing positive buckling B2
z has a physical meaning if the curvature

∂2Φ

∂z2
is negative.

Conversely, the notation B2
z must be taken as a real value that may be negative.
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�D
∂2Φz

∂z2
þ Σa � D

Ð
Δx

Ð
Δy

∂2Φxy

∂x2
þ ∂2Φxy

∂y2

 !
dxdyÐ

Δx

Ð
ΔyΦxydz

0
BBBB@

1
CCCCAΦz ¼ Fz

�D
∂2Φxy

∂x2
þ ∂2Φxy

∂y2

 !
þ Σa �

Ð
Δz

∂2Φz

∂z2Ð
ΔzΦzdz

0
BB@

1
CCAΦxy ¼ Fxy

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

The convergence criterion for the flux is obtained when:

Ð
ΔzΦzdz�

Ð
Δx

Ð
Δy

∂2Φxy

∂x2
þ ∂2Φxy

∂y2

 !
dxdyÐ

ΔzΦzdz

����������

����������
� ε

When fluxes Φz andΦxy are converged, the source terms Fz and Fxy are computed

over again, and iterations are carried out over these sources until they converge

(power iteration method). The 2D calculations themselves can be broken down into

two 1D calculations, with more or less acceptable results [transverse leakage

method, (Walter and Reynolds 1981, p. 107)], except for some geometries such

that of a lattice of fissile slabs (e.g. submarine reactors).

For more general cases in which sufficient computational power is available, the

reactor can be modeled in three dimensions, for instance in France in the case of the

COCCINELLE code at EDF or CRONOS2 for CEA. The critical system set-up

includes all the cells of the calculation mesh that are coupled through the interface

conditions. These matrices are massively empty since each cell usually has few

interfaces (6 in the case of a parallelepiped). A wise choice of numbering for the

nodes leads to a matrix that is conditioned in an efficient manner, for instance, with

hexagonal assemblies, where along some edges a regular mesh is obtained. Since

most numerical methods are sensitive to matrix conditioning methods, this partic-

ular aspect must be studied carefully to avoid degrading the computational times.

12.7 Fermi Age Theory

(Bonilla 1957, p. 193; Etherington 1957, pp. 6–45; Ferziger and Zweifel 1966,

p. 146; Meghreblian and Holmes 1960, p. 268).

Fermi’s age theory was developed by Enrico Fermi at a time when the variation

of cross sections with energy was not well known, and the first computers were not

powerful enough for multi-group calculations. The significant development of

scientific computing and the present knowledge of basic nuclear data have rendered

this method obsolete. Nevertheless, it is still useful to understand the physics of the

energy phenomena occurring inside a reactor.
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12.7.1 History

In 1942, Fermi built a critical pile (literally a pile of graphite) under the stands of

the Chicago stadium. The moderator was very pure and weakly absorbing graphite,

for which the mean lethargy gain per collision is small. He substituted the discon-

tinuous slowing-down process—through collisions on carbon atoms of atomic mass

12 (ξ¼ 0.158)—by a continuous process. This approach allowed him to theoreti-

cally compute the neutron spectrum in the pile (Fig. 12.15 and Picture 12.4).

Fig. 12.15 A sketch of Fermi’s pile autographed by its conceivers. Only one picture remains of

the graphite blocks and the pile itself. (Public domain)
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His mathematical formalism included a quantity that is dimensionally homoge-

neous to a surface area, called the Fermi age τ. It is particularly valid for graphite

but can be extended, under some conditions, to other moderators such as water.

12.7.2 Overview of Slowing-Down

In Chap. 4 on slowing-down, we found out that the mean lethargy gain per collision

is:

Mean lethargy gain: ξ ¼ Δu ¼
ðLog 1=αð Þ

0

v P vð Þ dv ¼
ðE0

α E0

ln
E0

E

� 	
P Eð Þ dE

¼ 1þ α

1� α
ln αð Þ ð12:15Þ

In Fermi’s pile (a critical pile moderated by graphite, thus carbon), where energy

loss is weak (i.e. ΔE<<E0, E0 being the energy at which collision occurs), we

obtain:

Δu ¼ ln E0ð Þ � ln E0 � ΔEð Þ ) ξ � ln 1þ ΔE

E0

� 	
) ξ � ΔE

E0

If the phenomenon is continuous, it can be assumed that this expression can be

extended to a derivative: ξ¼ dE/E. Let λs be the mean free scattering path (mean

Picture 12.4 Enrico

Fermi, Physics Nobel Prize

winner in 1938 (Public

domain)
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distance travelled by a neutron between two successive collisions). The following

equation is obtained:

λs ¼ ΣS

Σ2
t

� 1

ΣS
in a slight absorbant medium

The number of collisions per second is v/λs¼ vΣS, and over a time interval Δt,
the number of collisions undergone is: vΣSΔt. The energy loss for the continuous

process is written as:

vΣSΔt dE ¼ vΣS Eξdt

The number of neutrons that reach energy E by slowing down during time

interval dt and per cm3 of medium is:

n Eð ÞvΣS Eξdt

Thus, the slowing down density is:

q Eð Þ ¼ n Eð ÞvΣS Eξdt

dt
¼ n Eð ÞvΣS Eξ

Since Φ(E)¼ n(E)v, the following equation is:

Fermi slowing-down model: q Eð Þ ¼ ξ ΣS E Φ Eð Þ ð12:16Þ

The time necessary to slow down a neutron from an energy of about 2 MeV to

0.0253 eV can be computed in continuous slowing-down theory in a graphite

reactor by (Poulter 1963, p. 73):

t ¼
ð2 MeV

0:0253eV

λs
ξ v

dE

E
¼ λs

ξ

1

vth
� 1

v0

� 	
� 1:5 10�4 s

With λs ¼ 2:6 cm the mean scattering distance in graphite. The mean lethargy

gain for carbon is ξ¼ 0.158, vth¼ 2200 m . s�1 and v0¼ 19560 km.s�1. The

thermalization time, which is much longer and during which the neutron undergoes

elastic scattering, should be added to this time. In pure graphite (σc¼ 0.004 barn,
ρc¼ 1.7 g . cm�3, thus Σc¼ 3.4 10�4 cm�1), the scattering time is ‘1¼ 1/

(vΣc)¼ 13.4 10�3 s. Since only 10% of the absorption occurs in graphite

(it occurs chiefly in the fuel), the neutron lifetime decreases to ‘1� 10�3 s.
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12.7.3 Application to Neutron Diffusion

Using lethargy, u, the slowing-down density without up-scattering in energy is

written as:

q uð Þ �
ð u
�1

du0
ð1
0

du
00
ΣS u0 ! u

00
� �

Φ u0ð Þ

and by the definition of the scattering cross section, which is the integral of the

differential scattering cross section ΣS uð Þ ¼ Ð1u ΣS u ! u0ð Þ d u0ð Þ, the following

identity is obtained by differentiating q(u):

∂q uð Þ
∂u

� ΣS uð Þ Φ uð Þ �
ð u
�1

ΣS u0 ! uð Þ Φ u0ð Þ du0

The term
Ð u
�1 ΣS u0 ! uð Þ Φ u0ð Þ du0 is usually denoted as ρ(u)or R[Φ(u)] that

includes the slowing-down density operator R, the arrival density at lethargy u. The
diffusion equation in lethargy is written as:

D uð Þ Δ Φ uð Þ �
 
Σa uð Þ þ ΣS uð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Σt uð Þ

!
Φ uð Þ þ ρ uð Þ þ S uð Þ ¼ 0

i.e., using the expression ∂q(u)/∂u (Clark and Hansen 1964, p. 151; Bekurts and

Wirtz 1964, p. 145):

D uð Þ Δ Φ uð Þ � Σa uð Þ Φ uð Þ � ∂q uð Þ
∂u

þ S uð Þ ¼ 0

Using the Fermi model to expressΦ(u) in terms of q(u), the equation obtained is:

D uð Þ
ξ ΣS uð Þ Δq uð Þ � ∂q uð Þ

∂u
þ S uð Þ ¼ 0

By neglecting the lethargy width of the fission spectrum S(u), the equation for

Fermi age is obtained by setting:

dτ ¼ D uð Þ
ξ ΣS uð Þ du

that is:

Equation for Fermi age: Δq τð Þ ¼ ∂q τð Þ
∂τ

with q u ¼ 0ð Þ ¼ δ ~rð Þ ð12:17Þ
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The quantity τ has the same dimensions as a surface area, but the equation for the

age is similar to the heat equation where τ is equivalent to a time, thus the name

Fermi age:

τ ¼
ð u
0

D uð Þ
ξ ΣS uð Þ du ¼

ðE0

E

D Eð Þ
ξ ΣS Eð Þ

dE

E

Several mathematical methods are used to solve the age equation by adapting the

solutions to the heat conduction problem (Crank 1975). In the general case (signif-

icant absorption), the slowing-down density is proportional to the flux in terms of

the scattering and absorption cross sections:

q Eð Þ ¼ ξ ΣS þ x Σað Þ Φ uð Þ

If x¼ 0 the Fermi model is obtained.

If x¼ ξ q(E)¼ ξ Σt Φ(u), the Wigner model, described in Chap. 4, is obtained.

If x ¼ γ ¼ ξ

2
Ð1
0

P vð Þ v dv
withP vð Þ ¼ P u0 ! uð Þ ¼

e� u�u0ð Þ

1� α 0 � u� u0 � ε

0 else

8><
>:

corresponds to the Greuling-Goertzel model that satisfies the first two moments

of the slowing-down kernel R(u).

12.7.4 Relation Between Fermi Age and Time

It should be pointed out that dE/(ξE) is the number of collisions that causes the

neutron to travel from E to E � dE. λs¼ 1/Σs being the mean free scattering path, it

can be inferred that dE/(ξ E ΣS) is the distance travelled by the neutron between

two scattering collisions, i.e. the distance v dt. Since the increase in age is given by:

dτ ¼ D Eð Þ
ξ ΣS Eð Þ

dE

E
¼ D Eð Þ v dt

the age at a given energy is obtained by integrating over time:

τ Eð Þ ¼
ð t
0

D Eð Þ v dt

By setting a mean coefficient over the slowing-down period D0 cm2=s½ � ¼
1

t

ð t
0

D Eð Þ v dt, it can be shown that:

τ ¼ D0 t
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If a neutron is tracked up to Eth, the Fermi age tends towards τth. Hence, the age
is equivalent to a surface area that increases as the neutron slows down. It represents

in a sense a scattering “smear” that is centered about the birth point of the neutron,

although the path followed by the latter is in three dimensions. The greater the

Fermi age, the further away a neutron may scatter from its origin. This value is thus

essential for the calculation of the leakage effect during slowing down (Table 12.1).

In the case of water (light or heavy), the continuous age theory cannot be applied

ideally (since water contains hydrogen for which the energy lost by slowing down at

each collision can be very significant, in contradiction to Fermi’s hypothesis). The
values given in the table above are experimental points. It can be shown that the

mean square distance travelled in a straight line from the source to the point at

which thermal energy is reached is given by �r2 ¼ 6 	 τ in a homogeneous medium

without leakage.

Let us consider a point source emitting neutrons in the fast spectrum at E0 in a

moderating medium. The number of collisions undergone by a neutron to reach Eth

is tracked. Hence, the spreading of neutrons in space can be “visualized”. If r is the
shortest distance from the source to the point t which the neutron reaches thermal

energy Eth, it can be shown that the mean square value of r is given by (Fig. 12.16):

�r2 ¼ 6 	 τth

r

S

Fig. 12.16 Sphere of radius

r centered on S

Table 12.1 Thermal age for some usual moderators

Moderator at 20 
C τth: age (cm
2) at thermal energy

Light water H2O 33

Beryllium 98

Beryllium oxide 105

Heavy water D2O 1.1 g/cm3 120

Graphite (carbon) 350
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12.7.5 Link Between the Age Theory and Diffusion Theory

(Ferziger and Zweifel 1966, p. 231; Stephenson 1954, p. 145).

The mono-energy theory of reactors (thermal diffusion equation) simplifies the

slowing down phase. The age theory provides the required corrections. By defini-

tion, the thermal neutron source is q(τth) where q is the slowing down density.

Neutron capture during slowing down is taken accounted for by escape probability

factor p. Thus, the thermal neutron source is written as:

Sth ¼ pq τthð Þ

The proportion of fast neutrons emitted by absorption of a thermal neutron is k1/p
since this number is multiplied by p during slowing down to obtain k1 thermal

neutrons. The fast neutron source is expressed as:

S0 ~rð Þ
fastð Þ

¼ q u¼0;~rð Þ ¼
k1
p

ΣathΦth ~rð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Thermal
absorption

rate

associated with the Fermi age equation:

Δ q τ;~rð Þ ¼ ∂ q τ;~rð Þ
∂τ

which can be integrated by separating the space and age variables (this hypothesis is

only valid for a bare homogeneous reactor):

q τ;~rð Þ ¼ T τð Þ R ~rð Þ

Thus:
ΔR ~rð Þ
R ~rð Þ ¼ 1

T τð Þ
dT τð Þ
dτ

¼ cst ¼ �B2
g

since T(τ) is obviously a decreasing function.

Hence: q τ;~rð Þ ¼ T u¼0ð Þ 	 R ~rð Þ 	 e�B2
gτ

The constant T(u¼ 0) is determined using q u¼0;~rð Þ: T u¼0ð Þ R ~rð Þ ¼ k1
p Σath Φ ~rð Þ

Therefore: q τ;~rð Þ ¼ k1
p

Σath Φth ~rð Þ e�B2
gτ

Since the thermal neutron source is given by:

12.7 Fermi Age Theory 907



Sth ¼ p q τth;~rð Þ ¼ k1 Σath Φth ~rð Þ e�B2
g τth

The diffusion equation for thermal neutrons is expressed as:

Dth Δ Φth � Σath Φth þ k1 Σath Φth e�B2
g τth ¼ 0

The thermal neutron flux satisfies the fundamental mode equation:

Δ Φth ~rð Þ þ B2
g Φth ~rð Þ ¼ 0

thereby leading to the criticality condition with geometrical buckling B2
g, and

thermal scattering area L2:

�Dth B2
g

Σath

� 1þ k1 e�B2
g τth ¼ 0

which can be expressed in the conventional form:

Criticality condition in mono-energy diffusion theory corrected by age theory:

k1 e�B2
g τth

1þ L2 B2
g

¼ 1 ð12:18Þ

Factor e�B2
g τth is the non-leakage probability of the reactor in the absence of

absorption. Factor p e�B2
g τth is the probability of a neutron completing the slowing

down process without leakage (either by absorption or by leaving the reactor). This

property is ideal in the absence of slowing down in light nuclei (due to the

hypotheses imposed by age theory: small mean lethargy gain ξ). The migration

area is given by:

M2 ¼
Ð1
0

D Eð Þ φ0 Eð Þ dEÐ1
0

Σa Eð Þ φ0 Eð Þ dE

where φ0(E) is the solution to: D B2
g φ0 þ Σa φ0 ¼ p q τthð Þ|fflfflfflffl{zfflfflfflffl}

thermal neutron source

In age theory and in an infinite scattering medium: τth þ L2 ¼ 1
6
r2 ¼ M2

Bg¼0ð Þ
whereas for a finite medium: M2� L2 + τth
For large reactors (B2

g << 1), expansion of the exponential term into Taylor

series at first order leads to:

e�B2
g τth � 1� B2

g τth

Thereby giving an effective multiplication factor:
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keff ¼ k1
e�B2

g τth

1þL2 B2
g

� k1
1�B2

g τth

1þL2 B2
g

� k1

1þB2
g τth

� �
1þL2 B2

g

� �� k1
1þ L2þ τth

� �
B2
g

Hence, we find the expression for a bare homogeneous reactor:keff ¼ k1
1þM2B2

g

:

12.7.6 Two-Energy Group Equation in Fermi Age Theory

In the chapter on diffusion, the following equation was established:

r2 ¼ 6 L2 ¼ 6
D

Σa

For a fast neutron, by analogy, the following equation is obtained in age theory:

r21 ¼ 6
D1

Σa1

¼ 6 τth

Thus: τth ¼ D1

Σa1

Let Φth be the thermal flux, the thermal group becoming group 2 in two-group

theory (Φth¼Φ2). Let Σa2Φ2 be the number of thermal neutrons absorbed. By

definition of the fuel multiplication factor η, η Σa2Φ2 fast neutrons are emitted

immediately after fission. Thus, given that some fast neutrons may induce fission

reactions (especially for 238U ), ε η Σa2Φ2 fast neutrons are obtained. ε is the fast
fission factor. Thus, the fast neutron source is given by:

S1 ¼ η ε Σa2 Φ2

With no loss during slowing down (escape probability factor p) and by absorp-

tion in structural elements (thermal use factor f ), the thermal flux source is Σa1 Φ1

(i.e. the fast absorption rate). The cross sectionΣa1 can be broken down into capture

(very small at fast energy), fission (small in the fast energy range) and transfer

towards group 2 Σr, which is the main component. Accounting for neutrons lost

during slowing down and in structures for an infinite medium, the scheme

(Blaquière 1962) for the absorption of a thermal neutron is the following

(Fig. 12.17):

After one cycle, the resulting source is:

S2 ¼ p f Σa, 1 Φ1

The expression for the transfer cross section can also be written as:
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Σr ¼ p f Σa, 1

Thus, the two-group equations are:

D1 Δ Φ1 � Σa, 1Φ1 þ ε η Σa, 2Φ2 ¼ 0

D2 Δ Φ2 � Σa, 2 Φ2 þ p f Σa, 1 Φ1 ¼ 0




By injecting: Σa, 1 ¼ D1

τth
and

ΔΦ1 þ B2
g Φ1 ¼ 0

ΔΦ2 þ B2
g Φ2 ¼ 0

(
in cases close to the funda-

mental mode for a bare homogeneous reactor, the following equations are found:

D1 B
2
g Φ1�D1

τth
Φ1þε η Σa,2Φ2¼0

D2 B
2
g Φ2�Σa,2 Φ2þp f

D1

τth
Φ1¼0

8><
>: or

1þB2
g τth

� �
Φ1�ε η τth

D1

Σa,2 Φ2¼0

� p f D1

Σa,2 τth
Φ1þ 1þB2

g

D2

Σa,2|ffl{zffl}
L2

0
BBB@

1
CCCA Φ2¼0

8>>>>>><
>>>>>>:

In this equation, there is the thermal scattering area: L2 ¼ D2=Σa2 . The equation

for the geometrical buckling B2
g is obtained by cancelling the determinant of the

above system to allow for an infinite number of solutions (Φ1,Φ2), i.e.:

1þ B2
g τth

� �
1þ B2

g L2
� �

¼ η ε p f|fflfflfflffl{zfflfflfflffl}
k1

This is the four-factor formula illustrated in Chap. 11:

k1 ¼ η ε p f

thus: τthL
2 B2

g

� �2
þ τth þ L2
� �

B2
g þ 1� k1 ¼ 0

Eth

E0

Σa,2 Φ2

Eth

η Σa,2 Φ2

η ε Σa,2 Φ2

η ε(1 – p)  Σa,2 Φ2 η ε p f Σa,2 Φ2 = p f Φ2 Σa,1 Φ1

η ε p (1 – f) Σa,2 Φ2

Fig. 12.17 Blaquière

scheme for a thermal

neutron
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The two roots of this equation, positive α2 and negative �β2, are written as:

α2 ¼
� τth þ L2
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τth þ Lð Þ2 � 4 τthL
2 1� k1ð Þ

q
2 τthL

2

�β2 ¼
� τth þ L2
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τth þ Lð Þ2 � 4 τthL
2 1� k1ð Þ

q
2 τthL

2

8>>>>><
>>>>>:

Material buckling corresponds to positive solution α2. The criticality condition is
written as:

B2
g ¼ α2

where α2 depends only on the composition of the medium. It can be noticed that the

effective multiplication factor is:

Effective multiplication factor in the age theory:

keff ¼ k1

1þ B2
g τth

� �
1þ B2

g L2
� � ð12:19Þ

For large reactors (B2
g << 1):

keff � k1

1þ τth þ L2
� �

B2
g

� � ¼ k1

1þM2 B2
g

� �
By way of illustration, historically, the British Magnox reactors, moderated by

graphite and cooled by gas, were calculated using the cylindrical geometry equa-

tions with an anisotropic diffusion coefficient (Poulter 1963, p. 51):

D1, r
∂2Φ1

∂r2
þ 1

r

∂Φ1

∂r

 !
þ D1, z

∂2Φ1

∂z2
� Σa, 1 Φ1 þ ηεpf Σa, 2Φ2 ¼ 0

D2, r
∂2Φ2

∂r2
þ 1

r

∂Φ2

∂r

 !
þ D2, z

∂2Φ2

∂z2
� Σa, 2 Φ2 þ Σ1!2Φ1 ¼ 0

8>>>><
>>>>:

and keff ¼ k1
1þ α2 τth, z þ β2 τth, r
� �

1þ α2 L2z þ β2 L2r
� �

where : α ¼ π

Effective height
and β ¼ j0,1

Effective radius
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12.7.7 Age-Diffusion Theory

Honeck and Ott in (Van Antwerpen 1954, p. 107).

The theory known as age-diffusion theory consists in approximating the

Boltzmann equation in the slowing down domain by:

div~J ~r; uð Þ þ Σt ~r; uð ÞΦ ~r; uð Þ ¼ �∂q ~r; uð Þ
∂u

þ S ~r; uð Þ
grad
��!

Φ ~r; uð Þ þ 3Σtr ~r; uð Þ~J ~r; uð Þ ¼ 0

8<
:

The term S ~r; uð Þ consists of the fission sources and the inelastic scattering

sources at high energy. q ~r; uð Þ ¼ ξΣsΦ ~r; uð Þ is the slowing down density and �∂
q ~r; uð Þ=∂u is the slowing down source due to elastic scattering. In the thermal range

within which the neutron is no longer slowed down but rather exchanges energy

with the materials in the core, the following equations are written:

div~J ~r; uð Þ þ Σt ~r; uð ÞΦ ~r; uð Þ ¼ q ~r,uthð Þ
grad
��!

Φ ~r; uð Þ þ 3Σtr ~r; uð Þ~J ~r; uð Þ ¼ 0

(

A multi-group approach is possible by integrating the first system of equations

on the lethargy range [ug, ug+ 1], by dropping the indices for space for concision,

and by assuming that the inelastic scatterings are negligible, thus giving a fission-

only source:

�Dg ugþ1�ug
� �

ΔΦgþΣ g
t Φg ugþ1�ug

� �¼q ug
� ��q ugþ1

� �þ ugþ1�ug
� �

χg
X
g0

νΣg0
f Φg0

~Jg¼� 1

3Σ g
tr

grad
��!

Φg��Dggrad
��!

Φg

8>><
>>:

This system can be written in the usual form:

�DgΔΦg þ Σ g
t Φg ¼

Xg
g0 ¼1

Σ g
g0!gΦg0 þ χg

X
g0

νΣg0
f Φg0

�DthΔΦth þ Σ th
t Φth ¼

XG
g0¼1

Σ g
g0!thΦg0

8>>>>><
>>>>>:

12.8 Multi-Group Diffusion

Two characteristic zones are distinguished:

– the slowing down domain in which neutrons may be emitted by fission or by

slowing down to lower groups (thus, from a higher energy),
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– the thermalization zone in which there is no production by fission but energy is

transferred between the upper and lower groups.

This can be represented by a scattering matrix that depends on the individual

isotope. The heavier the isotope, the sparser the matrix will be since light isotopes

will efficiently slow down neutrons, thereby filling the lower triangular part of the

matrix, with group 1 being the fastest group, corresponding to the position at the top

left of the matrix (Fig. 12.18).

The multi-group diffusion equations are expressed as follows:

�DgΔΦg þ Σ g
t Φg ¼

Xg
g0 ¼1

Σ g
g0!gΦg0 þ χg

X
g0

νΣg0
f Φg0 slowing down

�DgΔΦg þ Σ g
t Φg ¼

XG
g0 ¼gc

Σ g
g0!gΦg0 thermalization

8>>>>><
>>>>>:

Group gc corresponds to the cut-off beyond which there is no up-scattering in

energy, which is worth 2.7 eV for a thermalized reactor. In the thermalization zone,

the neutrons can gain energy by collision with matter (up-scattering).

Elastic 

scattering

Inelastic 

scattering

Thermalization

Thermalization 

source term

Fig. 12.18 Transfer matrix
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12.9 Reactor Kinetics in One-Group Diffusion Theory

with Source

Until now, only the static diffusion equation has been considered. We will here deal

with the time-dependent flux for a bare homogeneous reactor. The time-dependent

diffusion equation is written as:

1

v

∂Φ ~r; tð Þ
∂t

� DΔΦ ~r; tð Þ þ ΣaΦ ~r; tð Þ ¼ S ~r; tð Þ þ νΣfΦ ~r; tð Þ ð12:20Þ

The term ∂Φ ~r; tð Þ= v∂tð Þ represents variation in the neutron population

∂n ~r; tð Þ=∂t. The basis of eigenfunctions of the Laplace operator, Φk ~rð Þ, is used
to project the flux solution as:

Φ ~r; tð Þ ¼
X
k

φk tð Þ Φk ~rð Þ with φk tð Þ ¼

Ð
V

Φ ~r; tð ÞΦk ~rð Þd~rÐ
V

Φk ~rð ÞΦk ~rð Þd~r

If an orthonormal basis is used, the terms
Ð
V

Φk ~rð ÞΦk ~rð Þd~r ¼ 1 can be cancelled.

Similarly, the source that does not depend on the flux is also projected as:

S ~r; tð Þ ¼
X
k

sk tð Þ Φk ~rð Þ

By inserting these expansions in Eq. (12.20) then multiplying by the

eigenfunction Φk ~rð Þ, it is possible to make use of the orthogonality properties of

the eigenfunctions shown at the beginning of the chapter, producing a set of

differential equations for the time-dependent coefficients:

ð
V

d~rΦk ~rð Þ 1

v

X
k

∂φk tð Þ
∂t

Φk ~rð Þ�D
X
k

φk tð Þ ΔΦk ~rð Þ|fflfflffl{zfflfflffl}
�B2

kΦk ~rð Þ
þ Σa�νΣf

� �X
φk tð ÞΦk ~rð Þ

2
6664

3
7775

¼
ð
V

Φk ~rð Þ
X
k

sk tð Þ Φk ~rð Þd~r

1

v

∂φk tð Þ
∂t

þ DB2
k þ Σa � νΣf

� �
φk tð Þ ¼ sk tð Þ

The general solution to this differential equation is written by setting λk=v ¼
DB2

k þ Σa � νΣf :
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φk tð Þ ¼ α tð Þ e�λk t

Using the method of variation of parameters, the equation finally obtained is:

φk tð Þ ¼ Cþ v

ðt
0

sk tð Þeþλk t

2
4

3
5 e�λk t

Using any flux as the initial condition Φ ~r; 0ð Þ ¼P
k

φk 0ð Þ Φk ~rð Þ, the value of

the constant is obtained as C¼φk(0). In the particular case of a non-multiplying

medium (νΣf¼ 0) without source (sk(t)¼ 0), the flux is a sum of decreasing

exponential terms for which that having the smallest coefficient (corresponding to

λ1) becomes the prevailing term as time increases:

Φ ~r; tð Þ ¼
X
k

φk 0ð Þe�λk t Φk ~rð Þ �
t!1 φk 0ð Þ e�λ1 tΦ0 ~rð Þ

The flux decays proportionally to a fundamental mode. This result can be used to

measure the diffusion coefficient and the absorption cross section of the medium

[Horowitz-Raievski method (Atoms for peace 1955, Volume V, p. 46)]. For the

same non-multiplying medium, if the source is constant over time, i.e. the coeffi-

cients sk do not vary with time, the flux tends towards a constant flux as time tends

to infinity:

Flux in a non-multiplyingmediumwith constant source :

Φ ~r;tð Þ¼
X
k

sk

DB2
kþΣa

þ φk 0ð Þ� sk

DB2
kþΣa

� 	
e�λk t

� 	
Φk ~rð Þ �

t!1

X
k

sk

DB2
kþΣa

Φk ~rð Þ

ð12:21Þ

This result is valid even if the medium is sub-multiplying (k1< 1), in which

case, Σa is substituted by Σa� νΣf¼Σa(1� k1)� 0 in the previous formula, and

hence λ1 is still positive. The formulae show that the permanent state reached is

such that the flux level is higher than that for a non-multiplying medium with

constant source. If the medium is over-multiplying (k1> 1), the condition for a

positive λ1 (or any positive λk in general) leads to a minimum value of B2
1, which is

another way of writing the criticality condition:

B2
1 >

Σa k1 � 1ð Þ
D

If B2
1 is lower than this critical value, then:
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λ1
v
¼ DB2

1 þ Σa 1� k1ð Þ < 0 and e�λ1 t !
t!þ1þ1

The flux increases in an exponential manner, following a dominant term that is

proportional to the fundamental mode. The term B2
1corresponds to the square of the

geometrical buckling of the considered volume andDB2
1 to the neutron leakage term

through the outer surface of the volume. The reactor can remain globally

sub-critical as long as leakage compensates for the production term, which is

proportional to k1� 1.

If the reactivity becomes so great that the other values of λk become negative, the

associated harmonics can be taken into account, but they remain insignificant

compared to the fundamental mode. This result is very important for the physics

of the phenomenon and we will discuss the flux expansion as the product of a time-

dependent function and the fundamental mode in the chapter on neutron kinetics

(point kinetics model). If the reactor is critical, the flux varies linearly with time in

the presence of a source (Fig. 12.19).

12.10 Source Calculation: Extension to Multi-Group

Conditions

In the previous section, the behavior of a reactor in the presence of independent

sources that are not coupled to the flux (in contrast to the fission sources) was

studied with time dependence. In a sub-critical case, the flux level tends towards a

constant level depending on the source. The two-energy group approach illustrates

Critical with 

constant source

Sub-critical with 

constant source

Over-critical with 

constant source

time

Φ(t)Fig. 12.19 Evolution of

flux in the presence of a

source
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this fact. In an infinite reactor (with no leakage), the two-group diffusion equations

with a source term (placed in the fast group) are written as:

Σa 1 þ Σ1!2ð ÞΦ1 ¼ νΣf 1Φ1 þ νΣf 2Φ2 þ S
Σa 2Φ2 ¼ Σ1!2Φ1




This linear system is solved in a conventional manner by writing the system in

the form:

Σa 1 þ Σ1!2 � νΣf 1

� �
Φ1 � νΣf 2Φ2 ¼ S

Σ1!2Φ1 � Σa 2Φ2 ¼ 0




for which the determinant is:

Det ¼ Σa 1 þ Σ1!2 � νΣf 1

� � �νΣf 2

Σ1!2 �Σa 2

����
���� ¼ k1 � 1ð ÞΣa 2 Σa 1 þ Σ1!2ð Þ

Introducing for two energy groups the value k1:

k1 ¼ νΣf 1Σa 2 þ νΣf 2 Σ1!2

Σa 1 þ Σ1!2ð ÞΣa 2

which is itself obtained from solution of the system:

Σa 1 þ Σ1!2ð ÞΦ1 ¼ νΣf 1Φ1 þ νΣf 2Φ2

k1
Σa 2Φ2 ¼ Σ1!2Φ1

(

It is seen that there is no stationary solution to the problem if k1¼ 1 for the

intrinsically critical reactor, since Det¼ 0. The flux couple (Φ1,Φ2) that satisfies

this source system is given by:

Φ1 ¼
S �νΣf 2

0 �Σa 2

����
����

Det
¼ �Σa 2S

k1 � 1ð ÞΣa 2 Σa 1 þ Σ1!2ð Þ

Φ2 ¼
Σa 1 þ Σ1!2 � νΣf 1

� �
S

Σ1!2 0

����
����

Det
¼ �Σ1!2S

k1 � 1ð ÞΣa 2 Σa 1 þ Σ1!2ð Þ

:

8>>>>>>>><
>>>>>>>>:

for which the only physical solutions for positive flux are those for the reactors

where the determinant is negative, i.e. sub-critical reactors such that k1< 1. In this

frame, the flux varies linearly with the source. If the reactor were finite, the fast and

thermal leakage terms, �D1ΔΦ1 and �D2ΔΦ2 respectively, must be taken into

account in the diffusion equations, which is equivalent to substituting the
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absorption cross section Σa by Σa þ DB2
g, and by modeling the Laplace term by a

fundamental mode in the previous calculations. A similar logic can be applied and

substitute k1 by keff. If the reactor is infinite and over-critical, k1> 1, no permanent

flux solution is possible and the problem should be dealt with in the time-dependent

framework using the flux projection on spherical harmonics for instance. The flux

then increases continuously, adopting the dominant shape of the fundamental mode.
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Chapter 13

Neutron Reflectors

The physics of a reactor is significantly improved by surrounding it with a neutron
reflector, i.e. structural elements that enclose the fissile zone, rather than just a bare

reactor with a vacuum around it. It will also be seen that the properties of this

reflector impact the neutron economy of the reactor. In 1939, Francis Perrin was the

first to suggest the idea of surrounding a reactor with graphite blocks to reduce the

size of the fissile zone. This idea was successfully implemented by Enrico Fermi for

the CP1 pile, then for the first French reactor with heavy water, Zoé [acronym for

Zero energy, Oxide, Heavy water [“Eau lourde” in French], (Nahmias 1953,

p. 134; Lefebvre 2002, p. 35)]. The neutron reflector of PWR is mainly constituted

of water and steel. It reflects back thermal neutrons towards the core and leads to an

“economy” (or a gain) in fissile matter compared to a bare core. Another advantage

is that it greatly improves the form factor by flattening the power distribution.

Calculation of the neutron properties of the reflector is a key step in the calculation

scheme for a reactor, a topic not often discussed in the standard references,1 despite

the fact that a significant amount of theoretical research work has been carried out

on this subject.

13.1 Some Mathematical Considerations on Reflectors

Let ΩR be a reflector in contact with the fuel material ΩC (Fig. 13.1), comprising a

non-multiplying medium (Σf¼ 0) in which the Poisson equation with no source is

solved in diffusion theory as follows:

1With the notable exception of (Meghreblian and Holmes 1960), which contains a full chapter on

this question.
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�div Dg grad
��!

Φg

� �
þ ΣtgΦg ¼

X
g0!g

Σgg0Φg0

It can be shown that2 if Φ is the solution to the partial derivative equation in ΩR

without source, and with Dirichlet conditions:

�div Dgrad
��!

Φ
� �

þ ΣΦ ¼ 0

Φ ¼ Φboundary

(

or with von Neumann boundary conditions:

�div Dgrad
��!

Φ
� �

þ ΣΦ ¼ 0

�D
∂Φ
∂n

¼ Jboundary

8><>:
there exists an operator called the Poincaré-Steklov3 operator R such that:

�D ∂Φ
∂n ¼ R Φ∂ΩR

� �
.

RΩCΩ RCΩ Ω∂∩∂

Fig. 13.1 Fuel/reflector

geometry

2J.P. Argaud:Modélisation du réflecteur pour les calculs de diffusion en neutronique [Modeling a

reflector for neutron diffusion calculations], PhD thesis.
3Henri Poincaré (1854–1912) was one of the most brilliant French mathematicians/physicists. In

1873, he was first in the very competitive examination for enrolment at the Ecole Polytechnique

and obtained his engineering degree from the prestigious “Corps de Mines” in 1875. He obtained

his PhD in mathematics in 1879, and in 1886 he was awarded the Mathematical physics and
probability calculations chair of the Faculty of Paris. In 1887, he was elected to the Académie des

Sciences. His work in mechanics makes him the “father” of chaos theory. Furthermore, he was one

of the pioneers of relativity theory, to which he made significant mathematical contributions.

Further, in mathematics, he is the author of the famous Poincaré conjecture that was formally

proved by Grigori Perelman in 2003.

Vladimir A. Steklov (1864–1926) was a Ukrainian mathematician, and a member of the

Academy of Sciences of the USSR, and he seems to have been the first to use the notion of vector

and operator in mechanics, thereby converting several physical problems in potential theory into

problems concerning Dirichlet boundary conditions.
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This implies that the behavior of the solution at the boundary ∂ΩC\∂ΩR is

totally characterized by operator R at the boundaries of the domain. The Poincar-

é-Steklov operator depends only on ΩR and the neutron properties of the reflector,

but not on the state of the domain outside ΩR, i.e. the nature of the fuel (Picture

13.1a and 13.1b).

The normal derivative of the flux at a point on ∂ΩC\∂ΩR depends on the values

of Φ for the whole boundary (and not only on Φ at the considered position, where

only a 1D geometry allows this simplification). It should be noted that the operator

R is linear since the initial partial derivative equation system is linear. It will be

shown below that this operator R employs the reflector as the boundary condition of

the active core. This operator is represented by a transfer matrix denoted as ℜ
which relates the net current to the flux:

~J � ~n ¼ J� � Jþ ¼ ℜ Φ½ �

Picture 13.1a Henri

Poincaré (Public domain)

Picture 13.1b Vladimir

A. Steklov (source: website

of the city of Kharkov,

Public domain)
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13.2 Reflectors in Diffusion Theory

13.2.1 Case of the Slab Reactor Surrounded by an Infinite
Reflector

Let us consider a slab reactor with:

– diffusion coefficient Dc,

– macroscopic absorption cross section Σa, c,

– production cross section vΣf, c,

– scattering area L2c ,
– multiplication coefficient in infinite medium k1 , c.

The reactor is surrounded by an infinite reflector medium of:

– diffusion coefficient Dr,

– macroscopic absorption cross section Σa, r,

– scattering area L2r ,
– attenuation coefficient κr.

The goal is to study the impact of the reflector on the neutron flux solution in the

whole reactor (Stacey 2001, p. 66). The solution in fundamental mode in the core

(indexed by c) as illustrated previously is given as:

Φc xð Þ ¼ Φc 0ð Þ cos Bcxð Þ with Bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1,c � 1

M2
c

s

The thermal diffusion equation in the reflector is written as:

�DrΔΦr xð Þ þ Σa, rΦr xð Þ ¼ 0,

which will be expressed in its canonical form using the migration area of the

reflector M2
r � Dr=Σa, r � 1=κ2r where κr has the same role as an attenuation

coefficient (Fig. 13.2):

Diffusion equation ina reflector :

ΔΦr xð Þ � 1

M2
r

Φr xð Þ ¼ ΔΦr xð Þ � κ2rΦr xð Þ ¼ 0 ð13:1Þ

The solution in the reflector is written as:
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Φr xð Þ ¼ Φþ
d e

kr x�a
2ð Þ þΦ�

d e
�kr x�a

2ð Þ

thus simplifying the modeling of boundary conditions at infinity. On the right

Φr(1)¼ 0, thus Φþ
d ¼ 0. On the left, the following equation is written:

Φr xð Þ ¼ Φþ
g e

kr xþa
2ð Þ þΦ�

g e
�kr xþa

2ð Þ

SinceΦr(‐1)¼ 0, it can be deduced thatΦ�
g ¼ 0. The flux continuity at the right

boundary at a/2 is expressed as:

Φc a=2ð Þ¼ Φc 0ð Þ cos Bc
a

2

� �
¼ Φ�

d :

Similarly, on the left boundary at �a/2: thus Φþ
g ¼ Φ�

g . The continuity of the

current (given by Fick’s law ~J ¼ �DgradΦ
����!

) is written as:

DcΦc 0ð ÞBc sin Bc
a

2

� �
¼ DrΦ

�
d κr Current continuity on the right at a=2 :

On the left:

�DcΦc 0ð ÞBc sin �Bc
a

2

� �
¼ DrΦ

þ
g κr Current continuity of the left at � a=2 :

which corresponds to the same equation since:

Φþ
g ¼ Φ�

d ¼ DcΦc 0ð ÞBc sin Bc
a
2

� 	
Dr κr

Finally, the following three equations governing flux are obtained, depending on

the medium for which it is being computed:

0

Φ

δ δ
2

a
−

2

a x

Core Reflector

Φr

Φc

Fig. 13.2 Neutron flux in a

slab reactor reflected by an

infinite reflector
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Φc xð Þ¼ Φc 0ð Þ cos Bcxð Þ in the fuel

Φr xð Þ¼ Φc 0ð Þ sin Bc
a

2

� �Bc

κr

Dc

Dr
e�κr x�a

2ð Þ in the reflector on the right

Φr xð Þ¼ Φc 0ð Þ sin Bc
a

2

� �Bc

κr

Dc

Dr
eκr xþa

2ð Þ in the reflector on the left

8>>><>>>:
Given the symmetries of the problem, flux is maximum at the center of the

reactor Φc(0)¼Φmax, and these equations can be expressed as:

Fluxfor fuel and reflector in slab geometry :

Φc xð Þ¼ Φmax cos Bcxð Þ
Φr xð Þ¼ Φmax sin Bc

a

2

� �Bc

κr

Dc

Dr
e�κr xj j�a

2ð Þ

8<: ð13:2Þ

Flux expression in the reflector can also be written as follows, using the flux

continuity equation at the interface, x¼ a/2:

Φr
a

2

� �
¼ Φmax sin Bc

a

2

� �Bc

κr

Dc

Dr
e�κr a

2
�a

2ð Þ ¼ Φmax sin Bc
a

2

� �Bc

κr

Dc

Dr

¼ Φc
a

2

� �
¼ Φmax cos Bc

a

2

� �
Hence: Φr xð Þ¼ Φc

a
2

� 	
e�κr xj j�a

2ð Þ
The flux in the reflector is obtained by simply extrapolating the flux value in the

fuel at the interface using a decreasing exponential function. This result is useful in

several practical applications as will be illustrated below. The criticality condition

is obtained by dividing each term of the current continuity equation by that of the

flux: DcBc tan(Bca/2)¼Drκr, which can be expressed as:

Criticality condition of a slab reactor with an infinite reflector :

a

2
¼ 1

Bc
arctan

Drκr
DcBc


 �
ð13:3Þ

It may be seen that the term on the left depends only on geometrical parameters

whereas the term on the right depends on the material properties of the core and the

reflector, a condition which has been previously expressed as “geometrical buck-

ling¼material buckling.” However, a/2 is not the geometrical buckling of a slab. It

will be shown that surrounding a reactor with a reflector decreases neutron leakage

(the reflector directs neutrons back towards the core), thereby leading to a decrease

in the reactor size, and hence economy in terms of fissile material. Let us consider a

bare and infinite slab reactor (surrounded by a vacuum), as studied previously and

of thickness ~a. If δ is the c to zero, then ~a ¼ aþ 2δ. The bare reactor is critical if ~a
satisfies the criticality condition, i.e.:
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B2
c ¼

k1,c � 1

M2
c

¼ π2ea 2

If δ is introduced in the criticality condition of the reflected reactor

DcBc tan(Bca/2)¼Drκr using a ¼ ~a � 2δ, and given that Bc~a ¼ π, the

following equation is obtained:

tan Bc
a

2

� �
¼ tan Bc

ea
2
� Bcδ


 �
¼ tan

π

2
� Bcδ

� �
¼ cotan Bcδð Þ

Besides, assuming that the core is large (around a meter, such that Bc ¼ π=~a
< 10�2 cm�1), then the approximation cotan(Bcδ)¼ 1/Bcδ�Bcδ/3 + . . . is valid for
the cotangent if Bcδ . < π. Inserting this expansion in Taylor series into the criti-

cality condition gives:

DcBc
1

Bcδ
� Bcδ

3
þ . . .


 �
¼ Drκr i:e: δ � Dc

Drκr

at the first order. Hence, the approximate value of δ, called reflector economy:

Reflector economy : δ � Dc

Drκr
¼ Dcffiffiffiffiffiffiffiffiffiffiffiffiffi

DrΣa, r
p ð13:4Þ

This expression represents the economy of fissile material resulting from the

presence of a reflector. Further, the smaller the absorption cross section of the

reflector, the larger will be this economy. Conversely, if the reflector were a perfect

neutron absorber, no neutrons would be directed back towards the core. However,

the reflector is even more efficient if the diffusion coefficient is smaller. A diffusion

coefficient that is too large tends to allow neutrons to leak further away, and they

are thus unable to be redirected into the core. Indeed, the larger δ is, the smaller will

be the size of the reactor. In the field of fast reactors, the term reflector gain is

employed, which is different from reflector economy. The gain is the difference at

critical state between the extrapolated length and the real geometrical dimension of

the fuel lattice.4 This reflector gain is of the order of 15 cm for the PHENIX and

SUPERPHENIX reactors (sodium-cooled fast reactors), but can reach up to 35 cm

for high power gas-cooled fast reactors.

4Guy Beltranda: Etude des couvertures et réflecteurs des réacteurs de la filière �a neutrons rapides
[Study of blankets and reflectors for fast-neutron reactors], thesis presented to the University of

Grenoble (1974).
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13.2.2 Reflected Homogeneous Slab Reactor

Let us now consider the same core (multiplying medium) composed of a slab of

thickness a and defined by Dc, Σa, c, νΣf, c, k1 , c, M
2
c , with a reflector of thickness

b on either side of the core, and defined by Dr, Σa , r, κ
2
r ¼ Σa, r=Dr orM

2
r ¼ Dr=Σa, r.

The reflector is a non-multiplying medium, scattering and weakly absorbing, placed

at the core periphery to limit the number of neutrons leaking outside (Fig. 13.3).

Some of the neutrons leaving the core are reflected back into it after some

scattering collisions. The reflector acts as a source of thermal neutrons with respect

to the core. The equations governing the flux are:

• Fuel:
d2Φ

dx2
þ B2

cΦc xð Þ ¼ 0 0 � xj j � a

2

• Reflector:
d2Φ

dx2
� κ2rΦr xð Þ ¼ 0

a

2
� xj j � a

2
þ b

• Flux continuity: Φc(a/2)¼Φr(a/2)

• Current continuity: �Dc
dΦc

dx


 �
x¼a=2

¼ �Dr
dΦr

dx


 �
x¼a=2

• Boundary conditions: Φr
a

2
þ b

� �
¼ 0

with B2
c � k1,c � 1ð Þ=M2

c . This notation with the square sign implies that the

medium is over-multiplying, i.e. k1 , c� 1. The equations for x< 0 are obtained by

symmetry. It should be pointed out that the current continuity at the core/reflector

interface implies a discontinuity on the derivative of the flux at the same interface.

κ2r ¼ Σa, r=Dr is written as a square to visualize a positive quantity that is dimen-

sionally homogeneous to the inverse of a surface area. It can be shown that there is

no solution if B2
c � 0, which is physically explained as follows: the reflector limits

0

Φ

δ δ
2

a
−

2

a
b

2

a
+ x

Core Reflector Vacuum

⎟
⎠
⎞

⎜
⎝
⎛− + b

2

a

Φr

Φc

Fig. 13.3 One-group neutron flux in a slab reactor reflected by a finite reflector
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leakage terms but does not decrease them to zero. Thus, a critical system is obtained

only if k1 , c> 1, so as to compensate for these leakages. The solutions are of the

form:

Φc xð Þ ¼ Φsin sin Bcxð ÞþΦcos cos Bcxð Þ
Φr xð Þ¼ Φþeκrx þΦ�e�κrx ¼ Φþ

ch ch κr
a

2
þ b� x

� �� �
þΦþ

sh sh κr
a

2
þ b� x

� �� �(

The flux in the fuel is symmetrical in x, thus:

Φc xð Þ¼ Φc 0ð Þ cos Bcxð Þ

The flux in the reflector is also symmetrical but defined in a piecemeal manner.

Using the condition that the flux cancels out at the exterior boundaries on the right

and left, the following is obtained:

On the right: Φr
a
2
þ b

� 	 ¼ Φþ
ch ch 0ð Þ þ Φþ

sh sh 0ð Þ ¼ Φþ
ch ¼ 0

Thus on the right: Φr xð Þ ¼ Φþ
sh sh κr a

2
þ b� x

� 	� 	
On the left, the flux is written using hyperbolic functions:

Φr xð Þ ¼ Φ�
ch ch κr �a

2
� b� x

� �� �
þΦ�

sh sh κr �a

2
� b� x

� �� �
On the left: Φr �a

2
� b

� 	 ¼ Φ�
ch ch 0ð Þ þΦ�

sh sh 0ð Þ ¼ Φ�
ch ¼ 0

Therefore, the flux in the reflector is:

Φr xð Þ ¼ Φ�
sh sh κr �a

2
� b� x

� �� �
The constants Φþ

sh,Φ
�
sh and Φc(0) remain to be determined. The two conditions

that express the continuity of the flux and that of the current at x¼ a/2 become as

follows, using the reflector flux on the right:

Φc 0ð Þ cos Bca=2ð Þ ¼ Φþ
sh shκrb Flux continuity at a=2

Φc 0ð ÞDc Bc sin Bca=2ð Þ ¼ Φþ
sh Drκrchκrb Current continuity

�

It can also be deduced that: Φþ
sh ¼ Φc 0ð Þ cos Bca=2ð Þ

sh κrb

The same calculation on the left for x¼ � a/2 leads to:

Φc 0ð Þ cos �Bca=2ð Þ ¼ Φ�
sh sh �κrbð Þ Flux continuity at � a=2

�Φc 0ð ÞDc Bc sin �Bca=2ð Þ ¼ �Φ�
sh Drκrch �κrbð Þ Current continuity

�

From which: Φ�
sh ¼ �Φc 0ð Þ cos Bca=2ð Þ

sh κrb
, it can be seen that Φ�

sh ¼ �Φþ
sh

The term-wise ratio of these two equations leads to the same compatibility

condition. This criticality condition can be used to determine the physical proper-

ties of the core that turns the system critical when the geometry is defined, or to
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compute the critical thickness of the core when the physical properties are defined.

In any event, there is an infinite number of solutions, the first being the fundamental

mode, with the others being the higher harmonics.

Φc xð Þ ¼Φc 0ð Þ cos Bcxð Þ in the fuel

Φr xð Þ ¼Φc 0ð Þ cos Bca=2ð Þ
sh κrb

sh κr
a

2
þ b� x

� �� �
in the reflector on the right

Φr xð Þ ¼Φc 0ð Þ cos Bca=2ð Þ
sh κrb

sh κr
a

2
þ bþ x

� �� �
in the reflector on the left

8>>><>>>:
Using Φc(0) ¼Φmax, these equations can also be written as:

Flux in fuel and finite reflector inaslab geometry:

Φc xð Þ ¼ Φmax cos Bcxð Þ
Φr xð Þ ¼ Φmax

cos Bca=2ð Þ
sh κrb

sh κr
a

2
þ b� xj j

� �� �8<: ð13:5Þ

By dividing the flux continuity equation term-wise by the current continuity

equation, the following criticality condition is obtained:

Criticality condition for the reflected slab reactor:

Dc Bc tan Bc
a

2

� �
¼ Drκrcoth κrbð Þ ð13:6Þ

This transcendental equation does not separate the geometrical elements (geo-

metrical buckling that would depend on the lengths a and b) from the material

properties (material buckling). The hypotheses of “large reactor size” or “large

reflector” could be used to simplify the hyperbolic tangent and cotangent terms

using Taylor expansions for simplified calculations.

13.2.3 Case of an Infinite Cylindrical Reactor Surrounded by
an Infinite Reflector

Let us consider an infinite cylinder of radius R for which the flux solution was

previously determined, and which is now surrounded by an infinite non-multiplying

reflector:
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ΔΦc rð Þ þ B2
cΦc rð Þ ¼ d2Φc rð Þ

dr2
þ 1

r

dΦc rð Þ
dr

þ B2
cΦc rð Þ ¼ 0

ΔΦr rð Þ � κ2rΦr rð Þ ¼ d2Φr rð Þ
dr2

þ 1

r

dΦr rð Þ
dr

� κ2rΦr rð Þ ¼ 0

8>><>>:
The flux and current continuity at the interface is expressed as:

Φc Rð Þ ¼ Φr Rð Þ
� Dcgrad Φc rð Þð Þð ÞR ¼ � Drgrad Φr rð Þð Þð ÞR

�
The general solution for the modified Bessel equation for a core is given by:

Φc ¼ ΦJ J0 Βcrð Þ þ ΦY Y0 Βcrð Þ

Where the core buckling is given by Βg
2¼ λ and, J0 (r) and Y0(r) are the first and

second kind zero-order Bessel function. Φc(0) must be finite (¼Φmax).

Since Y0(0)¼ �1, ΦY¼ 0. The general solutions to the modified Bessel equation

for a reflector with I0 (r) andK0(r) are modified Bessel functions of the first and

second kind at order 0 (Fig. 13.4):

Φr ¼ ΦI I0 κrrð Þ þ ΦK K0 κrrð Þ

Φr(1) must be finite. Since I0(+1)¼ +1, ΦI¼ 0. The flux continuity at R is

expressed as:

r

Φ1 (r)

R

Φr (r)

Fig. 13.4 Axially-infinite cylinder, of radius R, reflected by an infinite reflector
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Φc Rð Þ ¼ ΦJ J0 ΒcRð Þ ¼ Φr Rð Þ ¼ ΦKK0 κrRð Þ

Thus:
ΦJ

ΦK
¼ K0 κrRð Þ

J0 ΒcRð Þ

Current continuity is written as:

�Dcgrad Φc rð Þð Þð ÞR ¼ �Dc �ΦJ Βc J1 ΒcRð Þð Þ ¼ �Drgrad Φr rð Þð Þð ÞR
¼ �Dr �ΦK κr K1 κrRð Þð Þ

Finally, since J0(0)¼ 1, the coefficient ΦJ is simply the maximum flux Φmax.

The flux is given by:

Φc rð Þ ¼ Φmax J0 Bcrð Þ in the core

Φr rð Þ ¼ Φmax

J0 BcRð Þ
K0 κrRð Þ K0 κrrð Þ in the reflector

8<:
The flux in the reflector can also be expressed under the form: Φr(r)¼Φc(R)

K0(κrr)/K0(κrR). Using the “large reactor” hypothesis, the Bessel function K0 can be

developed into series when κrr is large:

Kn xð Þ �
ffiffiffiffiffiffiffiffiffiffi
π

2x

r
e�x 1þ 4n2 � 12

1! 8x
þ 4n2 � 12
� 	

4n2 � 32
� 	

2! 8xð Þ2 þ . . .

" #

Hence:

Φr rð Þ ¼ Φc Rð Þ

ffiffiffiffiffiffiffiffiffi
π

2κrr

r
e�κrr 1þ 3

8κrr
þ . . .

 �
ffiffiffiffiffiffiffiffiffiffi
π

2κrR

r
e�κrR 1� 1

8κrR
þ . . .

 �

� Φc Rð Þ
ffiffiffi
R

r

r
e�κr r�Rð Þ 1þ 4

8κrr
þ 3

64 κrrð Þ2
" #

It should be noted that close to R, the approximation Φr rð Þ � Φc Rð Þ e�κr r�Rð Þ

is satisfactory for the flux in the reflector, thereby leading to the same formulation

as for the slab reactor. The criticality condition is obtained by dividing the flux

continuity equation by the current continuity equation:

Criticality condition for an infinitely-reflected cylindrical reactor:

DcΒc
J1 ΒcRð Þ
J0 ΒcRð Þ ¼ Dr κr

K1 κrRð Þ
K0 κrRð Þ

ð13:7Þ

In the case of the slab reactor, it will be shown that surrounding a reactor with a

reflector decreases its size, leading to economy in fissile material. Let us consider a
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bare (surrounded by a vacuum) infinite cylindrical reactor, as studied previously, of

radius ~R. The distance at which the flux cancels out is denoted as δ, and thus
~R ¼ Rþ δ. The bare reactor is critical if ~R satisfies the criticality condition, i.e.:

B2
c �

k1,c � 1

M2
c

¼ j0,1
2eR 2

If δ is introduced in the criticality condition for the reflected cylindrical reactor

using the fact that R ¼ ~R � δ, and that Bc
~R ¼ j0,1, the following equation is

obtained:

DcΒc

J1 Βc
eR �Βcδ

� �
J0 Βc

eR � Βcδ
� � ¼ Dr κr

K1 κreR � κrδ
� �

K0 κreR � κrδ
� �

The Bessel functions are developed into Taylor series and a recurrence relation

is used to express the derivative of Jn(x) as a function of Jn(x) and Jn� 1(x):

J1 Βc
eR �Βcδ

� �
� J1 Βc

eR� �
� Βcδ J

0
1 Βc

eR� �

¼ J1 j0,1
� 	� Βcδ �

J1 Βc
eR� �

Βc
eR þ J0 Βc

eR|{z}
j0,1

0B@
1CA

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

0BBBBBB@

1CCCCCCA
¼ 1þ δeR

 �

J1 j0,1
� 	

thus:

J0 Βc
eR �Βcδ

� �
� J0 Βc

eR|{z}
j0,1

0B@
1CA

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

�Βcδ J
0
0 Βc

eR� �
¼ �Βcδ �J1 Βc

eR|{z}
j0,1

0B@
1CA

0B@
1CA

¼ Βcδ J1 j0,1
� 	

Using the recurrence relation: xK
0
n xð Þ ¼ �nKn xð Þ � xKn�1 xð Þ
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K1 κreR �κrδ
� �

� K1 κreR� �
� κrδ K

0
1 κreR� �

¼ K1 κreR� �
� κrδ �

K1 κreR� �
κreR � K0 κreR� �0@ 1A

¼ 1þ δeR

 �

K1 κreR� �
þ κrδ K0 κreR� �

K0 κreR �κrδ
� �

� K0 κreR� �
� κrδ K

0
0 κreR� �

¼ K0 κreR� �
� κrδ �K1 κreR� �� �

¼ K0 κreR� �
þ κrδ K1 κreR� �

By substituting the latter in the criticality condition, the following equation is

obtained:

DcΒc

1þ δ
~R

� �
J1 j0,1
� 	

BcδJ1 j0,1
� 	 ¼ Dr κr

1þ δ
~R

� �
K1 κreR� �

þ κrδK0 κreR� �
K0 κreR� �

þ κrδK1 κreR� �
hence:

Dc

Dr κr
K0 κr ~R
� 	 ¼ δ K1 κr ~R

� 	� Dc

Dr κr
K0 κr ~R
� 	 1

~R
� Dc

Dr
K1 κr ~R
� 	
 �

þ

δ2
1

~R
K1 κr ~R
� 	þ κrK0 κr ~R

� 	� 1

~R

Dc

Dr
K1 κr ~R
� 	�


An exact evaluation of δmay be obtained from this quadratic equation. Using the

“large reactor” hypothesis, which is expressed as δ 	 ~R, and where κr ~R is large

enough, simplifies the equation by neglecting the terms in δ2. Using the expansion

for sufficiently large values of x:

Kn xð Þ �
ffiffiffiffiffiffi
π

2x

r
e�x 1þ 4n2 � 12

1!8x
þ 4n2 � 12
� 	

4n2 � 32
� 	

2! 8xð Þ2 þ . . .

" #
:

The following ratio can also be deduced
K1 xð Þ
K0 xð Þ �

1þ 3
8xþ...

1þ 3
8xþ...

� 1þ 4
8x þ 3

64x2 þ . . . � 1

Hence:
Dc

Dr κr

1þ δ
~R

� �
δ

¼
1þ δ

~R

� �
K1 κr ~Rð Þ
K0 κr ~Rð Þ þ κrδ

1þ κrδ
K1 κr ~Rð Þ
K0 κr ~Rð Þ

�
1þ δ

~R

� �
þ κrδ

1þ κrδ

Reflector economy for the cylindrical reactor:

Dc

Dr κr
� � δ

1þ κrδ

1þ δ
~R

� �
1þ κrδ

� δ 1þ κrδ 1� δeR

 �

1� κrδð Þ

 �

ð13:8Þ
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hence, at first order in cylindrical geometry, δ�Dc/(Dr κr). If the terms at higher

orders of δ are ignored, the formula for the reflector economy in slab geometry is

thus found: δ � Dc= Dr κrð Þ � Dc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr Σa, r

p
. This result is very logical since for an

external observer located close to its surface, the cylinder appears to be a plane. The

same result would also be found for a sphere.

Technology, Engineering and Safety (1963, p. 509) provides several illustrations

of fuel economy in terms of critical mass for different geometries. We have selected

the case of a homogeneous spherical solution of uranium (93.2% enrichment in 235

U ) and water (Fig. 13.5). It can be seen that the presence of a water reflector leads to

a saving of more than twice the amount of fuel required to reach the critical mass.

Criticality control of fissile materials (1968, p. 3) presents several plots of the

critical volumes for aqueous spherical solutions of UO2 and/or PuO2 reflected by

water [see (Contrôle de la criticalité 1961)].
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Fig. 13.5 Comparison of critical masses for a bare homogeneous spherical reactor and a sphere

reflected by water [adapted from W.H. Roach in (Technology, Engineering and Safety 1963)]

[x-axis: kg of U235 per liter of solution, y-axis: critical mass in kg]
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13.2.4 Case of an Infinite Cylindrical Reactor with a Finite
Reflector

13.2.4.1 Monocinetic Calculation

Let us consider an infinite cylinder of radius R, for which the flux was determined

earlier, and surrounded by a non-multiplying reflector:

ΔΦc rð Þ þ B2
cΦc rð Þ ¼ d2Φc rð Þ

dr2
þ 1

r

dΦc rð Þ
dr

þ B2
cΦc rð Þ ¼ 0

ΔΦr rð Þ � κ2rΦr rð Þ ¼ d2Φr rð Þ
dr2

þ 1

r

dΦr rð Þ
dr

� κ2rΦr rð Þ ¼ 0

8>><>>:
The flux and current continuity at the interface, coupled with the null flux

hypothesis in the reflector at its boundary, are expressed as:

Φc Rcð Þ ¼ Φr Rcð Þ
Φr Rrð Þ ¼ 0

� Dcgrad Φc rð Þð Þð ÞRc
¼ � Drgrad Φr rð Þð Þð ÞRc

8<:
As in the previous case, the general solution of the modified Bessel equation for

the core is:

Φc ¼ ΦJ J0 Βcrð Þ þ ΦY Y0 Βcrð Þ

where core buckling is given by Βc
2¼ λc. Φc(0) must be finite (¼Φmax).

Since Y0(0)¼ �1, ΦY¼ 0. The general solution to the modified Bessel equation

for the reflector is (Fig. 13.6):

r

Φ1 (r)

Rc

Φr (r)

RrFig. 13.6 Axially-infinite

cylinder of radius Rc

surrounded by a reflector of

radius Rr

934 13 Neutron Reflectors



Φr ¼ ΦI I0 κrrð Þ þ ΦK K0 κrrð Þ

In the present case, ΦI cannot be cancelled due to the flux being finite at infinity.

The system of equation for the flux is thus written as:

Φc rð Þ ¼ΦJ J0 Βcrð Þ dΦc rð Þ
dr

¼�ΦJΒc J1 Βcrð Þ

Φr rð Þ ¼ΦI I0 κrrð ÞþΦKK0 κrrð Þ dΦr rð Þ
dr

¼ΦI κrI1 κrrð Þ�ΦK κrK1 κrrð Þ

8><>:
The continuity equations and boundary conditions are expressed as:

Φc Rcð Þ ¼ ΦJ J0 ΒcRcð Þ ¼ Φr Rcð Þ ¼ ΦI I0 κrRcð Þ þ ΦK K0 κrRcð Þ
Φr Rrð Þ ¼ 0 ¼ ΦI I0 κrRrð Þ þ ΦK K0 κrRrð Þ
�DcΦJ �ΒcJ1 ΒcRcð Þð Þ ¼ � Dr ΦI κrI1 κrRrð Þ � ΦKκr K1 κrRrð Þð Þ

8<:
Finally, since J0(0)¼ 1, ΦJ¼Φmax, the flux may be written as:

Φc rð Þ ¼ Φmax J0 Bcrð Þ

Φr rð Þ ¼ Φmax

J0 BcRcð ÞK0 κrRrð Þ
K0 κrRrð ÞI0 κrRcð Þ�K0 κrRcð ÞI0 κrRrð Þ I0 κrrð Þ

þ J0 BcRcð ÞI0 κrRrð Þ
K0 κrRcð ÞI0 κrRrð Þ�K0 κrRrð ÞI0 κrRcð ÞK0 κrrð Þ

0BB@
1CCA

8>>>>>><>>>>>>:
The criticality condition is obtained by replacing A, D and E by their full

formulae in the current continuity equation:

DcΦJ ΒcJ1 ΒcRcð Þð Þ ¼ � Dr ΦI κrI1 κrRrð Þ � ΦKκr K1 κrRrð Þð Þ

Hence:

Criticality condition for an infinite cylindrical reactor reflected by a finite reflector:

Dc ΒcJ1 ΒcRcð Þ¼� Dr
J0 BcRcð ÞK0 κrRrð Þ

K0 κrRrð ÞI0 κrRcð Þ�K0 κrRcð ÞI0 κrRrð Þ κrI1 κrRrð Þ

þDr
J0 BcRcð ÞI0 κrRrð Þ

K0 κrRcð ÞI0 κrRrð Þ�K0 κrRrð ÞI0 κrRcð ÞκrK1 κrRrð Þ
ð13:9Þ

As seen earlier, this equation relates the geometrical data of the reactor to its

material data. This highly complex transcendental equation may be simplified using

the “large reactor” hypothesis with the usual considerations (Βc	 1).
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13.2.4.2 Two-Energy Group Calculation

The previous results may be improved with two energy groups by extending the

boundary conditions, and solving the following equations with the usual notations,

without the r index for the reflector:

ΔΦ1 rð Þ � κ21Φ1 rð Þ ¼ d2Φ1 rð Þ
dr2

þ 1

r

dΦ1 rð Þ
dr

� κ21Φ1 rð Þ ¼ 0

ΔΦ2 rð Þ � κ22Φ2 rð Þ ¼ d2Φ2 rð Þ
dr2

þ 1

r

dΦ2 rð Þ
dr

� κ22Φ2 rð Þ ¼ �κ2RΦ1 rð Þ

8>><>>:
with

κ21 �
Σa, 1 þ Σ1!2

D1

κ22 �
Σa, 2

D2

κ2R � Σ1!2

D2

8>><>>:
and using the constant boundary conditions:

Φ1 Rcð Þ ¼ ΦRc

1

Φ2 Rcð Þ ¼ ΦRc

2

(
Φ1 RRð Þ ¼ ΦRR

1

Φ2 RRð Þ ¼ ΦRR

2

The usual solution to the fast equation is given by the composition of zero-order

Bessel functions:

Φ1 rð Þ ¼ Φ I
1 I0 κ1rð Þ þ ΦK

1 K0 κ1rð Þ

The constant coefficients Φ I
1 and ΦK

1 are evaluated using the boundary condi-

tions, thus leading to:

Φ1 rð Þ ¼ ΦRC

1

I0 κ1rð ÞK0 κ1RRð Þ � I0 κ1RRð ÞK0 κ1rð Þ
I0 κ1RCð ÞK0 κ1RRð Þ � I0 κ1RRð ÞK0 κ1RCð Þ

þ ΦRR

1

I0 κ1RCð ÞK0 κ1rð Þ � I0 κ1rð ÞK0 κ1RCð Þ
I0 κ1RCð ÞK0 κ1RRð Þ � I0 κ1RRð ÞK0 κ1RCð Þ

The general solution to the thermal equation is obtained as the sum of the

solution to the homogeneous equation (no LHS), and a particular solution of the

inhomogeneous equation:

Φ2 rð Þ ¼ Φ I
2 I0 κ2rð Þ þ ΦK

2 K0 κ2rð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
general solution without LHS

þ κ2R
κ22 � κ21

Φ1 rð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
particular solution

Once again, the boundary conditions are used to determine the constantsΦ I
2 and

ΦK
2 :
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Φ2 rð Þ ¼ κ2R
κ22 � κ21

Φ1 rð Þ

þ ΦRC

2 � κ2R
κ22 � κ21

 �
I0 κ2rð ÞK0 κ2RRð Þ � I0 κ2RRð ÞK0 κ2rð Þ

I0 κ2RCð ÞK0 κ2RRð Þ � I0 κ2RRð ÞK0 κ2RCð Þ
 �

þ ΦRR

2 � κ2R
κ22 � κ21

 �
I0 κ2RCð ÞK0 κ2rð Þ � I0 κ2rð ÞK0 κ2RCð Þ

I0 κ2RCð ÞK0 κ2RRð Þ � I0 κ2RRð ÞK0 κ2RCð Þ
 �

The calculation of the net currents is employed to set up the ℜ matrix of the

Poincaré-Steklov operator:

�D1

∂Φ1 rð Þ
∂r

¼�D1 κ1 ΦRC

1

I1 κ1rð ÞK0 κ1RRð Þ þ I0 κ1RRð ÞK1 κ1rð Þ
I0 κ1RCð ÞK0 κ1RRð Þ � I0 κ1RRð ÞK0 κ1RCð Þ �ΦRR

1

I0 κ1RCð ÞK1 κ1rð Þ þ I1 κ1rð ÞK0 κ1RCð Þ
I0 κ1RCð ÞK0 κ1RRð Þ � I0 κ1RRð ÞK0 κ1RCð Þ

 �
�D2

∂Φ2 rð Þ
∂r

¼�D2

κ2R
κ22 � κ21

∂Φ1 rð Þ
∂r

�D2κ2 ΦRC

2 � κ2R
κ22 � κ21

 �
I1 κ2rð ÞK0 κ2RRð Þ þ I0 κ2RRð ÞK1 κ2rð Þ

I0 κ2RCð ÞK0 κ2RRð Þ � I0 κ2RRð ÞK0 κ2RCð Þ
 �

þD2κ2 ΦRR

2 � κ2R
κ22 � κ21

 �
I0 κ2RCð ÞK1 κ2rð Þ þ I1 κ2rð ÞK0 κ2RCð Þ

I0 κ2RCð ÞK0 κ2RRð Þ � I0 κ2RRð ÞK0 κ2RCð Þ
 �

8>>>>>>><>>>>>>>:
Poincar�e -Steklov operator for a finite cylindrical reflector:

JRC,RR
¼

�D1
∂Φ1

∂r

� �
Rc

�D1
∂Φ1

∂r

� �
RR

�D2
∂Φ2

∂r

� �
Rc

�D2
∂Φ2

∂r

� �
RR

266666664

377777775

¼
ℜC

11 RCð Þ ℜR
11 RCð Þ 0 0

�ℜC
11 RRð Þ �ℜR

11 RRð Þ 0 0

ℜRC

12 Rcð Þ ℜRR

12 RCð Þ ℜRC

22 Rcð Þ ℜRR

22 Rcð Þ
�ℜRC

12 RRð Þ �ℜRR

12 RRð Þ �ℜRC

22 RRð Þ �ℜRR

22 RRð Þ

26664
37775

ΦRc

1

ΦRR

1

ΦRC

2

ΦRR

2

26664
37775

ð13:10Þ

with (for the sake of brevity, only the first terms of the matrix are given; the

others are readily obtained by identification):

ℜC
11 rð Þ ¼ �D1 κ1

I1 κ1rð ÞK0 κ1RRð Þ þ I0 κ1RRð ÞK1 κ1rð Þ
I0 κ1RCð ÞK0 κ1RRð Þ � I0 κ1RRð ÞK0 κ1RCð Þ

ℜR
11 rð Þ ¼ þD1 κ1

I0 κ1RCð ÞK1 κ1rð Þ þ I1 κ1rð ÞK0 κ1RCð Þ
I0 κ1RCð ÞK0 κ1RRð Þ � I0 κ1RRð ÞK0 κ1RCð Þ

8>><>>:

13.2.4.3 Flux in Two Dimensions

Compared to the previous case, a more general case is obtained by considering a

problem without radial symmetry:
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ΔΦ1 r; θð Þ � κ21Φ1 r; θð Þ ¼ d2Φ1 r; θð Þ
dr2

þ 1

r

dΦr1 r; θð Þ
dr

þ 1

r2
d2Φr1 r; θð Þ

dϑ2
� κ21Φ1 r; θð Þ ¼ 0

ΔΦ2 r; θð Þ � κ22Φ2 r; θð Þ ¼ d2Φ2 rð Þ
dr2

þ 1

r

dΦ2 r; θð Þ
dr

þ 1

r2
d2Φ2 r; θð Þ

dϑ2
� κ22Φ2 r; θð Þ ¼ �κ2RΦ1 r; θð Þ

8>><>>:
with the following boundary conditions:

Φ1 Rc; θð Þ ¼ ΦRc

1 θð Þ
Φ2 Rc; θð Þ ¼ ΦRc

2 θð Þ

(
Φ1 RR; θð Þ ¼ ΦRR

1 θð Þ
Φ2 RR; θð Þ ¼ ΦRR

2 θð Þ

It is then assumed that the flux can be expanded as two functions that separate the

variables r and θ:

Φg r; θð Þ ¼ φg rð Þ ϕg θð Þ

The usual method for dealing with this problem is to expand the angular flux in a

Fourier series:

ϕg θð Þ ¼
X1
n¼0

ϕ cos
g,n cos nθ þ ϕ sin

g,n sin nθ

The general solution to the fast diffusion equation is thus obtained as:

Φg r; θð Þ ¼
X1
n¼0

Φ cos , I
g,n cos nθ In κ1rð Þ þ Φ cos ,K

g,n cos nθ Kn κ1rð Þ

þ Φ sin , I
g,n sin nθ In κ1rð Þ þ Φ sin ,K

g,n sin nθ Kn κ1rð Þ

The boundary conditions can also be expanded into Fourier series:

Φ1 Rc;θð Þ ¼
X1
n¼0

αRc

1 cosnθþ βRc

1 sinnθ

Φ2 Rc;θð Þ ¼
X1
n¼0

αRc

2 cosnθþ βRc

2 sinnθ

8>>><>>>:
Φ1 RR;θð Þ ¼

X1
n¼0

αRR

1 cosnθþ βRR

1 sinnθ

Φ2 RR;θð Þ ¼
X1
n¼0

αRR

2 cosnθþ βRR

2 sinnθ

8>>><>>>:
TheΦα

g,n constants are determined by identification with the coefficients of cosnθ

or sinnθ in the flux equation at the boundary conditions, assuming that these series

converge. The same formulae as in the previous paragraph are hence obtained. The

matrix of the Poincaré-Steklov operator is obtained as previously—using the net

current that includes the derivatives of the nth-order Bessel functions expressed

using the recurrence relations for the derivatives. Using a fairly tedious identifica-

tion process, the proportionality between the angular current and the angular flux at

the interface may be established:
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JRC,RR
θð Þ¼

ℜC
11 RC;θð Þ ℜR

11 RC;θð Þ 0 0

�ℜC
11 RR;θð Þ �ℜR

11 RR;θð Þ 0 0

ℜRC

12 Rc;θð Þ ℜRR

12 RC;θð Þ ℜRC

22 Rc;θð Þ ℜRR

22 Rc;θð Þ
�ℜRC

12 RR;θð Þ �ℜRR

12 RR;θð Þ �ℜRC

22 RR;θð Þ �ℜRR

22 RR;θð Þ

26664
37775

ΦRc

1 θð Þ
ΦRR

1 θð Þ
ΦRC

2 θð Þ
ΦRR

2 θð Þ

26664
37775

This expression is identical in all respects to the 1D calculation, applied in each

direction.

13.3 Definition of Reflector Albedo

In the case of a PWR, the fuel zone is surrounded by a reflector that is mostly

composed of water (solid structures are also present, e.g. for the upper reflector of a
PWR: the non-inserted rods, the upper pin plugs, the steel structures of the upper

plenum, etc.). For a fast reactor, the reflector is made up of steel structures and most

probably of the coolant material. The extrapolation length is computed using the

notion of albedo (the Latin word for “whiteness”), which characterizes the reflec-

tive properties of neutrons.

Let us consider two different media separated by a surface. The core fuel

medium (c) situated on the left of the figure is multiplying, while the medium on

the right of the figure is the reflector (r). Neutrons exit the fuel medium and some

return to the core zone after one or more collisions in the reflector. In the case of a

physical reflector, some neutrons are absorbed and will not be reflected back to the

core. The incoming current in the fuel is thus logically lower than the outgoing

current (Fig. 13.7).

The albedo β of a reflector is the ratio of the outgoing current from the reflector (

J�r (black) moving from r! c), i.e. returning to the core zone) to the incoming

current in the reflector (Jþr (grey) moving from c! r), i.e. leaving the fuel medium).

It should be noted that the reciprocal of the situation depicted in the figure would

define the fuel albedo as the ratio of the outgoing current from the core to the

cD rD

−
rJ

+
rJ

Reflective mediumFuel medium

Fig. 13.7 Fuel medium

reflected by a reflective

medium
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incoming current in the core. The reflector albedo and the fuel albedo are thus

intrinsically related since:

J�r ¼ Jþc and Jþr ¼ J�c

In diffusion theory and in one dimension using x to simplify the notations, the

reflector albedo β is defined by the formula (with Φ0 being the flux at the interface):

β ¼ J�r
Jþr

¼
Φ0

4
þ Dr

2
dΦ
dx

� 	
r

Φ0

4
� Dr

2
dΦ
dx

� 	
r

¼ Jþc
J�c

¼
Φ0

4
þ Dc

2
dΦ
dx

� 	
c

Φ0

4
� Dc

2
dΦ
dx

� 	
c

The albedo β characterizes the reflector medium when written as:

β ¼ J�r =J
þ
r ¼ Φ0

4
þ Dr

2

dΦ

dx


 �
r


 �
=

Φ0

4
� Dr

2

dΦ

dx


 �
r


 �
but it can also characterize the fuel medium if written as:

β ¼ Jþc =J
�
c ¼ Φ0

4
þ Dc

2

dΦ

dx


 �
c


 �
=

Φ0

4
� Dc

2

dΦ

dx


 �
c


 �
The fuel medium becomes in some respects the “reflector” for the reflector

medium. It should be noted that since (dΦ/dx)r< 0, β is lower than 1 and tends

towards 1 as (dΦ/dx)r tends towards 0 (corresponding to a flat flux), this is in fact a

case of “mirror” reflection:

Mirror reflection: J�r ¼ Jþr ¼ J�c ¼ Jþc ¼ Φ0

4
ð13:11Þ

Similarly, for the net current:

J net
c ¼ �Dc gradΦc ¼ J�c � Jþc ¼ 0

In the general case of a reflection by an albedo different from 1, the derivative of

the flux in the reflector depends only on Φ0 , β and Dr (Etherington 1957,

pp. 6–18):

dΦ
dx

� 	
r

Φ0

¼ � 1

2Dr

1� β

1þ β

Similarly, on the fuel side:
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Logarithmic derivative of the flux at the interface:

dΦ
dx

� 	
c

Φ0

¼ � 1

2Dc

1� β

1þ β
ð13:12Þ

This relation allows substitution of a calculation with two media by a diffusion

calculation on the first medium only, with boundary conditions set on the logarith-

mic derivative of the flux, without computation of the flux in the reflector. This type

of boundary condition is called an albedo condition. In practice, using this method,

the calculation mesh has fewer cells since there is no need to mesh the reflector, and

thus, a gain in computation time results.

13.3.1 Albedo Calculation for a Slab Reflector

When neutrons are injected from any source, the thermal flux in the infinite reflector

is given by the classical attenuation formula:

Φ xð Þ ¼ Φ 0ð Þ e�
x
L

The thermal neutron flux level at the origin Φ(0) depends on the neutron source.
The reflector albedo is calculated by:

Albedo of a slab reflector: β ¼
Φ0

4
þ Dr

2
dΦ
dx

� 	
0

� �
Φ0

4
� Dr

2
dΦ
dx

� 	
0

� � ¼ 1� 2 Dr

Lr

1þ 2 Dr

Lr

ð13:13Þ

It can be seen that it does not depend on the initial flux level, thus the source. The

reflector tends towards a mirror when Dr/Lr tends towards 0 (Fig. 13.8).

For a reflector of finite thickness a, the flux in the reflector that turns zero at a

distance a+ δ is written as:

L
x

e)Φ(Φ(x)
–

= 0

x

S

Fig. 13.8 Infinite slab

reflector
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Φ xð Þ ¼ Φ 0ð Þ sh aþ δ� xð Þ
sh aþ δð Þ

A calculation analogous to the previous one but with this new flux shape leads

to:

β ¼
1� 2 Dr

Lr
coth aþδ

Lr

� �
1þ 2 Dr

Lr
coth aþδ

Lr

� �

13.3.2 Albedo Calculation of a Cylindrical Reflector

In the case of a cylindrical reflector surrounding a cylindrical source of radius R, the
flux in the reflector is given by:

Φ r � Rð Þ ¼ Φ 0ð Þ K0 r=Lrð Þ
K0 R=Lrð Þ

and the albedo for the cylindrical reflector is written as:

Albedo of a cylindrical reflector:

β ¼
Φ0

4
þ Dr

2
dΦ
dx

� 	
0

� �
Φ0

4
� Dr

2
dΦ
dx

� 	
0

� � ¼
1� 2 Dr

LrK0 R=Lrð ÞK1 R=Lrð Þ
1þ 2 Dr

LrK0 R=Lrð ÞK1 R=Lrð Þ ð13:14Þ

13.3.3 Albedo of a Spherical Reflector

In the case of spherical reflector surrounding a spherical source of radius R, the flux
in the reflector is given by:

Φ r � Rð Þ ¼ Φ 0ð ÞR
r
e�

r�R
Lr

As previously, the albedo is computed as:
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Albedo of a spherical reflector:

β ¼
ΦR

4
þ Dr

2
dΦ
dr

� 	
R

� �
ΦR

4
� Dr

2
dΦ
dx

� 	
R

� � ¼
1� 2Dr

1
Lr
þ 1

R

� �
1þ 2Dr

1
Lr
þ 1

R

� � ð13:15Þ

13.3.4 Albedo Calculation for the Upper Reflector of a
Cylindrical Reactor

The flux in an axially-finite cylindrical reactor was illustrated earlier. This flux

solution is extrapolated in the upper reflector, as expressed earlier in the theory

assuming an infinite reflector. This result is an approximation since the flux in a

finite cylinder surrounded by a reflector cannot be expressed as functions of the

radius and the height separately. However, in the fuel, it may be hypothesized that

Φ(r, z)�ΦmaxJ0( j0 , 1r/R) cos(πz/H ). In practical cases, the value of H is equal to

the active height of the core added to twice δ for which the cosine of the flux cancels
out: H¼Hact + 2δ. This distance at which the flux is zero is often confused with

extrapolation distance d given in diffusion theory for a bare reactor (surrounded by
a vacuum) by the formula (see the chapter on the Boltzmann equation and the Milne

problem): d¼ 0.7104 λtransport. This extrapolation distance is the point at which the

derivative of the flux from the fuel zone crosses the z-axis. The transport length

λtransport¼ 3Dc is given by Dc, where Dc is the fuel diffusion coefficient.

Let us consider the flux in the axial reflector. Strictly speaking, the extrapolation

distance does not correspond to the distance at which the cosine of the flux is equal

to zero, but diverges from this value as the flux at a/2 approaches the maximum flux

at 0. This value for the flux in the fuel is then extrapolated in the reflector by

multiplying it by a decreasing exponential, as illustrated in the calculations for the

reflector in slab geometry accounting for a shift in the z-axis. In the radial reflector,
the exact flux solution involves the Bessel function K0. However, in the radial

direction, close to the interface with the reactor, it has been shown that a simpler

expression may be employed with a decreasing exponential applied to the fuel flux

at the interface. Hence, in the axial reflector, the solution is not separable and

impacts the flux solution in the radial reflector as it approaches the radius of the

cylinder. The boundary effects are not considered for the time being so as to

simplify the problem, thereby leading to the solution:
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Φ r; zð Þ � ΦmaxJ0 j0,1
r

R

� �
cos π

Hact

2H


 �
e�κr z�Hact

2ð Þ with κr2 ¼ Σ r
a

Dr
¼ 1

L2r

J r;
Hact

2


 �
¼ �Dr grad Φr r; zð Þð ÞHact

2
¼ Dr κrΦHact

2
¼ Dr

Lr
ΦHact

2

8>><>>:
By definition of the extrapolation distance d, on the fuel side we have:

ΦHact
2
þ d grad Φc r; zð Þð ÞHact

2
¼ 0

Since JHact
2

¼ �Dc grad Φcð ÞHact
2
, the ratio:

JHact
2

ΦHact
2

¼ Dc

d ¼ Dr

Lr
is obtained. Using the

definition of the albedo:

β ¼ J�r
Jþr

¼
ΦHact

2

4
þ Dr

2

dΦ

dx


 �
r,Hact

2

 !
=

ΦHact
2

4
� Dr

2

dΦ

dx


 �
r,Hact

2

 !

The current at the core/reflector interface is substituted by the following

expression:

Dr
dΦ

dx


 �
r,Hact

2

¼ �JHact
2

¼ �ΦHact
2

Dr

Lr

Thus, the reflector albedo in diffusion is written as:

Albedo as a function of the reflector properties:

β ¼ 1� 2Dr=Lr
1þ 2Dr=Lr

¼ 1� 2Dc=d

1þ 2Dc=d
ð13:16Þ

13.3.5 Extrapolation and Null-flux Distances

The null-flux distance for the flux δ (Fig. 13.9) is the length added to the active

height (in reality, twice this distance: H¼Hact + 2δ) to extrapolate the cosine in z. It
is often confused with the extrapolation distance d but has a different value,

especially if the reactor is small.

δ can be expressed as a function of the albedo for a large cylindrical reactor seen
with PWR: the previous formula for the theoretical flux, presented in the last

section, is applied:
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∂Φ r; xð Þ
∂z

����
c

¼ Φmax J0
j0,1
R

r


 �
�π

H
sin

πz

H

� �h i
Hact
2

thus:

dΦ
dz

��
c

Φ0

¼
Φmax J0

j0,1
R r

� �
�π

H sin
πz
H

� 	� �
Hact
2

Φmax J0
j0,1
R r

� �
cos πz

H

� 	� �
Hact
2

¼ � 1

2Dc

1� β

1þ β

Finally:

π

H
tan

π

2

Hact

H


 �
¼ 1

2Dc

1� β

1þ β

Assuming that the null-flux distance is small compared to Hact¼H� 2δ:

tan
π

2

Hact

H


 �
� tan

π

2
1� 2δ

Hact


 �
 �
¼ cot

2δ

Hact


 �
Since cot xð Þ ¼ 1

x � x
3
� . . . when x2< π2 , it may be inferred that:

π

H
cot

2δ

Hact


 �
� π

Hact þ 2δð Þ
Hact

2δ
� 2δ

3Hact

 �
¼ 1

2Dc

1� β

1þ β

Expanding 1

1þ 2δ
Hact

ð Þ � 1� 2δ
Hact

þ 2δ
Hact

� �2
 �
into Taylor series leads to:

π

Hact

Hact

2δ
� 1� 2δ

3Hact
þ 2δ

Hact
þ 4δ2

3Hact
2
þ . . .


 �
¼ 1

2Dc

1� β

1þ β

which, at first order, is:

0

Φ
d

2

act
H

z

ReflectorCore

δ

Φ0

Fig. 13.9 Difference

between the extrapolation

distance d and the null-flux

distance of cosine δ
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Null-flux distance expressed in terms of albedo:

δ � πDc
1þ β

1� β
ð13:17Þ

This approximated analytical solution leads to the calculation of δ where the

diffusion coefficient in the core and the albedo of the upper or lower reflector are

known. Using an albedo β of 0.8 for water at 20 
C and a fuel diffusion coefficient

of 1.3236 cm, δ is 37.4 cm, i.e. approximately 40 cm as an order of magnitude.

Similarly, the extrapolation distance d is calculated in terms of the null-flux

distance δ as follows. The equation for the tangent to the flux that crosses the z-axis
at the extrapolation distance is given by:

Φ zð Þ ¼ dΦ

dz


 �
Hact
2

z� Hact

2


 �
þΦ0

This line crosses the z-axis at the position zd, thus:

d ¼ H

π
tan

2δ

Hact


 �
¼ Hact þ 2δð Þ

π

2δ

Hact
þ 8δ3

3Hact
3
þ . . .


 �
¼ 2δ

π
þ 4δ2

πHact
þ 8δ3

3πHact
2
þ 16δ4

3πHact
3
þ . . .

using the calculation results given previously for the null-flux distance. The

extrapolation distance d is expressed as d¼ zd�Hact/2. Using the Taylor expansion

of tan(x) in the neighborhood of 0: tan(x)¼ x + x3/3 + . . ., we obtain:

d ¼ H

π
tan

2δ

Hact


 �
¼ Hact þ 2δð Þ

π

2δ

Hact
þ 8δ3

3Hact
3
þ . . .


 �
¼ 2δ

π
þ 4δ2

πHact
þ 8δ3

3πHact
2
þ 16δ4

3πHact
3
þ . . .

Finally, the extrapolation distance d is given in terms of the null-flux distance δ
by:

Extrapolation distance in terms of the null-flux distance:

d ¼ 2δ

π
þ 4δ2

πHact
þ 8δ3

3πHact
2
þ 16δ4

3πHact
3
þ . . . ð13:18Þ

It should be noted that this expression for the extrapolation distance must not be

simplified to the first term only, since this would imply that it is smaller than null-

flux distance (as 2 δ/π< δ). However, it is clear that the extrapolation distance d is
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larger than the null-flux distance δ (from the properties of the cosine function and its

derivative between 0 and π/2).

13.3.6 Numerical Example

The values of the diffusion coefficients and albedos for the main industrial moder-

ators are given in Table 13.1. For the upper reflector of a 900 MWe light water

reactor, the diffusion coefficient is computed using the formula D¼ 1/(3 Σtr) where

the macroscopic cross sections are obtained from a fuel/upper reflector slab calcula-

tion using the French code APOLLO2. Similarly, since Σtrreflector¼ 0.36825 cm�1

and Σreflector
absorption ¼ 0:0063333 cm�1, Dr¼ 0.905 cm and Lr¼ 11.95 cm. Using

β¼ (1� 2Dr/Lr)/(1 + 2Dr/Lr), β¼ 0.737 for the water+steel reflector of 900 MWe

light water reactor. Since Σfuel
tr ¼ 0:49243 cm�1 and Σfuel

absorption ¼ 0:03393 cm�1

for a PWR fuel at 3.7% enrichment, Dc¼ 0.677 cm and Lc¼ 4.467 cm, i.e. an
albedo of 0.535 that is logically smaller than the values obtained for water only or for

a true water+steel reflector of a PWR, given that fuel is strongly absorbing. The closer
the albedo to 1, the flatter the flux shape will be at the interface. An albedo of

1 represents the case of a mirror-like reflector, i.e. an infinite medium situation.

13.4 Reflector Theory with Two Energy Groups

If the reflector is analyzed in detail, it may be observed that a mono-energy theory is

not satisfactory from an industrial viewpoint. In fact, the reflector modifies the flux

spectrum at the core/reflector interface, which cannot be accounted for in one-group

equations. This modification of the spectrum leads to significant variations of

Table 13.1 Albedos of some usual reflectors

Density g �
cm�3 λtr¼ 3D cm D cm β[�]

D2O (Heavy water) 1.1 2.4 0.8 0.97

Graphite 1.6 2.4 0.8 0.94

BeO (Glucine) 3 1.8 0.6 0.92

Beryllium 1.85 1.5 0.5 0.91

H2O (Light water) 1 (20 
C) 0.6 0.2 0.80

True upper reflector of a 900 MWe PWR (H2O

+steel)

H2O + steel

(325 
C)
2.716 0.905 0.737

3.7% fuel in the upper part of the active core of a

900 MWe PWR (UO2+H2O+Zr)

H2O

(325 
C)
UO2

(600 
C)

2.031 0.677 0.535
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several physical quantities. This is why the two-energy group calculations highlight

a reflector effect that occur for all reflectors, but more particularly in PWR: the
thermal flux increases in the reflector since fast neutrons are quickly thermalized.

13.4.1 Slab Reflector

For slab geometries, the two-energy group flux equations in the reflector are written

as:

�D1r ΔΦ1r xð Þ þ Σ1, rΦ1r xð Þ ¼ 0

�D2r ΔΦ2r xð Þ þ Σa2, rΦ2r xð Þ ¼ Σ1!2, rΦ1r xð Þ
�

with

Σ1, r � Σa1r þ Σ1!2, r L21r �
D1r

Σ1, r

L22r �
D2r

Σa2, r

8>><>>:
the solution of which in plane geometry, which is null at infinity, is given by:

Φ1r xð Þ ¼ Φ1r 0ð Þ e
� x
L1r

Φ2r xð Þ ¼ α e
� x
L1r þ β e

� x
L2r

(

The coefficients α and β satisfy the system of equations below, by substituting

the expressions of Φ2r(x) and Φ1r(x) in the differential equation for the thermal

group:

αþ β ¼ Φ2r 0ð Þ
�D2r

L21r
þ Σa2, r


 �
α ¼ Σ1!2, rΦ1r 0ð Þ

8<:
Leading to:

Fast and thermal flux in a slab reflector:

Φ1r xð Þ ¼ Φ1r 0ð Þ e
� x
L1r

Φ2r xð Þ ¼ Φ1r 0ð Þ Σ1!2, rL
2
1r

Σa2, rL
2
1r � D2r

� 	 e
� x
L1r þ Φ2r 0ð Þ �Φ1r 0ð Þ ΣRrL

2
1r

Σa2, rL
2
1r � D2r

� 	" #
e
� x
L2r

8><>:
ð13:19Þ

Analysis of the exponential terms for the thermal flux shows that if L2r> L1r,
thermal neutrons may scatter far away while the fast component of the spectrum

decays quickly, leading to a thermal spectrum, or even a Maxwell spectrum. This is

the case for UNGG reactors with graphite or heavy water. Otherwise (L2r< L1r),
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fast neutrons may travel deep into the reflector and the flux decays exponentially,

while nevertheless maintaining its spectrum to a significant depth. This is the case

of pure light water that attenuates the whole spectrum proportionally over a

distance of 100 cm. For an industrial PWR reflector containing thermal absorbers

(boron, steel structures), an exponential decay of the fast flux is observed due to

absorption, and mainly to scattering down the thermal group. Furthermore, an

increase in the thermal flux is observed at around 40 cm owing to the weak

absorption of water in the reflector compared to that in the fuel in the core. This

increase is even greater if less boron is present in the water.

13.4.2 Infinite Cylindrical Reactor with Reflector in Two
Groups Without Up-Scattering

Let us consider the cylindrical reactor previously illustrated in one energy group.

The two-group diffusion equations without up-scattering for the core are expressed

as:

(fast group 1)

�D1c ΔΦ1c rð Þ þ Σ1,cΦ1c rð Þ ¼ νΣf 1cΦ1c rð Þ þ νΣf 2cΦ2c rð Þ
written in the following form by neglecting neutron production by the fast flux

(νΣf 1cΦ1c rð Þ << νΣf 2cΦ2c rð Þ):

ΔΦ1c rð Þ þ B2
1cΦ1c rð Þ ¼ � νΣf 2cΦ2c rð Þ

D1c
¼ �B2

fcΦ2c rð Þ

with B2
1c ¼ νΣf1c

�Σ1,c
D1c

¼ k1,c�1

L21c
and B2

fc ¼ νΣf 2c

D1c

(thermal group 2)

�D2c ΔΦ2c(r) +Σa2 , cΦ2c(r)¼Σ1! 2 , cΦ1c(r)

written as:

ΔΦ2c rð Þ � κ22cΦ2c rð Þ ¼ �Σ1!2,c

D2c
Φ1c rð Þ ¼ �κ2RcΦ1c rð Þ

with κ22c ¼ Σa2,c=D2c et κ2Rc ¼ Σ1!2,c=D2c

There is no fission source in the reflector:
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(fast group 1) �D1r ΔΦ1r(r) +Σ1 , rΦ1r(r)¼ 0

expressed as:

ΔΦ1r rð Þ � κ21rΦ1r rð Þ ¼ 0 with κ21r ¼ Σ1, r=D1r

(thermal group 2) �D2r ΔΦ2r(r) +Σa2 , rΦ2r(r)¼Σ1! 2 , rΦ1r(r)

expressed as:

ΔΦ2r rð Þ � κ22rΦ2r rð Þ ¼ �Σ1!2, rΦ1r rð Þ
D2r

¼ �κ2RrΦ1r rð Þ

with κ22r ¼ Σa2, r=D2r and κ2Rr ¼ Σ1!2, r=D2r.

13.4.3 Flux Calculation in the Fuel

From the thermal equation for the fuel, we obtain:

Φ1c rð Þ ¼ � 1
κ2Rc

ΔΦ2c rð Þ þ κ2
2c

κ2Rc
Φ2c rð Þwhich is inserted in the fast equation for the fuel:

Equation for thermal flux:

Δ � 1

κ2Rc
ΔΦ2c rð Þ þ κ22c

κ2Rc
Φ2c rð Þ


 �
þ B2

1c � 1

κ2Rc
ΔΦ2c rð Þ þ κ22c

κ2Rc
Φ2c rð Þ


 �
¼ �B2

fcΦ2c rð Þ � 1

κ2Rc
ΔΔΦ2c rð Þ þ κ22c

κ2Rc
� B2

1c

κ2Rc


 �
ΔΦ2c rð Þ

þ B2
1c

κ22c
κ2Rc

þ B2
fc

B2
1c

 !
Φ2c rð Þ¼ 0 ð13:20Þ

This equation, which contains only partial derivatives of order 2 and 4, may be

solved analytically by setting an intermediate function F2c(r)¼ΔΦ2c(r)� λ2Φ2c(r)
that satisfies the following differential equation:

ΔF2c rð Þ þ μ2F2c rð Þ ¼ 0

or: ΔΦ2c(r) + (μ
2� λ2)ΔΦ2c(r) � μ2λ2Φ2c(r)¼ 0

Identifying the coefficients of the previous equation with the physical equation

gives:
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μ2 � λ2
� 	 ¼ B2

1c � κ22c and μ2λ2 ¼ B2
1cκ

2
R c þ B2

1cB
2
fc

In this system of equation, λ and μ can be easily determined analytically. The

general solution to the equation ΔF2c(r) + μ
2F2c(r)¼ 0 is of the form F2c(r)¼

A J0(μ r) +CY0(μ r). The general solution to ΔΦ2c(r) � λ2Φ2c(r)¼ 0 is of the

form Φ2c(r)¼G I0(λ r) +HK0(λ r). Hence, the general solution to the equation

ΔΦ2c(r) � λ2Φ2c(r)¼F2c(r) can be expressed as:

Φ2c rð Þ ¼ Φ J
2c J0 μ rð Þ þ ΦY

2c Y0 μ rð Þ þ Φ I
2c I0 λ rð Þ þ ΦK

2c K0 λ rð Þ

Since the thermal flux in the fuel and the current are finite at r¼ 0, the singular

terms can be cancelled, i.e. ΦY
2c Y0 μ rð Þ and ΦK

2c K0 λ rð Þ, thus ΦY
2c ¼ 0 and ΦK

2c ¼ 0.

Φ2c rð Þ ¼ Φ J
2c J0 μrð Þ þ Φ I

2c I0 λ rð Þ

Finally, we express that the flux is maximum at the center of the geometry:

Φ2c 0ð Þ ¼ Φ J
2c J0 0ð Þ|ffl{zffl}

1

þΦ I
2c I0 0ð Þ|ffl{zffl}

1

¼ Φ J
2c þ Φ I

2c ¼ Φ c
2 max and that, by symmetry,

the current is zero at the center:

�Dc
2grad Φ2c rð Þ ¼ �D2c �Φ J

2cμ J1 0ð Þ|ffl{zffl}
0

þΦ I
2c λ I1 0ð Þ|ffl{zffl}

0

0B@
1CA ¼ 0

It is observed that, contrary to the one-group flux calculated for a bare or

reflected reactor Φ(r)¼ΦmaxJ0 ( j0 , 1 r/R), the term I0(λ r), which increases with

r, induces a rise in the thermal flux, illustrating the fact that the decrease in the fast

flux is the source of thermal neutrons. The fast flux in the fuel is obtained as:

Φ1c rð Þ ¼ � 1

κ2Rc
ΔΦ2c rð Þ þ κ22c

κ2Rc
Φ2c rð Þ ¼ � 1

κ2Rc

1

r

d

dr
r
dΦ2c rð Þ

dr


 �
þ κ22c
κ2Rc

Φ2c rð Þ

Φ1c rð Þ ¼

� 1

κ2Rc

�Φ J
2cμ

2 � 1

μr
J1 μ rð Þ þ J0 μ rð Þ


 �
þ Φ I

2c λ
2 � 1

λr
I1 λ rð Þ þ I0 λ rð Þ


 �
 �
þ1

r
�Φ J

2c μJ1 μ rð Þ þΦ I
2c λ I1 λ rð Þ� 	

264
375

þ κ22c
κ2Rc

Φ J
2c J0 μ rð Þ þ Φ I

2c I0 λ rð Þ� 	
Hence: Φ1c rð Þ ¼ Φ J

2c
κ2
2cþμ2

κ2Rc
J0 μ rð Þ þ Φ I

2c
κ2
2c � λ2

κ2Rc
I0 λ rð Þ
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As for the thermal flux, the following equations are obtained:

Φ1c 0ð Þ ¼ Φ J
2c

κ22c þ μ2

κ2Rc
J0 0ð Þ þΦ I

2c

κ22c � λ2

κ2Rc
I0 0ð Þ

¼ Φ J
2c

κ22c þ μ2

κ2Rc
þ Φ I

2c

κ22c � λ2

κ2Rc
¼ Φ1 cmax

This equation is coupled to that obtained for the thermal flux

Φ J
2c þ Φ I

2c ¼ Φ2cmax and enables evaluation of the constants Φ J
2c and Φ I

2c in terms

of Φ1cmax and Φ2 cmax using Cramer’s rule:

Φ J
2c ¼

Φ2 cmax 1

Φ1cmax

κ22c � λ2

κ2Rc

������
������

1 1
κ22c þ μ2

κ2Rc

κ22c�λ2

κ2Rc

������
������

¼
Φ2 cmax

κ22c � λ22

κ2Rc
�Φ1cmax

κ22c � λ2

κ2Rc
� κ22c þ μ2

κ2Rc

¼ Φ1cmaxκ2Rc � Φ2 cmax κ22c � λ2
� 	

λ2 þ μ2

Φ I
2c ¼

1 Φ2 cmax

κ22c þ μ2

κ2Rc
Φ1cmax

������
������

1 1
κ22c þ μ2

κ2Rc

κ22c � λ2

κ2Rc

������
������
¼

Φ1cmax � Φ2 cmax

κ22c þ μ2

κ2Rc
κ22c � λ2

κ2Rc
� κ22c þ μ2

κ2Rc

¼ Φ2 cmax κ22c þ λ2
� 	� Φ1cmaxκ2Rc

λ2 þ μ2

13.4.4 Flux in the Reflector

Let us recall the flux equations in the reflector:

ΔΦ1r rð Þ � κ21rΦ1r rð Þ ¼ 0

ΔΦ2r rð Þ � κ22rΦ2r rð Þ ¼ �Σ1!2, rΦ1r rð Þ
D2r

¼ �κ2RrΦ1r rð Þ

8<:
The general solution to the fast flux equation is written as:

Φ1r rð Þ ¼ Φ I
1r I0 κ1r rð Þ þΦK

1r K0 κ1r rð Þ. It can be immediately seen that Φ I
1r ¼ 0
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since flux tends towards 0 at infinity. ΦK
1r may be expressed in terms of Φ1cmax and

Φ2cmax using the flux continuity at the interface R:

Φ1r Rð Þ ¼ ΦK
1r K0 κ1r Rð Þ ¼ Φ1r Rð Þ ¼ Φ J

2c

κ22c þ μ2

κ2Rc
J0 μRð Þ þ Φ I

2c

κ22c � λ2

κ2Rc
I0 λRð Þ

Thus:

ΦK
1r ¼ Φ J

2c

κ22c þ μ2

κ2Rc

J0 μRð Þ
K0 κ1r Rð Þ þ Φ I

2c

κ22c � λ2

κ2Rc

I0 λRð Þ
K0 κ1r Rð Þ

Clearly, coefficient ΦK
1r must be positive to ensure that the flux solution is

positive in the reflector. The thermal flux solution is sought as

Φ2r rð Þ ¼ Φ I
2r I0 κ2r rð Þ þΦK

2r K0 κ2r rð Þ þ Ψ K
2r K0 κ1r rð Þ. Since the thermal flux also

tends towards 0 as r tends to infinity, Φ I
2r ¼ 0. The values of ΦK

2r and Ψ K
2r are

obtained by substituting the thermal flux expression in the differential equation:

ΔΦ2r rð Þ � κ22rΦ2r rð Þ ¼ 1

r

d

dr
r
dΦ2r rð Þ

dr


 �
� κ22rΦ2r rð Þ

¼ �κ2RrΦ1r rð Þ ¼ �κ2RrΦ
K
1r K0 κ1r rð Þ

Leading to: ΔK0 κ2r rð Þ ¼ κ22rK0 κ2r rð Þ and ΔK0 κ1r rð Þ ¼ κ21rK0 κ1r rð Þ
Therefore:

ΔΦ2r rð Þ � κ22rΦ2r rð Þ ¼ ΦK
2r ΔK0 κ2r rð Þ � κ22rΦ

K
2rK0 κ2r rð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

þΨ K
2r ΔK0 κ2r rð Þ

�κ22rΨ
K
2rK0 κ1r rð Þ ¼ �κ2RrΦ

K
1r K0 κ1r rð Þ

thereby: Ψ K
2r ¼ ΦK

1r

κ2Rr
κ22r � κ21r

The continuity for the thermal flux at R enables determination of ΦK
2r:

Φ2r Rð Þ ¼ ΦK
2r K0 κ2r Rð Þ þ Ψ K

2r K0 κ1r Rð Þ ¼ Φ2c Rð Þ ¼ Φ J
2cJ0 μRð Þ þ Φ I

2c I0 λRð Þ

ΦK
2r ¼

1

K0 κ2r Rð Þ Φ J
2c J0 μRð Þ þ Φ I

2c I0 λRð Þ � Ψ K
2r K0 κ1r Rð Þ� 	

Finally giving:

Flux in the reflector:

Φ1r rð Þ ¼ Φ J
2c

κ22c þ μ2

κ2Rc

J0 μRð Þ
K0 κ1r Rð Þ þ Φ I

2c

κ22c � λ2

κ2Rc

I0 λRð Þ
K0 κ1r Rð Þ


 �
K0 κ1r rð Þ

Φ2r rð Þ ¼ 1

K0 κ2r Rð Þ Φ J
2c J0 μRð Þ þ Φ I

2c I0 λRð Þ � Ψ K
2r K0 κ1r Rð Þ� 	

K0 κ2r rð Þ þ ΦK
1r

κ2Rr
κ22r � κ21r

K0 κ1r rð Þ

8>><>>:
ð13:21Þ
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Study of these two functions shows that if the fast flux is a decreasing function in

r, the thermal flux on the other hand increases, given that the decrease in the fast

flux drives the thermal flux (Lamarsh and Barrata 2001, p. 305). Mathematically,

this is due to the fact that the functions K0(κ2r r) and K0(κ1r r) do not decrease at the
same “rate”. It should be noted that (Fig. 13.10):

κ21r ¼ Σt1r=D1r ¼ 1=L21r < κ22r ¼ Σt2r=D2r ¼ 1=L22r

since L21r � 4L22r.

Since Φ r
2 rð Þ ¼ � α2 K0 κ2r rð Þ þ β2 K0 κ1r rð Þ, decay of the negative term � α2

K0(κ2r r) leads to a rise in the thermal flux that is very characteristic of thermal-

neutron reactors. The criticality condition is expressed using the current continuity

equations at the interface, as illustrated in the simpler cases. The idea is to cancel

out the constant terms with the flux continuity equations and this calculation poses

no theoretical difficulty. Because of the continuity of the fast current, a large value

of the fast diffusion coefficient for the reflector induces a rapid decay of the fast flux

close to the reflector. Due to the coupling with the thermal equations for the fuel, the

thermal flux rises. This effect illustrates the fact that the reflector directs some of the

fast neutrons back into the core after thermalizing them. The reflector consequently

acts as a biological protection barrier as well as a structure that economizes on

fissile material, thereby explaining its importance in reactor physics.

r

Φ1c (r)

R

Φ1r (r)

Φ2r (r)

Φ1r (r)

Fig. 13.10 Two-group flux

in a cylinder with an infinite

reflector
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13.5 Slab Reactor with Finite Reflector and Without

Up-Scattering

The slab reactor is representative of several realistic configurations such as the

upper and lower reflectors, or even the radial reflector of large pseudo-cylindrical

reactors. Assuming that the slab reactor of thickness a is surrounded by a slab

reflector of thickness b on each side (Fig. 13.11), the two-group diffusion equations
for the fuel zone are expressed as:

�D1c
d2Φ1c xð Þ

dx2
þ Σ1,cΦ1c xð Þ ¼ νΣf 1cΦ1c xð Þ þ νΣf 2cΦ2c xð Þ

keff
in the fast group

�D2c
d2Φ2c xð Þ

dx2
þ Σa2,cΦ2c xð Þ ¼ Σ1!2,cΦ1c xð Þ in the thermal group

8>><>>:
In the reflector, there is no fission source:

�D1r
d2Φ1r xð Þ

dx2
þ Σ1, rΦ1r xð Þ ¼ 0

�D2r
d2Φ2r xð Þ

dx2
þ Σa2, rΦ2r xð Þ ¼ Σ1!2, rΦ1r xð Þ

8>><>>: Σ1, r � Σa1, r þ Σ1!2, r

and the usual flux and current continuity equations are written as:

Φc
a

2

� �
¼ Φr

a

2

� �
for both groups

Φr
a

2
þ b

� �
¼ Φr � a

2
þ b

� �� �
¼ 0

Dc
dΦc

dx


 �
x¼a=2

¼ Dr
dΦr

dx


 �
x¼a=2

also true for� a=2:

8>>>>><>>>>>:

b
a
––

2 2

a
–

2

a
b

a
+

2

x0

b b a 

Fig. 13.11 Slab reactor

with two zones
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The problem is simplified by observing that the fast fission rate is negligible

compared to the thermal fission rate in thermal-neutron reactors, i.e.:
νΣ c

f 1
Φ1c << νΣ c

f 2
Φ2c. This approximation is useful to uncouple the calculation of

the fast flux in the fuel from that for the thermal flux. From the thermal equation, the

following relation is deduced

Φ1c ¼ � D2c

Σ1!2,c

d2Φ2c

dx2
þ Σa2, cΦ2c

Σ1!2,c

which is inserted in the fast equation to give:

D1c D2c

Σ1,c Σa2,c

d4Φ2c

dx4
� D1c

Σ1,c
þ D2c

Σa2,c


 �
d2Φ2c

dx2
� νΣf 2c

keff Σa2,c

Σ1!2,c

Σ1,c
� 1


 �
Φ2c ¼ 0

Setting:
d2F xð Þ

dx2
þ μ2F xð Þ ¼ 0 with: F xð Þ ¼ d2Φ2c

dx2
� λ2 Φ2c xð Þ

We identify: λ2μ2 ¼ νΣf 2c

keff Σ1,c

Σ1!2,c

Σa2,c
� 1


 �
Σ1,c

D1c

Σa2,c

D2c


 �
and: λ2 � μ2 ¼ Σ1,c

D1c
þ Σa2,c

D2c

The solution in slab geometry is a combination of cos(μ x), sin(μ x), ch(λ, x),
sh(λ, x). From symmetry considerations (Φ2c(�x)¼Φ2c(x)), Φ2c(x)¼A cos(μ x)
+B ch(λ x) is chosen.

Thus: Φ1c(x)¼C cos(μ x) +D ch(λ x)

In strictly identical fashion, given that:

Σ1!2, r

Σa2, r � D2r
Σ1,c
D1r

Φ1r xð Þ

is the particular solution for the thermal flux equation in the reflector, the complete

solution for the thermal flux is computed as the sum of the particular solution to the

inhomogeneous equation and the general solution to the homogeneous equation.

Using the usual notations:
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Φ1r xð Þ ¼ E sh

a

2
þ b� x

L1r

0@ 1A
Φ2r xð Þ ¼ F sh

a

2
þ b� x

L2r

0@ 1Aþ Σ1!2, r

Σa2, r � D2r

L21r

Φ1r xð Þ

8>>>>>>>><>>>>>>>>:
The remaining constant coefficients are obtained using a closure relation, for

example, the power produced by the reactor, with the same logic as the previous

calculations for simple geometries already discussed.

13.6 The Ackroyd “Magic Shell” Albedo Model

At the beginning of the 1950s,5 Ackroyd6 proposed a simple approach to calculate

the albedo for a fast neutron reactor (refer to (Controle de la criticalité 1961, p. 57),

which contains comparisons to experimental measurements). The active core is

modeled using one-group (fast) diffusion theory while the reflector is dealt with

using two-group theory.

The core may be thought of as being separated from the reflector by a thin layer

of “black-body” medium which absorbs all thermal neutrons and produces η fast

neutrons, half of which return to the core while the others travel towards the

reflector (Fig. 13.12). This layer has been called a “magic shell” due to its

astonishing properties. Besides, a further situation to consider is that in which the

“magic shell” and the reflector are grouped together. The following albedos are

defined:

β ¼ J�0C
Jþ0C

β∗ ¼ J�0[
Jþ0[

The first albedo is for a situation involving three zones, while the second is for

the case in which the reflector and the magic shell are grouped together. Two

probabilities are defined: p1! 1 is the probability of a fast neutron entering the

reflector and being reflected as a fast neutron, while p2! 1 is the probability of a

thermal neutron being reflected as a fast neutron by the reflector:

5R.T. Ackroyd and J.D. McCullen: Albedo methods, Proc 2nd Peaceful uses of atomic energy,

1958, Volume 12, pp. 38–47.
6Ronald Tunstall Ackroyd (1921–2005) was an English neutron physicist. He taught neutron

physics at Imperial College and became a member of the London Mathematical Society in 1950.

He is also the author of an excellent work on the use of the finite element method in particle

transport (Ackroyd 1997).
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p1!1 ¼
J�1R
Jþ1R

p2!1 ¼
J�2R
Jþ1R

It should be remarked that due to the properties of the black body, no thermal

neutrons can escape the magic shell. The currents are related by:

Jþ1R ¼ Jþ0[ þ η

2
J�2R

J�0[ ¼ J�1R þ
η

2
J�2R

8<:
hence:

β∗ ¼ J�0[
Jþ0[

¼ J�1R þ η
2
J�2R

Jþ1R � η
2
J�2R

¼ p1!1 þ η
2
p2!1

1� η
2
p2!1

The fast flux in the fuel is governed by the diffusion equation:

ΔΦ0 þ B2
mΦ0 ¼ 0 with B2

m ¼ νΣf � Σa, 0

D0

where the fast and thermal currents in the reflector satisfy:

ΔΦ1 � κ21Φ1 ¼ 0 with κ21 ¼
Σa, 1

D1

ΔΦ2 � κ22Φ2 þ κ2rΦ1 ¼ 0 with κ22 ¼
Σa, 2

D2

and κ2r ¼
Σ1!2

D2

8><>:

Fuel

−
CJ 0

−
RJ1

+
CJ 0

+
RJ1

02 =+
RJ

−
RJ 2

Reflector

Magic shell

Fuel

+⊃
0J

−⊃

0J

shellReflector

⊃
Fig. 13.12 “Magic shell”

albedo model
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The criticality condition using the albedo method is evaluated by equating the

fast neutron currents in the core and those from the homogenized medium

consisting of the reflector and the magic shell, which is equivalent to equating the

albedos:

β ¼ J�0C
Jþ0C

¼ J�0[
Jþ0[

¼ β∗

Calculation for different geometries (a slab of thickness 2a, a cylinder of radius
a, and a sphere of radius a) gives the formulae provided in Table 13.2:

This method, which is very simple, nevertheless underestimates the distance

travelled by fast neutrons in the reflector and tends to underestimate the

critical mass.

13.7 The Lefebvre-Lebigot Reflector Model

The Lefebvre-Lebigot model is the historical in-house reflector model used at EDF
for two energy group diffusion calculations (thermal cut-off at 0.625 eV). The

choice of thermal cut-off at 0.625 eV is itself a historical choice that is widely used,

even at the international level, and corresponds to the cadmium cut-off point. This

value is often associated with the fact that up-scattering from the thermal energy

group towards the fast group is not modeled. The equations are thus simplified since

the fast flux equation becomes independent of the thermal equation. Nonetheless, it

should be noted that physically, up-scattering occurs, even above 0.625 eV, since

neutrons may up-scatter to energies of 2.72 eV. The Lefebvre-Lebigot model is

based on this cut-off approach: it is a slab geometry model with a cut-off at

0.625 eV and without up-scattering. Nevertheless, this relatively simple model

has been thoroughly tested for the calculation of loading patterns in nominal

working conditions.

Table 13.2 “Magic shell” albedo for some reference geometries (Controle de la criticalité 1961,

p. 59)

p1! 1 p2! 1 β

Slab e¼ 2a 1�2D1 κ1
1þ2D1 κ1

4D1 κ1
κrþκ1ð Þ 1þ2D1 κ1ð Þ 1þ2D2 κrð Þ

1�2D0 Bm tan Bmað Þ
1þ2D0 Bm tan Bmað Þ

Cylinder R¼ a 1�2D1 κ1
K1 Bmað Þ
K0 Bmað Þ

1þ2D1 κ1
K1 Bmað Þ
K0 Bmað Þ

4D1 κ21 κ2
K1 Bmað Þ
K0 Bmað Þ�κ1

K1 Bmað Þ
K0 Bmað Þ

� �
κ2r�κ2

1ð Þ 1þ2D1 κ1
K1 Bmað Þ
K0 Bmað Þ

� �
1þ2D2 κ2

K1 Bmað Þ
K0 Bmað Þ

� � 1�2D0 Bm
J1 Bmað Þ
J0 Bmað Þ

1þ2D0 Bm
J1 Bmað Þ
J0 Bmað Þ

Sphere R¼ a 1�2D1
κ1aþ1

a

1þ2D1
κ1aþ1

a

4D1 κ1
κrþκ1ð Þ 1þ2D1

κ1aþ1

að Þ 1þ2D2
κ2aþ1

að Þ
aþ2D0 Bma cotan Bmað Þ�1ð Þ
a�2D0 Bma cotan Bmað Þ�1ð Þ
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13.7.1 “Equivalent” Reflectors Theory

The Lefebvre-Lebigot7 model, conceived in the 1970s, is based on slab geometry.

The goal is to conserve the ratio of neutron quantities for an “equivalent” reflector

calculated in diffusion theory with respect to a full transport reference calculation:

thermal flux to fast flux, thermal current to fast current, and fast current to fast flux

at the core/reflector interface. The neutron quantities may have non-physical values,

i.e. they do not have the expected values for a reflector with a given isotopic

composition. Thus, this equivalent reflector is a mathematical reflector. The

two-group diffusion equations without up-scattering are written as:

�D1r
d2Φ1r xð Þ

dx2
þ Σ1, rΦ1r xð Þ ¼ 0

�D2r
d2Φ2r xð Þ

dx2
þ Σa2, rΦ2r xð Þ ¼ Σ1!2, rΦ1r xð Þ

8>><>>:
with

Σ1, r � Σa1r þ Σ1!2, r

which are expressed in the canonical form:

d2Φ1r

dx2
� 1

L21r
Φ1r xð Þ¼0

d2Φ2r

dx2
� 1

L22r
Φ2r xð Þ¼� 1

L2Rr
Φ1r xð Þ

8>>><>>>: with

L21r¼
D1r

Σ1,r
¼ 1

κ21r

L22r¼
D2r

Σa2,r
¼ 1

κ22r

8>><>>: and L2Rr¼
D2r

Σ1!2,r
¼ 1

κ2Rr

The solution for the fast flux equation in the reflector is trivial for the flux that

cancels to zero ad infinitum (using the reference of the x-axis at the core/reflector

interface):

Φ1r xð Þ ¼ Φ1r 0ð Þ e�κ1r x

The thermal flux is easily obtained under the form

Φ2 r xð Þ ¼ Φ�
2r e

�κ1r x þ Ψ�
2r e

�κ2r x. Inserting this flux solution in the differential

equation for the thermal flux gives:

7Ph. Lebigot, J.C. Lefebvre: Tranches PWR—études de cœur: nouveau mode de calcul des ré
flecteurs [PWR—core studies: a new model for reflector calculations], technical report

EDF/SEPTEN E-SE-TB-78-02, March 1978.
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d2 Φ�
2r e

�κ1r x þ Ψ�
2r e

�κ2r x
� �

dx2
� κ22r Φ�

2r e
�κ1r x þ Ψ�

2r e
�κ2r x

� � ¼ �κ2RrΦ1r 0ð Þ e�κ1r x

thus:

Φ�
2r ¼ κ2Rr

κ2
2r
�κ2

1r½ �Φ1r 0ð Þ

The coefficient Ψ�
2r is computed using the boundary condition:

Φ2 r 0ð Þ ¼ Φ�
2r þ Ψ�

2r . Finally the fast and thermal fluxes in the reflector are

obtained as:

Fluxes in the reflector:

Φ1r xð Þ ¼ Φ1r 0ð Þ e�κ1r x

Φ2 r xð Þ ¼ κ2Rr
κ22r � κ21r
� � Φ1r 0ð Þ e�κ1r x þ Φ2 r 0ð Þ � κ2Rr

κ22r � κ21r
� �Φ1r 0ð Þ

" #
e�κ2r x

8><>:
ð13:22Þ

Currents in diffusion theory are given by:

J1r 0ð Þ ¼ �D1 r grad Φ1 r xð Þð Þ0 ¼
D1 r

L1r
Φ1r 0ð Þ

J2 r 0ð Þ ¼ �D2 r grad Φ2 r xð Þð Þ0 ¼
D2 r

L1r

κ2Rr
κ22r � κ21r
� �Φ1r 0ð Þ þ D2 r

L2r
Φ2 r 0ð Þ � κ2Rr

κ22r � κ21r
� �Φ1r 0ð Þ

" #
8><>:
which can be expressed in the simplified canonical form as:

Characteristic equations for the reflector:

J1 r 0ð Þ
Φ1 r 0ð Þ ¼ D1 r

L1 r
J2 r 0ð Þ
Φ1 r 0ð Þ ¼ � L1 rL2rΣ1!2, r

L1 r þ L2 rð Þ þ D2 r

L2 r

Φ2 r 0ð Þ
Φ1 r 0ð Þ

8>><>>: ð13:23Þ

The spectrum index at the interface, defined as the ratio of the thermal flux to the

fast flux, is introduced as a correlating quantity of the ratio of the thermal current to

the fast current. Hence, the characteristic functions of the reflector are plotted as

two straight lines that are functions of the spectrum index (Fig. 13.13).

The two-group fuel diffusion equations without up-scattering are written as:

�D1 c
d2Φ1 c

dx2
þ Σ1,cΦ1c ¼

νΣ c
f 1
Φ1 c þ νΣ c

f 2
Φ2 c

keff

�D2 c
d2Φ2 c

dx2
þ Σa2,cΦ2 c ¼ Σ1!2,cΦ1 c

8>><>>: with Σ1,c ¼ Σa1,c þ Σ1!2,c
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In the second equation, Φ1 c is expressed in terms of Φ2 c and inserted in the first

equation to obtain an equation with the fast flux derivative:

D2 cD1 c keff
νΣ c

f 2

" #
d4Φ1 c

dx4
� Σa2,cD1 c keff

νΣ c
f 2

þ D2 c

keffΣ1,c � νΣ c
f 1

νΣ c
f 2

" #
d2Φ1 c

dx2

� Σ1!2,c � Σa2,c

keffΣ1,c � νΣ c
f 1

νΣ c
f 2

" #
Φ1 c¼ 0

As discussed previously, this differential equation can be solved in two steps:

first, we seek a function F such that:

F xð Þ ¼ d2Φ1c xð Þ
dx2

þ β2Φ1c xð Þ that, next, satisfies :
d2F xð Þ
dx2

� χ2 F xð Þ ¼ 0:

The parameters β and χ are evaluated by the identification by comparison of the

two fourth-order differential equations:

d2 d2Φ1c xð Þ
dx2

þ β2Φ1c xð Þ
h i

dx2
� χ2

d2Φ1c xð Þ
dx2

þ β2Φ1c xð Þ
 �

¼ d4Φ1c xð Þ
dx4

þ β2 � χ2
� � d2Φ1c xð Þ

dx2
� β2χ2Φ1c xð Þ

Ultimately, the general solution for the fast fuel flux is expressed in the form:

Φ1 c xð Þ ¼ A ch χ xð Þ þ B sh χ xð Þ þ C cos β xð Þ þ D sin β xð Þ

using the center of the reactor as the origin coordinates. This expression may be

readily simplified by noting that the flux is even in the fuel, and the sine and

hyperbolic sine terms are cancelled. In addition, the coefficients A and C are related

)(Φ
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0

0

1r

2r

)(Φ
)(J

0

0

1r

1r
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)(Φ
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0

0
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−

Fig. 13.13 Two-group characteristic functions without up-scattering for a neutron reflector
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using the boundary condition at the center of the reactor by normalizing the flux as

Φmax
1 c ¼ Φ1 c 0ð Þ. Hence:

Φ1 c xð Þ ¼ Φmax
1 c � A

� 	
cos β xð Þ þ A ch χ xð Þ

The thermal flux can also be written as:Φ2 c(x)¼E cos(β x) +F ch(χ x). The
constants E and F are expressed in terms of A and of the fuel material properties by

inserting the flux solutions in the thermal equation, i.e.:

�D2 c
d2 E cos β xð Þ þ F ch χ xð Þ½ �

dx2
þ Σa2,c E cos β xð Þ þ F ch χ xð Þ½ �

¼ Σ1!2,c Φmax
1 c � A

� 	
cos β xð Þ þ A ch χ xð Þ� �

thus, the thermal flux is:

Φ2 c xð Þ ¼ Σ1!2,c

D2 cβ
2 þ Σa2,c

Φmax
1 c � A

� 	
cos β xð Þ þ Σ1!2,c

Σa2,c � D2 cχ2
A ch χ xð Þ

Employing the historical notations of Lefebvre and Lebigot, the equations are:

Φ1 c xð Þ ¼ Φmax
1 c � A

� 	
cos βxð Þ þ A ch χ xð Þ with s ¼ Σ1!2,c

D2 cβ
2 þ Σa2,c

Φ2 c xð Þ ¼ s Φmax
1 c � A

� 	
cos βxð Þ þ t A ch χ xð Þ with t ¼ Σ1!2,c

�D2 cχ2 þ Σa2,c

8>><>>:
Using the forms of the fast and thermal flux introduced in the diffusion equations

for the fuel and the reflector, the constants A, β and χ are related as follows:

�D1 c Aχ2 þ Σ1,cA ¼ νΣ c
f 1
Aþ νΣ c

f 2
t A

keff

D1 c β2 þ Σ1,c ¼
νΣ c

f 1
þ νΣ c

f 2
s

keff

�D1 c χ2 þ Σ1,c ¼
νΣ c

f 1
þ νΣ c

f 2
t

keff

�D2 ct Aχ2 þ Σa2,ct A ¼ Σ1!2,cA

s ¼ Σ1!2,c

D2 c β2 þ Σa2,c

t ¼ Σ1!2,c

�D2 c χ2 þ Σa2,c

8>>>>>>><>>>>>>>:
Eliminating s from the equation in β results in:

D1 c β2 þ Σa1,c þ Σ1!2,c �
νΣ c

f 1

keff
¼ νΣ c

f 2

keff

Σ1!2,c

D2 c β2 þ Σa2,c

 �
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which Lefebvre and Lebigot express as a critical8 determinant corresponding to a

quadratic equation in μ for which β2 is a solution:

D1 c μ þ Σa1,c þ Σ1!2,c �
νΣ c

f 1

keff
� νΣ c

f 2

keff
�Σ1!2,c D2 c μþ Σa2,c

������
������ ¼ 0

Similarly, eliminating t from the equation in χ gives:

�D1 c χ2 þ Σ1,c ¼
νΣ c

f 1
þ νΣ c

f 2

Σ1!2,c
�D2 c χ2 þΣa2,c

� �
keff

Parameters t and �χ2 have the same function as s and β2 in the previous

equations since this equation may also be written as:

�D1 c χ2 þ Σa1,c þ Σ1!2,c �
νΣ c

f 1

keff
¼ νΣ c

f 2

keff

Σ1!2,c

�D2 c χ2 þ Σa2,c


 �
The coefficients β2 and �χ2 are thus solutions to the critical determinant:

D1 c D2 c μ2 þ Σa1,c þ Σ1!2,c �
νΣ c

f 1

keff


 �
D2 c þ D1 cΣa2,c

 �
μ

� νΣ c
f 2

keff
Σ1!2,c þ Σa1,c þ Σ1!2,c �

νΣ c
f 1

keff


 �
Σa2,c ¼ 0

This equation can be expressed in the canonical form using the equation that

relates κ1 to the fuel properties. In an infinite medium without leakage, the

following equation is obtained:

� νΣ c
f 2

k1
Σ1!2,c þ Σa1,c þ Σ1!2,c �

νΣ c
f 1

k1


 �
Σa2,c ¼ 0

8Indeed, this relation allows calculation of β2 and χ2 in terms of the fuel properties. It is not a true

critical equation from the neutron point of view since a critical equation would link the properties

and size of the reactor. The usual critical equation is obtained using a studied combination of the

continuity equations at the core/reflector interface, and couples the properties of the core and

reflector, and their respective sizes.
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Therefore, the critical determinant can be written in the condensed form:

μ2 þ 1

L21 c
þ 1

L22 c
� νΣ c

f 1

D1 ckeff


 �
μþ νΣ c

f 2
Σ1!2,c þ νΣ c

f 1
Σa2,c

D1 c D2 c


 �
1

k1
� 1

keff


 �
¼ 0

with: k1 ¼ νΣ c
f 1
Φ1 c þ νΣ c

f 2
Φ2 c

Σ1,cΦ1c
¼ νΣ c

f 1

Σ1,c
þ νΣ c

f 2
Σ1!2,c

Σ1,cΣa2,c

The sum and product of the two roots of this equation are then equal to:

β2 � χ2 ¼ � 1

L21 c
þ 1

L22 c
� νΣ c

f 1

D1 ckeff


 �
� β2 χ2 ¼ νΣ c

f 2
Σ1!2,c þ νΣ c

f 1
Σa2,c

D1 c D2 c


 �
1

k1
� 1

keff


 �
8>><>>:

In practice, for industrial reactors, β2 <<χ2, thus:

χ2 � 1

L21 c
þ 1

L22 c
� νΣ c

f 1

D1 ckeff

β2 ¼
νΣ c

f 2
Σ1!2,c þ νΣ c

f 1
Σa2,c

� �
L21 cL

2
2 c

D2 c k1keff D1 cL
2
2 c þ k1keff D1 cL

2
1 c � νΣ c

f 1
k1L21 cL

2
2 c

� � k1 � keff
� 	

> 0

8>>>>><>>>>>:
which can be inserted in the expressions of parameters s and t.

13.7.2 Calculation of Core Characteristics

As for the reflector, the characteristic functions of the fuel core may be represented

by the variation of the fast current to fast flux ratio and that of the thermal current to

fast flux depending on the spectrum index. The boundary conditions for the flux and

currents at the core/reflector interface (located at a distance H from the center of the

slab reactor) are written as:

Φ1 c Hð Þ ¼ Φmax
1 c � A

� 	
cos βHð Þ þ A ch χHð Þ

Φ2 c Hð Þ ¼ s Φmax
1 c � A

� 	
cos βHð Þ þ t A ch χHð Þ

J1 c xð Þ ¼ D1 c Φmax
1 c � A

� 	
β sin βHð Þ � A χ sh χHð Þ� 	

J2 c xð Þ ¼ D2 c s Φmax
1 c � A

� 	
β sin βHð Þ � t A χ sh χHð Þ� 	

8>><>>:
The following equations are deduced from the flux equations:
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Φmax
1 c � A

� 	
cos βHð Þ ¼ tΦ1 c Hð Þ�Φ2 c Hð Þ

t� s
and A ch χHð Þ ¼ Φ2 c Hð Þ � sΦ1 c Hð Þ

t� s

From the current equations, cos(βH) is introduced using sin(βH)¼ tg(βH) cos

(βH), and ch(χ H) given that χ H>> 1, ch(χ H)� sh(χ H) hence:

J1c Hð Þ¼D1c Φmax
1c �A

� 	
βsin βHð Þ�A χsh χHð Þ� 	�D1c βtan βHð Þ Φmax

1c �A
� 	

cos βHð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tΦ1c Hð Þ�Φ2c Hð Þ

t�s

�χ A ch χHð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Φ2c Hð Þ�sΦ1c Hð Þ

t�s

0BBB@
1CCCA

¼D1c

t�s
tβ tan βHð Þþsχð ÞΦ1c Hð Þ � βtan βHð Þþχð Þ Φ2c Hð Þ½ �

J2c Hð Þ¼D2c s Φmax
1c �A

� 	
βsin βHð Þ�t A χ sh χHð Þ� 	�D2c sβtan βHð Þ Φmax

1c �A
� 	

cos βHð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tΦ1c Hð Þ�Φ2c Hð Þ

t�s

�tχ A ch χHð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Φ2c Hð Þ�sΦ1c Hð Þ

t�s

0BBB@
1CCCA

¼D2c

t�s
st βtan βHð Þþχð ÞΦ1c Hð Þ � sβtan βHð Þþtχð ÞΦ2c Hð Þ½ �

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
Thus, the fuel characteristics are evaluated as:

Fuel characteristics:

J1 c Hð Þ
Φ1 c Hð Þ �

D1 c

t� s
tβ tan βHð Þ þ sχð Þ � D1 c

t� s
β tan βHð Þ þ χð Þ Φ2 c Hð Þ

Φ1 c Hð Þ
J2 c Hð Þ
Φ1 c Hð Þ ¼

D2 c

t� s
s t β tan βHð Þ þ χð Þ � D2 c

t� s
sβ tan βHð Þ þ tχð Þ Φ2 c Hð Þ

Φ1 c Hð Þ

8>>><>>>:
ð13:24Þ

The characteristics are in fact decreasing lines in terms of the spectrum index at

the interface (Fig. 13.14). The fast characteristic is decreasing and its slope

increases as β increases. The thermal characteristic is also decreasing but the

slope remains globally constant as β increases.

Lefebvre and Lebigot point out that the term β tan(βH) depends strongly on keff,
but the latter can be eliminated by noting that:

s
D2 c

D1 c

J1 c Hð Þ
Φ1 c Hð Þ �

J2 c Hð Þ
Φ1 c Hð Þ ¼ �sD2 c χ þ D2 cχ

Φ2 c Hð Þ
Φ1 c Hð Þ

 �
¼ D2 cχ

Φ2 c Hð Þ
Φ1 c Hð Þ � s

 �
However, s is still dependent on keff. At the core/reflector interface, flux and

current continuity leads to:
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J1 c Hð Þ
Φ1 c Hð Þ ¼

J1 r 0ð Þ
Φ1 r 0ð Þ ¼

D1 r

L1 r

It may be seen that J2 c(H )/Φ1 c(H ) is almost independent of keff and flux shape β
2

(as long as β2 << χ2):

J2 c Hð Þ
Φ1 c Hð Þ ¼ s

D2 c

D1 c

D1 r

L1 r
þ D2 cχ

 �
� D2 cχ

Φ2 c Hð Þ
Φ1 c Hð Þ

 �

13.7.3 Core/Reflector Operating Point

The core/reflector operating point is defined as the intersection between the two

characteristics such that Jc(H )/Φ1c(H )¼ JR(H )/Φ1R(H ). Hence, even if the charac-

teristic functions of the reflector are independent of the fuel driving zone, the

operating point continues to depend on the core conditions (Fig. 13.15).

Finally, it may be seen that definition of the reflector characteristics hinges on

defining three constants:

– first, the level of the horizontal line
J1r 0ð Þ
Φ1r 0ð Þ, i.e. the ratio c¼D1 r/L1

– second, the equation of the line
J2r 0ð Þ
Φ1r 0ð Þ ¼ a Φ2r 0ð Þ

Φ1r 0ð Þ þ b, i.e. b ¼ � L1 rL2 rΣ1!2, r
L1 rþL2 rð Þ and

a¼D2 r/L2.

Given that in two-group diffusion theory without up-scattering, a reflector is

completely defined by its properties D1r, D2r, Σa1 , r, Σa2 , r, Σ1! 2 , r, an infinite

number of hypothetical reflectors is acceptable provided ratios a, b, and c are

conserved. Since there are three ratios to conserve and five unknowns or degrees

of freedom, Lefebvre and Lebigot chose to set two degrees of freedom:D1r andD2r,

(H)Φ
(H)Φ

c

c

1

2

(H)Φ
(H)Φ

c

c

1

2

(H)Φ
(H)J

1c

1c

β

( )sχH)(βtβ
t-s
D

+tan
1c

( )χH)(ββ
t-s
D

- +tan
1c

β

( )χtH)(ββs
t-s

D
- +tan

2c

(H)Φ
(H)J

1c

2c

Fig. 13.14 Effect of numerical coefficient β (not to be confused with the albedo) on reflector

characteristics
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which are equated with the fuel diffusion coefficients, D1c ¼ 1.3 cm and

D2c ¼ 0.4 cm. The reflector thus obtained is a “mathematical” reflector that only

conserves the core/reflector operating point at the interface but does not conserve

the reaction rate inside the reflector itself. It is very important to understand that the

neutron properties of the mathematical reflector do not correspond to those of a true

(or “physical”) reflector. The choice of equating the reflector diffusion coefficients

with those of the fuel is purely arbitrary. Lefebvre and Lebigot justify their choice

by arguing that they wished to avoid any “discontinuity” in the diffusion calculation

for the reflector (in fact, the discontinuity on the flux gradients—which is physical

in diffusion theory—is due to the discontinuity in the scattering properties of the

materials). As a direct consequence, the fast and thermal flux inside the mathemat-

ical reflector are different from the true reflector, especially at the interface, where

current continuity would be expressed as:

J1 c Hð Þ ¼ �D1 c grad
�
Φ1 c xð Þ� 	

H
¼ J1R 0ð Þ ¼ � D1 r|{z}

D1 c

grad
�
Φ1 r xð Þ� 	

0

J2 c Hð Þ ¼ �D2c grad
�
Φ2 c xð Þ� 	

H
¼ J1R 0ð Þ ¼ � D2 r|{z}

D2 c

grad
�
Φ2 r xð Þ� 	

0

8>>><>>>:
hence the continuity of the flux gradients at the interface: grad((Φ1 c(x))H¼ grad

((Φ1 r(x))0 and grad((Φ2 c(x))H¼ grad((Φ2 r(x))0 for the mathematical reflector.

Although the latter induces continuous flux gradients for the fast and thermal flux

at the interface, nonetheless, the flux solutions consequently have no physical

significance (Fig. 13.16). Nevertheless, the order of magnitude is conserved.

Strictly speaking, the flux should not be calculated in the mathematical Lefebvre-

Lebigot reflector, but applied simply as an albedo condition that can be expressed

under the matrix form of the Poincaré-Steklov operator (defined at the beginning of

the chapter) as:

)H(

)H(

1c

2c

Φ
Φ

)H(

)H(J

c1

c1

Φ

( )sχH)(βtβt-s
D c +tan

1

( )χH)(ββ
t-s
D

- +tan
1c

1

1r

L
D

Operating

point

0,20,1

)H(

)H(

1c

2c

Φ
Φ

( )χH)tan(ββ
s-t

D
-

2c ts +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−

1r2r
L

1

L

1

RrΣ

2

2

L
D r

Operating

point

0,20,1

(H)Φ
(H)J

c

c

1

2

Fig. 13.15 Graphical view of the core/reflector operating point
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Reflector transfer matrix:

J1 r 0ð Þ
J2 r 0ð Þ


 �
¼

D1 r

L1
0

� L1 rL2 rΣ1!2, r

L1 r þ L2 rð Þ
D2 r

L2

0BB@
1CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ℜ

Φ1 r 0ð Þ
Φ2 r 0ð Þ


 �
ð13:25Þ

The reflector transfer matrix ℜ is lower triangular since up-scattering is not

considered. Taking up-scattering into account in the model gives a dense transfer

matrix.

13.7.4 Effect of Thermal-Hydraulic Feedbacks

Lefebvre and Lebigot showed that the constants for the mathematical reflector

are weakly impacted by the water density in the reflector. D1r and D2r are assumed

to be constant and Σa1 , r, Σa2 , r, Σ1! 2 , r have a variation of 1% when the water

density varies by 5%. In addition, they proved that the choice of the environment,

i.e. the driver fuel zone, led to a 3% impact on Σa1 , r, Σa2 , r, Σ1! 2 , r between

the beginning and the end of life of the reactor. Only the effect of boron in the

water of the reflector remains to be quantified and studies have shown that the sum

Σa1 , r+Σ1! 2 , r remains almost constant despite significant variation in boron

concentration. However, Σa2 , r is directly impacted by the boron concentration.

Finally, feedback due to the latter is modeled as follows (Fig. 13.17):

x

Physical reflector in diffusion theory 
(illustration with D1c<D1r)

Φ2r (x)

0

gradΦ2r (0)

L1

Φ1r (x)

gradΦ1r (0)

gradΦ1c (0)

gradΦ2c (0) x

Mathematical reflector in diffusion 

Φ2r (x)

0

gradΦ2r (0)

L1

Φ1r (x)

gradΦ1r (0)

gradΦ1c (0)

gradΦ2c (0)

Fig. 13.16 Comparison of physical and mathematical reflectors in diffusion theory
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∂Σa1, r ¼ σa1, r∂Nboron ∂Σa2, r ¼ σa2, r∂Nboron ∂Σ1!2, r ¼ � ∂Σa1, r

13.7.5 Calculation of Constants in the Mathematical
Reflector

The characteristics of the mathematical reflector are calculated using three slab

geometries for the core/reflector interface with a transport code.9 In the two initial

calculations, the driver zone is modified to determine the characteristic lines at the

interface (in configuration 1, close to a true core for which the spectrum index is

close to 0.1, and in configuration 2 for an over-moderated core for which the

spectrum index is close to 0.2). The third calculation involves evaluating the

dependence of the cross sections Σa1 , r, Σa2 , r and eventually Σ1! 2 , r (if the relation

∂Σ1! 2 , r¼ �∂Σa1 , r is not considered precise enough) on the boron concentration

(Fig. 13.18).

Table 13.3 summarizes the neutron constants obtained using the Lefebvre-

Lebigot method for the reflectors of the three CPY reactors (with the boron

macroscopic cross sections, the fraction of water Voliq and the water density).

The fast diffusion coefficient of the reflector has been set to 1.78 cm instead of

1.3 cm on account of the significant experience of EDF in improving radial power

distribution.

Fig. 13.17 Comparison between the Lefebvre-Lebigot model (linear model) and the true values

of the cross sections with boron concentration feedback (from a study by EDF research engineer

Marie Fliscounakis). This comparison shows the robustness of the model [hashed lines ¼ linear

model; unbroken lines ¼ true value with boron concentration feedback].

9APOLLO2 in the case of EDF.
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13.8 Albedo Matrix

In the earlier chapters, it was stated that the albedo is defined as the ratio of the

outgoing current from the reflector to the incoming current towards the reflector

β¼ J�/J+ whereJ� is the outgoing current and J+ is the incoming current. Given

that in diffusion theory:

Jþ ¼ 1

2

Φ

2
þ J


 �
J� ¼ 1

2

Φ

2
� J


 �

the following matrix can be written:
Jþ

J�


 �
¼

1

4

1

2
1

4
�1

2

0B@
1CA Φ

J


 �
The current at the interface can also be written in the vector form (J1 r(0), J2 r(0)),

and is related to the flux by the transfer matrix ℜ as in Eq. (13.25). For two energy

groups, the positive and negative currents may be expressed in terms of the flux as:

J1
þ

J2
þ


 �
¼1

2

1

2

Φ1

Φ2


 �
þ J1

J2


 � �
¼1

2

1

2
0

0
1

2

0B@
1CAþ

D1r

L1r
0

�L1rL2rΣ1!2,r

L1rþL2rð Þ
D2r

L2r

0BB@
1CCA

2664
3775 Φ1

Φ2


 �

J1
�

J2
�


 �
¼1

2

1

2

Φ1

Φ2


 �
� J1

J2


 � �
¼1

2

1

2

1 0

0 1


 �
�

D1r

L1r
0

�L1rL2rΣ1!2,r

L1rþL2rð Þ
D2r

L2r

0BB@
1CCA

2664
3775 Φ1

Φ2


 �

8>>>>>>>>>><>>>>>>>>>>:
Substituting the flux by its value in terms of the positive current in the negative

current equation leads to:

Table 13.3 Neutron constants of the Lefebvre-Lebigot reflector for the CPY

D1r

cm½ �
D2r

cm½ �
Σa1r

cm�1½ �
Σa2r

cm�1½ �
ΣRr

cm�1½ �
σBorea1

barn½ �
σBorea2

barn½ � Voliq

ρH2O

g=cm3½ �
Upper 1.30 0.40 0.0119 0.0176 0.0218 38.82 412.23 0.61796 0.667

Lower 1.30 0.40 0.0157 0.0105 0.0210 2.28 344.97 0.66922 0.754

Radial 1.78 0.40 0.0097 0.0831 0.00474 15.11 63.30 0.74273 0.714

Fuel + water (dilution 

0.55)+500 ppm boron Baffle+water

configuration 1

Fuel

+ water (dilution 0.7) Baffle +water

configuration 2

Fuel

+ water (dilution 0.7)

Baffle+water

+boron

configuration 3

Fig. 13.18 Configurations for the slab calculations to determine the operating point
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J1
�

J2
�


 �
¼

1

2
�D1 r

L1 r
0

L1 rL2 rΣR r

L1 r þ L2 rð Þ
1

2
�D2 r

L2 r

0BB@
1CCA

1

2
þD1 r

L1 r
0

� L1 rL2 rΣR r

L1 r þ L2 rð Þ
1

2
þD2 r

L2 r

0BB@
1CCA

�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
βi jð Þ

J1
þ

J2
þ


 �

Thus, the albedo matrix (βi j) may be introduced in the equation. The terms of the

albedo matrix are calculated as follows:

Infinite albedo matrix:

J1
�

J2
�


 �
¼

L1 r � 2D1 r

L1 r þ 2D1 r
0

4 L1 rL2 rð Þ2Σ1!2, r

L1 r þ L2 rð Þ L1 r þ 2D1 rð Þ L2 r þ 2D2 rð Þ
L2 r � 2D2 r

L2 r þ 2D2 r

0BB@
1CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
βi jð Þ1

J1
þ

J2
þ


 �

ð13:26Þ

This matrix is denoted by β1, implying that it corresponds to a case in which the

flux is zero at infinity. Assuming a zero flux at a finite distance (at the end of the

reflector) entails a more complex albedo matrix and induces dependence on the size

of the reflector. The albedo condition, which reproduces the reflector response

accurately, can no longer be employed as such in exact transport theory or simpli-

fied transport theory with the SPN with N> 1. In the SP1method, equivalence with

diffusion theory can be obtained D¼ 1/3Σtransport such that the albedo method can

be used. Several models, very often 1D models, have been set up, albeit with

differing degrees of efficiency, to conserve the albedo matrix so that the constants

are not impacted by the environment.10,11

13.9 Allowing for Up-Scattering

In the reflector, there is no fission source, yet with the up-scattering in energy

hypothesis, there exists a source of fast neutrons through scattering from the

thermal group to the fast group:

10E.Z. Muller: Environment-insensitive equivalent diffusion theory group constants for pressur-
ized water reactor radial reflector regions, Nuclear Science and Engineering, 103, pp. 359–376

(1989).
11J. Ragusa, R. Sanchez, S. Santandrea: Application of duality principles to reflector homogeni-
zation, Nuclear Science and Engineering, 157, pp. 299–315 (2007).
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�D1r
d2Φ1r

dx2
þ Σ1, rΦ1r xð Þ ¼ Σ2!1, rΦ2r xð Þ

�D2r
d2Φ2r

dx2
þ Σ2, rΦ2r xð Þ ¼ Σ1!2, rΦ1r xð Þ

8>><>>: with
Σ1, r ¼ Σa1, r þ Σ1!2, r

Σ2, r ¼ Σa2, r þ Σ2!1, r

�

which, in the canonical form, gives:

d2Φ1r

dx2
� 1

L21 r
Φ1r xð Þ ¼ � 1

L2U r

Φ2r xð Þ
d2Φ2r

dx2
� 1

L22 r
Φ2r xð Þ ¼ � 1

L2R r

Φ1r xð Þ

8>>><>>>:
with

L21 r ¼
D1r

Σ1, r

L22 r ¼
D2r

Σ2, r

8>><>>: and

L2U r ¼
D1r

Σ2!1, r

L2R r ¼
D2r

Σ1!2, r

8>><>>:
From calculations analogous to the previous section, it can be shown that the fast

flux satisfies the equation:

d4Φ1r

dx4
� 1

L21 r
þ 1

L22 r

 �
d2Φ1r

dx2
þ 1

L22 rL
2
1 r

� 1

L2U rL
2
R r

 �
Φ1r xð Þ ¼ 0

The term 1/LUr2 might be expected be negligible if the cut-off between the two

groups is at low energy values (the Lefebvre-Lebigot model assumes that there is no

up-scattering). However, the term 1/LR r2, which represents the thermal neutron

source term deriving from fast neutrons, is large. Finally, the term

1=L22 rL
2
1 r � 1=L2U rL

2
R r

� �
may be expected to be positive. This particular point

will be illustrated later with numerical examples. Solving the equation thus

obtained leads to a solution F(x) such that:

F xð Þ ¼ d2Φ1r xð Þ
dx2

� λ2Φ1r xð Þ which furthermore satisfies :
d2F xð Þ
dx2

� μ2F xð Þ

¼ 0:

The parameters λ and μ are identified by developing the differential equation for

the fast flux. The identification method leads to:

λ2 þ μ2 ¼ 1

L21 r
þ 1

L22 r
λ2 μ2 ¼ 1

L22 rL
2
1 r

� 1

L2U rL
2
R r

which gives a fourth-degree equation in λ:
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λ4 � λ2
1

L21 r
þ 1

L22 r

 �
þ 1

L22 rL
2
1 r

� 1

L2U rL
2
R r

 �
¼ 0

for which the two solutions are:

λ^2 ¼

1

L21 r
þ 1

L22 r

 �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L21 r

þ 1
L22 r

h i2
� 4

1

L22 rL
2
1 r

� 1

L2U rL
2
R r

 �s
2

> 0

λ_2 ¼

1

L21 r
þ 1

L22 r

 �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L21 r

þ 1
L22 r

h i2
� 4

1

L22 rL
2
1 r

� 1

L2U rL
2
R r

 �s
2

> 0

8>>>>>>>><>>>>>>>>:
If: 4

1

L22 rL
2
1 r

� 1

L2U rL
2
R r

 �
>

1

L21 r
þ 1

L22 r

 �2
no solution in the real set exists. In practice, L21r � 4L22 r, i.e.:

1

L21 r
þ 1

L22 r

 �2
� 25

16L42 r
and 4

1

L22 rL
2
1 r

� 1

L2U rL
2
R r

 �
� 1

L42 r
by disregarding

1

L2U rL
2
R r

Solutions in the set of real number thus exist. It be noted that the two solutions λ^
2

and λ_
2 are positive and can be used later. Moreover, λ2^ > λ2_. μ is evaluated using

the equation:

μ2^ ¼ 1

L21 r
þ 1

L22 r
� λ2^ ¼ λ_2 > 0

μ2_ ¼ 1

L21 r
þ 1

L22 r
� λ_2 ¼ λ2^ > 0

8>><>>:
It may be seen that here μ2^ < μ2_. The two possible solution couples λ2^,μ2^

� 	
and λ_2,μ2_
� 	

eventually result in a unique solution λ2^; λ
2
_

� 	
, for which the notation

(λ2,μ2) is maintained to avoid any confusion. In the end, the fast flux that is zero

at infinity can be expressed in the form:

Φ1r xð Þ ¼ Be�μ x þ De�λ x

The thermal flux is calculated from the fast flux. Inserting the flux and current

continuity conditions at the interface, we obtain:
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Φ1r xð Þ¼
Φ1r 0ð Þ L2Ur

L21r
�λ2L2Ur


 �
�Φ2r 0ð Þ

μ2� λ2
� 	

L2Ur

0BBB@
1CCCAe�μxþ

Φ2r 0ð Þ�Φ1r 0ð Þ L2Ur

L21r
�μ2L2Ur


 �
μ2� λ2
� 	

L2Ur

0BBB@
1CCCAe�λx

Φ2r xð Þ¼ L2Ur

L21r
�μ2L2Ur


 � Φ1r 0ð Þ L2Ur

L21r
�λ2L2Ur


 �
�Φ2r 0ð Þ

μ2� λ2
� 	

L2Ur

0BBB@
1CCCAe�μx

þ L2Ur

L21r
�λ2L2Ur


 � Φ2r 0ð Þ�Φ1r 0ð Þ L2Ur

L21r
�μ2L2Ur


 �
μ2� λ2
� 	

L2Ur

0BBB@
1CCCAe�λx

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
λ and μ can be eliminated from the equation using the following formulae, which

were seen earlier:

λ2 þ μ2 ¼ 1

L21 r
þ 1

L22 r
λ2μ2 ¼ 1

L22 rL
2
1 r

� 1

L2U rL
2
R r

λþ μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ μð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ μ2
� 	þ 2λμ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L21 r
þ 1

L22 r
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L22 rL
2
1 r

� 1

L2U rL
2
R r

svuut
λμ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L22 rL
2
1 r

� 1

L2U rL
2
R r

s

8>>>>>>>>><>>>>>>>>>:
The fuel characteristic calculations are also straightforward:

Characteristics of the reflector:

J1r 0ð Þ
Φ1r 0ð Þ¼Σ2!1,r

L2Ur

L21r
þL2Ur λμ

λþμð Þ � Σ2!1,r

λþμð Þ
Φ2r 0ð Þ
Φ1r 0ð Þ

J2r 0ð Þ
Φ1r 0ð Þ¼ D2rL

2
Ur

1

L21r
�μ2


 �
1

L21r
�λ2


 �
λþμð Þ þD2r

λ2þμ2þλμ
� 	

λþμð Þ � 1

L21r λþμð Þ

 !
Φ2r 0ð Þ
Φ1r 0ð Þ

8>>>>>>>>><>>>>>>>>>:
ð13:27Þ

This leads back to the Lefebvre-Lebigot model since the up-scattering cross

section ΣU r tends towards 0, Σ2!1, rL
2
U r ¼ D1 r, and 1/LU r2 tends towards 0. The

term Σ2! 1 , r/(λ+ μ) also tends towards 0 due to Σ2! 1 , r.

Similarly, the term Σ2!1, r L2U r=L
2
1 r þ L2U r λμ

� 	
= λþ μð Þ tends towards D1 r/L1 r.

Given that:
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�D2 rL
2
U r

1

L21 r
� μ2


 �
1

L21 r
� λ2


 �

¼ �D2 rL
2
U r

1

L21 r

1

L21 r
� 1

L21 r
λ2 þ μ2
� 	|fflfflfflfflfflffl{zfflfflfflfflfflffl}
1

L21 r
þ 1

L22 r

þ λ2μ2|{z}
1

L22 rL
2
1 r

� 1

L2U rL
2
R r

0BBBBBBB@

1CCCCCCCA ¼ D2 r

L2R r

¼ Σ1!2, r

the transfer matrix ℜ of the Poincaré-Steklov operator at the interface relates the

neutron current to the flux as expressed:

ℜ ¼
D1 r

1

L21 r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L22 rL
2
1 r

� 1

L2U rL
2
R r

s
λþ μð Þ � Σ2!1, r

λþ μð Þ

� Σ1!2, r

λþ μð Þ D2 r

1

L22 r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L22 rL
2
1 r

� 1

L2U rL
2
R r

s !
λþ μð Þ

0BBBB@
1CCCCA

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
The infinite albedo matrix (βi j)

1 is also obtained by expressing the outgoing

currents with respect to the incoming currents (Fig. 13.19):

J1
�

J2
�


 �
¼

1

2
þℜ22


 �
1

2
�ℜ11


 �
þℜ12ℜ21

1

2
þℜ22


 �
1

2
þℜ11


 �
�ℜ12ℜ21

� ℜ12

1

2
þℜ22


 �
1

2
þℜ11


 �
�ℜ12ℜ21

� ℜ21

1

2
þℜ22


 �
1

2
þℜ11


 �
�ℜ12ℜ21

1

2
þℜ11


 �
1

2
�ℜ22


 �
þℜ21ℜ12

1

2
þℜ22


 �
1

2
þℜ11


 �
�ℜ12ℜ21

0BBBBBBBBBBB@

1CCCCCCCCCCCA
� J1

þ

J2
þ


 �
The difference with respect to the Lefebvre-Lebigot model without up-scattering

is that the fast characteristic is a linearly decreasing function. An additional

unknown has been added to the system (the up-scattering cross section), thereby

leading to six unknowns. Four coefficients still need to be evaluated. As previously,

two degrees of freedom remain. In the model without up-scattering, the absolute

error on the ratio J1/Φ1 was around 1%. Allowing for up-scattering reduces this
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error to 0.1%. On the other hand, for the ratio J2/Φ1, the error is still under 0.4% in

both models. As a reminder, the up-scattering term appears only in the fast flux

equation. Finally, it should be pointed out that the values of 1.3 and 0.4 for the fast

and thermal diffusion coefficients of the reflector being set, the identification for the

other cross section values leads to a negative up-scattering cross section Σ2! 1 , r,

i.e. LU r2 is also negative (despite the square operation). This result is very surpris-

ing, and must be analyzed only in the framework of a mathematical reflector which

does not truly represent the scattering of neutrons, but simply provides an “equiv-

alent” effect to a true reflector at the interface.

The Lefebvre-Lebigot model has been employed in the official EDF calculation

chain, and has proved to be extremely robust for all the different fuel management

schemes and reactor types. It is very simple to set up in a calculation scheme and

provides a fitting parameter for the measured flux distributions with only the fast

diffusion coefficient. Comparisons with more complex models (in particular, the

generalized beta model which will be discussed below) showed that it was precise

enough for industrial applications. Only accidental cases with a high void fraction

in the reflector can challenge this conclusion given that the conditions are very

different from its validity range.

13.10 Diffusion/Transport Correspondence

We have just illustrated the modeling of a reflector in two energy-group diffusion

theory with up-scattering. If the driver zone is modeled with transport theory such

as the Sn method or in simplified transport with SPn—especially for the SP1 case,

the following corresponding terms (the term equivalence is not used here, as

transport-diffusion equivalence has a very specific meaning in neutron physics)

are used:

11

Operating

point

0,20,1

12
R

R

(H)Φ
(H)Φ

r

r

1

2

(H)Φ
(H)J

r

r

1

1

)H(

)H(

r1

r2

Φ
Φ

21R

22R

Operating

point
0,20,1

)H(

)H(J

r1

r2

Φ

Fig. 13.19 Graphical view of the operating point with up-scattering
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D1 r ¼ 1

3Σtransport1, r
¼ 1

3 Σt1, r �
X
g0

Σ1!g0
s1

0@ 1A ¼ 1

3 Σt1 r � Σ 1ð Þ
s1 r

� �

D2 r ¼ 1

3Σtransport2, r
¼ 1

3 Σt2, r �
X
g0

Σ2!g0
s1

0@ 1A ¼ 1

3 Σt2 r � Σ 2ð Þ
s1 r

� �
Σt1, r ¼ Σa1, r þ Σ1!2, r þ Σ1!1, r Σt2, r ¼ Σa2, r þ Σ2!1, r þ Σ2!2, r

8>>>>>>>>>>>><>>>>>>>>>>>>:
The SP1 method can be employed to obtain an equivalent solution to the

diffusion method by adapting the diffusion coefficient.

13.11 Reuss-Nisan Model

The Reuss-Nisan12 reflector model was conceived at the CEA in the 1970s to model

the core/baffle/reflector interface with an equivalent reflector in multi-group diffu-

sion. The baffle is a steel structure in the form of sheets that surrounds the perimeter

of the active core in PWR. The principle is to compute the albedo matrix of the

baffle of thickness e and that of the reflector assumed to be infinite, so as to

determine the equivalent matrix for both materials. This problem is somewhat

simplified by assuming that there is no up-scattering between the G energy groups,

thereby implying that there is only one thermal group. In this approximation, the

albedo matrix has lower triangular shape and there are G(G + 1)/2 matrix elements

to calculate (Picture 13.2).

The G diffusion equations in the reflector are written as:

Multi-group diffusion equation in the reflector:

� DgΔΦg xð Þ þ Σt,gΦg xð Þ ¼
X
g0<g

Σg0!gΦg0 xð Þ g ¼ 1, . . . ,G ð13:28Þ

The differential scattering cross section Σg ’ ! g is sometimes denoted as Σgg’ to

obtain a lower triangular matrix since Σg ’ ! g¼ 0 when g’> g, as the fastest energy
group is usually numbered 1, with the index increasing as the neutron is thermal-

ized. The notation Σg ’ g leads to an upper triangular matrix. The first notation is

preferred since it is entirely unambiguous. The general solution to the homogeneous

equation is given by:

12P. Reuss, S. Nisan: Une nouvelle méthode pour le calcul de l’interface cœur-réflecteur [A new

method for calculating the core/reflector interface], technical report CEA/SERMA 265 T (1976) as

well as the previous work of A. Jolly and P. Reuss of 1980, illustrated in (Bussac and Reuss 1985).
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Φg xð Þ ¼ αg eþκgx þ δge
�κgx

with: κg ¼
ffiffiffiffiffiffi
Σt,g
Dg

q
The particular solution for the inhomogeneous equation is expressed as:

Φg xð Þ ¼
X
k<g

γgk αk eþκkx þ δke
�κkxð Þ

The notation γgk (instead of γkg) keeps a lower triangular matrix. Inserting this

term in the differential equation leads to:X
k<g

�γgk αkκk
2 eþκkx þ δkκk

2e�κkx
� 	þ κg

2
X
k<g

γgk αke
þκkx þ δke

�κkxð Þ

¼
X
i<g

Σi!g

Dg

X
h<i

γih αhe
þκhx þ δhe

�κhxð Þ

The similar positive or negative exponential terms are grouped together, hence:

Picture 13.2 Paul Reuss (1940–) conceived several neutron models during his career at the CEA
after his studies at Ecole Polytechnique (1960–1962). He later obtained a PhD in 1979 on the

“effect of plutonium recycling in water-moderated reactors”. He is also famous for having

published more than ten books on neutron physics and nuclear energy in general, for which he

proved to be an excellent and may be the best popularizer in France (Courtesy Reuss).
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X
k<g

γgkαk κk
2 � κg

2
� 	

eþκkx ¼
X
i<g

Σi!g

Dg

X
h<i

γih αh eþκhx

X
k<g

γgkδk κk
2 � κg

2
� 	

e�κkx ¼
X
i<g

Σi!g

Dg

X
h<i

γih δh e�κhx

8>>><>>>:
The exponentials form a basis set, and thus, the coefficients for similar expo-

nential terms can be determined by direct term identification, with k¼ h¼m:

γgmαm κm2 � κg2
� 	

eþκmx ¼
X
i<g

Σi!g

Dg
γim αm eþκmx

γmgδgm κm2 � κg2
� 	

e�κmx ¼
X
i<g

Σi!g

Dg
γim δm e�κmx

8>>><>>>:
These equations are similar for the αm or βm terms. Therefore, the recurrence

relations for the coefficients γmg can be deduced as:

Recurrence relation for the coefficients of the flux in the reflector:

γgm ¼ 1

Dg κm2 � κg2
� 	 X

i<g

Σi!gγim ð13:29Þ

The first term of the recurrence is obtained by setting m¼ g and recalling that

Σig¼ 0 for i> g. In fact, γgg is the coefficient for the solution of the homogeneous

equation, i.e. 1. Thus:

γgm ¼ 0

γgg ¼ 1

γgm ¼ 1

Dg κm2 � κg2
� 	X

i<g

Σi!gγmi

8>><>>:
for m > g

for m < g

The general solution is the sum of the particular and general solutions for the

homogeneous equation:

Φg xð Þ ¼ αg eþκgx þ βge
�κgx þ

X
k<g

γgk αk eþκkxþke
�κkxð Þ

and by including the general solution in the summation operator using γgg ¼ 1:

Multi-group flux without up-scattering:
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Φg xð Þ ¼
X
k�g

γgk αk eþκkx þ δke
�κkxð Þ ð13:30Þ

The albedo matrix relates the negative currents to the positive currents of the

core/reflector interface by:

J�g ¼
X
i

βjiJ
þ
i ¼

X
i� j

βjiJ
þ
i

since the albedo matrix is lower triangular. In diffusion theory, the incoming and

outgoing currents are given by:

Jþg xð Þ ¼ Φg xð Þ
4

� Dg

2

dΦg xð Þ
dx

and J�g xð Þ ¼ Φg xð Þ
4

þ Dg

2

dΦg xð Þ
dx

i.e.:

Jþg xð Þ ¼
X
k�g

γgk
αk
4

1� 2Dg κk
� 	

eþκkx þ βk
4

1þ 2Dg κk
� 	

e�κkx

 �
J�g xð Þ ¼

X
k�g

γgk
αk
4

1þ 2Dg κk
� 	

eþκkx þ βk
4

1� 2Dg κk
� 	

e�κkx

 �
8>>><>>>:

It should be noted that if the reflector is infinite, the αk coefficients must all be

zero for the flux and currents to have finite values. To obtain the elements of the

albedo matrix, it is assumed that:

– only one group current is non zero, i.e. Jþg 0ð Þ ¼ 1,

– the currents in the other groups are equal to zero.

Thus, there is a vector of G elements such that:

0; 0; 0; . . . 0; 1|{z}
Jþg

; 0; . . . 0g

8><>: corresponds to the hypothetical case for g

For this hypothetical case (there is a total of G cases), the following equation is

reached:

βgg0 ¼ J�g 0ð Þ computed for the hypothetical case g0

Since J�g 0ð Þ ¼P
k�g

γgk
δk
4

1� 2Dg κk
� 	

, the unknowns are the G values of (δk)case g0

obtained by expressing the linear system of G equations, defined by the conditions

on Jþg 0ð Þ:
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Outgoing current at the core=reflector interface:

Jþg 0ð Þ ¼
X
k�g

γgk
δk
4

1� 2Dg κk
� 	 ¼ 0 for g 6¼ g0

Jþg0 0ð Þ ¼
X
k�g0

γg0k
δk
4

1� 2Dg0 κk
� 	 ¼ 1 for g ¼ g0

8>>><>>>: ð13:31Þ

Solving theG-equation system for each hypothetical case leads to theG(G+ 1)/2

albedo values βgg0 for the infinite homogeneous reflector without baffle (Figs. 13.20

and 13.21).

Allowance for the baffle surrounding the core perimeter is derived from the

previous calculations. Given that e is the baffle thickness, the incoming and

outgoing currents at both interfaces for G groups are:

Incoming current at the core=reflector interface:

J�g 0ð Þ ¼
X
k�g

θgk Jþk 0ð Þ þ τgk J�k eð Þ

Jþg eð Þ ¼
X
k�g

θgk J�k eð Þ þ τgk Jþk 0ð Þ

8>><>>: for g from 1 to G ð13:32Þ

The coefficients θgk and τgk are determined by hypothetical cases where only

Jþg0 0ð Þ ¼ 1 and J�g0 eð Þ ¼ 0, thereby leading to the hypothetical condition:

x

core reflector

Fig. 13.20 Core/infinite

reflector interface

x

core reflector

baffle

e

Fig. 13.21 Core/infinite

reflector interface
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θgg0 ¼ J�g 0ð Þsituation g0

τgg0 ¼ Jþg eð Þsituation g0

�
It should be carefully noted that the positive exponential terms are retained in the

flux calculation for the baffle since the latter is finite, thus:

J�g 0ð Þ ¼
X
k�g

γgk
αk
4

1þ 2Dg κk
� 	þ δk

4
1� 2Dg κk
� 	 �

Jþg eð Þ ¼
X
k�g

γgk
αk
4

1þ 2Dg κk
� 	

eþκke þ δk
4

1� 2Dg κk
� 	

e�κke

 �
8>>><>>>: for g from 1 to G

The solution of theG systems with 2G equations for hypothetical cases is used to

evaluate the 2G series of coefficients (αk)case g0 and (δk)case g0. The currents at the

baffle/reflector interface may now be computed by also introducing the reflector

albedo βgk:

Jþg eð Þ ¼
X
k�g

θgk J�k eð Þ þ τgk Jþk 0ð Þ

J�g eð Þ ¼
X
k�g

βgk Jþk eð Þ

8>><>>:
The outgoing current from the core/baffle interface is given by a third equation:

Incoming current at the core=baffle interface:

J�g 0ð Þ ¼
X
k�g

θgk Jþk 0ð Þ þ τgk J�k eð Þ ð13:33Þ

Once again, G hypothetical cases are employed with Jþg0 0ð Þ ¼ 1, and the other

incoming currents are zero, resulting in G currents J�g0 eð Þ and Jþg0 eð Þ, that are further
used to evaluate J�g 0ð Þ. The equivalent reflector that integrates a unique response

for both the baffle and the reflector, satisfies:

J�g 0ð Þ ¼
X
k�g

βequivalentgk Jþg 0ð Þ

such that the currents J�g 0ð Þ and Jþg 0ð Þ for the core/baffle/reflector calculation are
conserved. As previously:

βequivalentgg0 ¼ J�g 0ð Þ for the caseg0where Jþg0 0ð Þ ¼ 1

Knowing the albedo matrix of the equivalent reflector, and if the diffusion

coefficients are set, the cross sections and the attenuation coefficients κg of the
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decreasing exponential can be computed by recurrence on the energy groups. If

applied to a two energy group problem without up-scattering, three coefficients are

calculated for the albedo matrix of the equivalent reflector (βequivalent1 2 ¼ 0). The

albedo values depend on five parameters: D1, D2, Σa1, Σa2 and Σ1! 2. Hence, just

like for the Lefebvre-Lebigot method, there are two degrees of freedom. In this

case, the authors decided to conserve the diffusion coefficients in the baffle. The

calculations are carried out in three steps:

– The diffusion coefficients of the baffle and moderator are computed in infinite

homogeneous lattice approximation with a core/baffle and core/water (pseudo-)

infinite slab geometries.

– Afterwards, a slab geometry with core/baffle/water is computed with the core

being a homogeneous medium corresponding to an assembly at the core periph-

ery. For each medium, the neutron quantities Σa1, Σa2 and Σ1! 2 are evaluated.

– Finally, the true reflector is substituted by the equivalent reflector with a

diffusion/diffusion calculation described previously, by computing the albedo

of the equivalent reflector in terms of albedo matrices and baffle transmission.

As for the Lefebvre-Lebigot model, this model is a 1D representation of the core/

reflector slabs and does not model the 2D geometry of a true baffle. Hence, the

validity of this model for the incoming and outgoing corners of the core may

legitimately be questioned.

13.12 Mondot Model

Jacques Mondot13 proposed a method to conserve the multi-group albedo at the

interface. Let us consider a homogeneous reflector defined by neutron constants Dg,

ΣTg and Σg ’ ! g. The albedo condition at the core/reflector interface is given by the

matrix equation:

Jþ 0ð Þ ¼ β J� 0ð Þ

where J+(0) is the outgoing current from the reflector and J�(0) the incoming

current (N.B. These currents are not given with respect to the core, as is normally

the case) (Fig. 13.22).

13J. Mondot: BETA—une méthode d’équivalence pour le calcul neutronique des réflecteurs en thé
orie de la diffusion multigroupe [BETA- an equivalence method for neutron calculation of

reflectors in multi-group diffusion theory], technical report CEA SEN/LPN-83/1646 (1983).

Jacques Mondot (1948–1993) spent all of his (too) brief career at the CEA, first at the Saclay

center, then at Cadarache, where he established an original model that bears his name. After an

MSc in reactor physics in 1971, followed by a PhD in 1973, he specialized in calculation schemes

for reactors.
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The currents are expressed by the usual relations, while being careful with the +

and � signs due to the conventions employed:

J� 0ð Þ ¼ Φ 0ð Þ
4

þ J 0ð Þ
2

and Jþ 0ð Þ ¼ Φ 0ð Þ
4

� J 0ð Þ
2

The net current is related to the flux through the transfer matrix:

J 0ð Þ ¼ ℜ Φ 0ð Þ

Thus, ℜ can be calculated as a function of the albedo matrix β:

J� 0ð Þ ¼ Φ 0ð Þ
4

þℜΦ 0ð Þ
2

¼ Φ 0ð Þ
2

1

2
I þℜ


 �
Jþ 0ð Þ ¼ Φ 0ð Þ

4
�ℜΦ 0ð Þ

2
¼ Φ 0ð Þ

2

1

2
I �ℜ


 �
8>><>>:

Hence: ℜ ¼ 1
2
1� βð Þ 1þ βð Þ�1

The multi-group diffusion equation is expressed in matrix form as:

�DΔΦþ ΣΦ ¼ 0

where D¼ [Dg] is a diagonal matrix, Σ is a lower triangular matrix when there is no

up-scattering, and Φ¼ [Φg] and ΔΦ¼ [ΔΦg] are also diagonal matrices. For the

associated homogeneous equation:

ΔΦ0 � K2Φ0 ¼ 0

where K2 is the diagonal matrix with κ2g ¼ ΣTg =Dg terms. The solution to this

equation in slab geometry with null flux at infinity is given by:

Φ0 ¼ Cg e�κgx
� �

The general solution to the diffusion equation is written as follows in matrix

form:

x

Infinite reflector

)0(+J

)0(−J

Fig. 13.22 Core/infinite

reflector interface (Mondot

model)
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Φ ¼ A Φ0

This expression is inserted in the diffusion equation, thereby resulting in:

�DA ΔΦ0 þ ΣΦ ¼ �DAK2Φ0 þ ΣAΦ0 ¼ 0

Or : D-1ΣA ¼ AK2 ð13:34Þ

It follows that A is the matrix that is the eigenvector of D‐1Σ, and that K2 is the

matrix of eigenvalues. At the interface (x¼ 0), Φ(0)¼AΦ0(0)¼AbCgc, thus:

J 0ð Þ ¼ �D∇Φ 0ð Þ ¼ D A K C ¼ DA K A�1Φ 0ð Þ ¼ ℜΦ 0ð Þ

We deduce that: ℜ¼D A K A‐1

From Eq. (13.34),Σ¼DAK2A�1, therefore:

Σ ¼ D A K2 A-1 ¼ ℜ D�1 ℜ ð13:35Þ

D and Σ cannot be calculated simultaneously. However, if D is imposed, the

matrix Σ can be determined such that the albedo conditions are satisfied. There are

G(G + 1)/2 known albedo values, G(G + 1)/2 cross section values (Σ is a lower

triangular matrix), and G diffusion coefficient values (D is a diagonal matrix).

Hence, there are G degrees of freedom. At this point, the values of D can be chosen

arbitrarily. The Reuss-Nisan method recommends using the values for the baffle

diffusion coefficients, while the Lefebvre-Lebigot model recommends those of the

fuel zone. Mondot recommends an equivalence between the transport and the

homogeneous diffusion calculations using the same spatial mesh (coarse mesh).

Iterations are performed until the albedo values at the interface converge. The

Mondot method can only be applied for albedos in multi-group diffusion theory

without up-scattering. In the 1990s, the CEA generalized this method for other

methods, removing the limitations due to up-scattering for a wider application: this

method is called the generalized BETA method.

13.13 Generalized BETA Method

The generalized BETA14 method consists in calculating the neutron quantities of the

reflector by imposing a neutron source at the interface of the reflector medium for a

departure energy group (Fig. 13.23).

14E. Richebois, C. Fedon-Magnaud, P. Magat, G. Mathonnière, S. Mengelle, A. Nicolas: Deter-
mination of multi-group and multi-operator reflector constants: application to a power reactor
transport calculation, International Conference on the Physics of Nuclear Science and Technol-

ogy, pp. 1018–1025 Long Island, USA (1998).
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The following equation is solved for one departure energy group:

Hg Φg
nþ1 ¼ Sn

g

where:

Sn
g ¼ δ1g; δ2g; . . . ; δGg

� �
is a unit source in the given energy group

Hg is the operator for the core code under consideration (diffusion or transport)

Φg
nþ1 is the flux response to the unit source

The reference albedo values to be retained are those computed by a Monte Carlo

code (TRIPOLI) so as to correctly evaluate the anisotropy due to iron. There are as

many Monte Carlo calculations as the number of energy groups. As for the

foregoing methods, let us consider that there are G degrees of freedom, assuming

that there are G2 albedo values. We must calculate G diffusion coefficients and G2

differential scattering cross sections (assuming that up-scattering is possible for all

energy groups). The authors chose to conserve the total cross section Σt , g. In

diffusion theory, the diffusion coefficient and the differential cross section are

corrected with a fixed removal cross section until convergence towards the refer-

ence albedo. In transport theory, the total cross section is corrected by means of

differential scattering cross sections (within-group or self-scattering), such that the

total removal cross section remains unchanged. The off-diagonal differential cross

sections are also corrected using the fixed removal cross section. This method,

despite being more general, has not been extensively validated on industrial cores.

13.14 Absorption in the Reflector

Through a 1D slab calculation of the radial reflector for a CPY (900 MWe), the rise

of the thermal flux (cut-off at 0.625 eV) in the successive steel layers of the reflector

(baffle/barrel/thermal shield/vessel) can be plotted (Fig. 13.24). The core/reflector

interface is represented by the red vertical line. The fuel is assumed to be homo-

geneous (3.7% enrichment in 235U at a burn-up of 150 MWd/ton). The fluxes are

normalized to 1 emitted neutron per second. It can be seen that the thermal

absorption is very weak in the regions comprising water only. However, it increases

in regions that include steel. After 40 cm of reflector, the fluxes tend towards 0 with

an exponential decay.

x

Reflector

g
nS

Vacuum

Fig. 13.23 Core/infinite

reflector interface

(generalized BETA model)
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13.15 Double-Differential Albedo

(Shultis and Faw 2000, p. 236)

The most general definition of an albedo for a material is the ratio of the emitted

radiation to the incident radiation, whether the radiation comprises a beam of

neutrons or γ rays (Figs. 13.25 and 13.26). If J(Ei, θi) is the incident radiation
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current at energy Ei and θi the angle with respect to the normal x, and J(Eo, θo,ϕo) is

the outgoing current at energy Eo (usually with energy loss), with a polar angle θo
and an azimuthal angle φo, the double-differential albedo is defined as the ratio of

the incoming and outgoing currents:

β Ei ! Eo; θi ! θo;φoð Þ ¼ J Eo; θo;φoð Þ
J Ei; θið Þ

The double-differential albedo represents the complex phenomenon of the path

of a neutron that enters matter and scatters within it to get out at any angle with a

different energy. The advantage of using such albedos is that the reflection of a

given radiation on a surface can be modeled without the need for calculation of

interactions inside the materials themselves. In a radiation transport problem, this

implies significant savings in calculation time, and several applications in radiation

shielding can be considered.15 We have seen that the albedo of neutrons can be

modeled using simple functions since the angular distribution of reflected neutrons

does not depend on the azimuthal angle φo and has the general shape of a cosine

function of the reflection angle θo.
Hence, for thermal neutrons, the law of Eq. (13.36) correctly represents the

distribution of reflected incident thermal neutrons:

nFig. 13.26 “True” path of a

neutron in matter

n

oϕ

iθ
oθ

Fig. 13.25 Definition of

angles that appear in the

double-differential albedo

15Ronald C. Brockhoff, J. Kenneth Shultis: A new approach for the neutron albedo, Nuclear
Science and Engineering, 155, pp. 1–17 (2007). The authors propose empirical albedo laws for

several materials at an equivalent surrounding dose.
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Differential albedos of thermal neutrons:

β θI; θOð Þ ¼ 1

a cos θI þ b

cos θO
π

ð13:36Þ

For fast neutrons, the albedo corresponding to a given cross section Σ (scatter-

ing, dose, etc.) can be defined, either in the form of Eq. (13.36), or as:

Differential albedos of fast neutrons: β θI; θOð Þ ¼ a

cos nθI

cos θO
π

ð13:37Þ

These formulations are less valid for grazing incident angles, for which depen-

dence on the azimuthal angle must be taken into account. Furthermore, the distri-

bution of reflected neutrons has peaks for some values of cosθO. For instance, the
albedos for thermal and fast neutrons (dose cross-sections) for concrete and iron are

given in (Table 13.4).

The use of surface albedos leads to a problem that can be modeled by an optical

approach of neutron reflection by surfaces, via transmission factors that are appli-

cable to neutron guides (tubes in structural elements, etc.) (Squires 1996, p. 11).

Table 13.4 Reflection albedo for concrete and iron (Christian Devillers, Pierre Lafore: Réacteurs
�a caisson de pression en béton précontraint [Reactors with pre-stressed concrete chambers],

technical report CEA-N 504, 1965)

Ordinary concrete Iron

Neutrons at 2200 m/s 1
0:297 cos θIþ1, 33

cos θO
π

1
1:48 cos θIþ1, 88

cos θO
π

Dose current albedo (neutrons at 2 MeV) 0:334
cos θI½ �0:333

cos θO
π

1
1:07 cos θIþ1:43

cos θO
π
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Chapter 14

Heterogeneous Reactors

Industrial reactors have complex geometries, with the nuclear fuel being geomet-

rically separated from the coolant. Furthermore, different materials are used to

allow for mechanical and thermal stresses due to the emitted energy. Hence, the

homogeneous model cannot be applied in all situations, which leads to more

complex neutron models for calculations.

(Meghreblian and Holmes 1960, p. 626)

14.1 Why Is Heterogeneity Desirable?

At this point, it is clear that a homogeneous reactor is the simplest case to calculate.

However, it is not exactly representative of either neutron physics or the technology

employed in energy production. During its lifetime in the reactor, a neutron is

slowed down, reaching epithermal energy where several resonances are

present, especially those of 238
92U, which are abundantly present in the reactor.

Slowing-down in the resonance zone is a critical phase during which almost 30%

of neutrons do not “survive” (the resonance escape probability is about 0.7). If a

homogeneous reactor is considered with a homogeneous solution of fissile nuclides

and moderator, the continuous slowing-down process by collision with the moder-

ator increases the chances of the neutron being captured in resonances. Separating

the moderator from the fuel increases the probabilities that neutrons emitted from

the fuel then slowed down by the moderator will escape resonant capture (Marchuk

1959, p. 167). The reference work, (Kahan and Gauzit 1957), illustrates this effect

by showing the impact of the ratio of concentrations of graphite to natural uranium

in moles on the k1 of a homogeneous solution (Fig. 14.1).

An optimum moderation ratio of Ngraphite/NUranium¼ 400 is obtained, i.e.

kmax
1 ¼ 0:8. Already in 1942, Enrico Fermi was conscious that for a maximum fp of
just 0.6, the infinite multiplication factor k1 of a homogeneous reactor with natural

© Springer International Publishing AG 2017
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uranium (η¼ 1.33 and ε¼ 1.05) mixed with graphite would not bemore than 0.85.

In particular, it should be noted that such a homogeneous reactor cannot become

critical with natural uranium (Blanc 1986, p. 52). A heterogeneous lattice of uranium

pins in a pile of graphite leads to criticality. In 1942, the principle of separating the

nuclear fuel from the moderator led Alvin Weinberg (1915–2006) and EugenWigner

to propose the cooling of uraniumoxide at the same time as themoderation of neutrons

using light water rather than carbon. The neutrons are mostly slowed down in water

and escape capture, and thus return to the fuel pins with an energy at which fission is

possible. Indeed, the lattice size (its pitch) and the fuel geometry have a significant

impact on the achievable multiplication factor (Fig. 14.2).

From a technological point of view, the goal is to transfer heat from the fuel to a

moving coolant, leading quite naturally to a geometrical separation of the fuel from

the moderating fluid. Molten salt reactors, on the other hand, do not operate

according to this principle. These reactors in fact utilize a homogeneous liquid

fuel and the fuel motion itself drains heat out of the core to the exchanger. However,

in fast neutron reactors, neutron energy is conserved as far as possible in order to

avoid resonant capture, and to harness the fission of 238
92U, thus excluding the use of

Fig. 14.1 Reactivity effect of the moderation ratio of a homogeneous solution of natural uranium

and graphite [after (Kahan and Gauzit 1957)]

E0
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Infographie Marguet

s 238U (E) 

Fig. 14.2 Heterogeneous lattice of fuel pins
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moderating materials. Finally, the fuel is enclosed in a cladding that acts as an initial

protective barrier to avoid the dissemination of radioactive products created by fission.

From the outset of the nuclear industry, zirconium proved to be a good compromise

between mechanical aspect and weak absorption properties in light water reactors.

14.2 Gurevich-Pomeranchuk Heterogeneous Resonant

Absorption Theory

(Marchuk 1959, p. 167)

14.2.1 Theoretical Background

In 1943, Gurevich1 (1912–1992) and Pomeranchuk (1913–1966)2 proposed one of

the first theories to allow for the heterogeneity effect of a thermal reactor on the

absorption of a fuel cell using the effective absorption integral (direct

1Isaı̈ Isodorovich Gurevich (1912–1992). This Soviet physicist contributed significantly to the

field of reactor and nuclear physics: phase transitions, nuclear repulsion (with Pevzner), and

resonance integral theory in heterogeneous reactors. He was a member of the Academy of

Sciences of the USSR as of 1968.
2Isaak Yakovlevich Pomeranchuk (1913–1966) was a Soviet physicist. He obtained his degree

from the Institute of chemical technology of Moscow, where he was under the supervision of

Alexander Shalnikov. Later on, he worked in Kharkov with Lev Landau and A. Akhiser. In 1937,

he followed Landau to the Kapitza Institute and obtained his PhD in 1938. As of 1943,

Pomeranchuk and Gurevich worked in the frame of the laboratory 2 of theoretical physics in the

Soviet atomic bomb project under Kurchatov. In 1944, he predicted synchrotron radiation and the

limit of 1017 eV for the energy of electrons in cosmic rays. With Akhiser, he developed the theory

of absorption in a homogeneous medium, which was published in 1947 and used for the construc-

tion of the first Russian reactors. He founded the Institute for Theoretical and Experimental

Physics (ITEP) with Lev Landau. He is famous for the Landau-Pomeranchuk-Migdal effect for
the reduction of the Bethe-Heitler Bremmstrahlung and pair-production cross sections at high

energies (or for very dense matter).
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measurements) in the framework of a Soviet uranium-graphite reactor program to

produce plutonium for an atomic bomb [it was not until 1955 that this theory was

published in (Atoms for peace 1955, volume V, pp. 528–534)]. From an educational

and historical viewpoint [this theory is seldom described except in (Dresner 1960,

p. 66)], some key elements of this model are recalled here. We consider a cell with

fuel surrounded by a moderator where neutron scattering by heavy nuclides is

ignored, to account only for scattering by light nuclides in the moderator. This

hypothesis assumes a moderate fuel size compared to that of the moderator. Let us

consider a fuel slab of thickness d and surface area S that has an incident neutron

flux ofΦ(E, x¼ 0) perpendicularly. The fuel scattering cross section is composed of

a resonant cross section Σ R
x and a potential cross section Σp. It is assumed3 that the

fuel slab is thin enough for Σpd< < 1. The neutron flux in the slab decays

exponentially as:

Φ E; xð Þ ¼ Φ E; 0ð Þe�Σtx

The number of neutrons absorbed in the slab per unit energy can be calculated

as:

p Eð Þ ¼ SΦ E; 0ð Þ
ðx¼d

x¼0

Σae
�Σtxdx ¼ SΦ E; 0ð ÞΣa

Σt
1� e�Σtd
� �

In the vicinity of the jth resonance, the amount of neutrons absorbed by that

resonance is obtained by integrating over the energy range “around” the resonance.

For instance, by integrating over two resonance widths according to the Breit-

Wigner model:

aj ¼
ðEjþΓj

Ej�Γj

p Eð ÞdE � SΦ Ej; 0
� �Σa Ej

� �
Σt Ej

� � ðEjþΓj

Ej�Γj

1� e�Σtd
� �

dE

¼ SΓjΦ Ej; 0
� �Σa Ej

� �
Σt Ej

� � ðþ1

0

1� e
� Σ

j
t

1þx2
d

 !
dx

It is assumed that the flux and the ratio of cross sections vary slowly in the range

[EJ�Γj,EJ+Γj], and a Breit-Wigner model for the total cross section is used (the

integral is extended from 0 to infinity as per the justification given in the chapter on

the Doppler effect). Finally, we obtain:

3V. A. Kremnev and A. A. Luk’yanov, Space distribution of neutron resonance absorption in a
block, Atomnaya Energiya, Vol. 14, No 2, pp. 216–217, 1963.
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Absorption in a resonance for a slab geometry:

aj ¼ SdΓjΦ Ej; 0
� � πΣa Ej

� �
2

2

πΣt Ej

� �
d

ðþ1

0

1� e
� Σ

j
t
d

1þx2

 !
dx ð14:1Þ

which is useful for the following function that can be calculated with Bessel

functions:

f βð Þ ¼ 2

π β

ðþ1

0

1� e
� β

1þx2

� �
dx ¼ e�

β
2 I0

β

2

� �
þ I1

β

2

� �� �

Analysis of this function shows that f(β)¼ 1 +O(β) when β< < 1 and that:

f βð Þ ¼ 2ffiffiffiffiffiffi
πβ

p 1þ O
1

β

� �� �
when β> > 1. At low values of β, the separation between resonances in this model

is β such that β ¼ Σ j
t d << 1 and for large values of β such that β ¼ Σ j

t d >> 1.

The previous approach can be extended to a fuel of any shape by assuming an

isotropic fluxΦ ~r; Ω
!
;E

� �
¼ Φ E; 0ð Þ= 4πð Þ that enables calculation of the number of

incident neutrons on a surface area dS of normal ~n, i.e. Ω
!
:~ndSΦ E; 0ð Þ= 4πð Þ.

Similar reasoning leads to the calculation of the absorption per unit solid angle

for a given resonance along a linear path ‘ through the fuel as:

aj ~r; Ω
!� �

¼ Ω
!
:~ndS
4π ΓjΦ Ej; 0

� � π ‘Σa Ej

� �
2

2

πΣt Ej

� �
‘

ðþ1

0

1� e
� Σ j

t ‘
1þx2

 !
dx

¼ Ω
!
:~ndS
8

ΓjΦ Ej; 0
� �

‘Σa Ej

� �
e�

Σ j
t ‘
2 I0

Σ j
t ‘

2

 !
þ I1

Σ j
t ‘

2

 ! ! ð14:2Þ

The total absorption is obtained by integrating over the solid angles and over the

external surface of the fuel:

aj ¼
ð
dS

ð
~Ω

pj ~r; Ω
!� �

dΩ
!

¼ V
πΓj

2
Φ Ej; 0
� �

Σa Ej

� � 1

4πV

ð
dS

dS

ð
~Ω

Ω
!
:~n

			 			 ‘e�Σ
j
t
‘

2 I0
Σ j
t ‘

2

 !
þ I1

Σ j
t ‘

2

 ! !
dΩ
!
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where ‘ depends only on the direction Ω
!

and on the volume, V being the volume

of the fuel:

V ¼ 1

4π

ð
dS

dS

ð
~Ω

Ω
!
:~n

			 			 ‘dΩ!

For a unit slowing-down density, the flux can be expressed as:

Φ Ej; 0
� � ¼ 1

ξΣs E

In the previous equation, ξΣs corresponds to the complete cell (fuel + moderator).

Since slowing down in the cell is due primarily to the moderator, we have:

ξΣsVcell � ξΣM
s VMod

Equation (14.2) may be rewritten such that the previously-defined function f(β‘
0
)

is included and with the notations ‘
0 ¼ d‘ where d is the characteristic fuel thickness

(Table 14.1):

f β‘
0

� �
¼ 1

4πV

ð
dS

dS

ð
~Ω

Ω
!
:~n

			 			 ‘e� Σ j
t ‘

0

2 I0
Σ j
t ‘

0

2

 !
þ I1

Σ j
t ‘

0

2

 ! !
d~Ω

aj ¼ V
πΓj

2
Φ Ej; 0
� �

Σa Ej

� �
f Σ j

t d
� �

8>>>><>>>>:
Table 14.1 Relevant quantities for slab and cylindrical geometries

~Ω:~n
		 		 ‘’ dΩ f(β)

Slab geom-

etry

μ¼ cos θ

cosθ 1
cos θ

sinθ dθ
f βð Þ ¼ Ð1

0

e�
β
2μ I0

β
2μ

� �
þ I1

β
2μ

� �� �
dμ

Cylindrical

geometry

sinθ cosφ cosφ
sin θ sinθ dθ dφ

f βð Þ ¼ 4
π

Ðπ2
0

cos 2φdφ �

ðπ2
0

e�
β
2
cosφ
sin θ I0

β

2

cosφ

sin θ

� �
þ I1

β

2

cosφ

sin θ

� �� �
sin θdθ
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The absorption summed over all the resonances is given by:

A ¼
X
j

aj ¼
X

j such thatΣ j
t d << 1

j such thatΣ j
t d >> 1

V
πΓj

2
Φ Ej; 0
� �

Σa Ej

� �
f Σ j

t d
� �

In the case in which β ¼ Σ j
t d << 1, f Σ j

t d
� �

� 1, while for the other case:

f β‘
0� �

¼ 2ffiffiffiffiffiffi
πβ

p 1ffiffiffiffi
‘
0p* +

1þ O
1

β‘
0

� �� �

using the mean value for the inverse of the square root of the dimensionless

chord:

1ffiffiffiffi
‘
0p* +

¼ 1

4πV

ð
dS

dS

ð
~Ω

Ω
!
:~n

			 			 ‘ 1ffiffiffiffi
‘
0p dΩ
!

Thus, the following quantity can be computed by substituting the Taylor expan-

sions of f in the equation for a:

A ¼ V

ξΣs

X
j such thatΣ j

t d << 1

π Γj

2Ej
Σa Ej

� �

þ 1ffiffi
‘

p

 � X

j such thatΣ j
t d >> 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πΣt Ej

� �
Γ2
j

q
Ej

Σa Ej

� �
Σt Ej

� �
usually expressed in terms of the effective resonance integral, through the

resonance escape probability p:

A ¼ 1� p ¼ NUV

ξΣsVMod
Ieff

where NUV is the total number of absorbing atoms of uranium 238 in the cell

volume.
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14.2.2 Effective Resonance Integral

(Meghreblian and Holmes 1960, p. 640)

The effective resonance integral of uranium 238 can be written in the conven-

tional form:

Ieff ¼ aþ bffiffiffi
d

p

By identification, the coefficients a and b in the expression can be determined by

substituting the macroscopic cross sections by NUσ:

a ¼
X

j such thatΣ j
t d<<1

σa Ej

� �
σt Ej

� � π σt Ej

� �
Γj

2Ej
b

¼ 1ffiffiffiffiffiffiffi
NU

p 1ffiffiffiffi
‘
0p* + X

j such thatΣ j
t d>>1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π σt Ej

� �
Γ2
j

q
Ej

σa Ej

� �
σt Ej

� �
In the 1950s, the resonances of uranium 238 were not well known, and coeffi-

cients a and b were evaluated experimentally. For cylindrical uranium metal rods,

we have: acyl¼ 5 10�24 cm2 and bcyl ¼ 9:5 10�24 cm
5=2 , leading to determination

of Ieff in cm2 by taking d in cm. For a non-cylindrical geometry:

Ieff ¼ acyl þ
1ffiffiffi
‘
0p


 �
1ffiffiffi
‘
0p


 �
cyl

bcylffiffiffi
d

p

For a slab, the correction coefficient in front of
bcylffiffiffi
d

p is equal to 0.685.

This type of correlation for the effective resonance integral of uranium 238 has

been developed in each country initiating a nuclear program in the 1950s under two

generic forms:

Ieff barn½ � ¼ Aþ B
S

M
or Ieff barn½ �

¼ Cþ D

ffiffiffiffiffi
S

M

r
depending on the individual country,
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where S/M is the fuel surface-to-volume ratio in cm2/g (Ligou 1982, p. 110). The

coefficients A and B do not depend on the fuel geometry but vary with the fuel

nature: oxide or metal (Heavy water lattices 1960, p. 81). Hence, for Magnox

reactors, (Poulter 1963, p. 640) gives:

Ieff barn½ � ¼ 5:65

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

X
i2moderator

Niσs, i
NUσs,U

s
þ 40:7

S cm2½ �
M g½ �

which is included in the resonance escape factor calculation:

p ¼ e

�� VU NU IeffP
i2moderator

Vi Ni ξ σSð Þi

The Hellstrand formula (1962) for metallic uranium 238 at 293 K states that4:

I293Keff barn½ � ¼ 2:81þ 24:7

ffiffiffiffiffiffiffiffiffiffi
S cm2½ �
M g½ �

s

which is corrected with the fuel temperature effect (Doppler effect) by:

I Teff ¼ I293Keff 1þ 0:01 0:51þ 0:5
S

M

� � ffiffiffiffiffiffiffiffi
T K½ �

q
�

ffiffiffiffiffiffiffiffi
293

p� �� 

14.3 Modeling the Pin Flux

The reactor core usually consists of hundreds, or even thousands, of elementary

heterogeneous cells with fuel in a given form (rods, slabs, balls, etc.). The latter is

surrounded by a cladding that prevents radioactive materials from disseminating in

the nuclear facility, with a coolant. The role of the coolant is to transfer heat from

the fuel towards the energy production system. For thermal neutron reactors, the

coolant can itself be a moderator, as in the case of PWR, or the moderator can be

separate, as in the case of UNGG graphite-gas reactor. We will consider the flux

calculation in an elementary heterogeneous cell.

4Alain Guyader: Etude expérimentale de l’effet Doppler de l’uranium dans les milieux
multiplicateurs �a neutrons thermiques et rapides [Experimental study of the Doppler effect in

uranium in multiplying media with thermal and fast neutrons], PhD thesis, University of Orsay

(1970). This thesis contains few theoretical aspects, focusing instead on experimental

measurements.
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14.3.1 First-Collision Probability

The first-collision probability method was discussed in the chapter on the

Boltzmann equation. The pin flux in a lattice is illustrated by the case of PWR
assemblies. The flux at a given position in a medium with patterns j is given by:

Φ ~rð Þ ¼
X
j

ð
Vj

qj
~r0
� � e�Σt j ‘ ~r;~r0ð Þ

4π ~r �~r0j j2 d r
0!

where qj
~r0 Þ ¼ Σs, j

~r0 ÞΦj
~r0 Þ þ Sj ~r0 Þ

����
is the source. The reaction rate in the

volume Vi is hence equal to the following, after integration over this volume:

ð
Vi

Σt, i ~rð ÞΦ ~rð Þd~r ¼
X
j

ð
Vi

d~r Σt, i ~rð Þ
ð
Vj

qj
~r0
� � e�Σt j ‘ ~r;~r0ð Þ

4π ~r �~r0j j2 d
~r0

Thus, the first-collision probability ~Pj, i in volume Vi produced by neutrons

emitted isotropically by source qj in volume Vj may be defined as follows:

~Pj, i ¼

Ð
Vi

d~r Σt, i ~rð Þ Ð
Vj

qj
~r0
� �

e�Σt j ‘ ~r;~r 0ð Þ
4π ~r�~r 0j j2 d

~r0Ð
Vj

qj ~rð Þd~r

Under the hypothesis of homogeneous zones in which quantities are assumed to

be constant in each zone, the following equation may be written:ð
Vj

qj ~rð Þd~r ¼
ð
Vj

Σs, j ~rð ÞΦj ~rð Þ þ Sj ~rð Þ� �
d~r ¼ Σs, jΦj þ Sj

� �
Vj

This is simply another method of defining mean flux:

VjΦj ¼
ð
Vj

Φj ~rð Þd~r

and the average values:

VjΣs, jΦj ¼
ð
Vj

Σs, j ~rð ÞΦj ~rð Þd~r,

VjSj ¼
ð
Vj

Sj ~rð Þd~r and

ð
Vi

Σt, i ~rð ÞΦ ~rð Þd~r ¼ ViΣt, iΦi
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The discretized equation that relates the fluxes in several zones is:

ViΣt, iΦi ¼
X
j

~PjiVj Σs, jΦj þ Sj
� �

The probability ~Pj, i includes a source term dependent on the flux, which is the

quantity being sought. It may be assumed that zoning is fine enough for the sources

to be uniform. In this case, the usual first-collision probabilities Pj , i are obtained by

simplifying by qj, which has the same definition as ~Pj, i except that the neutrons are

emitted uniformly in volume Vj:

First-collision probability in i for a neutron emitted isotropically in j:

Pj, i ¼
Σt, i

Ð
Vi

d~r
Ð
Vj

e�Σt j ‘ ~r;~r0ð Þ
4π ~r�~r 0j j2 d r

0!

Vj
ð14:3Þ

A set of zones is enclosed by a surface S, for instance the concentric zones of a
fuel pin that are delimited by the outer surface of the pin. The probability of a

neutron emitted in zone i reaching surface S is calculated as the complementary to

one of the sum of probabilities of the neutron undergoing a collision in all the zones

(Fig. 14.3):

Pi,S ¼ 1�
X
j2S

Pi, j

The reciprocity theorem relates this probability to that for a neutron entering

uniformly and isotropically through surface S (current is proportional to dS ~Ω:~n) to
undergo its first collision in zone i:

PS, i ¼ 4Vi

S
Pi,SΣt, i

1

i

S

n
n

dS

M
c

Fig. 14.3 Zoning for a

fuel pin
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The probability of a non-collided trajectory in the geometry being considered

(the rod in the above example) is defined as:

PS,S ¼ 1�
X
j2S

PS, j

14.3.2 The Amouyal-Benoist-Horowitz (A-B-H) Theory

(Barjon 1993, p. 579)

In 1956, this team that founded the neutron physics field in France proposed5 a

new calculation method for thermal utilization factor f (the probability of neutrons

being absorbed in the fuel) of a UNGG type cell, which forms the basis for methods

currently used for heterogeneous reactor calculations. This approach accounts for

the void channel (which contains carbon dioxide gas) in the UNGG cell in an

ingenious manner. The first pioneering work in the field dates back to Behrens

(1949)6 and Newmarch in 1955, who proposed that air channels be taken into

account in British graphite-gas reactors7 using calculations in cylindrical geometry.

The ABH method significantly improved the precision of these calculations. Sim-

ilar work was carried out by Grant (1958) to allow for the streaming effect in gas

channels,8 by generalizing Behrens’ work through analytical corrections of the

radial and longitudinal diffusion coefficients (Fig. 14.4).

14.3.2.1 Classical Thermal Utilization Factor Theory

The ratio of the mean flux in the moderator to that in the fuel is called the thermal
(flux) disadvantage factor (Etherington 1957, pp. 6–77; Meghreblian and Holmes

1960, p. 645):

5Albert Amouyal, Pierre Benoist: Nouvelle méthode de détermination du facteur d’utilisation
thermique d’une cellule [A new method for determining the thermal utilization factor of a cell],

Technical report CEA-571, 1956 and the same authors with Jules Horowitz in: Journal of Nuclear

Engineering, 6, p79 (1957), and 23, p. 58 (1965).
6D.J. Behrens: The effects of holes in a reacting material on the passage of neutrons, Proc. Phys.
Soc., 62, 607 (1949). See also: The migration length of neutrons in a reactor, UKAEA report—

Atomic Energy Research Establishment, Harwell, R/R.877.
7D.A. Newmarch: A modification to the diffusion theory of the thermal fine structure in a reactor to
account for the effect of air channel, Journal of Nuclear Energy, Vol. 2, pp. 52–58 (1955).
8I.S. Grant: Neutron streaming in gas-cooled reactors, Report UKEA—Atomic Energy Research

Establishment, Harwell, R/R.2568, October 1958. These declassified reports were offered for sale

at the time.
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ζ � ΦM

Φf

The thermal utilization factor can be related to the thermal disadvantage factor

using (Lamarsh and Baratta 2001, p. 313; Duderstadt and Hamilton 1976, p. 413):

f ¼ Σ c
a

Σ f
a þ Σm

a
Vm

Vf
ζ

In a homogeneous reactor, the thermal utilization factor is readily calculated

using the following formula (Littler and Raffle 1957, p. 113):

1

f
� 1 ¼ Σm

a

Σ f
a

� absorption in the moderator

absorption in the fuel

If the medium is heterogeneous with two zones—fuel f and graphite moderator

m—by disregarding the gas channel and the cladding (Fig. 14.5 without graphite or

cladding), this definition may be extended to the heterogeneous case:

Valeur exacte
Valeur calculée par P3
Valeur asymptotique

COURBES DE λ EN FONCTION DE c Σmt

λ

cæmt

(reproduction à grande échelle de 1a figure du bas de 1a page 34)

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6
1 2 3 4 5

Fig. 14.4 Report No 571 from ABH contains a diagram (often missing since it was printed on a

separate sheet of paper) that reproduces on graph paper the extrapolation length λ in terms of cΣmt,

where c is the inner radius of the graphite moderator and Σmt� 0.3925 cm�1 the total cross

section. The asymptotic value of 0.71 for the Milne problem is found here. The value of λ is used in
the calculation of the 1� f factor. (The Marguet collection)
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1

f
� 1 ¼ VmΣm

a Φm

VcΣ c
aΦc

� absorption in the moderator

absorption in the fuel

� VmΣ m
a

VfΣ c
a

Φ að Þ
Φf|ffl{zffl}
G

þVmΣ m
a

VfΣ c
a

Φm � Φ að Þ
Φf|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

X

The coefficient G reflects the fact that the flux decreases in the fuel and X is an

excess of captures dependent solely on the flux spectrum in the moderator, using the

notations of Guggenheim and Pryce.9 These two coefficients can be calculated in

the classical theory of thermal scattering in a cylindrical medium where the thermal

neutron source originates from the graphite moderator:

ΔΦc�Σa,c

Dc
Φc¼0

ΔΦm�Σa,m

Dm
Φm¼� q

Dm

8><>: with:
κ2c�

Σa,c

Dc

κ2m�
Σa,m

Dm

8><>: and

Φc að Þ¼Φm að Þ
�Dm

∂Φm

∂r

			
a
¼�Dc

∂Φc

∂r

			
a

�Dm
∂Φm

∂r

			
b
¼0 and�Dc

∂Φc

∂r

			
0
¼0

8>><>>:
With all calculations done, we obtain:

G ¼ κca

2

I0 κcað Þ
I1 κcað Þ

X ¼ κm b2 � a2
� �
2a

K0 κmað Þ þ K1 κmbð Þ
I1 κmbð Þ I0 κmað Þ

K1 κmað Þ þ K1 κmbð Þ
I1 κmbð Þ I1 κmað Þ

� 1

8>>>>>><>>>>>>:

Fuel f

Moderator m

Surface S 
Infographie Marguet

Fig. 14.5 Neutron density

in the UNGG cell [from

(Littler and Raffle 1957,

p. 105)]

9E. Guggenheim, M. Pryce, Nucleonics, 11, 2–50 (1953).
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14.3.2.2 A-B-H Theory for the Thermal Utilization Factor10

The principle consists in representing a channel in a UNGG reactor as a fuel pin of

volume Vf surrounded by a “void” channel of carbon dioxide gas (neutron collisions

10Albert Amouyal read mathematics at BSc level at the Faculty of Sciences in Algiers

and obtained an engineering degree from the Ecole Supérieure d’Electricité. He joined

the Commissariat �a l’Énergie Atomique in 1948 in the Mathematical Physics Department headed

by Jacques Yvon, and became head of the Information Technology Department there. In 1972,

he was appointed the General Director of the Compagnie Internationale de Services en

Informatique (International Company in Information Technology Services, abbreviated as CISI

in French—a subsidiary of the Commissariat �a l’Énergie Atomique). We reproduce a long but

interesting section of an article by Amouyal on the introduction of computers in reactor physics at

the CEA: “Initially, the (solitary) work was not rewarding and was restricted to the reading of rare
articles published in scientific journals, and contacting some companies or persons—namely
M. Couffignal, who was in charge of the subject matter at the Centre National de la Recherche
Scientifique (CNRS—National Center for Scientific Research). These contacts were increasingly
disappointing, and very discouraging, especially as the needs of the Mathematical Physics
Department were met by its calculation studies. The latter employed four qualified persons,
who, using Friden calculating machines, had only to solve simple problems for physicists or
engineers, thereby illustrating the theoretical models of the time. Hence, in neutron physics, it
was common practice to solve most problems in diffusion theory using models having one spatial
dimension (slab, spherical or infinite cylindrical geometries), with two or three distinct physical
media and with one or two energy groups. The most complex cases rarely led to more than a dozen
linear algebra equations involving a dozen unknowns - and yet, at that time, this was considered
as being a very difficult task by the calculations department. The first significant contact
with the world of computers occurred during a summer school organized in 1954 by
the Mathematical Laboratory of the University of Cambridge (United Kingdom), directed by
Professor Maurice V. Wilkes. [Amouyal], along with J. Carteron, then at Electricité de France
(EDF), was first introduced to programming on the EDSAC. This initiation was followed by
a placement in Professor Wilkes’s laboratory lasting several months during the first semester
of 1955. [Amouyal] then had the opportunity to deepen his knowledge—thanks especially
to the late Stanley Gill and David Wheeler- sufficiently to consider that it was high time that
the Mathematical Physics Department should embrace these new technologies by purchasing one
of the calculation machines announced by European manufacturers. After analysis, the CEA chose
to buy a machine from MERCURY, sold by the British company Ferranti—which seemed very
interesting from a technical point of view and in terms of its excellent performance/price ratio.
One of these machines was ordered in 1955. At the same time, it was decided to set up a team
of specialized persons and to hire young engineers with high-level qualifications. In 1955, two
mathematicians were hired immediately after their graduation from the Ecole Normale Supé
rieure, Rue d’Ulm (the street in which the ENS is located) and sent to England for a one-year
training course: one was sent to Manchester University and the other to the University
of Cambridge. As of 1956, the specialized team of the Mathematical Physics Department, at that
time headed by Jules Horowitz, was composed of twenty persons with a high-level scientific
background, but with training that was improvised using the available means for programming
or numerical analysis methods applied to computers—French universities did not provide any
such training. However, Ferranti had some problems setting up the MERCURY and could not
honor the contractual delivery agreements. Thus, under pressure due to the mandatory needs
of the Department and the regular shifts in delivery dates of the MERCURY, an IBM650
was ordered hastily and installed at the Nuclear Studies Center in Saclay in July 1957. The
MERCURY was finally delivered in December 1957. With these machines, the specialized team
of the Mathematical Physics Department was in charge of their operations and of programming
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in that channel are ignored), itself surrounded by a graphite moderator of volume

Vm. The innovative idea was to use methods incorporating elements of neutron

transport (collision probabilities) and of diffusion. Assuming that neutrons are not

slowed down to thermal energy in the fuel, slowing down on light nuclides

(oxygen) in the fuel can be disregarded. Thus, it is assumed that the graphite

moderator is a uniform source of thermal neutrons and that this source is zero in

the fuel. Furthermore, capture reactions in the moderator are not considered.

Thermal neutron distribution is calculated using elementary diffusion theory with

a rise in uniform flux at the graphite surface. This rise does not depend on the cell

the studies to be executed. They were the only ones with the know-how, and thus were the only ones
to have access to this equipment. Hence, they were organized into several application sub-groups
with one of sub-groups being dedicated to the base programs delivered by the manufacturers,
to designing basic sub-programs, and to operating the machines. The application sub-groups were
required to design programs to solve problems submitted by the engineers and physicists
with the Department on one hand, and more straightforward problems of general value
on the other.

The majority of requests came from the neutron physicists in the department, while the others—
very few—emanated from the theoretical physics department. The IBM 650, which had a relatively
limited capacity, was very useful and was successfully utilized for numerous problems that were
too complex for the calculation team. For instance, there were cases of neutron physics problems
in diffusion theory with one space variable, but with a nearly infinite number of media, and two
neutron groups: this progress was greatly appreciated. MERCURY, was far more powerful than
the IBM 650, and opened up new possibilities with the solution of problems involving two spatial
variables. However, because of its fragile nature, calculations were restricted to under two hours,
otherwise the poor technical inspector responsible for maintenance was in a panic since
the probability of unpredictable stoppage of the machine was no longer negligible, and this
could lead to appreciable worsening of the monthly breakdown rate, resulting in penalties
for the constructor. The operation of the machine was very “low-tech” and simple. Indeed,
the working day was essentially dedicated to tests, and each engineer executed his calculations
himself on the computer, directly at the workstation of the IBM 650 or the MERCURY. The
duration of these calculations was highly unpredictable, as the schedules could only be very
approximate. Time loss could not be avoided and affected the cost-effectiveness of the machines,
but it was difficult to proceed otherwise as calculations could not be batch-processed at the time.
Since it was impossible to answer all the programming requests from all the departments within
a reasonable time, the specialized team from the Mathematical Physics Department set
up an introductory programming course for all those interested. The latter was simplified
on MERCURY thanks to a simple language (the “Autocode”), which was very successful. This
led to an increase in the number of users, hence in the number of requirements for calculations.
This situation resulted in saturation of the MERCURY machine, but in 1959, the Department
of Military Applications bought a new machine, an IBM 704, with 30% of its time being given over
to the civil sector of the CEA. This allowed for more time in the acquisition of a new machine. The
study of this new project began in 1959, and two choices quickly emerged: a GAMMA 60 from
the Bull Company, and an IBM 7090. The GAMMA 60 had very innovative features but was not yet
ready for use. It was reminiscent of the situation of the MERCURY machine bought previously,
and an IBM 7090 was ordered in 1960 and installed in 1961 in a new building, constructed
especially for the occasion, at Saclay.”

Extract from “Deuxième Colloque sur l’Histoire de l’Informatique en France” (Second confer-

ence on the history of computing in France), Papers edited by Philippe Chatelin and Pierre-E.

Mounier-Kuhn, Conservatoire National des Arts et Métiers, Paris, March 1990; 2 vol. (366+368

pages + 21p. additional) ISBN 2-9502887-3-1, pp. 11–28.
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shape, and takes into account the anisotropy around the fuel pin. Since the migra-

tion area of neutrons in graphite is much larger than the pitch between the channels,

these previous hypotheses remain acceptable. Finally, it is also assumed that the

cell is in an infinite lattice (with no neutron current between the cells), a hypothesis

employed for any lattice calculation. The following notations, adapted from a

presentation of P. Benoist’s work,11 are used (Photo 14.1):

Pi , j is the probability of a neutron emitted uniformly and isotropically in medium

I undergoing its first collision in medium j.
P∗
i, j is the probability of a neutron emitted uniformly and isotropically in medium

i being absorbed in medium j.

Pþ
i, i is the probability of a neutron emitted uniformly and isotropically in medium

i being absorbed in medium i without leaving the cell (self-absorption).

Let S be a convex surface surrounding the fuel pin (for example, the surface of

the rod itself, Fig. 14.6):

Pþ
f ,S ¼ 1� Pþ

f , f is the probability for a neutron emitted uniformly and isotropically

in the fuel medium reaching surface S and exiting the fuel. This is the same as the

multi-collision leakage probability denoted as PVS in the chapter on the

Boltzmann equation.

Pþ
S, f is the probability of a neutron emitted uniformly and isotropically on surface

S being absorbed in the fuel medium without crossing S again.

P∗
S, f is the probability of a neutron emitted uniformly and isotropically on surface

S being absorbed in the fuel medium, possibly by crossing S again.

By definition, the thermal utilization factor which represents the probability of a

neutron being efficient, i.e. of it being absorbed in the fuel, is written as:

f ¼ P∗
m, f

within the hypothesis that the sources located in the moderator are isotropic and

uniform in one energy group theory (fast neutrons are emitted in the fuel and are

slowed down to create a thermal slowing-down source in graphite), and assuming

that there is no leakage thanks to reflective boundary conditions with modeling of

an infinite lattice.

11P. Benoist: Théorie du coefficient de diffusion des neutrons dans un réseau comportant des
cavités [Neutron diffusion coefficient theory in a lattice with cavities], PhD thesis (1964) and CEA

technical report CEA-R 2278 (1964).
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The approach of Amouyal, Benoist and Horowitz (ABH model) involves con-

sidering the absorption of monokinetic neutrons in the fuel as a negative source

(this approach was previously discussed in the Galanin model) and computing the

outgoing probability for these hypothetical neutrons in transport theory.

f ¼ P∗
m, f ¼

Σ f
a

Vm

ð
Vm

dVm

ð
Vf

dVfG rm
�! ! rf

!� �

whereG rm
�! ! rf

!� �
is the Green function of the transport operator, i.e. the flux at a

given position in the fuel due to a unit source placed in the moderator at rm
�!. In

monokinetic theory only, the reciprocity theorem can be used such that:

Photo 14.1 CEA Report No. 571 by A. Amouyal and P. Benoist, under the supervision of

J. Horowitz, is often cited in several reference works. Published in 1956 with 34 typewritten

pages, it is considered a forerunner of the heterogeneous collision probability method, Pi , j. (The

Marguet collection)
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G rm
�! ! rf

!� � ¼ G rf
! ! rm

�!� �
Hence, P∗

f ,m is introduced in the equation as:

f ¼ Σ f
a

Vm

Vf

Σ m
a

Σ m
a

Vf

ð
Vm

dVm

ð
Vf

dVfG rf
! ! rm

�!� � ¼ Σ f
a

Vm

Vf

Σ m
a

P∗
f ,m

It may be seen that P∗
f ,m � Pþ

f ,S P∗
S,m, i.e. the product of the leakage probability

and the conditional probability P∗
S,m of a neutron leaking from the fuel being

absorbed in the moderator. Strict equality does not occur since outgoing neutrons

from surface S are not systematically isotropic. Thus, it could be written that P∗
f ,m

¼ Pþ
f ,S P#

S,m where P#
S,m is the probability of a neutron emitted non-uniformly from

S being absorbed in the moderator. In a sense, P#
S,m � 1� f . In fact, P#

S,m < 1� f

since a neutron entering the moderator from surface S has less chance of being

absorbed than a neutron emitted by a uniform source in the moderator.

where:

f ¼ Σ f
a

Vm

Vf

Σ m
a

Pþ
f ,S P#

S,m ¼ Σ f
a

Vm

Vf

Σ m
a

Pþ
f ,S 1� fð Þ � 1� f � P#

S,m

� �� �

Center of fuel rod

Cladding (Al)

CO2 Graphite

UO2

Cell boundary: reflective

conditions 

a c b

Diffusion

flux 

Corrected

A-B-H

flux

Flux from

exact

transport  

Infographie Marguet

Fig. 14.6 UNGG channel
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that is:

Amouyal-Benoist-Horowitz formula:

1

f
� 1 ¼ VmΣm

a

VfΣ f
aP

þ
f ,S

þ 1� f � P#
S,m

f
ð14:4Þ

Assuming P#
S,m � 1� f , an approximation for (1� f )/f is obtained:

1

f
� 1 � VmΣ m

a

VfΣ f
aP

þ
f ,S

This approximation can be improved by assuming that P#
S,m ¼ P∗

S,m and

calculating:

P∗
S,m ¼ Pþ

S,m þ 1� Pþ
S,m

� �
PfSSm

which means that the probability of an outgoing neutron exiting the fuel through

S being captured in the moderator is equal to the probability of direct capture

without passing through S, added to the probability of passing through S again

before being captured. A new capture probability PfSSm is defined for a neutron

emitted from the fuel and having crossed S at least twice. Following the same

reasoning (Fig. 14.7):

1� f ¼P∗
m,m ¼Pþ

m,mþ 1�Pþ
m,m

� �
PmSm or even: f ¼ 1�Pþ

m,m

� �
1�PmSm

� �
where PmSm is the capture probability in the moderator for a neutron emitted in the

moderator and having crossed S for the first time. The probabilities PfSSm and PmSm

differ only in terms of the angular distribution of the neutrons being considered and

are thus very close.

PfSSm

PfS

PmSm

S
Infographie Marguet

Fig. 14.7 Definition of

probabilities in A-B-H
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1� f � P#
Sm

f
¼

Pþ
m,m þ 1� Pþ

m,m

� �
PmSm�P

þ
S,m

� 1� Pþ
S,m

� �
PfSSm

1� Pþ
m,m

� �
1� PmSm

� �
¼

1� Pþ
S,m

� �
1� PfSSm

� �� 1� Pþ
m,m

� �
1� PmSm

� �
1� Pþ

m,m

� �
1� PmSm

� �
Assuming that these neutrons all originate from the moderator, it may be consid-

ered that isotropic scattering after several collisions has “erased” the history and that

PfSSm¼PmSm. Even if the angular distribution of neutrons leaving the fuel is highly

anisotropic, the impact on capture in the moderator is insignificant. It can also be seen

that even though capture in the rod depends strongly on the angular distribution of

incoming neutrons, the probability Pþ
S,c can be justifiably employed. Thus:

1� f � P#
Sm

f
¼ Pþ

m,m � Pþ
S,m

1� Pþ
m,m

¼ 1� Pþ
m,S � Pþ

S,m

Pþ
m,S

Probabilities Pþ
m,S and P

þ
S,m can be related. Let us consider a moderating medium

that fills up the whole space and in which thermal neutron sources are constant. The

flux of this theoretical case is flat and isotropic. If in this medium, a zone of volume

Vm surrounded by a surface S, is delimited, the absorption rate integrated in this

volume is equal to that induced by neutrons not exiting through the surface, and by

those entering through the surface on which the angular current is equal to Φ/4, as
we saw in the section on diffusion theory:

VmΣ
m
a Φ ¼ VmΣ

m
a ΦPþ

m,m|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
in the volume

þ S
Φ

4
Pþ
S,m|fflfflfflffl{zfflfflfflffl}

from the surface

Thus:

Pþ
S,m ¼ 4Vm

S Σ m
a 1� Pþ

m,m

� � ¼ 4Vm

S Σm
a P

þ
m,S

With the same reasoning: Pþ
S, f ¼ 4Vf

S Σ f
a P

þ
f ,S. Hence, the corrective factor in the

A-B-H formula is equivalent to a fuel-outgoing probabilityPþ
f ,S calculation after any

number of collisions. If the flux is uniform (i.e. the neutrons scattered in the fuel

have uniform distribution):

Pþ
f ,S ¼ Pf ,S|{z}

first collision

þ Σs, f

Σt, f
Pf , f P

þ
f ,S|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

scattered neutrons

Thus:

Pþ
f ,S ¼

1� Pf , f

1� Σs, f
Σt, f

Pf , f
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The probability Pf , f is calculated analytically for a fuel pin of radius R by

integration of Bessel functions:

Pf , f Rð Þ ¼ 1� 2RΣt, f

ðþ1

x¼RΣt, f

I1 xð ÞK1 xð Þ
x2

dx

The calculation of f leads to the thermal disadvantage factor:

ζ ¼ Σ f
a Vf

Σ m
a Vm

1

f
� 1

� �
The A-B-H method significantly improved the precision of calculations for the

first FrenchUNGG. It is famous at the international level as a landmark of the multi-

cell approach (Duderstadt and Hamilton 1976, p. 414; Stacey 2001, p. 515). From

1957 onwards, B. Bailly du Bois considerably developed12 the analytical calcula-

tion of the radial moderator flux in cells for several geometries in infinite twice-

periodic lattices, through advanced use of pole theory (residue theorem)13 to obtain

non-singular solutions for the diffusion equation in the moderator. These calcula-

tions correct the thermal utilization factor f and the resonance escape probability

factor p (using a Fermi age slowing-down model) by taking into account the cell

geometry. It is shown that f is weakly sensitive to the flux distribution in the

moderator. Pierre Benoist subsequently proposed14 an advanced theory for the

diffusion coefficient in a lattice with cavities (similar to UNGG). This takes into
account the first-collision probabilities using a heterogeneous multi-cell approach,

leading to calculation of the ratio of mean diffusion coefficient in the cell to the

moderator coefficient.

12B. Bailly du Bois, Influence de la forme des cellules sur le Laplacien et structure fine du flux
thermique dans une pile hétérogène [Influence of cell geometry on buckling and pin-by-pin

thermal flux distribution in a heterogeneous reactor], CEA Report No 740 (1957).
13This is equivalent to expanding the sources on parallel rods that are uniformly distributed, thus

forming a periodic lattice in both directions of the plane perpendicular to the rods.
14Pierre J. Benoist (1926–): Théorie du coefficient de diffusion des neutrons dans un réseau
comportant des cavités [Neutron Diffusion coefficient theory in a lattice with cavities], PhD thesis

(1964) and CEA technical report CEA-R 2278 (1964). This PhD was presided over by Jacques

Yvon, seconded by Jules Horowitz and Austin Blaquière as reviewers. It is considered a master-

piece of French know-how in theoretical neutron physics in the 1960s. It was even translated into

English in the USA, an extremely rare exploit at that time, which led to many spin-offs and to the

founding of very fertile heterogeneous diffusion theories. Benoist, who obtained the ANS Wigner

prize in 1996, is internationally regarded as a leading expert in transport and diffusion theory.
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Pierre J. Benoist is among the most notable French theoretical physicists in the field of neutron

physics (Courtesy Benoist)
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14.3.3 Multi-cell Approach in Two Dimensions

14.3.3.1 Context

The goal is to extend the approach to a lattice of identical pins that will be assumed

as being infinite for the time being (Fig. 14.8).

In order to calculate all collision probabilities Pi , j in each zone of the lattice, the

problem can be simplified by using the regularity of the lattice. Since calculations

are simpler in one dimension, the cells can be approximated by a cylindrical
geometry. This is a non-trivial operation and requires discussion (Fig. 14.9):

The cylindrical approximation for a rectangle can be carried in several ways.

Either the amount of matter or the outer surface of the cell can be retained. The

surface to conserve is equal to ab, and the perimeter is 2(a + b).
Historically, Wigner-Seitz15 proposed the conservation of the surface, thus

retaining the amount of matter (Stamm’ler and Abbate 1983, p. 40), while

J.R. Askew suggested retaining the outer perimeter so as to preserve the leakage

term.16 To conserve the amount of matter in the Askew model, the density of the

cell must be decreased. J. C. Lefebvre proposed an intermediate approach that leads

to the Wigner formulae in the case of a square cell while being more realistic on the

perimeter for the rectangular cell (this situation exists even in PWR if the water gap

between assemblies is modeled) (Table 14.2).

15Frederick Seitz (1911–2008) was an American physicist. He obtained his BSc from Stanford

University in 1932, and later specialized in solid-state physics, writing a book on the subject, The
Modern Theory of Solids, in 1940. He made significant contributions on the migration energy of

faults in metals. He worked at several American universities before being appointed professor at

the University of Illinois. He presided over the American Academy of Sciences from 1962 to 1969.

From 1968 to 1978, he was president of Rockfeller University. Although he received many awards,

his position in favor of the tobacco lobbyists, his pro-Vietnam war stance and his skepticism about

global warming all tarnished his image in part.

(Public domain)
16J. R. Askew: Some boundary condition problems arising in the application of collision proba-
bility methods, Proceedings of a seminar on numerical reactor calculations held in Vienna by the

AIEA, January 17–21, 1972, pp. 343–356 (1972).
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The Roth formalism consists in taking the cylindrical approximation for a fuel

cell and recommends substitution of the specular reflective conditions (mirror

reflection—Descartes’ reflection laws) by an isotropic reflection condition

(Fig. 14.10), also called white reflection. Studies17 have nevertheless shown that

this method tends to underestimate the k1with respect to a Monte Carlo calculation

in exact geometry (0.2% for a UOX fuel and up to 0.5% for a MOX pin). Thus, the

heterogeneity effect proves to be more significant in a square cell where the outer

surface is not at a constant distance from the fuel as is the case for the cylindrical

Lattice pitch

Infographie Marguet

Fig. 14.8 Regular lattice of cells (PWR case)

a

b R

PInfographie Marguet

Fig. 14.9 Cylindrical approximation for a rectangle

Table 14.2 Cylindrical approximations

Cylindrical approximations for a rectangle(a� b) Wigner-Seitz Askew Lefebvre

Equivalent area ab aþbð Þ2
π

aþbð Þ2
4

Density ρ ρ π ab
aþbð Þ2 ρ 4ab

aþbð Þ2

Equivalent perimeter 2
ffiffiffiffiffiffiffiffiffi
π ab

p
2(a+ b) aþ bð Þ ffiffiffi

π
p

Equivalent radius
ffiffiffiffiffiffiffiffi
aþb
π

q
aþb
π

aþbffiffiffiffi
2π

p

17T. Ushio, T. Takeda: The characteristic and subgroup methods in square light reactor cell
calculations, Nuclear Science and Engineering, 143, 61–80 (2003).
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cell. Further, he assumed that the outgoing currents are uniform, which is equiva-

lent to the fact that an incoming neutron with a direction ~Ω has an equal probability

of exiting without any collisions in the two-dimensional cell with any direction ~Ω
0
.

This reasoning is not correct for the backwards direction�~Ω given that no collision

could force the neutron backwards. Thus, the probability of return via the true side

through which the neutron entered is biased in this approach. The uniform current

approximation should also be employed cautiously in a heterogeneous cell. For an

incoming neutron, the solid angle in which the neutron may cross the fuel tends to

decrease the probability of the neutron exiting by the opposite side (shadowing

effect of the fuel pin). This effect depends on the energy of the incident neutron

since neutrons whose energy coincides with that of the resonances of isotopes in the

pin will be preferentially absorbed.

14.3.3.2 Dancoff-Ginsburg Factor

A very rare photograph of Sydney Dancoff, here with his baby daughter, Anita (The Marguet

collection, Photograph unknown)

Specular reflection Isotropic reflection

Infographie Marguet

Fig. 14.10 Specular and isotropic reflections
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In a heterogeneous lattice constituted of fuel surrounded by moderator, there is a

shadowing effect due to the fact that some neutrons cannot reach the fuel pin since it is

absorbed in surrounding pins. This effect is particularly important for closed-pack

lattices, and modifies the absorption integral by a corrective term set up by Dancoff18

and Ginsburg.19 Let Pþ
i, j be the probability, dubbed intern, that a neutron emitted

uniformly and isotropically in a volume Vi interacts in volume Vj without leaving the

cell by surface S. These probabilities can be calculated by noting that the probability

Pi , j is equivalent to an infinite sum of probabilities of the typePþ
i, j for the adjacent cells

crossed:

Pi, j ¼ Pþ
i, j|{z}

collision without

leaving the cell

þ Pþ
i,S Pþ

S, j|fflfflfflfflffl{zfflfflfflfflffl}
collision after going

through the adjacent

cell then back

þ Pþ
i,SP

þ
S,S Pþ

S, j|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
collision after going

through the adjacent

cell, going through

this cell without

collision then back

þ Pþ
i,S Pþ

S,S

� �2
Pþ
S, j|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

collision after going

through the adjacent

cell, going through

two cells without

collision then back

þ Pþ
i,S Pþ

S,S

� �3
Pþ
S, j|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

collision after going

through the adjacent

cell, going through

three cells without

collision then back

� � �

Since all the cells are identical, the probability of travelling through a cell without

collisionPþ
S,S is the same for all cells. This value is naturally smaller than 1, and thus:

18Sydney Michael Dancoff (1913–1951) was an American theoretical physicist, the son of a

Russian refugee of the pogrom period in 1905. After receiving an MSc from the University of

Pittsburgh in 1936, he obtained a PhD in 1939 from the University of Berkeley under the

supervision of Robert Oppenheimer. He worked on a renormalization method in quantum elec-

trodynamics known as the Tamm-Dancoff approximation. During the war, he worked on the

Manhattan Project in the reactor team, where he focused on the shadowing effect of one fuel on

another in heterogeneous reactors, after having contributed to the CP1 pile with Fermi’s team.

After the war, he worked at the University of Illinois at Urbana-Champaign. He struck up a

scientific relationship with the physician and radiologist Henry Quastler in the field of information

theory in biology, which resulted in a posthumous paper “The Information Content and Error Rate

of Living Things.” The expression for Dancoff’s law is found inside this article in the form of:

“The greatest growth occurs when the greatest number of mistakes are made consistent with
survival.” He died of a lymphoma in 1951.
19S.M. Dancoff, M. Ginsburg: Surface resonance absorption in close packed lattices, Manhattan

Project Report CP-2157 (1944).
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Dancoff formula:

Pi, j ¼ Pþ
i, j þ

Pþ
i,S Pþ

S, j

1� Pþ
S,S

ð14:5Þ

The corrective coefficient Pþ
i,S Pþ

S, j= 1� Pþ
S,S

� �
is called the Dancoff-Ginsburg

factor, often denoted C (Duderstadt and Hamilton 1976, p. 434; Stamm’ler and
Abbate 1983, p. 296; Ferziger and Zweifel 1966, p. 121; Silvennoinen 1976,

p. 150). In 1944, these authors established the coefficient to characterize the

probability of a neutron emitted from the fuel reaching the surface of another fuel

pin in another cell without collision (Stamm’ler and Abbate 1983, p. 296). It

integrates the fact that a neutron can travel directly from one zone i of a cell to

another zone j by leaving the cell in a multi-cell approach, e.g. a neutron that goes

from a pin to another pin without any collision in water. In the case of a geometry

with a fuel pin surrounded by water, the following are denoted: f for the fuel, S is the
fuel surface and F the outer boundary of the cell. In this case, the Dancoff-Ginsburg

factor C, which is the average probability of reaching the surface of another fuel pin
without collision (regardless of its distance, it is an average value: in water reactors,

C is approximately 0.2), must be distinguished from the probability Pþ
S,S, which is

that of a neutron entering the fuel and travelling through it (Fig. 14.11).

f

m

f

m

F

f

m

C

C
PS,S =1 – PS , f

PS, f

S

Infographie Marguet

+ +

+

Fig. 14.11 Dancoff-Ginsburg problem
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Pf , f ¼ Pþ
f , f|{z}

collision without

leaving the cell

þ Pþ
f ,SC Pþ

S, f|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
collision after going

through the adjacent

cell, going through

this cell without

collision then back

þPþ
f ,SC

2 1� Pþ
S, f

� �
Pþ
S, f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

collision after going

through the adjacent

cell, going through

two cells without

collision then back

þPþ
f ,SC

3 1� Pþ
S, f

� �2
Pþ
S, f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

collision after going

through the adjacent

cell, going through

three cells without

collision then back

� � � ¼ Pþ
f , f þ

Pþ
f ,S CPþ

S, f

1� C 1� Pþ
S, f

� �

By noticing that in this geometry, Pþ
f ,S ¼ 1� Pþ

f , f , and with the reciprocity

theorem:

Pþ
S, f ¼

4Vf

S
Σt, f P

þ
f ,S ¼

4Vf

S
Σt, f 1� Pþ

f , f

� �
Hence, we obtain an explicit calculation of Pc , c in terms of Pþ

c,c and Pþ
S,S. It

should be noted that the “return” effect must be accounted for cautiously, i.e. the

probability of a neutron leaving the cell and returning without collision in the fuel is

counted in the Dancoff-Ginsburg factor. Similarly, the successive paths through the

various cells without collision in the other cells are counted. C can be expressed

from outgoing probabilities of the cell with surface F:

C ¼ Pþ
f ,F Pþ

F, f þ Pþ
f ,F Pþ

F,FP
þ
F, f þ Pþ

f ,F Pþ
F,F

� �2
Pþ

F,c þ � � � ¼ Pþ
f ,F Pþ

F, f

1� Pþ
F,F

The works of Rothenstein (in 1959) and later Fukai (in 1960)20 led to analytical

calculation of the Dancoff coefficient for geometries with cylindrical rods. The

recent work of A. Talamo should also be highlighted for the analytical calculation

for high-temperature prismatic reactors.21

20Yuzo Fukai: New analytical formula for Dancoff correction for cylindrical fuel lattices, Nuclear
Science and Engineering, 9, pp. 370–376 (1961).
21Alberto Talamo: Analytical calculation of the average Dancoff factor for prismatic high-
temperature reactors, Nuclear Science and Engineering, 156, pp. 346–356 (2007).

14.3 Modeling the Pin Flux 1019



14.3.3.3 The Dancoff Effect in Different Geometries: Shielding

Problems

Let us consider a fuel cylinder placed vertically in a moderator of total cross section

Σt. The fuel contains a resonant isotope that absorbs all neutrons having an energy

close to that of a resonance. Thus, it is a perfect shield for that particular energy value.

But scattering in the moderator can be considered as a source of thermal neutrons.

The neutron current emitted in the volume element dV with unit volume neutron

source q and belonging to the cylinder (pin) represented in Fig. 14.12 across the

surface dS is given by:

dJ ¼ q dV cos θ
r

R

e� ΣtR

4πR2

The coefficient cos θ r
R corresponds to the non-shadowed factor since r is the

projection of the distance R between the source and the element dS in the planeOxy.
Assuming that the pin is infinite along the z axis, after integration, the following

equation is obtained:

J θð Þ ¼
ðz¼þ1

z¼�1
dJ ¼ q dA r cos θ

ðz¼þ1

z¼�1

e� ΣtR

4πR3
dz

It should be pointed out that R2¼ r2 + z2, thus 2RdR¼ 2zdz as long as r is

constant while z varies. Using the change of variable:

chτ ¼ R=r and shτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ch2τ � 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2
� �

=r2
q

¼ z=r

the equation is transformed as:

R

x

y

z

r

θdS

dA

dV=dAdz

Fig. 14.12 Cylindrical geometry
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J θð Þ ¼ q dA r cos θ

ðτ¼þ1

τ¼�1

e� Σtr chτ

4π r3 ch3τ
rchτdτ ¼ q

dA cos θ

4π r

ðτ¼þ1

τ¼�1

e� Σtr chτ

ch2τ
dτ

This is a Bickley-Nayler function which has the following major properties:

KIn xð Þ �
ðτ¼þ1

τ¼0

e� x chτ

chnτ
dτ ¼ 1

n� 1ð Þ!
ðτ¼þ1

τ¼x

t� xð Þn�1KI0 τð Þdτ

¼ xn

n� 1ð Þ!
ðτ¼þ1

τ¼1

t� 1ð Þn�1KI0 xτð Þdτ ¼
ðτ¼þ1

τ¼1

e� x τ

tn
ffiffiffiffiffiffiffiffi
t2�1

p dτ

KIn xð Þ �
ðθ¼π

2

θ¼0

cos n�1 θð Þe� x
cos θ dθ ¼

ðθ¼π
2

θ¼0

sin n�1 θð Þe� x
sin θ dθ

Further, KI0(x)¼K0(x), the modified Bessel function (thus the term KI for the
Bickley-Nayler function):

KI2n 0ð Þ ¼
Γ nð ÞΓ 3

2

� �
Γ nþ 1

2

� � , KI2nþ1 0ð Þ ¼
π

2
Γ nþ 1

2

� �
Γ

1

2

� �
Γ nþ 1

2

� �
The Bickley-Nayler functions obey the following recurrence formula:

nKInþ1 xð Þ ¼ n� 1ð ÞKIn�1 xð Þ � xKIn xð Þ þ x KIn�2 xð Þ n � 2

The most precise asymptotic expansion has been obtained by Zekeriya Altaç:

KIn xð Þ�
ffiffiffiffiffi
π

2x

r
e�x

1� mþ1ð Þ
X

þ3 m2þ6mþ3ð Þ
2!X2

�15 mþ5ð Þ m2þ10mþ3ð Þ
3!X3

þ105 m4þ28m3þ242m2þ644mþ105ð Þ
4!X4

�945 mþ9ð Þ m4þ36m3þ386m2þ1116mþ105ð Þ
5!X5

þ10395 m6þ66m5þ1645m4þ19140m3þ102439m2þ198594mþ10395
� �

6!X6

266666666666664

377777777777775
�with m�4n and X�8x

From the previous properties:

ðτ¼þ1

τ¼�1

e� Σtr chτ

ch2τ
dτ ¼ 2

ðτ¼þ1

τ¼0

e� Σtr chτ

ch2τ
dτ � 2 KI2 Σtrð Þ
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i.e. for the calculation of J(θ):

J θð Þ ¼ q
dA cos θ

2π r
KI2 Σtrð Þ

This equation is valid for any surface element dA. The current emitted by a

cylinder with any type of cross section is expressed as:

J ¼ q

2π

ð
A

dA
cos θ

r
KI2 Σtrð Þ

A particular case is that in which the fuel fills up the half-space delimited by

x> 0. Since
dKIn xð Þ

dx ¼ �KIn�1 xð Þ:

J¼ q

2π

ðθ¼þπ
2

θ¼�π
2

ðr¼þ1

r¼0

rdrdθ
cosθ

r
KI2 Σtrð Þ¼ q

π

ðr¼þ1

r¼0

KI2 Σtrð Þdr¼ q

πΣt
�KI3 Σtrð Þ½ �r¼þ1

r¼0

Given that KI3 0ð Þ ¼ π
4
and KI3(+1)¼ 0, for a source that fills up half space, the

current is simply given by:

J ¼ q

4Σt

An infinitely-absorbing screen is placed at a distance d (its thickness no longer

matters for the calculation) with a cylindrical geometry such that radially, it has a

solid angle 2θ0 and axially, it has a height of 2h in the half “source-space.” Therefore,
all neutrons that are incident from the space shadowed by the screen cannot reach the

detector position. The current from the shaded zone, i.e. the region hidden by the

screen, is calculated as previously (using the same notations) (Fig. 14.13):

Jcylindricalshadow ¼ q

ðθ¼þθ0

θ¼�θ0

ðr¼þ1

r¼d

r dr dθ r cos θ

ðz¼þh

z¼�h

e� ΣtR

4πR3
dz

If the cylinder is of infinite height, the calculation may be simplified to:

Jcylindricalshadow ¼ q

2π

ðθ¼þθ0

θ¼�θ0

ðr¼þ1

r¼d

drdθ cosθ KI2 Σtrð Þ ¼ q

2πΣt
sinθ½ �þθ0

�θ0

ðr¼þ1

r¼d

KI2 Σtrð Þ dr

¼ q

πΣt
sinθ0KI3 Σtdð Þ
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For the finite cylindrical portion, the Dancoff factor is equal to:

Ccylindrical � Jcylindricalshadow

J
¼

q
πΣt

sin θ0KI3 Σtdð Þ
q

4Σt

¼ sin θ0KI3 Σtdð Þ
π

C is the relative decrease of the current due to the shadowing effect. It can be

considered as the effect due to a decrease in the available surface. It is equivalent to

a “shaded” surface for an object with an incident neutron on its surface, multiplied

by the reduction coefficient 1�C. This calculation is valid only for a given point of
the target surface area. In real cases, C is averaged over the points of the target

surface.

The case of a slab of width 2a and height 2h complicates the range of the integral

in r:

Jslabshadow ¼ q

ðθ¼þtan �1a
d

θ¼�tan �1a
d

ðr¼þ1

r¼ d
cos θ

r dr dθ r cos θ

ðz¼þh

z¼�h

e� ΣtR

4πR3
dz

This equation can be simplified for an infinite slab in z:

Jslabshadow ¼ q

2π

ðθ¼þtan �1a
d

θ¼�tan �1a
d

dθ cos θ

ðr¼þ1

r¼ d
cos θ

KI2 Σtrð Þ dr

¼ q

2πΣt

ðθ¼þtan �1a
d

θ¼�tan �1a
d

KI3 Σt
d

cos θ

� �
cos θdθ

2h
2a

d

θ0

Detector
position 

Screen

Fig. 14.13 Shadowing

effect owing to a flat screen

(the notations are the same

for a cylindrical screen

centered about the detector

position)
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Assuming that the slab now has an infinite width, using the parity of the Bickley-

Nayler function KI3(x), the following equation is obtained:

Jslabshadow ¼ q

2πΣt

ðθ¼þπ
2

θ¼�π
2

KI3 Σt
d

cosθ

� �
cosθdθ ¼ q

πΣt

ðθ¼þπ
2

θ¼0

KI3 Σt
d

cosθ

� �
cosθdθ

Integrating by parts, the equation becomes:

πΣt

q
Jslabshadow ¼ KI3

Σtd

cos θ

� �
sin θ

� θ¼þπ
2

θ¼0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

�
ðθ¼þπ

2

θ¼0

� KI2
Σtd

cos θ

� �
Σtd

cos 2θ
sin 2θdθ

With τ ¼ Σtd
cos θ, dτ ¼ Σtd

cos 2θ sin θdθ, it is transformed as follows:

πΣt

q
Jslabshadow ¼

ðτ¼þ1

τ¼Σtd

KI2 τð Þ sin θdτ ¼
ðτ¼þ1

τ¼Σtd

KI2 τð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Σtdð Þ2

τ2
dτ

s

This equation introduces a particular integral of the Bickley-Nayler function:

In,m Σtdð Þ ¼
ðτ¼þ1

τ¼Σtd

KIn τð Þ
τ2 � Σtdð Þ2
� �m

τn�1
dτ

¼
ðτ¼þ1

τ¼Σtd

ðw¼þ1

w¼0

e� τ chw

chnw
dw

0@ 1A τ2 � Σtdð Þ2
� �m

τn�1
dτ

Let us integrate this function by setting x ¼ τ chw
Σtd

and y ¼ τ
Σtd chw

, then:

In,m Σtdð Þ ¼ Σtdð Þ2m�nþ2

2

ðx¼þ1

x¼1

e�Σtdxx�nþ1
2dx

ðy¼x

y¼1
x

xy� 1ð Þmffiffiffiffiffiffiffiffiffiffiffi
x� y

p dy

The integral over y can be computed by setting:

p ¼ xy� 1

x2 � 1
therefore y ¼ p x2 � 1ð Þ þ 1

x
and dy ¼ x2 � 1

x
dp

ðy¼x

y¼1
x

xy� 1ð Þmffiffiffiffiffiffiffiffiffiffiffi
x� y

p dy ¼ x2 � 1ð Þmþ1
2ffiffiffi

x
p

ðp¼1

p¼0

pmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pð Þp dp � x2 � 1ð Þmþ1

2ffiffiffi
x

p β mþ 1;
1

2

� �
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From which we introduce the beta function, with the real factorial function:

β z;wð Þ � Γ zð ÞΓ wð Þ
Γ zþwð Þ ¼ Ðt¼1

t¼0

tz�1 1� tð Þw�1dt (Abramowitz and Stegun 1972, p. 258).

Thus:

In,m Σtdð Þ ¼ Σtd½ �2m�nþ2

2

ðx¼þ1

x¼1

e�Σtdxx�nþ1
2
x2 � 1ð Þmþ1

2ffiffiffi
x

p β mþ 1;
1

2

� �
dx

In the case being considered, the following is obtained:

I2,1
2
Σtdð Þ¼Σtd

2

ðx¼þ1

x¼1

e�Σtdxx�2 x2�1
� �

β
3

2
;
1

2

� �
|fflfflfflffl{zfflfflfflffl}

π
2

dx¼ πd

4

ðx¼þ1

x¼1

e�Σtdx 1� 1

x2

� �
dx

The following exponential integral is reached: En xð Þ ¼ Ðt¼þ1

t¼1

e�xt

tn dt

This integral can be calculated directly using E2(x), but it is more judicious to

proceed by integrating by parts with u ¼ 1� 1
x2 and v

0 ¼ e�Σtdx, giving:

I2, 1
2
dð Þ ¼ πΣtd

4
�e�Σtdx

Σtd
1� 1

x2

� �� þ1

1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

þ 2E3 Σtdð Þ
Σtd

0BBB@
1CCCA ¼ πE3 Σtdð Þ

2

Finally:

Jslabshadow ¼ qE3 Σtdð Þ
2Σt

and Cslab
shadow ¼ Jslabshadow

J
¼

qE3 Σtdð Þ
2Σt
q

4Σt

¼ 2E3 Σtdð Þ

It is extremely interesting to note that even if a hard integration method is

employed for the cylindrical case, the expected exponential integral is obtained in

plane geometry. Using these mathematical tools, other cases can be integrated for

problems with shadowing effects (for instance, the historical problem of Dancoff

and Ginsburg: the shadow of a cylindrical rod on another cylindrical rod).

The case of a moderating cylinder is also very interesting. Let us consider an

axially infinite cylinder of radius a filled with moderator. We can calculate the

shadowing effect with respect to a detector position located at the surface of that

cylinder (Fig. 14.14).
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No neutrons can reach the zone located outside the cylinder with the moderator

(the zone is denoted as \cylinder). The current unable to reach the detector position
is given by:

J\cylindershadow ¼ q

2π

ðθ¼þπ
2

θ¼�π
2

ðr¼þ1

r¼2a cos θ

r dr dθ
cos θ

r
KI2 Σtrð Þ

¼ q

2πΣt

ðθ¼þπ
2

θ¼�π
2

KI3 Σt2a cos θð Þ cos θ dθ

The corresponding Dancoff factor is:

C\cylinder
shadow ¼ J\cylindershadow

J
¼

q
2πΣt

Ðθ¼þπ
2

θ¼�π
2

KI3 Σt2a cos θð Þ cos θ dθ

q
4
Σt

¼ 4

π

ðθ¼þπ
2

θ¼0

KI3 Σt2a cos θð Þ cos θ dθ

The integral of function KI3 is split through successive integrations by parts:

θ

2a

r=2a cosθ

Detector
position 

Fuel

Moderator

Fig. 14.14 Cylinder with

moderator
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ðθ¼þπ
2

θ¼0

KI3 Σt2acosθð Þcosθ dθ¼ KI3 Σt2acosθð Þ sinθ½ �π20|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
KI3 0ð Þ¼π

4

�Σt2a

ðθ¼þπ
2

θ¼0

KI2 Σt2acosθð Þsin2θdθ

Hence:

π

8Σta
1� C\cylinder

shadow

� �
¼

ðθ¼þπ
2

θ¼0

KI2 Σt2a cos θð Þ sin 2θdθ ¼

Using the recurrence formula for the Bickley-Nayler functions, we obtain:

rKIrþ1 zð Þ ¼ �zKIr zð Þ þ r � 1ð ÞKIr�1 zð Þ þ zKIr�2 zð Þ

Therefore:

KI2 zð Þ ¼ �zKI2 zð Þ þ zKI�1 zð Þ ¼ �zKI2 zð Þ þ zK1 zð Þ

Since KI�n zð Þ ¼ �1ð Þn d
nK0 zð Þ
dzn

(Abramowitzt and Stegun 1972, p. 258),

i.e.:

KI�1 zð Þ ¼ � dK0 zð Þ
dz

¼ K1 zð Þ.
Hence:

π

8Σta
1� C\cylinder

shadow

� �
¼

ðθ¼þπ
2

θ¼0

K1 Σt2a cos θð Þ � KI1 Σt2a cos θð Þð ÞΣt2a cos θsin
2θdθ

The two integrals are evaluated by integrating by parts. For the first integral, let:

u
0 ¼ K1 Σt2a cos θð ÞΣt2a sin θ and v ¼ cos θ sin θ ¼ sin 2θ

2
:

ðθ¼þπ
2

θ¼0

K1 Σt2a cos θð ÞΣt2a cos θsin
2θdθ ¼ K1 Σt2a cos θð Þ cos θ sin θ½ �π20|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

�
ðθ¼þπ

2

θ¼0

K0 Σt2a cos θð Þ cos 2θdθ

The second integral is obtained by setting u’¼ cos θsin2θ and

v¼Σt2aKI1(Σt2a cos θ):
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ðθ¼þπ
2

θ¼0

KI1 Σt2acosθð ÞΣt2acosθsin
2θdθ¼ Σt2aKI1 Σt2acosθð Þsin

3θ

3

� π
2

0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Σtaπ
3

�
ðθ¼þπ

2

θ¼0

KI0 Σt2acosθð Þ Σt2að Þ2 sinθsin
3θ

3
dθ

Noting that sin 4θ ¼ 3
8
� 1

2
cos 2θ þ 1

8
cos 4θ, the following equation may be

deduced:

ðθ¼þπ
2

θ¼0

KI1 Σt2a cos θð ÞΣt2a cos θsin
2θdθ ¼ Σtaπ

3

�
ðθ¼þπ

2

θ¼0

KI0 Σt2a cos θð Þ Σt2að Þ2 1

8
� 1

6
cos 2θ þ 1

24
cos 4θ

� �
dθ

π

8Σta
1� C\cylinder

shadow

� �
¼ � Σtaπ

3

þ
ðθ¼þπ

2

θ¼0

K0 Σt2a cos θð Þ � cos 2θ þ Σtað Þ2
2

� 2 Σtað Þ2
3

cos 2θ þ Σtað Þ2
6

cos 4θ

 !
dθ

Using the next equation (Watson 1980, p. 441):

ðθ¼þπ
2

θ¼0

K0 2z cos θð Þ cos 2nθð Þdθ ¼ �1ð Þnπ
2
In zð ÞKn zð Þ

The equation thus obtained is:

π

8Σta
1�C\cylinder

shadow

� �
¼ �Σtaπ

3
þ Σtað Þ2

2

π

2
I0 Σtað ÞK0 Σtað Þ

þ 1þ2 Σtað Þ2
3

 !
π

2
I1 Σtað ÞK1 Σtað Þþ Σtað Þ2

6

π

2
I2 Σtað ÞK2 Σtað Þ

The recurrence relations for the Bessel functions are next used (Abramowitz and

Stegun 1972, p. 376), such that:
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In�1 xð Þ � Inþ1 xð Þ ¼ 2n

x
In xð Þ

ei n�1ð ÞπKn�1 xð Þ � ei nþ1ð ÞπKnþ1 xð Þ ¼ 2n

x
einπKn xð Þ

8><>:
and, the term I2 Σtað ÞK2 Σtað Þ ¼ I0 Σtað Þ � 2

Σta
I1 Σtað Þ

� �
K0 Σtað Þ þ 2

Σta
K1 Σtað Þ

� �
is degenerated.

Finally:

1

2Σta
1� C\cylinder

shadow

� �
¼ � 4Σta

3
þ 4 Σtað Þ2

3
I0 Σtað ÞK0 Σtað Þ

þ 2
1

3
þ 2 Σtað Þ2

3

 !
I1 Σtað ÞK1 Σtað Þ

þ 2Σta

3
I0 Σtað ÞK1 Σtað Þ � I1 Σtað ÞK0 Σtað Þ

¼ 2Σta

3
f2 Σta I1 Σtað ÞK1 Σtað Þ þ I0 Σtað ÞK0 Σtað Þð Þ � 1½ �

þ I1 Σtað ÞK1 Σtað Þ
Σta

� I1 Σtað ÞK0 Σtað Þ þ I0 Σtað ÞK1 Σtað Þg

This final equation has been rewritten only to illustrate an exact form of equation

28 from page 33 of (Case et al. 1953), which gives the leakage probability for an

infinite cylinder P0 (denoted as PVS , 0 and given in a previous chapter without any

derivation). It should be noted that the original equation contained a few errors

which were thus corrected in this work. Furthermore, it is worth pointing out that

this result was historically obtained by D. Inglis in 1942 at Los Alamos (cited by

Case et al.) without the use of the KI functions. The calculation illustrated here was
made by I. Carlvik and B. Pershagen in 1959.

Thus, several integration techniques for cylindrical problems have been illus-

trated for dealing with numerous cases of extruded geometries along a given axis,

be it vertical (PWR, fast reactors, etc.) or horizontal (heavy water reactors, some

UNGG). In the case of fuel lattices, angular integration problems will rise along

with the “non-shadowing factor” for each pin with respect to one another—the

same difficulty arises in thermal radiative transfer. The analytical calculation is

extremely laborious and can be usefully replaced by ray tracing in the considered

geometry.

14.3.3.4 Impact of the Dancoff Factor on Resonant Absorption

This factor is clearly important for cases of packed lattices. It impacts the mean

chord value <‘> ¼ 4V/S, which appears in the calculation of the effective reso-

nance integral:
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< ‘>Danc ¼ < ‘ >

1� C

The term NU<‘>Danc also appears for the Narrow Resonance Infinite Mass
(NRIM) method, through the Wigner rational approximation of the leakage prob-

ability, discussed in earlier chapters, with the usual notations:

I ¼ I1

ffiffiffiffiffiffiffiffiffiffiffi
β

1þ β

r
with : β �

σp þ 1

NU < ‘>Danc

σt

Γ

Γγ

The sensitivity of the resonance integral to the Dancoff factor is calculated as22:

C

I

∂I
∂C

¼ C

2 1� Cð Þ
σp
σt
� β

β 1þ βð Þ

for which the maximum value is reached for β ¼ σp
σt
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σp
σt

1þ σp
σt

� �
�

ffiffiffiffi
σp
σt

qr
.

For this maximum value, the following equations hold:

< ‘>Danc ¼ < ‘ >

1� C
� 1

NU
ffiffiffiffiffiffiffiffiffi
σpσt

p and
C

I

∂I
∂C

� �
¼ � C

2 1� Cð Þ

As the Dancoff factor tends towards 1, the impact on the resonance integral

becomes significant.

14.3.3.5 Extension to Pin Lattices

The multi-cell approach may be extended to lattices of regular cells with some cells

being differentiated (e.g. guide tubes) using Si j
23 method. Let us consider two cells

A and B. Using the inner probabilities of the cells, the following can be written:

Pi2A, j2B ¼ Pþ
i j δA,B þ Pþ

i2A,S QA,BP
þ
S, j2B

22E.E. Bende, A.H. Hogenbirk: Analytical calculation of the average Dancoff factor for a fuel
kernel in a pebble bed high-temperature reactor, Nuclear Science and Engineering, 133, pp.

147–162 (1999).
23Jean-Yves Doriath:Méthodes numériques adaptatives pour des problèmes de transport dans les
réacteurs nucléaires de sûreté par l’utilisation de signatures et de procédés de perturbations
[Adaptive numerical methods for transport problems in safety nuclear reactors using the signatures

and perturbation processes], PhD thesis from the University of Aix-Marseille (1983). This PhD

work develops the Si j method.
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The Kronecker delta δA ,B equals 1 if A¼B and 0 otherwise. Multiplied byPþ
i j , it

corresponds to the first-collision probability of two zones within a cell.

QA ,B is the non-collided incident current in cell B for a neutron leaving cell

A (with probability Pþ
i2A,S ) uniformly and isotropically. This coefficient can be

higher than 1 and should not be confused with a probability. It corresponds to the

mean number of times that a neutron emitted in cell A crosses cell B before

undergoing its first collision in cell B. In Fig. 14.15, QA ,B is equal to 3.

Let SAB be the probability that an outgoing neutron from A directly enters the

adjacent cell B. Indeed, SAB can be calculated as the ratio between the common

boundaries of cells A and B after the cylindrical approximation to outer surface of

cell A.
In Fig. 14.16, the calculation of SABwith the Roth hypothesis leads to: SAB¼ 1,

SAA¼ 0, SABA ¼ 1
8
, SBB ¼ 7

8
. It can be seen that corner cells have the same weight as

cells on the sides due to the cylindrical approximation. The complementary relation

allows the normalization of Si j: X
j

Si j ¼ 1

The reciprocity relation for Pi j values imposes an identical relation at Si j:X
i2A

SurfaceA Si B ¼
X
j2B

SurfaceB Sj A

This is simply given as follows, with nA being the number of cells A and nB that
of B:

nA SurfaceA SAB ¼ nB SurfaceB SBA

In the end, the neutron has a probability SAB of entering cell B when coming

from A. Otherwise, it enters cell D and it has a probabilityPþ
S S,D of crossing that cell

without colliding. It can cross cell B QDB times before finally colliding in B:

A A A

A A A

A A

B

B

BB

Emission in cell A First crossing in B

Second crossing in B 

Third crossing in B 

Collision in cell B

Infographie Marguet

Fig. 14.15 Crossing of

cells
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QAB ¼ SAB þ
X
D

SAD Pþ
S S,D QDB

Evaluating all the Si j values and the calculation of all the Pþ
S S, i for the cells lead

to a linear system with respect to Qi j that is easily solved. For the case of a lattice

with identical cells, the following formalism is deduced, as with an infinite lattice:

QAA ¼ 1

1� Pþ
S S,A

and Pi j,A ¼ Pþ
i j,A þ

Pþ
i S,A Pþ

S j,A

1� Pþ
S S,A

It should be emphasized that this method allows for approximate spatial cou-

pling of cells since each A cell ends up with the same flux. Optimization is required

to group cells having similar physical traits such as fuel cells with a common

boundary with a guide tube cell or cells on the assembly boundary that are impacted

by the inter-assembly water gap. Further, the cylindrical approximation has been

significantly improved over the years. The first improvement consisted in differen-

tiating the currents for the four interfaces of a PWR cell (Roth 4model). In addition,

the cylindrical approximation effect can be decreased by using isotropic or linear

interface currents (UP0 or UP1 approximation of the APOLLO2 code). Finally, the

probabilities can be calculated on the exact 2D geometry using the sweeping and

tracking techniques discussed in the Transport chapter. Moreover, there have been

recent attempts to use collision probability methods Pi j on 3D geometries; these

calculations are extremely costly but may become widespread with the advent of

massive parallel calculations.

14.3.4 Carlvik Rational Approximation

(Stamm’ler and Abbate 1983, p. 301)

A B

B

BB

B

B

BB

Mirror

Reflection

Infographie Marguet

Fig. 14.16 Pattern with

nine cells, with a different

cell at the center
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In 1964, Carlvik proposed24 an approximation of the fuel-fuel collision probabil-

ity for a single pin Pþ
f , f using a rational function for the optical path X¼ 4VfΣt , f/S,

where Vc is the fuel volume, Σt , c is the fuel total cross section, and S is the fuel

surface area:

Carlvik rational approximation:

Pþ
f , f �

BX

X þ A1

þ 1� Bð ÞX
X þ A2

with B ¼ 2, A1 ¼ 2, A2 ¼ 3 ð14:6Þ

This approximation forms part of the more general rational approximations

(Stamm’ler and Abbate 1983, p. 297; Ferziger and Zweifel 1966, p. 117), where

the probability Pþ
f , f is written as:

Pþ
f , f ¼ X

X
n

Bn

X þ An
with

X
n

Bn ¼ 1

The Wigner rational approximation which models the non-collided leakage

probability by PVS, 0 ¼ 1
1þΣt Rh i ¼ 1

1þX, leads to Pþ
f , f ¼ 1� PVS, 0 ¼ X

1þX, for which

precision can be improved using the Bell factor discussed in Chap. 5: Pþ
f , f ¼ X

aBellþX

Such approximations enable calculation of the resonance integral in a heteroge-

neous medium by substituting it with a combination of homogeneous medium

integrals.

It was seen earlier that the probability of collision inside the fuel, Pf , f, may be

given by the Dancoff formula (Eq. (14.5) with Pc c and j¼ c). It can be written here
using F, the cell surface, rather than the fuel surface (since the same reasoning

underpinning this equation with S is also valid for F):

Pf , f ¼ Pþ
f , f þ

Pþ
f ,F Pþ

F, f

1� Pþ
F,F

The probability 1� Pþ
F,F that a neutron, entering through the cell boundary

isotropically, will interact inside that cell can be decomposed into:

1� Pþ
F,F ¼ Pþ

F,S P
þ
S, f þ Pþ

F,S 1� Pþ
S,F

� �
1� Pþ

S, f

� �
þ
X
i6¼f

Pþ
F, i

where Pþ
F,S is the probability of an isotropically incoming neutron in the cell

reaching the fuel surface without collision,Pþ
S, f is the probability of an isotropically

24I. Carlvik, A method for calculating collision probabilities in general cylindrical geometry and
application to flux distribution and Dancoff factors, Proc. Int. Conf. On peaceful use of atomic

energy, 1964, p. 681.

14.3 Modeling the Pin Flux 1033



incoming neutron in the fuel undergoing its first collision inside the fuel, Pþ
S,F is the

probability of an isotropically outgoing neutron from the fuel reaching the cell

boundary. The term Pþ
F,S P

þ
S, f represents neutrons traveling from the cell boundary

and colliding for the first time inside the fuel. The term Pþ
F,S 1� Pþ

S,F

� �
1� Pþ

S, f

� �
corresponds to the collisions of neutrons crossing the fuel (their proportion being

1� Pþ
S, f ). Finally, the term

P
i6¼f

Pþ
F, i represents the contributions of neutrons that do

not reach the fuel (but reach other media such as the cladding or the moderator).

With the reciprocity relation:

F Pþ
F,S ¼ SPþ

S,F

Moreover:

Pþ
F, f ¼ 4Vf Σt, f

F 1� Pþ
f , f

� �
¼ X 1� Pþ

f , f

� �
Thus:

1� Pþ
F,F ¼ S

F Pþ
S,F

� �2
X 1� Pþ

f , f

� �
þ Pþ

F,S 1� Pþ
S,F

� �
þP

i6¼f

Pþ
F, i

Since:

Pþ
F, f ¼ 4Vf Σt, f

F Pþ
f ,F ¼ X S

F Pþ
f ,F ¼ X S

F 1� Pþ
f , f

� �
Pþ
S,F, the Dancoff rela-

tion is finally expressed as:

Pf , f ¼ Pþ
f , f þ

Pþ
f ,F Pþ

F, f

1� Pþ
F,F

¼ Pþ
f , f þ

X S
F Pþ

S,F

� �2
1� Pþ

f , f

� �2
S
F Pþ

S,F

� �2
X 1� Pþ

f , f

� �
þ Pþ

F,S 1� Pþ
S,F

� �
þP

i 6¼f

Pþ
F, i

The previous equation can be simplified by setting:

K ¼
Pþ
F,S 1� Pþ

S,F

� �
þP

i6¼f

Pþ
F, i

S
F Pþ

S,F

� �2 , hence:

Pf , f ¼ Pþ
f , f þ

X 1� Pþ
f , f

� �2
X 1� Pþ

f , f

� �
þ K
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Inserting this equation in the Carlvik rational approximation (Eq. 14.6)

expressed under the form:

Pþ
f ,f ¼

BX

XþA1

þ 1�Bð ÞX
XþA2

¼X2þ B A2�A1ð ÞþA1½ �X
XþA1ð Þ XþA2ð Þ ¼ X2þ S�Cð ÞX

XþA1ð Þ XþA2ð Þ
1�Pþ

f ,f ¼1� X2þ S�Cð ÞX
XþA1ð Þ XþA2ð Þ¼

X2þSXþP� X2þ S�Cð ÞX� �
XþA1ð Þ XþA2ð Þ ¼ CXþP

XþA1ð Þ XþA2ð Þ

8>><>>:
with S¼A1 +A2 being the sum of the coefficients in Carlvik’s formula and P¼A1 .

A2 their product. Let us define (X +A1)(X+A2)�X2 + SX +P, C�B(A2�A1) +A1.

Hence, Pf , f can be written as a rational approximation:

Pf , f ¼ βX

X þ α1
þ 1� βð ÞX

X þ α2
¼ X2 þ β α2 � α1ð Þ þ α1½ �X

X þ α1ð Þ X þ α2ð Þ ¼ X2 þ λX

X2 þ sX þ p

with s¼ α1 + α2 and p¼ α1 . α2. Mathematical calculations lead to equating two

polynomials of degree 5 after reducing two fractions to the same denominator:

X2 þ λX

X þ α1ð Þ X þ α2ð Þ ¼
X2 þ S� Cð ÞX
X þ A1ð Þ X þ A2ð Þ þ

X CXþPð Þ2
XþA1ð Þ2 XþA2ð Þ2

X CXþPð Þ
XþA1ð Þ XþA2ð Þ þ K

which after some algebraic calculations leads to:

KþCð ÞX5þ
PþKSþ Sþλð Þ KþCð Þð ÞX4þ
KPþ Sþλð Þ PþKSð Þþ PþλSð Þ KþCð Þð ÞX3þ
Sþλð ÞKPþ PþλSð Þ PþKSð ÞþPλ KþCð Þ½ �X2þ
Pλ PþKSð ÞþKP PþλSð Þð ÞXþ
P2λK

26666664

37777775

¼

KþC½ �X5þ
C2þPþKSþ KþCð Þ S�Cð Þþs KþC½ �� �

X4þ
p KþC½ �þs C2þPþKSþ KþCð Þ S�Cð Þ� �þ 2CPþKPþ PþKSð Þ S�Cð Þ½ �� �

X3þ
p C2þPþKSþ KþCð Þ S�Cð Þ� �þs 2CPþKPþ PþKSð Þ S�Cð Þ½ �þ P2þKP S�Cð Þ� �� �

X2þ
s P2þKP S�Cð Þ� �þp 2CPþKPþ PþKSð Þ S�Cð Þ½ �� �

Xþ
p P2þKP S�Cð Þ� �� �

266666664

377777775
The first equation (coefficient of X5) is trivial. The second (coefficient of X4)

gives:

λ ¼ s� KC

K þ C

This expression and the role of λ imply that the quantities s and p should be

sought as:
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s ¼ s0 þ s1K

K þ C
and p ¼ p0 þ p1K

K þ C

Inserting these equations in the linear system resulting from the equalizing of the

coefficients of the polynomials gives:

s0 ¼ p1 s1 ¼ PSþ SC2 � CS2

Pþ C2 � SC

p0 ¼ 0 p1 ¼
P PSþ 2SC2 � CS2 � CP� C3
� �

S� Cð Þ Pþ C2 � SC
� �

8>>><>>>:
Using the coefficients from Carlvik’s formula, i.e.:

B ¼ 3 A1 ¼ 2 A2 ¼ 3 P ¼ A1:A2 ¼ 6 S ¼ A1 þ A2 ¼ 5 C
¼ B A2 � A1ð Þ þ A1 ¼ 1

The following results are obtained:

s ¼ 6þ 5K

K þ 1
p ¼ 6K

K þ 1
λ ¼ 6þ 4K

K þ 1

i.e.:

α1 ¼ 6þ 5K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 36K þ 36

p
2K þ 2

α2 ¼ 6þ 5K þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 36K þ 36

p
2K þ 2

β ¼ λ� α1
α2 � α1

All the equations from equalizing the coefficients of the polynomial of degree

5 are satisfied by these values. Using the rational approximation facilitates the

calculation of the resonance integral. In the narrow resonance approximation, the

resonance integral is:

INR ¼
ð
E

1� Pf , f

� �
σt þ Pf , f σp

� � σa Eð Þ
σt Eð Þ

dE

E

σp is the potential scattering cross section for each absorbing nuclide in the fuel.

Using Pf , f ¼
P
i

βiX
Xþαi

¼P
i

βiσt
σtþαiσe

, the resonance integral for a homogeneous

medium is:

Resonance integral rational approximationð Þ:

INR ¼
X
i

βi I σp þ αi σe
� � ¼X

i

βi

ð
E

σa Eð Þ σp þ αi σe
� �
σt Eð Þ

dE

E
ð14:7Þ

with the dilution cross section for the resonant isotope (of concentration N0):

1036 14 Heterogeneous Reactors



σe ¼ Σe

N0

¼ Sf
4VfN0

The mean absorption cross section integrated in energy is defined as:

σa ¼

ð
E

σa Eð ÞΦ Eð ÞdE
ð
E

Φ Eð ÞdE
with Φ Eð Þ ¼ 1� Pf , f þ σp

σt Eð Þ
� �

p Eð Þ
E

where p(E) is the resonance escape probability up to energy E. The resonance

integral can be computed in the homogeneous case and tabulated in terms of σp
(physically, the integral varies as

ffiffiffiffiffi
σp

p
) and in terms of the fuel temperature (Doppler

effect in
ffiffiffiffiffi
Tf

p
). The heterogeneous case can be considered through equivalence of

the resonance integral in the equivalent homogeneous case by using the mean value

of the effective cross section.25 For example, the radial effect due to the absorption

of 238
92U

92 (rim effect) can be modeled by using a radial zoning of the fuel pin

(M zones), with the zone labeledM being the outer surface and corresponding to the

rim effect. The effective cross section (denoted as σinner) for all the zones, except the
rim, is calculated with the resonance integral in homogeneous medium:

I homNR ¼
ð
E

σa Eð Þσp
σt Eð Þ

dE

E

The mean value of the cross section for the pin σ is calculated using Eq. (14.7).

The cross section for the rim of the pin σrim is computed via the calculation of a

reaction rate:

XM�1

i¼1

Ni Vi σinnerΦi þ Nrim Vrim σrimΦrim ¼
XM�1

i¼1

Ni Vi þ Nrim Vrim

 !
σ Φ

In this formula, the mean flux is obtained by weighting the local flux by the

volumes:

Φ ¼
PM�1

i¼1

ViΦi þ VrimΦrim

PM�1

i¼1

Vi þ Vrim

25R. Stamm’ler et al: Equivalence relations for resonance integral calculations, Jour. of Nuclear
Energy, 27, 1973, p. 885
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It should be noted that σrim has no physical meaning, contrary to the absorption

rate Nrim Vrim σrimΦrim. Since σrim is inversely proportional to Vrim, this reaction rate

does not depend on the size of the mesh for the rim.

14.3.5 Heterogeneity of the Isotopic Composition

In the case of a mixture of absorbing materials, there is a mutual self-shielding

effect that is practically expressed as the fact that a neutron absorbed by a resonant

nuclide can no longer be absorbed by another nuclide. This phenomenon may be

modeled by calculating the resonance integral of the mixture containing k resonant
isotopes of concentration Nk:

X
k

NkIk ¼
ð
E

X
k

Nk σa,k Eð Þ
 !

1� Pf , f þ σp
σt Eð ÞPf , f

� �
dE

E

14.3.6 Shadowing Effect on the Resonance Integral

In the chapter on resonant absorption, the neutron balance of a cell with fuel c (for
combustible in French, we do not use here usual subscript f to avoid any confusion
with fission while used for cross-sections) containing a heavy nuclide U and a light

nuclide m surrounded by a moderator M was established.

VcΣ c
t Φc ¼ Vc 1� PcMð Þ Rc Σ c

s Φc

� �þ VM PMc RM ΣM
s ΦM

� �
VMΣM

t ΦM ¼ Vc PcM Rc Σ c
s Φc

� �þ VM 1� PMcð Þ RM ΣM
s ΦM

� �(

Using the usual notations for the slowing-down operator in the fuel:

Rc Σ c
s Φc

� � � RU Σ U
s Φc

� �þ Rm Σm
s Φc

� � � RU ΣU
s Φc

� �þ Σ m
s Rm Φc½ �

¼ 1

1� αc

ðu0 ¼u

u0¼u�εc

Σ c
t Φc

Σ U
s

Σ c
t

e� u�u
0ð Þdu0 þ 1

1� αm

ðu0¼u

u0¼u�εm

Σ c
t Φc

Σ m
s

Σ c
t

e� u�u
0ð Þdu0

and for the slowing down operator in the moderator:

RM ΣM
s ΦM

� � � 1

1� αc

ðu0¼u

u0 ¼u�εM

ΣM
t Φc

ΣM
s

ΣM
t

e� u�u
0ð Þdu0
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the reciprocity relation for the probabilities is written as follows:

PcMVcΣ
c
t uð Þ ¼ PcMVc Σ U

t uð Þ þ Σm
s

� � ¼ PMc VM ΣM
t uð Þ � PMc VM ΣM

s uð Þ

The effective resonance integral is expressed as:

Ieff �
ð

Σ U
a Φc

Φasymptotique
du ¼

ð
Σ U
a

Σ c
t

Σ c
t Φcdu

Outside the resonances, the asymptotic flux has a 1/E shape, i.e.:

Φasymptotic Eð ÞdE ¼ S

ξΣsE
dE or in lethargy Φasymptotic uð Þdu ¼ S

ξΣs
du

By normalizing the asymptotic flux to 1 (e.g. S¼ ξΣs) and outside resonances,

the following may be written:

Σ c
t Φf � Σ U

p þ Σ m
s

� �
Φasymptotic ¼ Σ U

p þ Σ m
s outside resonances

ΣM
t ΦM � ΣM

t Φasymptotic � ΣM
s little absorption in moderator

(

Using the Narrow Resonance (NR) approximation, the slowing-down operators

can be simplified by substituting the terms Σ c
t Φc and ΣM

t ΦM in the operators using

their asymptotic expressions. Hence:

VcΣ c
t Φc � Vc 1� PcMð Þ Σ U

p þ Σm
s

� �
Rc 1½ �|ffl{zffl}

1

þVM PMc ΣM
s|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

�PcMVc Σ c
t

RM 1½ �|fflffl{zfflffl}
1

VM ΣM
t ΦM � Vc PcM Σ U

p þ Σm
s

� �
þ VM 1� PMcð Þ ΣM

s

8>><>>:
Thus:

Σ c
t Φc � 1� PcMð Þ ΣU

p þ Σ m
s

� �
þ PcMΣ

c
t

which can be inserted in the effective resonance integral:

Ieff ¼
ð
Σ U
a

Σ c
t

Σ c
t Φcdu ¼

ð
Σ U
a

Σ c
t

Σ U
p þ Σ m

s

� �
du|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ivol

þ
ð
PcM

ΣU
a

Σ c
t

Σ c
t � ΣU

p

� �
du|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Isurf

Thus, we obtain the notions of “volume integral” and “surface integral”,

discussed earlier. Using the Wigner rational approximation, PcM � 1
1þX PcM can

be approached as:
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PfM � 1

1þ X
where X � Σ c

t Rh i ¼ Σ c
t

4Vc

Sc

is the opacity

This probability is valid only for an isolated object. Thus, the effective resonance

integral can be simplified as:

I NReff ¼
ð
Σ U
a

ΣU
p þ Σ m

s þ 4Vc

Sc

ΣU
t þ Σ m

s þ 4Vc

Sc

 !
du

The shadowing (Dancoff) effect must be modeled for a fuel lattice. Let us

consider a simple geometry such as a lattice of fuel slabs of thickness a regularly

separated by a moderator of thickness b.

R0
R1

R2

a a a
b b

0                    1                     2                 3                     4

Regular lattice of slabs

For a single slab of thickness a, it was previously shown that the probability of

leakage without collision, PVS , 0, is equal to:

PVS, 0 Σ c
t a

� � ¼ 1� e�Σ c
t R

� �
Rh i ¼ 1

2aΣ c
t

1� 2E3 Σ c
t a

� �� � � Pa
VS, 0

The average value of e�Σ f
t R

D E
is proportional to the number of neutrons that are

absorbed in the slab. In a slab lattice, a neutron travelling in a straight line may cross

several layers of slabs and moderators before interacting far away in the moderator.

Thus, probability PcM is modified. The slabs are numbered from left to right (cf. the
illustration) starting at 0. Hence, by combining the transfer probabilities (indexed
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from the top by the slab numbers) with the probabilityP1!1
VV of an incoming neutron

in moderator volume 1 undergoing a collision in the same volume (the other

probabilities are logically deduced from this notation), the following equation is

obtained:

PcM¼P0!1
cM þP0!3

cM þP0!5
cM þ���

¼P0!1
VS,0P

1!1
VV þP0!1

VS,0 1�P1!1
VV

� �
P2!3
VS,0P

3!3
VV þP0!1

VS,0 1�P1!1
VV

� �
P2!3
VS,0 1�P3!3

VV

� �
P4!5
VS,0P

5!5
VV þ . . .

At this point, any thickness of the fuel layers and of the moderator are consid-

ered. The problem is greatly simplified if the lattice has a constant pitch (a,b) since:

8i,8j P2i!2iþ1
VS, 0 ¼ P2j!2jþ1

VS, 0 � Pa
VS, 0 in the fuel

8i,8j P2iþ1!2iþ1
VV ¼ P2jþ1!2jþ1

VV � Pb
VV in the moderatorr

(

Hence, for an infinite lattice, the following is obtained:

PfM ¼Pa
VS,0P

b
VVþPa

VS,0 1�Pb
VV

� �
Pa
VS,0P

b
VVþPa

VS,0 1�Pb
VV

� �
Pa
VS,0 1�Pb

VV

� �
Pa
VS,0P

b
VVþ . . .

¼Pa
VS,0P

b
VV 1þ 1�Pb

VV

� �
Pa
VS,0þ 1�Pb

VV

� �2
Pa
VS,0

2þ . . .
� �

¼ Pa
VS,0P

b
VV

1� 1�Pb
VV

� �
Pa
VS,0

With:

Pa
VS, 0 ¼ 1

2aΣ c
t

1� 2E3 Σ c
t a

� �� �
and Pb

VV ¼ 1� Pb
VS, 0

¼ 1� 1

2bΣM
t

1� 2E3 ΣM
t b

� �� �
For a finite lattice, the infinite series cannot be substituted by its limit. Replacing

the expression of PcM that accounts for the Dancoff effect in the resonance integral,

it can be seen that the latter is modified with respect to the value obtained for a

single slab. The foregoing idea can be summed up as follows: “a fuel cannot absorb
a neutron that has been absorbed by a neighboring fuel pin”. This calculation may

be extended to any geometry other than a slab geometry at the expense of complex

calculations for collision probabilities. This shadowing effect also exists for

non-fissile absorbing materials such as control rods. Thus, the resulting absorption

of two rods inserted in proximity in the core is not equal to the sum of the separate

absorption of each rod.
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14.3.7 Heterogeneous Pi , j Calculations for Fast Reactors
with Perturbation Methods

Storrer, Khairallah, Cadilhac and Benoit developed an ingenious use of the colli-

sion probability method Pi , j in perturbation theory.26,27 They proposed a means of

calculating the effect on keff of the pin-by-pin flux structure due to heterogeneity,

which can be considered as a perturbation of the piecewise homogeneous case. The

authors pointed out that a first-order approach based on classical perturbation

theory using the spatial direct and adjoint flux for a homogeneous reactor does

not induce any variation in keff. However, a more appropriate formalism can be

developed for the case in which the adjoint flux depends not only on the position

and the energy, but also on the nature of the ensuing collision. This adjoint flux can

be employed in perturbation and leads to a variation in δkeff even for a homogeneous

reactor. We use the Pi , j theory for neutrons emitted at i interacting in j with the flat
source approximation, which is acceptable if the mean chord in each region is not

too large compared to the mean free path of the neutron. In this case, a homoge-

neous infinite medium and a heterogeneous medium with the same mean compo-

sition are described by the same set of coupled equations between the zones, except

for values of Pi , j, which change. Using the usual notations:

VjΣt, j Eð ÞΦj Eð Þ ¼
Xn
i¼1

Vi Pi, j Eð Þ Si Eð Þ

In a multi-group approach with G groups and n zones, we define coefficients

Σ
g0!g

i such that:

ViS
g
i ¼ Vi

χg
PG
g0¼1

vΣf ,g0Φi,g0

keff
þ
XG
g0¼1

Σs,g0!gΦi,g0

0BBB@
1CCCA �

Xn
j¼1

Vj

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

V

XG
g0 ¼1

Σ
g0!g

i Φi,g0

0@ 1A

Thus, the equation for Pi , j collision probabilities can be expressed in the form:

Σt, j,g Φj,g ¼
Xn
i¼1

XG
g0¼1

Σ
g0!g

i Pg0
i, jΦi,g0 by defining Σt, j,g � Vj

V
Σt, j,g

26F. Storrer, A. Khairallah, M. Cadilhac, P. Benoist: Heterogeneity calculation for fast reactors by
a perturbation method, Winter meeting of the American Nuclear Society, 30 Nov./3 Dec. 1964,

San Francisco, USA (1964).
27Evans (1967) contains an article presenting numerical results using both the model and the

PERHET code in which it is contained.
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It may be observed that the normalized cross sections Σ per unit volume do not

vary for a medium of given average composition, whether it is homogeneous or

heterogeneous. Only the Pi , j probabilities are impacted by heterogeneity effects.

The adjoint equation is written by transposing the transport matrix:

Adjoint equation: Σt, j,gΦ
∗
j,g ¼

Xn
i¼1

XG
g0¼1

Σ
g!g0

j Pg0
j, iΦ

∗
i,g0 ð14:8Þ

Thus:

Coupling of adjoint flux: Φ∗
j,g ¼

Xn
i¼1

XG
g0 ¼1

Σ
g!g0

j

Σt, j,g

Pg0
j, iΦ

∗
i,g0 ð14:9Þ

Ratio Σ
g!g0

j =Σt, j,g is the probability of a neutron emitted in group g in the region

j leading to a neutron in group g’ in the same region. Pg0
j, i is the probability that the

same neutron produced will undergo a collision in the next zone i and thusΦ∗
j,g is the

contribution of a neutron in group g undergoing its next collision in zone j. This
definition differs from neutron importance as discussed in the chapter on the

transport equation. If applied to the particular case of a homogeneous medium,

the probability Pg
i, j is that of a neutron in group g which last collided in region

i undergoing its next collision in zone j. This probability does not depend on i due to
the homogeneity hypothesis:

Pg
i, jHomog ¼ Σt, j,g

Σt,g

¼ Σt, j,g

Σt,g
since: Σt,g �

Xn
j¼1

Σt, j,g ¼ Σt,g

With these homogeneous probabilities Pi , j, flux Φj , g does not depend on zone

j and satisfies the usual homogeneous equation:

Σt,g Φg ¼
XG
g0 ¼1

Σg0!g Φg0 with: Σg0!g ¼
Xn
i¼1

Σ
g0!g

i

Nevertheless, the homogeneous adjoint equation is not simply the neutron

importance equation Ig given by:

Σt,gIg ¼
XG
g0 ¼1

Σg!g0 Ig0
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SubstitutingPg0
j, i by its value for the homogeneous casePg0

j, iHomog
in Eq. (14.9), and

dividing each side by Σt,g, the following equation is obtained:

Φ∗
j,gHomog

¼
XG
g0¼1

Σ
g!g0

j

Σt, j,g

Ig0

Therefore, Φ∗
j,gHomog

depends on j even for a homogeneous situation, unlike

neutron importance, which is the adjoint flux corresponding to a particular bound-

ary condition as discussed earlier. Using the operators introduced in the paragraph

on the perturbation approach in Chap. 11, the transport equation is expressed as:

K � λPð Þ Φ½ � ¼ 0

where K[ ] is the removal operator and P[ ] is the production operator, with λ� 1/keff
being the eigenvalue. In Chap. 11, it was shown that the first-order perturbation is

written as:

δkeff
keff

¼ �δλ

λ
¼ � Φ∗; δK � λδPð Þ Φ½ �h i

λ Φ∗;K Φ½ �h i

In multi-group and multi-cell approximation, the transport operator is a n�G
matrix in which the coefficients are linear combinations of the Pi , j, which depend

on heterogeneity, unlike the normalized cross sections. A perturbation

δPg
i, j � Pg

i, jHeterog
� Pg

i, jHomog
due to heterogeneity originating in a non-perturbed

situation leads to the first-order perturbation of δkeff such that (all coefficients

have been calculated):

δkeff
keff

¼
XG
g¼1

Pn
j¼1

Φ∗
j,gHomog

Pn
i¼1

δPg
i, j

PG
g0¼1

Σ
g0!g

i

Φi,g0Homog

PG
g0¼1

Pn
j¼1

Φ∗
j,g0Homog

Pn
i¼1

P
g0
i, jHomog

χg0
PG
g00¼1

vΣf , i,g00Φi,g00Homog

With the expressions of Pg0
i, jHomog

, Φi,g0Homog and Φ∗
j,gHomog

, determined earlier, the

following equation is reached:

δkeff
keff

¼
XG
g¼1

Xn
j¼1

XG
g0¼1

Σ
g!g0

j

Σ
g

t, j

Ig0
Xn
i¼1

δPg
i, j

XG
g00¼1

Σ
g00!g

i Φg00

24 35
XG
g0¼1

χg0 Ig0

0@ 1A XG
g00¼1

vΣf ,g00Φg00

0@ 1A with : Σf ,g00 �
Xn
i¼1

Σf , i,g00
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With G adjoint calculations, with perturbation in the group g and without

perturbation in the other groups, G flux maps are obtained, leading to G values of

(δkeff/keff)g. Global perturbation is calculated by summing all these contributions as

follows:

δkeff
keff

¼
XG
g¼1

δkeff
keff

� �
g

The flux variation can be evaluated from the variation in the eigenvalue. This

method has been successfully used to calculate the Doppler effect due to a hetero-

geneous temperature variation with respect to a homogeneous reference situation.

Furthermore, it illustrates the use of perturbations for parametric studies since their

calculation is fairly expensive, along with G + 1 homogeneous calculations to be

carried out (1 homogeneous direct calculation and G homogeneous adjoint ones).

The computation cost is low, especially when compared to the direct heterogeneous

case. Nevertheless, progress in computational power means that direct heteroge-

neous calculations are preferred to those with perturbations. Nevertheless, this

method enables evaluation of the differential coefficients for the perturbation

considered. These coefficients are essential for simplified models and for under-

standing complex physical phenomena.

14.4 Transport-Diffusion Equivalence

(Homogenization methods in reactor physics 1980; Reuss 2003, p. 390)

14.4.1 Context

Calculation of a reactor in 3D continues to be very challenging in exact transport

theory. For industrial purposes, reactors are calculated using a simplified method,

which in most cases is the diffusion approximation. In this context, the reactor is

calculated in two steps. First, a transport calculation28 is carried out on a reference

pattern representative of the periodicity of the reactor lattice, and with sufficient

precision to represent the local physics (guide thimble, void regions, highly absorb-

ing materials, etc.): this is called an elementary calculation, a cell calculation or a

basic cell lattice. This calculation is often called a heterogeneous calculation or

assembly calculation, since the fuel assembly is often the elementary cell of the

core. It is usually carried out with reflective boundary conditions to represent an

28In France, the code used is APOLLO2 developed at CEA.
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infinite lattice. In thermal neutron reactors, the mean free path of neutrons is of the

same order of magnitude as the lattice heterogeneity. Thus, the flux, especially the

thermal flux, undergoes high spatial distortions due to variation in the spectral

index. Therefore, the heterogeneous geometry cannot easily be homogenized as a

homogeneous medium (Fig. 14.17) compatible with the homogeneous simplified

solver. The simplest homogenization29 consists in weighting the macroscopic cross

sections by the volumes and the flux calculated in transport theory so as to conserve

the reaction rates used universally as physical quantities in the neutron balance.

Next, using homogenized neutron properties from the previous step, a coarser

calculation is carried out at the core level. The latter is the core calculation in which

each assembly is modeled as a homogeneous material per thermal-hydraulic mesh

cell. Using the neutron quantities obtained from homogenized transport calcula-

tions without any particular correction in the diffusion calculation at the core level

leads to reaction rates that differ between heterogeneous transport and homoge-

neous diffusion. This discrepancy is caused by several factors: differences in solver

and meshes, and thus in leakage. These calculations can be improved by the

transport-diffusion equivalence.30 It may be noted that at the homogenized assem-

bly level in an infinite lattice, the homogeneous diffusion equation and the homo-

geneous transport equation can be summed up as a neutron balance without leakage

(the leakage current being zero at the boundary thanks to the “infinite medium”

calculation). This means that homogeneous diffusion calculations driven by cross

sections obtained through the homogeneous transport calculations under the same

conditions—which will be called transport cross sections—will lead to the same

reference reaction rates as for the homogeneous transport method. Thus, transport

cross sections can be used as such in diffusion calculations. Equivalence, i.e. the
operation consisting in modifying transport cross sections via an equivalence

“Homogeneous
medium” 

=
mixture of water,

zirconium and
UO2 

Homogenization

Infographie Marguet

Fig. 14.17 Step 1: Transport calculation and homogenization (example of a PWR assembly)

29Philippe Finck’s thesis presents an interesting review of homogenization adapted to Nodal

Expansion Method. Philippe Jean Finck: Homogenization and dehomogenization schemes for
BWR assemblies, PhD at the Massachusetts Institute of Technology, January 1983.
30Michel Soldevila: Contribution �a l’étude du problème de l’équivalence transport-diffusion
[Contribution to the study of the transport-diffusion equivalence problem], PhD thesis, University

of Orsay (1978).
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coefficient such that the diffusion calculation is equivalent to the transport calcula-

tion, is unnecessary in an infinite lattice. The neutron balance and keff are conserved
by construction. Nevertheless, the fluxes at the interfaces are not generally con-

served. Further, spectrum variations at the interfaces are not considered since

transport calculations are carried out in an infinite lattice approximation. In prac-

tice, an assembly is often surrounded by different assemblies rather than identical

ones, which means that, in the case of an infinite lattice there is no need for

equivalence. This textbook case does not have any practical applications. Usually,

the assembly is calculated in heterogeneous transport theory with a fine mesh,

whereas that of diffusion is coarser (of the order of a few cm). Diffusion theory

will thus predict reaction rates that differ from the transport method if the cross

sections from a transport calculation are used immediately in calculations (espe-

cially near sources and interfaces). In order to ensure equivalence between the

initial heterogeneous transport and diffusion, trans-operator equivalence, usually
transport-diffusion, should be carried out (although transport-transport equivalence

is possible between a collision probability operator Pi j and an Sn method). Equiv-

alence between a heterogeneous diffusion solver with a fine mesh and the same

solver with a coarser mesh may even be considered; in this case, equivalence would

catch up with the mesh effect rather than the operator effect.

14.4.2 Spatial Homogenization

The ideal homogenization process would conserve all the reaction rates with

respect to the reference situation (fine transport) at any point in space. Let bΦ andbΣ be the homogenized quantities. The quantity to conserve is:ð
V

bΣ ~rð Þ bΦ ~rð Þd~r ¼
ð
V

Σ ~rð ÞΦ ~rð Þd~r

Thus, the evident definition for homogenized neutron quantities on a cell is:

bΣ ¼

Ð
V

Σ ~rð ÞΦ ~rð Þd~rÐ
V

bΦ ~rð Þd~r

the homogenized diffusion coefficient satisfies the following equation to pre-

serve the total leakage of the cell:

bD ¼ �

Ð
S

~J ~rð Þ:~n dSÐ
V

grad
��! bΦ ~rð Þ:~n dS
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These equations show the difficulty of the homogenization process. The

weighting flux for homogenizing physical quantities is the spatial flux of the

homogenized calculation itself, bΦ, which is the quantity being sought. Hence, the

result is a non-linear problem that should be dealt with using an iterative process

since the flux solution is not known in advance. On the other hand, exact homog-

enization of the diffusion coefficient includes the cell surface. In practical cases,

only a reference flux obtained with transport calculations on an infinite lattice

geometry is available (denoted as Φ1 ~rð Þ for each spatial zone to be homogenized,

usually an assembly). This flux is used to homogenize the neutron quantities:

bΣ ¼

ð
V

Σ ~rð ÞΦ1 ~rð Þd~r
ð
V

Φ1 ~rð Þd~r
and bD ¼

ð
V

D ~rð ÞΦ1 ~rð Þd~r
ð
V

Φ1 ~rð Þd~r

However, by definition, the flux in an infinite lattice cannot account for leakage.

Several codes employ a countermeasure that consists in adding a fictitious isotope

having the properties to account for leakage:

– Either by imposing an absorption cross section Σa¼DB2 and scattering cross

section Σs¼ �DB2, such that the total cross section is zero, with D and B2 being

the diffusion coefficient and the buckling of the homogeneous medium.

– Or by setting only an absorption cross section worth Σa¼DB2 and a zero

scattering cross section.

The following steps are carried out: a first calculation is carried out and consists

in homogenizing the cell media by weighting with a heterogeneous flux from the

infinite lattice (zero leakage). Then, using a transport calculation (with the Bn or Pn

method discussed in Chap. 9), D and B2, i.e. the properties of the fictitious isotope,

are calculated. This iterative process is repeated until convergence to the chosen keff
(1 for a critical geometry).

14.4.3 Multi-group Approach

In most industrial cases, calculations are carried out with few energy groups (often

two groups are sufficient), and with a simple method (diffusion, simplified trans-

port). The conservation of multi-group reaction rates is carried out iteratively. The

goal is to conserve the reaction rate for a given reaction cross section κ (total,

fission, etc.) in diffusion Σ g
κ,diffusionΦ

g
diffusion with respect to a transport value

Σ g
κ, transportΦ

g
transport for each group g. The simplest solution is to modify the diffusion

cross sections using an equivalence coefficient per calculation cell, μg, that is unique
for all reaction cross sections but different for each energy group. If a one-energy
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group diffusion calculation were carried out, modification of all the cross sections

with a multiplication factor would not change the flux solution, but this is no longer

the case in multi-group theory if the equivalence coefficients are different in each

group. The equivalence process consists of an iterative calculation in which cross

sections are modified until the reaction rates are equal for both the transport and

diffusion calculations. In our approach, if all equivalence coefficients are constant

for any reaction (but different for each energy group), the chosen reaction rate to be

conserved does not matter. Indeed, the conservation of one reaction rate ensures

that of the others:

Σ g
t, diffusion Φg

diffusion ¼ Σ g
t, transport Φg

transport ) Σ g
κ, transport μ

gΣ g
t, transport

� �
Φg

diffusion

¼ Σ g
κ, transportΣ

g
t, transport Φg

transport

Thus: μgΣ g
κ, transport

� �
Φg

diffusion ¼ Σ g
κ, transport Φg

transport ) Σ g
κ, diffusion Φg

diffusion

¼ Σ g
κ, transport Φg

transport

Finally, whether for a transport or diffusion operator, it can be noted that if Φg

were the solution to the problem for cross sections Σ g
κ , then Φg/μg would be a

solution to the same problem for cross sections μgΣ g
κ . This implies that the

equivalence coefficients are defined up to a multiplication constant for each energy

group. Using a closure property, the equivalence coefficient can be normalized and

fully defined. For instance, we can use the flux integrated in space (for all the cells

m of volumes Vm) per group:X
m

VmΦ
g
diffusion,m ¼

X
m

VmΦ
g
transport )

X
m

Vm

μg
¼
X
m

Vm

The equivalence coefficients could also be normalized to the power dissipated

per energy group or other considerations, which will be discussed later.

14.4.4 Kavenoky-Hébert SPH Equivalence

(Hébert 2009, p. 247)

The SPH (SuPerHomogenization) equivalence initially proposed by

Alain Kavenoky31 in 1978, subsequently developed and improved by Alain

31Alain Kavenoky: The SPH homogenization method, Proceedings of the specialists’ meeting

on Homogenization methods in reactor physics organized by the IAEA held in Lugano,

13–15 November 1978, technical document issued by the AIEA, Vienna, 1980, pp. 181–187.
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Hébert,32,33,34 is an extension of the previous method applied to any geometry of

macro-cells. A macro-cell is a group of cells, m, in the fine transport calculation

from a geometrical point of view as well as the number of groups. Its volume is the

sum of cell volumes of which it consists:

VM ¼
X
m2M

Vm

Similarly, for a macro-groupG in energy, there will be several fine groups g. The
number of collisions in transport in a macro-group and a macro-cell is given by a

simple flux-volume homogenization:

RM,G ¼
X
m2M

X
g2G

VmΣt,m,gΦm,g

The leakage (L ) and self-scattering terms (S) are given by35:

LM,G ¼ B2
X
g2G

Dg

X
m2M

VmΦm,g

SM,G!G ¼
X
m2M

X
g2G

X
g02G

VmΣs,m,g0!gΦm,g0 � B2
X
g2G

Dg

X
m2M

VmΦm,g

8>><>>:
Fission production (P) and slowing down from other macro-groups are given by:

PM,G0!G ¼
X
m2M

X
g2G

X
g02G0

VmΣs,m,g0!gΦm,g0 þ
X
m2M

X
g2G

X
g02G0

Vmχg
vΣf ,m,g0Φm,g0

keff

� δG0,G

X
m2M

X
g2G

X
g02G0

VmΣs,m,g0!gΦm,g0

32Alain Hébert: Développement de la méthode SPH: homogénéisation de cellules dans un réseau
non uniforme et calcul des paramètres réflecteur [Development of the SPH method: homogeni-

zation of cells in a non-uniform lattice and calculation of reflector parameters], PhD thesis

University of Orsay (1981).
33Alain Hébert: A consistent technique for the pin-by-pin homogenization of a pressurized water
reactor assembly, Nuclear Science and Engineering 113, pp. 227–238 (1993).
34Alain Hébert: Development of a third-generation superhomogénéisation method for the homog-
enization of a pressurized water reactor assembly, Nuclear Science and Engineering 115, pp.

129–141 (1993).
35The coefficient Dg can be evaluated using the B1 method, which will be seen later.
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The integrated transport flux is expressed as:

ΦM,G ¼
X
g2G

X
m2M

VmΦm,g

The transport cross sections are calculated from volume-integrated reaction rates

and are used to determine diffusion cross sections through the use of equivalence

coefficients for individual macro-cells and macro-groups:

Σtransport
t,M,G ¼ RM,G

ΦM,G

Σtransport
s,M,G!G ¼ SM,G!G

ΦM,G

Dtransport
M,G ¼ LM,G

B2ΦM,G

8>>>>>>><>>>>>>>:
Σdiffusion
t,M,G ¼ μM,GΣ

transport
t,M,G

Σdiffusion
s,M,G!G ¼ μM,GΣ

transport
s,M,G!G

Ddiffusion
M,G ¼ μM,GD

transport
M,G

8>>><>>>:
The homogenized diffusion flux that conserves a homogeneous diffusion equa-

tion is defined as:

Φdiffusion
M,G ¼ Φtransport

M,G

μM,G

The diffusion equation is expressed as follows with the above definitions, by

dropping the dependence in M, which becomes the space variable:

�div Ddiffusion
G grad

��!
Φdiffuson

G

� �
þ Σdiffusion

t,G � Σdiffusion
s,G!G

� �
Φdiffuson

G ¼
X
G

0

PG0!GΦ
diffuson
G0

Φtransport

G0
μG0

An iterative procedure as shown in Fig. 14.18 can be set up for μM ,G so as to

determine the diffusion flux that satisfies the integrated transport reaction rates on

the macro-cells. This reasoning can easily be extended to a case of transport-

transport equivalence.

14.4.5 Flux Reconstruction Between Different Operators

A second ambiguous point is that the position of the hottest pin in the core is

required for safety considerations, i.e. the position at which maximum power occurs

(Silvennoinen 1976, p. 66). In a homogeneous core, this point is naturally at the

center of the reactor. However, the materials constituting the fuel are not homoge-

neous in terms of isotopic composition and thermal-hydraulic parameters, and this

point thus shifts within the core depending on the loading pattern and operating
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conditions. Further, it is clear that this position is sought at the fuel pin level

whereas the diffusion calculation is executed for a homogeneous assembly and

leads to any spatial position (x, y, z) that may not coincide with an actual fuel pin.

Thus, the process of pin power reconstruction is required. This consists in

factorizing the homogeneous power that will be wisely distributed on the true

assembly lattice. Finally, it should be noted that diffusion calculations are carried

g
diffusion,0

g
transportg

iter Φ
Φ

μ =

Diffusion calculation:

Input: 
g

transport
g

diffusion ΣΣ ,0,, κκ =

Output: 
g
diffusionΦ 0,

Transport calculation:

Output:
g

transport
g
transport ΣΦ ,, κ

I
N
I
T
I
A
L
I
Z
A
T
I
O
N

g
iterdiffusion,

g
transportg

iter Φ
Φ

μ =

Diffusion calculation:

Input: 
g

transport
g
iter

g
iterdiffusion ΣΣ ,1,, κκ μ −=

Output: 
g

iterdiffusionΦ ,

?,,,,

g
transport

g
transportt

g
iterdiffusion

g
iterdiffusiont ΦΣΦΣ =

Convergence: transporttransport,diffusiondiffusion, ΦΣΦΣ, κκκ =∀

1+= iteriter

+ Normalization

Infographie Marguet

Fig. 14.18 Equivalence procedure for reaction rates
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out with very few energy groups (around two to six) and thus, require energy

condensations of transport calculations that are usually performed for over

200 groups. As the reactor is smaller, the boundary conditions set by the reflector

will have a significant effect on the neutron spectrum which diverges from that of an

infinite lattice assembly. In these cases, increasing the number of groups will lead to

improved calculations. This reasoning is limited by the fact that fine energy

discretization with many groups is not consistent with diffusion approximation. It

is interesting to note that this two-step approach is widely employed worldwide

where two-group calculations have become a standard for PWR and six-energy

groups for BWR. In the early 2000s, efforts were made to calculate small and large

experimental reactors using a one-step approach with fixed conditions. The major

limitation is the calculation time rather than any theoretical difficulties (Fig. 14.19).

Nevertheless, there still remains the question of how to provide the diffusion

approximation with appropriate cross sections in order to obtain the transport

results for quantities such as reaction rates, which are the principal quantities to

be conserved. Historically, two effects are distinguished:

– the heterogeneity effect, which appears when a lattice of cells is replaced by a

homogeneous medium

– the non-consistency effect, which is due to the fact that homogenized neutron

quantities inserted as such in diffusion calculations lead to discrepancies with

respect to transport results, especially at interfaces between media.

In France in 1959, Pierre Benoist of the CEA published in his PhD thesis a

method allowing for cavity effects on the diffusion coefficient for UNGG. His idea
was based on factorization of the flux into a macroscopic flux and a microscopic

flux structure of the same spatial period as the lattice. This approach consists in

writing the flux in the following form with a source expressed as:

F (x,y)

Homogeneous media

from step 1  Infographie Marguet

Fig. 14.19 Step 2: Diffusion calculation (e.g. PWR core)
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Φ ~r;E; Ω
!� �

¼ φ ~r;E; Ω
!� �

e�i ~B:~r

where s ~r;Eð Þ and φ ~r;E; Ω
!� �

are periodic functions on the lattice and e�i ~B:~r is the

macroscopic flux. This technique, discussed in detail in Chap. 9, is equivalent to

applying the Fourier transform to the flux. The diffusion coefficient can be com-

puted from the leakage and the buckling.36

14.4.5.1 Reflected Medium (Infinite)

In this case, the heterogeneous and regular lattice can be substituted by a homog-

enized lattice which is applied infinitely. This formalism is called the homogeneous

B formalism (with the model being B0 if scattering is modeled isotropically and B1

in the case of linearly anisotropic scattering). In this situation, we therefore perform

factorization with an exponential function and a microscopic function dependent

solely on angle and energy, but no longer space. This factorization is possible for a

unique value of the buckling term B2, and corresponds to the critical situation with a

fundamental mode flux. This homogenization theory is sometimes called the small-
buckling approximation.37 It is possible to factorize the flux only by choosing a

macroscopic flux with an exponential form since its gradient is proportional to

itself. The macroscopic flux satisfies a diffusion equation and the global flux is

perturbed locally by the microscopic structure. The leakage is expanded into a

Taylor series with respect to the buckling term and only the significant terms are

considered (hence the fact that precision depends on a small degree of buckling).

Hence, Benoist’s theory conserves the leakage in the considered lattice cell and

corrects heterogeneity and anisotropy in the diffusion calculation using the ficti-

tious isotope method broached earlier. Thus to represent a heterogeneous critical

assembly, a fictitious absorption term due to the macroscopic flux is taken into

account through use of the leakage coefficient and the critical buckling obtained

from the homogenized equivalent medium. This leakage coefficient and critical

buckling are calculated using cross sections homogenized with the local heteroge-

neous flux, such that the homogeneous medium is representative of the heteroge-

neous medium. Since the heterogeneous flux itself depends on the leakage, this is an

iterative procedure. The calculation is carried out in two steps. First, the equivalent

homogeneous medium is calculated using cross sections weighted by a multi-group

heterogeneous flux for the infinite (reflective boundary conditions) heterogeneous

36Carlos José Gho: Homogénéisation du coefficient de diffusion: influence de la modélisation et du
Laplacien pour les réacteurs rapides de puissance et les maquettes expérimentales [Homogeni-
zation of the diffusion coefficient: influence of the model used for the buckling calculation in high-
power fast reactors and experimental reactors], PhD thesis, University of Grenoble (1984).
37Hongbin Zhang, Rizwan-uddin, J.J. Dorning: A multiple-scales systematic theory for the simul-
taneous homogenization of lattice cells and fuel assemblies, Transport theory and statistical

physics, 26 (7), 763–811 (1997).
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assembly (infinite lattice). This medium cannot in theory be critical (this may be the

case for nominal depletion with constant boron: the assembly is over-multiplying at

BOL and becomes under-multiplying at EOL. There consequently exists a burn-up

for which the assembly will be just critical, although this is a textbook case where

buckling is zero at any point). In the general case, a macroscopic leakage cross

sectionDgB
2
g is considered for the homogeneous assembly for each energy group in

order for it to be critical. This homogeneous critical buckling is not equal to the

fundamental buckling of the heterogeneous assembly since the cross sections are

those homogenized by a heterogeneous infinite-lattice flux not taking account of

leakage. A second calculation is hence carried out for the reflected heterogeneous

assembly with a further volume-wise absorption term, in addition to the absorption

cross section DgB
2
g evaluated from the previous homogeneous calculation. This is

referred to as “volume leakage.” The iteration proceeds on until criticality is

reached for the heterogeneous assembly. The drawback of this method is the fact

that leakage is calculated for the homogeneous assembly and not the real hetero-

geneous assembly. This implies that the leakage cross section DgB
2
g should

rigorously depend on space, which is not the case for homogeneous leakage through

construction. Furthermore, the anisotropy of the medium (for instance, cavities that

lead to a streaming effect) is not correctly allowed for by the method, which only

caters for this effect through the volume weighting of cross sections. Further, there

is also the flux factorization hypothesis, which assumes that there is only the

fundamental mode, which may not be the case since higher harmonics may exist

due to the interfaces.38

14.4.5.1.1 Homogeneous B0 Model

(Hébert 2005, p. 232)

Let us start from the multi-group integro-differential equation with an isotropic

scattering hypothesis and constant cross sections due to the infinite homogeneous

medium:

38Ivan Petrovic: Amélioration du modèle de fuites de neutrons dans le schéma de calcul des
conditions critiques et des paramètres homogénéisés d’un réacteur nucléaire [Improving the

neutron leakage model in a calculation scheme for critical conditions and homogenized parameters

for a nuclear reactor], PhD thesis, University of Orsay (1993). This PhD work was supervised by

Pierre Benoist. Petrovic developed the TIBERE model, which is a simplified heterogeneous B1

model. The clear illustrations from Petrovic’s work for the homogeneous B0 and B1 equations are

used to reproduce the equations here.
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Ω
! :grad
��!

Φg ~r; Ω
!� �

þ Σ g
t Φg ~r; Ω

!� �

¼ 1

4π

X
g0

Σg0!g
s, 0

ð
4π

Φg0 ~r; Ω
!� �

dΩ
!þ χg

X
g0

vΣg0
f

ð
4π

Φg0 ~r; Ω
!� �

dΩ
!

keff

0BBBB@
1CCCCA

The notations are simplified by:

Σg0!g
0 � Σg0!g

s, 0 þ χgvΣ
g0
f

The following energy-space flux factorization is inserted for each group:

Φg ~r; Ω
!� �

¼ φg ~r; Ω
!� �

e�i ~B:~r

For a critical medium (keff¼ 1):

i~B:Ω
!þ Σ g

t

� �
φg Ω

!� �
¼ 1

4π

X
g0

Σg0!g
0

ð
4π

φg0 Ω
!� �

dΩ
!

0@ 1A
Integrating over the unit sphere (4π steradians), we obtain:

φg �
ð
4π

φg Ω
!� �

dΩ
!

¼
ð
4π

dΩ
! 1

4π i~B:Ω
!þ Σ g

t

� � X
g0

Σg0!g
0

ð
4π

φg0 Ω
!� �

dΩ
!

0@ 1A

¼ 1

4π

ð2π
0

dφ

ðπ
0

sin θdθ

Σ g
t þ iB cos θ

X
g0

Σg0!g
0 φg0

0@ 1A
¼ 1

2π

ðþ1

�1

dμ

Σ g
t þ iBμ

X
g0

Σg0!g
O φg0

0@ 1A
¼ 1

B
arctan

B

Σ g
t

X
g0

Σg0!g
0 φg0

0@ 1A
ð14:10Þ

It may be noted that the same buckling is used for all the groups. The smallest

real value of B2 is the critical buckling for the medium.

The current is expressed as:
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~Jg ~rð Þ �
ð
4π

Ω
!

Φg ~r; Ω
!� �

dΩ
!¼ ei

~B~r

ð
4π

Ω
!

φg Ω
!� �

dΩ
!

¼ ei
~B~r
X
g0

Σg0!g
0 φg0

ð
4π

Ω
!

dΩ
! 1

4π i~B:Ω
!þ Σ g

t

� �
In Chap. 9, this type of integral was introduced, setting ~B ¼ B~z along the z axis

such that the ~x and ~y terms are zero. Thus:

ð
4π

Ω
!

dΩ
! 1

4π i~B:Ω
!þ Σ g

t

� � ¼ 2π

ðþ1

�1

μdμ

Σ g
t þ iBμ

~z ¼ 2π

iB

ðþ1

�1

B2μ2 dμ

Σ g
t 2þ B2μ2

~z

¼ 4π

iB2
1� Σ g

t

B
tan �1 B

Σ g
t

� �
~B

~Jg ~rð Þ is colinear to~B. If~Bhad been chosen in any other direction, the same result

would have been reached, i.e.:

~Jg ~rð Þ � ei
~B~r~jg ¼ ei

~B~r
X
g0

Σg0!g
0 φg0

1

iB2
1�Σ g

t

B
arctan

B

Σ g
t

� �
~B¼�Dg

~gradΦg ~rð Þ

~jg ¼�iDg
~Bφg

8><>:
This equation is obtained by substituting

P
g0
Σg0!g
0 φg0 byφgB=arctan

B
Σ g
t
, as given

by Eq. (14.10) and the group-wise diffusion term is defined as:

Dg � 1

B

1� Σ g
t

B arctan
B
Σ g
t

� �
arctan B

Σ g
t

¼ 1

3Σ g
t

1� 4

15

B2

Σ g2

t

þ O
B4

Σ g4

t

 ! !

The analogy with Fick’s law in diffusion should be noted. In an infinite homo-

geneous medium, the only hypothesis employed is isotropic scattering, thereby

showing the asymptotic behavior of transport theory far from boundaries. The

“usual” diffusion coefficient D¼ 1/(3Σt) is the limit of the coefficient Dg when

the buckling of the system tends towards 0. If the system is over-critical, the

buckling term is real, whereas for subcritical cases, it is purely imaginary,

i.e. B¼ i|B| and B2¼ � |B|2< 0. In this case, the following equation which was

illustrated earlier is used:
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arctan
iB

Σ g
t

¼ i

2
ln

Σ g
t þ B

Σ g
t � B

Hence: Dg � �1

B

1� Σ g
t

2B
ln

Σ g
t þ B

Σ g
t � B

� �
1

2
ln

Σ g
t þ B

Σ g
t � B

It can be seen that the diffusion coefficient of group g depends solely on the total
cross section of the same group. Due to the isotropic scattering hypothesis, there is

no coupling with other energy groups.

14.4.5.1.2 Homogeneous B1 Model

In the homogeneous B1 model, the scattering cross section is expanded to order

1, i.e.:

Σg0!g
s Ω

!
:Ω
!0

� �
¼ 1

4π
Σg0!g
s, 0 þ Σg0!g

s, 1 Ω
!
:Ω
!0

� �
This expression is inserted in the Boltzmann equation, and by similar calcula-

tions as for the homogeneous B0 model, with an additional term as Ω
!
:Ω
!0

, the

following equation is reached:

i~B:Ω
!þ Σ g

t

� �
φg Ω

!� �
¼ 1

4π

X
g0

Σg0!g
0

ð
4π

φg0 Ω
!� �

dΩ
!þ Σg0!g

s, 1 Ω
!
:~jg0

0@ 1A
~jg0 �

ð
4π

Φg0 Ω
!0
� �

Ω
!0

dΩ
!0

8>>>>><>>>>>:
ð14:11Þ

Which, after further calculations, leads to:

arcφg ¼
X
g0

1

B
arctan

B

Σ g
t

X
g0

Σg0!g
0 φg0

0@ 1Aþ 1� B

Σ g
t

arctan
B

Σ g
t

Σg0!g
s, 1

� � ~B:~jg0

iB2

0@ 1A
Thus, a coupling is introduced between the groups. The neutron balance is

obtained by integrating Eq. (14.11) angularly, i.e.:

i~B:~jg þ Σ g
t φg ¼

X
g0

Σg0!g
0 φg0

Hence, the term ~B:~jg0 is removed from the coupled flux equations:
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φg¼
X
g0

1

B
arctan

B

Σ g
t

X
g0

Σg0!g
0 φg0

0@ 1A� 1� B

Σ g
t

arctan
B

Σ g
t

Σg0!g
s,1

� �X
g00

Σg00!g0
0 φg00 �Σg0

t φg0

B2

0BBB@
1CCCA

Some more mathematical computations result in the diffusion coefficient:

Dg � 1

B

1� Σ g
t

B arctan
B
Σ g
t

� �
arctan B

Σ g
t

1þ
X
g0

Σg0!g
s,1

φg0

φg

Dg0

0@ 1A¼Dg,B0
1þ

X
g0

Σg0!g
s,1

φg0

φg

Dg0

0@ 1A

14.4.5.2 Finite Medium

Using the integral form of the Boltzmann equation as discussed in Chap. 8, the flux

equation for a finite geometry as a function of that for an infinite geometry is

established thanks to Benoist’s method. We recall the flux equation in its volume

integral form for a time-independent situation:

Φ ~r; v;ð Þ ¼
ð
V

d3r
0
q ~r

0
; v;

� � e�Σt‘

4π ‘2

¼
ð
V

d3r
0 e�Σt‘

4π ‘2
χ vð Þ Ð1

0
dv

0
vΣf ~r

0; v0ð Þ Φ ~r; v0;ð Þ
þ Ð1

0
dv

0
ΣS ~r 0; v0 ! vð Þ Φ ~r; v0;ð Þ þ S ~r 0; v;ð Þ

" #

which is written as follows with the Peierls operator:

Φ ~r; v;ð Þ ¼ K ΣsΦþ χvΣfΦþ S
� � � K ΣsΦþ Q½ �

In the absence of independent sources, the source is assumed to be factorizable

as the product of a macroscopic function Ψ ~rð Þ and the source in an infinite lattice

Q1 ~rð Þ:

Q ~rð Þ ¼ Ψ ~rð ÞQ1 ~rð Þ

The flux in an infinite lattice is expressed as:

Φ1 ~r; v;ð Þ ¼ K1 ΣsΦ1 þ Q1½ �

Furthermore, it can be assumed that the operator K[ ], which has an integral over
a finite volume, can be prolonged such that it coincides with K1[] on the reactor.

The infinite lattice flux equation is multiplied on both sides by Ψ ~rð Þ , and the

resulting equation is subtracted term-wise from the flux equation for a finite
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geometry. Further, a zero term is added such that the following grouping of terms

can be applied:

Φ ~r; vð Þ � ψ ~rð ÞΦ1 ~r; vð Þ ¼ K ΣsΦþ ψ ~rð ÞQ1½ � � ψ ~rð ÞK ΣsΦ1 þ Q1½ �
þK Σsψ ~rð ÞΦ1½ � � K Σsψ ~rð ÞΦ1½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

¼ K ΣsΦ� Σsψ ~rð ÞΦ1½ � � ψ ~rð ÞK ΣsΦ1 þ Q1½ �
þK ψ ~rð ÞQ1 þ Σsψ ~rð ÞΦ1½ �

The last two terms are written in the integral form with d3r
0 ¼ ‘2d‘d~Ω:

ðþ1

‘¼0

d‘
e�Σt‘

4π

ð
4π

dΩ
!

χ vð Þ
ð1
0

dv
0
vΣf ~r

0;v0ð Þ Φ1 ~r 0; v0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q1 ~r 0;vð Þ

þ
ð1
0

dv
0
ΣS ~r 0; v0 ! vð Þ Φ1

�
~r 0; v0

�
0BBBBB@

1CCCCCA
� ψ ~r 0ð Þ�ψ ~rð Þð Þ

which by integration by parts for variable ‘ simplifies as follows with

Σt‘
0 � Ð‘

00 ¼ ~r�~r 00j j

‘
00 ¼0

Σt ~r � ‘
00
Ω; v

� �
d‘

00
:

ψ ~r
0� ��ψ ~rð Þ� � ðþ1

‘
0 ¼‘

d‘
0 e�Σt‘

0

4π

ð
4π

d Ω
0�!

Q1 ~r 00;vð Þ þ
ð1
0

dv
0
ΣS

�
~r 00;v0 ! v

�
Φ1
�
~r 00; v0

�� �264
375
‘¼þ1

‘¼0

�
ð
4π

d ~Ω0 ~Ω0
:

ð‘¼þ1

‘¼0

d‘grad
��!

ψ

ðþ1

‘
0 ¼‘

d‘
0 e�Σt‘

0

4π
Q1 ~r 00;vð Þ þ

ð1
0

dv
0
ΣS

�
~r 00;v0 ! v

�
Φ1
�
~r 00; v0

�� �

At ‘¼ 0,~r ¼ ~r0 , henceψ ~r0 Þ � ψ ~rð Þ ¼ 0
�

. Further, for ‘¼ +1, the exponential

term tends towards 0. Thus, the first integrated term is zero. For the second term

with the gradient of the macroscopic form, the following flux equation is observed:

Φ1 ~r
0
; v0

� �
¼
ðþ1

‘
0¼‘

d‘
0 e�Σt‘

0

4π
Q1 ~r

00
; v

� �
þ
ð1
0

dv
0
ΣS

�
~r

00
; v0 ! v

�
Φ1
�
~r

00
; v0
�� �

Finally:

Φ ~r; vð Þ � ψ ~rð Þ Φ1 ~r; vð Þ ¼ K ΣsΦ� Σsψ ~rð ÞΦ1½ � � K Φ1Ω
!
:grad
��!

Ψ
h i
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Benoist introduced the Peierls collision operator: H[Φ]�K[ΣsΦ], which sum-

marizes the previous equations as:

Φ ~r; vð Þ � ψ ~rð Þ Φ1 ~r; vð Þ ¼ H Φ� ψ ~rð ÞΦ1½ � � K Φ1Ω
!
:grad
��!

Ψ
h i

or:

Φ ~r; vð Þ ¼ ψ ~rð Þ Φ1 ~r; vð Þ � 1

1� H
K Φ1Ω

!
:grad
��!

Ψ
h ih i

where 1
1�H ½ � is the inverse operator that can be decomposed into the form of

a Neumann series for successive collisions:

1

1� H
½ � �

Xþ1

n¼0

Hn½ �

A similar calculation can be performed for the current such that:

~J ~r; vð Þ ¼ ψ ~rð Þ J1
�!

~r; vð Þ � 1

1� H
KΩ
!

Φ1Ω
!
:grad
��!

Ψ
h ih i

This result can be written with the Green function G ~r
0
; Ω!0

; v
0
;~r; Ω!; v

� �
corresponding to the number of neutrons at ~r; Ω!; v

� �
produced by a neutron

emitted at ~r
0
; Ω!0

; v
0

� �
in the phase space:

Φ ~r; vð Þ¼ψ ~rð Þ Φ1 ~r; vð Þ

�
ð
4π

dΩ
! ð1

0

v
0
dv

0
ð
4π

dΩ
!0
ð
1
d3r

0
G ~r

0
; Ω
!0

;v
0
;~r; Ω

!
;v

� �
n ~r

0
; Ω
!0

;v
0

� �
Ω
!0

:grad
��!

Ψ ~r
0

� �

If the macroscopic function varies slowly in space, the Peierls operator can be

commuted with the gradient (which is a result obtained by expanding grad
��!

Ψ ~r
0� �

around ~r), and the result is expressed simply as:

Φ ~r; vð Þ¼ψ ~rð Þ Φ1 ~r; vð Þ� Φ
!

1 ~r;vð Þ:grad��!
Ψ ~rð Þ

Φ
!

1 ~r;vð Þ�
ð
4π

dΩ
! ð1

0

v
0
dv

0
ð
4π

dΩ
!0
ð
1
d3r

0
G ~r

0
; Ω
!0

;v
0
;~r; Ω

!
;v

� �
n ~r

0
; Ω
!0

;v
0

� �
Ω
!0

8>><>>:
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~J ~r; vð Þ:Ω!k¼ψ ~rð Þ ~J1 ~r; vð Þ:Ω!k�
X
k
0
J1,k,k0 ~r;vð Þgrad��!

Ψ ~rð Þ:Ω!k

J1,k,k0 ~r;vð Þ�
ð
4π

dΩ
! ð1

0

v
0
dv

0
ð
4π

dΩ
!0
ð
1
d3r

0
G ~r

0
; Ω
!0

;v
0
;~r; Ω

!
;v

� �
n ~r

0
; Ω
!0

;v
0

� �
Ω
!

k:Ω
!

k0

8>>><>>>:
An important consequence of the finite medium is that the flux can no longer be

factorized due to the correction of the gradient of the macroscopic flux. If the

macroscopic flux has a large buckling, then grad
��!

Ψ ~r
0� �
should be calculated as a

function of Taylor series expansion with respect to the buckling, and the

corresponding integrals can be calculated in the manner used by V. C. Deniz in

1965. The integration kernel G ~r
0
; Ω
!0

; v
0
;~r; Ω

!
; v

� �
can be calculated analyti-

cally for simple cases.39

14.4.6 Spatial Homogenization with Leakage

Engineering calculations in neutron physics are carried out with the diffusion

approximation and the main question is how to homogenize the diffusion

39Michel Lam-Hime: Homogénéisation: résolution de l’équation de transport en mode
fondamental, définition et calcul de coefficient de diffusion des neutrons dans un réseau de cellules
hétérogènes unidimensionnelles planes [Homogenization: solving the fundamental mode transport

equation, defining and calculating the diffusion coefficient for neutrons in a heterogeneous lattice

of 1D slabs], PhD thesis University of Orsay (1981). This PhD follows in the footsteps of Pierre

Benoist’s work. Analytical calculations are developed for a slab lattice. Michel Lam-Hime

(1952–) spent his entire career at EDF, where he worked in all the divisions in which reactor

calculations were performed (Nuclear Calculation Division, SEPTEN, R&D/Reactor Physics). His

knowledge of the calculation chain along with a tremendous and legendary appetite for work in the

company makes him a leading French expert in neutron physics.

(Courtesy Lam Hime)
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coefficient with respect to the space variable. Indeed, homogeneous cross sections

for an assembly are usually obtained by weighting the reaction rates computed in

transport theory on a heterogeneous geometry with the computational volumes.

However, for the diffusion coefficient, the most straightforward approach is to

apply the same method to the mean free path:

DP0

B¼0, isotropic �
X
i

ViΦi
1

3Σt, iP
i

ViΦi

This definition corresponds to the definition of DP0

B¼0, isotropic for the diffusion

coefficient, i.e. the order 0 for the expansion of the scattering cross section (thus, the

index P0) obtained in an infinite lattice without leakage (thus the index B¼ 0) and

which is applied isotropically in all directions (hence, the index “isotropic”). Yet,

soon enough, it was realized that such a diffusion coefficient, which was discussed

in the chapter on the diffusion approximation and on Fick’s law, led to results that

poorly represented the expected physics, or were even catastrophic for few-group

calculations. During the design of the 3D SPn code COCAGNE at EDF, these
disappointing results were jokingly referred to as the “casserole” (referring both to

the shape of a pot used for cooking and, jokingly, the French slang for a “mistake”).

Use of these diffusion coefficients for two-energy groups obtained through this

weighting method did not result in correct propagation of neutrons in the core,

decoupling the various zones of the core such that all the power was produced by

the fresh assemblies located at the periphery (the second layer of assemblies from

the center for fuel patterns with weak fluence). This resulted in the characteristic

“saucepan” shape of the radial traverses of the core.

The problem was solved by using a second approach, which considered that the

collision assumed to be isotropic in the center of mass was too coarse for water

reactors. Thus, the diffusion coefficient is defined using the transport cross sections,

instead of the total cross sections, i.e.:

DP1

B¼0, isotropic �
X
i

ViΦi
1

3Σtr, iP
i

ViΦi
¼
X
i

ViΦi
1

3 Σt, i � Σs, 1ð ÞP
i

ViΦi

Nonetheless, the use of such a coefficient, although it improved the solution, did

not solve the problem totally. Pierre Benoist proposed to account for collision

probabilities Pij in the calculation of the diffusion coefficient, called the Benoist

diffusion coefficient:

DBenoist ¼ DP1

B, isotropic �
X
i

X
j

ViΦi Pij
1

3Σtr, jP
i

ViΦi
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It was previously seen that this new diffusion coefficient can be expressed in

terms of DP0

B¼0, isotropic:

DBenoist ¼ 1

B

1� Σt

B arctan
B
Σ g
t

� �
arctan B

Σt

¼ 1

3Σtγ
¼ DP0

B¼0, isotropic

γ

With this calculation, the dimensionless coefficient γ can be evaluated:

γ � B

3

arctanB
Σt

1� Σt

Barctan
B
Σ g
t

� �
Hence, the infinite lattice calculation is performed in transport theory and made

critical by superposing leakage characterized by the critical buckling (the leakage

term can be positive or negative). The diffusion coefficient is then corrected by the

coefficient γ that accounts for the buckling. This correction is significant for few

energy groups. The French APOLLO1 code used this method (Fig. 14.20).

0

,0

P
isotropicBD = BenoistD1

,0

P
isotropicBD =

ReactorCasserole -Casserole +

Fig. 14.20 Effect of diffusion coefficient on power distribution (from COCAGNE calculations

performed by Fabrice Hoareau in 2013).

1064 14 Heterogeneous Reactors



In 1964, Benoist proposed an improvement in homogenization techniques using

a directional approach. In a Cartesian geometry, let k2 {x, y}, and in a cylindrical

geometry, k2 {r, z}. The directional diffusion coefficient is defined as:

DBenoist,k ¼
X
i

X
j

ViΦi Pij,k
1

3Σt, jP
i

ViΦi

where Pij , k is the probability of directional first collisions.

The directional probabilities in direction k are given by:

Pij,k ¼ 3Σt, j

Vi

ð
8j,Vj

d~r

ð
Vi

d~r0 Ω2
k

e� ΣtR

4πR2
cos ~B:~R
� �

where ~R ¼ ~r � ~r0 ¼ R~Ω. It can be noted that the integral on~r is performed for all

cells in the lattice of the same type j due to the summation sign on the j indices,

while the integral on ~r0 applies only for cell i. The directional probabilities satisfy:

ViPij,k

Σt, j
¼ VjPji,k

Σt, i

And:

X
j

Pij,k ¼
X
j

3

Vi

ð
1
d~rΣt, j

ð
Vi

d~r0 Ω2
k

e� ΣtR

4πR2
cos ~B:~R
� �

¼ 3

Vi

ð
Vi

d~r0
ð
4π

Ω2
k

4π
dΩ

ðR¼1

R¼0

d~rΣt ~rð Þe� ΣtR cos ~B:~R
� �

Since

ð
4π

Ω2
z

4π
dΩ ¼

ðπ2
0

sin θ cos 2θdθ ¼ � cos 3θ

3

� π
2

0

¼ 1

3

ð
4π

Ω2
r

4π
dΩ ¼

ðπ2
0

sin θ
sin 2θ

2
dθ ¼

ðπ2
0

sin θ
1� cos 2θ

2
dθ ¼ 1

2
� 1

6
¼ 1

3

8>>>>>>><>>>>>>>:
And also, integrating by parts

ðR¼1

R¼0

d~rΣt ~rð Þe� ΣtR cos ~B:~R
� � ¼ 1� ~B:~R

ðR¼1

R¼0

d~r e� ΣtR sin ~B:~R
� �
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Hence:

X
j

Pij,k ¼ 1� ~B:~R

ðR¼1

R¼0

d~r e� ΣtR sin ~B:~R
� � ¼ 1� O B2

� �
The collision probabilities are simply normalized to 1 if the buckling term is

expanded at order 1.

The Taylor expansion of the buckling at order 0 (which is equivalent to setting

Pij , k¼ 1 in the equations) results in a “streaming” problem, i.e. neutrons leak in a

preferential direction (e.g. into the gas channels of gas reactors or into voided water

channels in water reactors or sodium-cooled fast reactors). In this case, the diffusion

coefficient in the direction parallel to the voided channels has an infinite value since

the total cross section is zero. This problem can be avoided by means of calculations

in voided regions (by setting a density limit for instance), but this implies a patch-up

solution since diffusion theory is no longer valid in configurations in which

neutrons can be transported far away from their source. Even if filled with sodium,

which is mostly “transparent” for neutrons, the axial streaming effect is still

significant. A “pragmatic” solution consists in using an isotropic diffusion coeffi-

cient defined as the average of the directional diffusion coefficients:

DBenoist, isotropic ¼
X
i

X
j

ViΦi Pij

� �
1

3Σt, jP
i

ViΦi

where the average directional probability is applied Pi, j

� � � 1
2

P
k

Pij,k:

In sodium reactors, accurate calculation of the void effect is essential due to the

closed geometry of hexagonal cans. Studies in the 1980s showed that use of an

isotropic Benoist coefficient weakly underestimated (by some 50 pcm) the stream-

ing effect, i.e. at most 1% of the total sodium void effect. In water reactors, voiding

of a channel does not cause any problems thanks to the open geometry of the

assemblies.

In 1981, Benoist proposed40 an extension of directional probabilities to more

accurately take in to account the streaming effect by adopting a logarithmic

expansion of the buckling term, the lowest order retaining physical meaning,

i.e. a finite directional diffusion coefficient in the direction of the voided channels.

He carried out analytical calculations for the terms included in the directional

diffusion coefficient for geometries with pins in a square-pitch lattice (PWR) and
in triangular lattices (VVER, fast reactors).

40Pierre Benoist: Formalisme pour le calcul de l’effet de la vidange de sodium sur les fuites de
neutrons dans un réacteur rapide [Formalism for calculation of the sodium void effect on neutron

leakage in a fast reactor], technical report CEA-R-5121 (1981).
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14.4.7 Equivalence for Slab Reactors

The non-consistency effect has been studied in a mathematical framework for some

simple geometries. C. Robert studied41 the non-consistency effect on the theoretical

calculation of the diffusion coefficient in a slab lattice. He proved that there exists

an exact equivalence allowing the calculation of a reactor in diffusion theory by

preserving the flux and currents at the interfaces with respect to transport theory.

Such an approach has been applied successfully to 1D radial geometries for fast

reactors. Let us consider a slab lattice surrounded by a vacuum (Fig. 14.21):

Each slab is sub-divided into regions indexed by j for constant properties. A
position in a region j is located by τj its local abscissa coordinate with respect to the
center of the region and by xi in the common frame (Fig. 14.22).

The even (or symmetric) flux and odd (anti-symmetric) flux are defined in each

region using the formulation which was illustrated in the chapter on the Boltzmann

equation:

Φþ
j τj; μ
� � ¼ 1

2
Φj τj; μ
� �þ Φj

�� τj; μ
�� �

Φ�
j τj; μ
� � ¼ 1

2
Φj τj; μ
� �� Φj

�� τj; μ
�� �

and the corresponding currents are:

x

xi

ib

Slab 1 Slab i Slab n

Vacuum
Vacuum

Infographie MarguetFig. 14.21 Slab reactor

41Christian Robert: Recherche et mise en œuvre d’une nouvelle formulation du coefficient de
diffusion pour prendre en compte les effets de juxtaposition de réseaux réguliers différents dans les
réacteurs �a neutrons rapides [Investigation and implementation of a new formulation of the

diffusion coefficient taking into account the effects of adjacent and different regular lattices in

fast neutron reactors], PhD thesis, Lyon (1980).
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Jþj τj
� � ¼ ðþ1

�1

μΦþ
j τj; μ
� �

dμ

J�j τj
� � ¼ ðþ1

�1

μΦ�
j τj; μ
� �

dμ

These quantities can be defined in both transport (index t) and diffusion (index d).
It should be pointed out that by construction, the anti-symmetric current is even. In

diffusion theory, the currents are related to the flux by Fick’s law:

Jþj,d τj
� � ¼ �Dj grad

��!
Φþ

j,d τj
� �			 			 and J�j,d τj

� � ¼ �Dj grad
��!

Φ�
j,d τj
� �			 			

With these notations,42 the diffusion equation in region j is expressed as:

�Dj
d2Φj,d

dτ2j
þ Σt j,d � Σs j,d

� �
Φj,d ¼ vΣf j,dΦj,d

keff ,d

In transport and diffusion, the even and odd extrapolation distances can be

defined such that they are dimensionless:

x

jie ,

Slab i

ix

jτ

Region  j

jδ

Infographie MarguetFig. 14.22 Regions in

a slab

42C. Robert prefers to use dimensions divided by the mean free path 1/Σti, thus modifying the usual

formalism of the diffusion equation.
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Λþ
j ¼ Φþ

j

Jþj
¼ Φj δj

� �þ Φj �δj
� �

Jj δj
� �� Jj �δj

� � and Λ�
j ¼ Φ�

j δj
� �

J�j δj
� � ¼ Φj δj

� �� Φj �δj
� �

Jj δj
� �þ Jj �δj

� �
Setting B2

j ¼ Σt j,d � vΣf j,d=keff ,d � Σs j,d

� �
=Dj, the diffusion flux and currents

can be determined using the eigenfunctions of the buckling term in finite slab

geometry:

Φj,d τj
� � ¼ φj cos Bjτj

� �þ ψ j sin Bjτj
� �

and Jj,d τj
� �¼ DjBj φj sin Bjτj

� �� ψ j cos Bjτj
� �� �

Thus, the symmetric (cosine) and anti-symmetric (sine) components of the flux

and current can be easily identified and the diffusion extrapolation distances

evaluated:

Λþ
j,d ¼

1

Dj Bj tan Bjδj
� � and Λ�

j,d ¼ � tan Bjδj
� �

Dj Bj

There is an exact equivalence which, with a judicious choice of diffusion

coefficient, leads to the same extrapolation distance as in transport theory for keff ,
d¼ keff , t. Further, it can be shown that the parameter B2

j satisfies |Bj|< π/(2δj), the

geometrical buckling in the region j, if Bj is real. Furthermore, if the following

boundary conditions are set on the periphery of the reactor:

Boundary conditions at the limits of the reactor:

Φj,d �b1ð Þ
Jj,d �b1ð Þ ¼ Φj, f �b1ð Þ

Jj, f �b1ð Þ and
Φj,d þbnð Þ
Jj,d þbnð Þ ¼ Φj, f þbnð Þ

Jj, f þbnð Þ ð14:12Þ

Then, the fluxes and currents at the interfaces of all the regions and at the limits

of the reactor are strictly equal in both diffusion and transport theories. For this

result, the diffusion flux is constructed as:

Transport-equivalent diffusion flux:

Φj,d τj
� �¼ 1

2

Φj,t þδj
� �þΦj,t �δj

� �
cos Bj,tδj
� � cos Bj,tτj

� �þΦj,t þδj
� ��Φj,t �δj

� �
sin Bj,tδj
� � sin Bj,tτj

� �" #
ð14:13Þ

with the particular value of Bj , t, which satisfies the diffusion equation written with

the multiplication coefficient keff , t calculated in transport theory (and not in

diffusion):
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B2
j, t ¼

Σt j,d � vΣf j,d
keff , t

� Σs j,d

� �
Dj

By construction, the flux from Eq. (14.13) satisfies the diffusion equation with

keff , t:

�Dj
d2Φj,d

dτ2j
þ Σt j,d � Σs j,d

� �
Φj,d ¼ vΣf j,dΦj,d

keff , t

Moreover, it is also continuous, as well as the corresponding current, and by

construction verifies the following equations:

Φj,d δj
� � ¼ Φj, t δj

� �
and Φj,d �δj

� � ¼ Φj, t �δj
� �

If Dj, Σt j , d, vΣf j , d and Σs j , d are chosen such that:

Λþ
j,d ¼

1

Dj Bj, t tan Bj, tδj
� � ¼ Φj, t δj

� �þ Φj, t �δj
� �

Jj, t δj
� �� Jj, t �δj

� �
Λ�
j,d ¼ � tan Bjδj

� �
Dj B, tj, t

¼ Φj, t δj
� �� Φj, t �δj

� �
Jj, t δj
� �þ Jj, t �δj

� �
the diffusion current is expressed in terms of the transport current as:

Jj,d τj
� � ¼�Dj

∂Φj,d

∂τj
¼Dj

2

Φj,t þδj
� �þΦj,t �δj

� �
cos Bj,tδj
� � Bj,t sin Bj,tτj

� ��Φj,t þδj
� ��Φj,t �δj

� �
sin Bj,tδj
� � Bj,t cos Bj,tτj

� �" #

¼1

2

Jj,t δj
� �þJj,t �δj

� �
cos Bj,tδj
� � cos Bj,tτj

� �þJj,t δj
� ��Jj,t �δj

� �
sin Bj,tδj
� � sin Bj,tτj

� �" #

It can be observed that: Jj , d(δj)¼ Jj , t(δj) and Jj , d(�δj)¼ Jj , t(�δj)
Assuming that |Bj , t|< π/(2δj), the diffusion flux is expressed as:

Φj,d τj
� � ¼ Φj, t þδj

� �
sin Bj, t δj þ τj

� �� �þΦj, t �δj
� �

sin Bj, t δj � τj
� �� �

sin 2Bj, tδj
� �

which shows that the flux has the same sign for all regions of the slab. It can also be

shown that the extrapolation distances for diffusion and transport are equal for each

region j. Subsequently, the flux to current ratio being also equal at the reactor

boundaries leads to the construction of a diffusion flux that satisfies the fact that the

transport and diffusion flux and currents are equal at the interfaces. Equivalence is

thus verified if the following equations are satisfied:
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1

Dj Bj, t tan Bj, tδj
� � ¼ Λþ

j, t and � tan Bj, tδj
� �

Dj Bj, t
¼ Λ�

j, t

by adjusting the four neutron quantities Dj, Σt j , d, vΣf j , d, and Σs j , d. From both

equations, the following equations are deduced:

1

Dj Bj, t

� �2 ¼ �Λþ
j, tΛ

�
j, t and tan 2 Bjδj

� � ¼ �Λ�
j, t

Λþ
j, t

If Λþ
j, t and Λ�

j, t are of opposite signs, Bj , t is real and due to |Bj , t|< π/(2δj), we

obtain:

Bj, t ¼ 1

δj
arctan

ffiffiffiffiffiffiffiffiffiffi
Λ�
j, t

Λþ
j, t

					
					

vuut and Dj ¼ sign Λþ
j, t

� � δjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ�
j, tΛ

þ
j, t

			 			r
arctan

ffiffiffiffiffiffiffiffiffiffi
Λ�
j, t

Λþ
j, t

					
					

vuut
It can be pointed out that ifΛþ

j, t is negative, Dj is also negative, which means that

Σt j,d � Σs j,d � vΣf j,d=keff , t ¼ DjB
2
j, t < 0, and that the region is over-multiplying.

Otherwise, the region is sub-multiplying and the second flux derivative is negative.

If Λþ
j, t and Λ�

j, t are of the same sign, Bj , t is a purely imaginary, and thus:

th2 Bj

�� ��δj� � ¼ Λ�
j, t

Λþ
j, t

for which the solution exists only if: Λ�
j, t

			 			 < Λþ
j, t

			 			
Under this condition: Bj, t ¼ i

δj
Argth

ffiffiffiffiffiffi
Λ�
j, t

Λþ
j, t

r
and Dj ¼ sign �Λþ

j, t

� �
δjffiffiffiffiffiffiffiffiffiffiffi

Λ�
j, tΛ

þ
j, t

p
Argth

ffiffiffiffiffi
Λ�
j, t

Λþ
j, t

r
Once again, ifΛþ

j, t andΛ
�
j, t are both negative, the region is sub-multiplying. IfΛþ

j, t

and Λ�
j, t are both positive, the region is over-multiplying. The case Λ�

j, t

			 			 > Λþ
j, t

			 			
occurs when the current inside a region is zero. Hence, interfaces need only be

located at positions where currents become zero so as to avoid the problem.

If Bj , t and Dj are known, the equation B2
j, t ¼ Σt j,d � Σs j,d � vΣf j,d=keff , t

� �
=Dj

allows for two degrees of freedom. Therefore, we can choose to preserve the

proportions between the transport and diffusion cross sections:

Σt j,d ¼ αjΣt j, t, Σs j,d ¼ αjΣs j, t, vΣf j,d ¼ αj vΣf j, t

14.4 Transport-Diffusion Equivalence 1071



The proportionality coefficient is determined by:

α ¼ Σt j, t � Σs j, t � vΣf j, t=keff , t
� �

DjB
2
j, t

It should be noted that such an approach is not iterative since the value of α is

fixed as soon as Bj , t and Dj have been determined. It could have been decided to

conserve the reaction rates between the transport and diffusion calculations, which

would require an iterative method (a set of cross sections is chosen such that the

criterion for B2
j, t is satisfied, the diffusion calculation that leads to the reaction rate

ΣdΦd is performed, and the latter is compared to ΣtΦt; the iterations are then carried

out according to the degrees of freedom in order to adjust the reaction rates while

preserving the criterion).

14.4.8 Equivalence by Conservation of Reaction Rates

Generalization of the previous problem results in conserving the reaction rates

between the diffusion and the transport calculations. Starting with the integral

Boltzmann equation, it can be shown imposing conservation of the reaction rates

alone gives an infinite number of solutions. Hence, there is a degree of freedom, the

normalization condition, which can be used to improve the result of the simplified

calculation. It will later be shown that this normalization condition can be defined

so as to conserve the flux at the interface of two assemblies for instance. After

spatial homogenization and energy condensation, the cross sections obtained for a

given reaction type κ (total, fission, etc.) for an energy group g and a volume Vj are

given by:

Σ g
κ, j, t ¼

Ð
g

dE
Ð
Vj

Σκ, t ~r;Eð Þ Φt ~r;Eð Þd~rÐ
g

dE
Ð
Vj

Φt ~r;Eð Þd~r

The question remains of whether a transport calculation performed on the

homogenization geometry (known as equivalent geometry) with the defined cross

sections Σ g
κ, j, t leads to the same reaction rates as fine transport calculation. This is

not the case since the transport equation is not linear with respect to the total cross

section, which is used in a decreasing exponential term in the optical path. The

conclusion is that equivalence is also required to ensure the conservation of reaction

rates from fine transport to homogeneous transport, and a fortiori to diffusion

calculations. In practical cases, equivalent diffusion cross sections are sought as:

Σ g
i, j,d ¼ μ g

i, jΣ
g
i, j, t
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which has the property of conserving the reaction rates present in the definition of

the neutron balance. The linear nature of the diffusion equation with respect to the

diffusion coefficient suggests that the other cross sections may be corrected in the

same way. Thus, if the same equivalence coefficient is applied to all cross sections,

multiplicative correction of the diffusion coefficient does not modify the diffusion

equation. Similarly, for the previous slab reactor situation, the solution to the

problem is not unique. A closure relation is required to fix one solution: this is

called a normalization condition. The possible normalization choices can be the

conservation of the flux at the cell boundary (EDFmethod43) or set the equivalence

coefficients to 1 for cells which are far (“at infinity”) from the geometry being

considered (these cells are called asymptotic cells since they are not influenced by

the geometry being calculated). The choice to fix the normalization condition is not

trivial. Indeed, the solution that conserves the reaction rates in the assembly for an

infinite lattice can be chosen and when used in a core calculation, there are artificial

discontinuities in the reaction rates at the interfaces of various homogeneous media:

this is the non-consistency effect. This problem can be solved by allowing for an

appropriate closure relation for instance by choosing peripheral cells far from

heterogeneities (guide thimbles) in a PWR assembly as the asymptotic cells.

Another method is the use of discontinuity factors. The equivalence coefficients

generally depend on the calculation mesh used in the diffusion calculation.

43C. Garzenne: Equivalence transport-diffusion: présentation des méthodes utilisées au CEA et �a
EDF [Transport-diffusion equivalence: an illustration of the methods used at CEA and EDF],
HT-12-92018 B, 1992. Claude Garzenne (1956–). After his engineering studies at Ecole Centrale

at Lyon (France), he joined EDF/DER in January 1981. He spent his entire career there as an

expert in reactor physics, save for a 3-year period at CEA Cadarache, where he participated in

experimental programs on the MINERVE and EOLE reactors. He developed the homogenization

and transport-diffusion equivalence method, HOMERE, which allows calculation of PWR cores

using assembly calculations in SN transport. He subsequently specialized in fuel cycle physics,

especially within the framework of the Bataille law of 1991 on the management of nuclear waste.

He was appointed a Senior Engineer on these matters.

(Courtesy Garzenne)
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A simple method to deal with this problem, as proposed in the APOLLO2 code,

is to set the same equivalence factors for all the cross sections in each region. This

solution conserves the reaction rates as well as the absorption probabilities (both

fission and slowing down) since:

Σ g
a, j,d ¼ μg

j Σ
g
a, j, t

Σ g
t, j,d ¼ μg

j Σ
g
a, j, t

(
) Σ g

a, j,d

Σ g
t, j,d

¼ Σ g
a, j, t

Σ g
a, j, t

The conservation of the reaction rates per region is written as:

Σ g
j,dΦ

g
j,d ¼ μg

j Σ
g
j, tΦ

g
j,d ¼ Σ g

j, tΦ
g
j, t

meaning that the homogenized diffusion and transport flux are proportional:

μg
j Φ

g
j,d ¼ Φg

j, t. In an infinite lattice, most codes achieve criticality on the geometry

by superposing a leakage coefficient equal to Dg
t ¼ 1= 3Σ g

tr, t

� �
in P1 theory. A first

approach consists in conserving the absorption balance and the leakage balance

coherently for each cell. By substituting Φg
j, t by μg

j Φ
g
j,d in the leakage balance, the

following is obtained:

D
g
j,d B

2
jΦ

g
j,d þ Σ g

a, j,dΦ
g
j,d ¼ D

g
j, t B

2
jΦ

g
j, t þ Σ g

a, j, tΦ
g
j, t

¼ μ g
j Φg

j,d B2
j D

g
j, t þ Σ g

a, j, tΦ
g
j, t

h i
) D

g
j,d ¼ μg

j D
g
j, t

It may be seen that in this approach, the diffusion coefficient should be corrected

by the same factor as the other cross sections. It implies that the probabilities are

conserved, even the leakage probability. The “leakage”44 term from the geometry

can also be conserved using a mean diffusion coefficient by applying:

X
j

VjΦ
g
j,d

 !
D

g
d ¼

X
j

VjΦ
g
j, t

 !
D

g
t

The conservation of the reaction rate corrected for the transport cross section is:

X
j

VjΦ
g
j,d

 !
Σ g
tr,d ¼

X
j

VjΦ
g
j, t

 !
Σ g
tr, t

To conserve the relation Dg
d ¼ 1= 3Σ g

tr,d

� �
, the following must imperatively be

satisfied:

44It would appear inappropriate to use the term leakage for an infinite lattice: this misnomer is

formed by analogy with the DΔΦ term.
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D
g
d ¼ D

g
t and Σ g

tr,d ¼ Σ g
tr, t

Thus: P
j

VjΦ
g
j,d ¼

P
j

VjΦ
g
j, t

Using the proportionality between the homogenized transport flux and the

diffusion flux, the compatibility equation for the equivalence factors for each region

is reached:

Compatibility equation for the equivalence factors per region:

X
j

Vj

Φg
j, t

μ k
j

¼
X
j

VjΦ
g
j, t ð14:14Þ

We see that conservation of the leakage rate per average diffusion coefficient

should be consistent with the conservation of the integrated flux on the geometry.

This criterion cannot be satisfied if equivalence factors equal to 1 are set for some

asymptotic cells since the problem would be over-constrained. To solve

Eq. (14.14), the following functional (always positive) should be minimized:

f g ~μð Þ ¼
X
j

VjΦ
g
j,d ~μð Þ

 !
Σ g
d �

X
j

VjΣ
g
j, tΦ

g
j, t

" #2

þ
X
j

VjΣ
g
j,dΦ

g
j,d ~μð Þ � VjΣ

g
j, tΦ

g
j, t

h i2
Iterations are performed on

Pg
j,d until for each group f g ~μð Þ ¼ 0.

Another possibility is to initialize the diffusion calculation with homogenized

cross sections and the diffusion coefficient D
g
t ¼ 1= 3Σ g

tr, t

� �
, which is obtained

directly from a transport calculation, and iterations are carried out using a fixed-

point algorithm:

Σ g
j,d

� �
n
¼ Σ g

j,d

� �
n�1

Σ g
j, tΦ

g
j, t

Σ g
j,dΦ

g
j,d

� �
n�1

where n is the current iteration and n�1 the previous one. Generally, this approach

converges rapidly towards a solution that is not unique, given that no closure

relation is imposed.
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14.5 Homogenization Theory in Diffusion

14.5.1 Flux-Volume Homogenization

Homogenization with an imposed operator (e.g. diffusion) consists in achieving

equivalence between two calculations performed with the same operator, either

transport of diffusion. This is called iso-operator homogenization as opposed to

trans-operator homogenization from a fine transport calculation to a coarse diffu-

sion calculation. Usually, the fine discretization in space (micro-cells, e.g. pin-by-
pin calculation with N cells) and energy (more than J¼ 200micro-groups) becomes

coarser for an industrial calculation with a coarse mesh (for instance four cells per

assembly, the number of macro-cells or macro-regions M) and a condensed energy

mesh with G ¼ 2 macro-groups. The energy-integrated fluxes45 (in n/cm2/s) for the

fine calculation are denoted asΦj¼1,J
n¼1,N , and asΦ

g¼1,G
m¼1,M for the industrial calculation.

The condensation/homogenization rule by the flux-volume method applies the

following formalism:

Vm ¼
X
n2m

Vn

VmΦg
m �

X
j2g

X
n2m

VnΦ
j
n

8><>:
In these equations, the sign 2means micro-cells belonging to a given macro-cell

or micro-groups in a given macro-group. The conservation of reaction rates leads to

the following definition of the condensed and homogenized cross sections:

Flux-volume condensation and homogenization:

VmΣ
g
mΦ

g
m �

X
j2g

X
n2m

VnΣ
j
nΦ

j
n ð14:15Þ

The differential scattering cross sections are condensed as follows:

VmΣ
g0!g
m Φg0

m �
X
j2g

X
j
02g0

X
n2m

VnΣ
j0!j
n Φj0

n

The leakage cross section Σ g
leakage,m � Dg

mB
2 is obtained as follows:

45If the fluxes are expressed per unit lethargy (φ j
m), weighting should be performed using lethargy

increments: Φg
m ¼ Δugφg

m �P
j2g

Φ j
m ¼P

j2g
Δujφ j

m, as shown in (Silvennoinen 1976, p. 174).
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VmΣ
g
leakage,mΦ

g
m � VmD

g
mB

2Φg
m �

X
j2g

X
n2m

VnD
j
nB

2Φ j
n

The average fission spectrum is obtained as follows:

χ g
mVm

XG
g¼1

vΣ g
mΦ

g
m �

X
j2g

X
n2m

χ j
nVnvΣ

j
nΦ

j
n

where χ j
n is the spectrum of micro-group j in micro-cell n averaged over the set of

fissile isotopes. By construction, the neutron balance per macro-cell satisfies the

following:

�div Dg
m grad
��!

Φg
m

� �
þ Σ g

a,mΦ
g
m ¼ Σ g

leakage,m þ Σ g
a,m

� �
Φg

m

¼
XG
g0¼1

Σg0!g
m Φg0

m þ
χ g
m

XG
g0¼1

vΣg0
f ,mΦ

g0
m

keff

For two energy groups with thermal cut-off at 0.625 eV, for any macro-cell,

χ1m ¼ 1 and χ2m ¼ 0.

14.5.2 Homogenization of Heterogeneous Neutron
Quantities

In the previous section, “same-operator” homogenization was described such that a

problem with a fine geometry (e.g. a core modeled in pin-by-pin diffusion) is made

equivalent to a coarser geometry (diffusion at assembly level). In rare cases,

heterogeneous diffusion to homogeneous diffusion can be justified mathematically:

e.g. the case of a regular lattice of identical assemblies, or any 2D geometry with a

periodic lattice. Some authors have investigated this particular problem (Planchard

1995) and F. Malige.46 The fundamental idea is based on the numerical flux

distribution in periodic lattices: the flux Φ ~rð Þ has a regular structure which can be

factorized as a macroscopic flux ψ ~rð Þ that varies slowly at the reactor level and a

microscopic flux φ ~rð Þ that has fast variations at the level of the periodic geometry

(Fig. 14.23):

46François Malige: Etude mathématique et numérique de l’homogénéisation des assemblages
combustibles d’un cœur de réacteur nucléaire [Mathematical and numerical analysis of the

homogenization of fuel assemblies in a reactor core], PhD thesis, Ecole Polytechnique (1996).
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Flux factorization: Φ ~rð Þ ¼ φ ~rð Þψ ~rð Þ ð14:16Þ

This hypothesis can be extended in a multi-group approximation regardless of

the theory applied. If inserted in the one-group diffusion equation to simplify the

approach, the following equation is obtained:

�div Dgrad
��!

Φ
� �

þ ΣtΦ ¼ vΣfΦ

keff
on the reactor volume V

Φ ¼ 0 on the boundary Γ ¼ ∂V

8<:
The flux is assumed to be zero on the boundaries of the reactor. For each

assembly Vij in the core computed using the infinite lattice hypothesis (i.e. the

macroscopic structure is equal to one if the flux is appropriately normalized):

�div Dgrad
��!

φij

� �
þ Σtφij ¼

vΣfφij

k1eff , ij
on the volume Vij of the assembly

∂φij

∂~n
¼ 0 on the boundary Γij ¼ ∂Vij

8>><>>:
Using flux factorization and grouping together the terms related to the macro-

scopic flux, the following equation is obtained:

Φ

y

j

Infographie Marguet

Fig. 14.23 Factorization of flux and fine structure of thermal flux [the fast flux is “out of phase”

with the thermal flux, i.e. more significant in fuel than in water, (El-Wakil 1962, p. 121)]. It should

be noted that power has the same distribution as thermal flux, which is even more marked since it is

practically zero in water and is almost completely located within the fuel pin
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�div Dgrad
��!

Φ
� �

þ ΣtΦ ¼ vΣfΦ

keff
¼ �φdiv Dgrad

��!
ψ

� �
� 2Dgrad

��!
φ:grad
��!

ψ

þ ψ �div Dgrad
��!

φ
� �

þ Σtφ
� �

Since ψ �div Dgrad
��!

φ
� �

þ Σtφ
� �

¼ ψ
vΣfφij

k1eff , i, j
, we finally obtain:

�φdiv Dgrad
��!

ψ
� �

� 2Dgrad
��!

φ: ~grad ψ ¼ 1

keff
� 1

k1eff , i, j

 !
vΣfφψ

This equation may be multiplied by φ and simplified to:

�div Dφ2grad
��!

ψ
� �

¼ 1

keff
� 1

k1eff , i, j

 !
vΣfφ

2ψ

It may be seen that this equation in ψ is always a diffusion equation, but with

non-constant coefficients due to the presence of φ2 (even for the piecewise equa-

tion, as was the case for the initial equation with constant coefficients per assem-

bly). François Malige showed that in the case of a periodic lattice of the same

square geometry of size Y, there exists a method to homogenize the coefficient Dφ2

of the previous diffusion equation by seeking a periodic function χ on geometry

Y (the assembly or a fraction of the assembly) and satisfies (by denoting y1 the

translation axis of the geometry):

Dφ2 ¼ 1

Y

ð
Y

Dφ2 yð Þ 1� ∂χ
∂y1

� �
dy with: �div Dφ2 yð Þgrad��!

y1 � χð Þ
� �

¼ 0

Inserting this second condition in the first gives the following equation:

Dφ2 ¼ 1

Y

ð
Y

Dφ2 yð Þ 1� grad
��!

χ
			 			2� �

dy

Calculation of χ requires the resolution of a problem with non-homogeneous

boundaries where χ(+Y/2)¼ χ(�Y/2)¼ 0 on the right and left sides and ∂χ(+Y/2)/
∂n¼∂χ(+Y/2)/∂n¼ 0 on the top and bottom sides.
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14.5.3 Average Flux Homogenization at the Boundary,
Selengut Normalization

For each assembly, the microscopic flux is strictly positive when the macroscopic

flux is zero at the boundaries of the reactor. The flux and current continuity between

each assembly is written as:

Φi, j ¼ φψð Þi, j ¼ Φi	1, j	1 ¼ φψð Þi	1, j	1

Di, jφi, j
∂ψ
∂n

� �
i, j
¼ Di	1, j	1φi	1, j	1

∂ψ
∂n

� �
i	1, j	1

8<: on Γ\ ¼ Γi, j \ Γi	1, j	1

In two-energy group theory, the approach is identical. With the same operations

as those for the one-group case, the following equations result:

�div D1φ2
1 grad
��!

ψ1

� �
þ 1

k1eff , i, j
vΣf , 1φ

2
1 þ vΣf , 2φ1φ2

� �
ψ1

¼ 1

keff
vΣf , 1φ

2
1ψ1 þ vΣf , 1φ1φ2ψ2

� �
�div D2φ2

2 grad
��!

ψ2

� �
þ Σ1!2φ1φ2ψ2 ¼ Σ1!2φ1φ2ψ1

8>>>>><>>>>>:
The macroscopic fluxes satisfy the particular diffusion equations previously

defined, which, when associated with the continuity conditions, lead to a problem

called the transmission problem. Normally, the pin structure fluxes φ that satisfy the

diffusion equation on the assembly in an infinite lattice are known up to a multipli-

cative constant. Assuming that the macroscopic fluxes behave as a diffusion equation

with constant coefficients eΣ for each assembly (the real situation is more complex):

�div ~D1grad
��!

ψ1

� �
þ eΣa, 1ψ1 ¼

1

keff
veΣ f , 1ψ1 þ veΣ f , 2ψ2

� �
�div ~D1grad

��!
ψ1

� �
þ eΣa, 2ψ2 ¼ eΣ1!2ψ1

∂ψg

∂n
þ λgψg ¼ 0 on Γ

8>>>>><>>>>>:
The flux continuity at the interfaces requires that the pin structures equal to the

mean flux at the assembly boundary so as to verify the transmission conditions for

the macroscopic flux on average. This is equivalent to normalizing the eigenvectors

φ0
g, which are solutions to the diffusion equation for the fine structure, by an average

value at the assembly boundary:

φg ¼
φ0
g

φ0
g,boundary

with : φ0
g,boundary ¼

ð
Γ

φ0
g ‘ð Þd‘

Γ
where Г is the assembly perimeter:
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The average homogenized cross sections (for any reaction type) used in the

macroscopic diffusion problem are defined such that the reaction rate in the

geometry in an infinite lattice is conserved. Hence the reaction rates computed

with microscopic flux in fundamental mode are expressed as:

Σg ¼

1

S

ð
S

Σgφ
0
gdS

φ0
g

with: φ0
g ¼ 1

S

ð
S

φ0
gdS where S is the assembly surface

The homogenized quantities satisfy the normalization of the microscopic flux

and are expressed as:

Average flux normalization at the boundary:

eΣg ¼ 1

S

ð
S

ΣgφgdS ¼ φ0
g

φ0
g,boundary

Σg ð14:17Þ

This normalization of cross sections is commonly called the average flux to
boundary flux normalization or the Selengut normalization. It conserves the reac-

tion rates of the microscopic diffusion equation, and thus the infinite multiplication

factor k1eff , i, j of the assembly. For the diffusion coefficient, the average transport

cross section is used:

Dg � 1

3Σtr,g
¼ φ0

g

3
S

Ð
S

Σtr,gφ0
gdS

¼ φ0
g

1
S

Ð
S

1
Dg
φ0
gdS

The homogeneous diffusion coefficient ~Dg is defined such as the leakage cross

section DgB
2 is preserved, i.e.:

~Dg ¼ Dg

φ0
g

φ0
g,boundary

Finally:

Homogenized diffusion coefficient: ~Dg ¼ SÐ
S

1
Dg
φ0
gdS

φ0
g

� �2
φ0
g,boundary

ð14:18Þ
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14.5.4 Pin Power Reconstruction

(Planchard 1995, p. 193)

14.5.4.1 Convolution with Pin Power Distribution

Since safety criteria depend on local information such as the power peaking factor

(Kerkar and Paulin 2008, p. 42) and the maximum temperature in a fuel rod, it is

important to set up a pin power reconstruction method. If the calculation is carried

out in pin-by-pin diffusion approximation, this information is readily available.

However, for a coarser diffusion spatial mesh, there are two options:

– The first solution consists in superposing a pin power distribution on the mean

power as was done for the flux. The pin power distribution π1i, j ~rð Þ is then

calculated in an infinite lattice with the macroscopic power being computed on

the coarse diffusion mesh:

Pow ~rð Þ � π1i, j ~rð ÞPowi, j ~rð Þ

The pin power distribution is determined as: π1i, j ~rð Þ �P
g

kΣf ,gφ0
i, j which is

normalized to the assembly power in an infinite lattice (and not by the ratio of the

mean flux to the boundary flux normalization, which would lead to pin power

structures per assembly that are normalized differently). Since the homogeneous

power of pin k in assembly (i, j) (with Nc pins releasing power47), is equal to

Powi, j kð Þ �P
g
κΣf ,gψg kð Þ, the factorized power is:

Pow kð Þ ¼ π1i, j ~rð ÞPowi, j kð ÞXNc

k¼1

π1i, j ~rð ÞPowi, j kð Þ
Powi, j with: Powi, j �

X
g

κΣf ,gψg

Such a formula ensures that the sum of pin powers of an assembly is equal to the

mean power on the assembly. This approach leads to very small errors of less

than 1% for cores constituted of UOX assemblies.

– The second solution consists in choosing the pin flux distribution for each group,

then reconstructing the flux in each pin before computing the power as the

following sum:

47It should be emphasized that power is created in inactive structures by photon attenuation and

neutron slowing-down in water, meaning that there is also power in guide thimbles.
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Pow kð Þ ¼
X
g

κΣf ,gΦ kð Þ ¼
X
g

κΣf ,gφ kð Þψ kð Þ

This is called flux factorization. Such an approach improves the precision of the

calculation. For cores with various assembly types (UOX/MOX), the use of

MOX distribution computed in an infinite medium has revealed the limitations

of the factorization technique since a MOX is never surrounded by MOX

assemblies in the core. Thus, the discrepancies increased to 5% (a detrimental

situation since the position of the peaking factor is always located in the MOX

assembly). Using an infinite geometry environment when computing the pin

distribution in the MOX assembly, with two or three supplementary rows of

UOX pins to have more consistent solutions, reduced the discrepancy. The chief

difficulty is the fact that when designing a fuel-loading pattern, the true envi-

ronment of the MOX assembly is never known in advance.

14.5.4.2 Perturbation Approach: Rahnema Method

Farzad Rahnema(Courtesy Rahnema)

F. Rahnema48 proposed49,50 an interesting perturbation approach by expanding the

power with respect to a parameter that is infinitely small compared to the current-to-

flux ratio at the assembly (or cell) interface. The local normalized power at position

~r0 is given by:

48Farzad Rahnema is an American physicist. After his PhD at the University of California in 1981,

he worked for 10 years at the nuclear division of General Electrics on Monte Carlo methods in

neutron transport and on the PANACEA core code for BWR. In 1992, he joined the Georgia

Institute of Technology, where he is professor of nuclear engineering in the field of medical

physics and radiology.
49F. Rahnema, C.L. Martin, S. Congdon: A boundary condition perturbation method for predicting
pin power distribution in light water reactors, Proc Topical meeting Reactor physics and

shielding, Chicago 1984, Vol. 1, p. 394.
50F. Rahnema: A perturbation technique of the reconstruction of local power and flux distribution
in nodal methods, Proc Topical meeting Advances in reactor physics, Chicago 1984, Vol.

II, p. 204.
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Pin power structure:

π ~r0ð Þ �

Ð
V

d~r
ÐE¼1

E¼0

κΣf ~r;Eð ÞΦ ~r;Eð Þδ ~r � ~r0ð ÞdE
Ð
V

d~r
ÐE¼1

E¼0

κΣf ~r;Eð ÞΦ ~r;Eð ÞdE
ð14:19Þ

In this expression, Φ ~r;Eð Þ is the flux that satisfies the exact equation for the

operator in a real geometry, i.e. for diffusion:

K � λP½ � Φ ~r;Eð Þ½ � ¼
�div D ~r;Eð Þgrad��!

Φ
�
~r;E

�� �
þ Σa ~r;Eð Þ � λχ Eð ÞvΣf

�
~r;E

�� �
Φ ~r;Eð Þ

�
ð
E0

X
s
E0 ! Eð ÞΦ E0ð ÞdE0¼ 0

The quantity λ is the largest eigenvalue of the operator P�1K[ ], usually 1/keff.
Robin boundary conditions are expressed by introducing the infinitely small ε:

D ~r;Eð Þ∂Φ
∂n

þ εγ ~r;Eð ÞΦ ¼ 0 on Γ ¼ ∂V

Power and flux can be expanded according to this infinitesimal quantity:

π ¼ π0 þ επ1 þ O ε2ð Þ
Φ ¼ Φ0 þ εΦ1 þ O ε2ð Þ

�
The values indexed by 0 correspond to the non-perturbed situation, i.e. the

infinite lattice case:

K � λ0P½ � Φ0 ~r;Eð Þ½ � ¼ 0
∂Φ0

∂n
¼ 0 on Γ

Using the expansion of the flux and power into Taylor series in Eq. 14.19:

π ~r0ð Þ þ επ ~r0ð Þ½ � �
ð
V

d~r

ðE¼1

E¼0

κΣf ~r;Eð Þ Φ0 ~r;Eð Þ þ εΦ1

�
~r;E

�� �
dE

¼
ð
V

d~r

ðE¼1

E¼0

κΣf ~r;Eð Þ Φ0 ~r;Eð Þ þ εΦ1

�
~r;E

�� �
δ ~r � ~r0ð ÞdE

By equating the coefficient of ε in a first-order expansion:
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π1 ~r0ð Þ ¼

Ð
V

d~r
Ð1

E¼0

κΣf ~r;Eð Þ � π0 ~r0ð Þ� �
Φ1 ~r;Eð Þδ ~r � ~r0ð ÞdE

Ð
V

d~r
Ð1

E¼0

κΣf ~r;Eð ÞΦ0 ~r;Eð ÞdE

The perturbation of flux Φ1 satisfies the non-homogeneous equation:

K � λ0 þ δλð ÞP½ � Φ0 ~r;Eð Þ þ εΦ1

�
~r;E

�� � � K � λ0P½ � Φ0 ~r;Eð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

þ K � λ0 þ δλð ÞP½ �εΦ1 ~r;Eð Þ ¼ 0

i.e.: K � λ0P½ � ¼ δλPΦ1 ~r;Eð Þ with D ¼ ∂Φ1

∂n
¼ �γΦ0 on Γ

This equation is multiplied by the adjoint fluxΦ∗
0 ~r; ~r0 ;Eð Þ of the non-perturbed

situation, verifying the adjoint equation of the same eigenvalue and adjoint source

κ
P

f ~r;Eð Þ � π0 ~r0ð Þ in the expression of π1 ~r0ð Þ:

K∗ � λ0P
∗½ �Φ∗

0 ~r; ~r0 ;Eð Þ ¼ κΣf ~r;Eð Þ � π0 ~r0ð Þ ∂Φ∗
0

∂n
¼ 0 on Γ

which is integrated on the volume of the reactor and the energy spectrum. Using the

Ostrogradski theorem (
Ð
V

div~f dV ¼ Ð
T

~f :~ndS ), replacing the volume integral by a

surface integral and inserting the equation for the current finally leads to:

π1 ~r0ð Þ ¼

Ð
Γ
dS

Ð1
E¼0

γ ~r;Eð ÞΦ0 ~r;Eð ÞΦ∗
0 ~r; ~r0 ;Eð ÞdE

Ð
V

d~r
Ð1

E¼0

κΣf ~r;Eð ÞΦ0 ~r;Eð ÞdE

An orthogonality condition is chosen such that the adjoint flux is unique, i.e.:

Orthogonality condition:

ð
V

dV

ð1
E¼0

κΣf ~r;Eð ÞΦ0 ~r;Eð ÞΦ∗
0 ~r; r0

!;E
� �

dE� 0

ð14:20Þ

The adjoint flux exists only if:

ð
V

dV

ð1
E¼0

Φ0 ~r;Eð Þ κΣf ~r;Eð Þ � π0 r0
!� �� �

dE ¼ 0

which is true by the very definition of π0 r0
!� �

(Eq. 14.19).
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To illustrate the method, Rahnema uses the case of slab reactor with one energy

group such that there are reflective boundary conditions on the left, and a Robin

condition on the right that satisfies a small ε. The flux of a slab reactor in an infinite
medium without leakage is constant. The flux, perturbed by leakage at x ¼ 1,

satisfies (Fig. 14.24):

ΔΦ xð Þ ¼ B2
mΦ xð Þ ¼ 0

with: B2
m ¼ λvΣf�Σa

D

The boundary conditions are expressed as:
dΦ

dx

				
0

¼ 0 and D
dΦ

dx

				
1

þ εγΦ 1ð Þ ¼ 0

After integration of the flux, the following equation is reached:

Φ xð Þ ¼ Φmax cos Bxð Þ
B tanB ¼ εγ

D

(

The normalized power is calculated by: π xð Þ ¼ κΣfΦ xð ÞÐ1
0

κΣfΦ xð Þdx
¼ B cos Bxð Þ

sinB

This power is expanded into Taylor series for small values of B, and by keeping

only the terms up to B2 and using B tanB�B2¼ εγ/D, the perturbation of the pin

power distribution π1(x) (the non-perturbed pin power is equal to the unit value

since the non-perturbed flux is flat) is given as:

π xð Þ �
B 1� B2x2

2

� �
B� B3

6

� 1þ B2

6
� B2

2
x2 ¼ 1þ γ

2D

1

3
� x2

� �
ε|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

π1 xð Þ

0=x 1=x

(Bx)ΦΦ(x) cosmax=

fΣ

Infographie Marguet
Fig. 14.24 Rahnema’s
problem for a

multiplying slab
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The non-perturbed adjoint flux in an infinite lattice satisfies the diffusion

equation for the critical reactor without leakage in an infinite medium

(keff¼ k1¼ 1,Σa¼ vΣf) with the adjoint source κΣ f (x)� π0(x):

�DΔΦ∗
0 x; x0ð Þ ¼ κΣf 1� δ x� x0ð Þð Þ with:

dΦ∗
0

dn

			
0
¼ dΦ∗

0

dn

			
1
¼ 0

which is integrated by applying the orthogonality condition, giving:

Φ∗
0 x; x0ð Þ ¼ κΣf

D

x2 þ x20
2

þ 1

3
� x0

� �
for 0 
 x 
 x0

Φ∗
0 x; x0ð Þ ¼ κΣf

D

x2 þ x20
2

þ 1

3
� x

� �
for x0 
 x 
 1

8>><>>:
Since the non-perturbed flux is constant, using the fact that γ(0)¼ 0 and γ(1)¼ γ,

the perturbation formula obtained after integration at the boundaries is:

π1 x0ð Þ ¼

Ð
Γ
dSγ xð ÞΦ0 xð ÞΦ∗

0 x; x0ð Þ
Ð1
0

κΣfΦ0 xð Þdx
¼ γΦ0Φ∗ 1; x0ð Þ

Φ0

Ð1
0

κΣf dx

¼ γ

2D

1

3
� x20

� �

This is similar to the analytical expression that was directly computed. By

setting κΣ f to 1, the flux perturbation can be determined instead of that of the

power. In the expression for the power perturbation π1(x0), only the term γ depends
on the heterogeneous calculation in the perturbed situation, and fluxesΦ0 ~r;Eð Þ and
Φ∗

0 ~r; r0
!;E

� �
are calculated in an infinite lattice only once. Nevertheless, it should

be pointed out that the adjoint flux Φ∗
0 ~r; r0

!;E
� �

depends on the position r0
!, and

thus, in practice, for a PWR assembly with 264 fuel pins, 264 adjoint calculations

are required in an non-optimized case. Symmetry considerations in the assembly in

an infinite lattice may be used to allow the number of calculations to be reduced.

14.5.5 Discontinuity Factors

In the case of a homogenization process that preserves the reaction rates for each

cell as well as the mean current for each side, the average macroscopic flux per side,

ψГ, is not generally conserved (Fig. 14.25). On the other hand, the true flux is

continuous.

For highly heterogeneous cores, i.e. consisting of assemblies that are very

different or with interfaces where the diffusion theory has its limitations (core/

reflector), some authors have proposed that discontinuity at the interface be taken

into account (Equivalence Theory of K. Koebke, Generalized Equivalence Theory
of K.S. Smith). The underlying idea is to define coefficients fi,j that allow for the
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discontinuity of the macroscopic flux while ensuring that at the interface the

following is satisfied:

f i, jψ i, j ¼ f i	1, j	1ψ i	1, j	1 on Γ\ ¼ Γi, j \ Γi	1, j	1

These coefficients, which depend on the energy groups, can be calculated using a

set of assemblies in an infinite lattice, or the assembly for which the discontinuity

factors are required is at the center. With strict considerations, there are as many

sets of discontinuity factors as the number of heterogeneous cases around the core

but the problem can be reduced by averaging situations that are quite similar. The

discontinuity factor is given by the following equation:

f Γk
g ¼

Φhete
g

			
Γk

ψhomog
g

			
Γk

In this equation, the fluxes are averaged for one interface Гk or for a set

comprising two adjacent sides. The discontinuity factors can also be averaged

over all the interfaces (however, with loss of precision). The homogeneous flux

calculation depends on the discontinuity factors, and the latter are thus determined

using an iterative scheme as for an equivalence calculation. K. Koebke proposed51

an approach based on the homogenized diffusion coefficient in each direction (x, y):

Aψ

Bψ

Cell A

Cell B

BΓ
ψ

AΓ
ψ

ousheterogene
trueΦ

Infographie Marguet

Fig. 14.25 Context for

discontinuity factors

51K. Koebke: Advances in homogeneization and dehomogeneization, Proc. International Topical
meeting: advances in mathematical methods for the solution of nuclear engineering problems,

Munich, 1981, Vol. 2 p. 59.
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JHomogx ¼ �bDx
∂ψ
∂x

and JHomogy
¼ �bDy

∂ψ
∂y

The macroscopic diffusion equation is solved by substituting the usual diffusion

coefficient by the diagonal matrix of diffusion coefficients52:

D ¼ bDx 0

0 bDy

� 

The leakage term is thus expressed as:�div D� grad
��!

ψ
� �

¼ �div bDx∂ψ=∂xþ
�

bDy∂ψ=∂yÞ. Iterations are performed for the directional diffusion coefficients until

that for a given pair(K+,K�) of opposite sides in the geometry (East, West) or
(North, South), the ratios of heterogeneous flux to macroscopic flux are equal:

ΦHete
Kþ

ψHomog
Kþ

¼ ΦHete
K�

ψHomog
K�

The same reasoning is applied for each energy group. At convergence, the

directional discontinuity factor obtained is:

f K ¼ ΦHete
K

ψHomog
K

52K. Koebke, H. Haase, L. Hetzel, H.J. Winter: Application and verification of the simplified
equivalence theory for burn-up states, Nuclear Science and Engineering, 92, pp. 56–65 (1986).
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Chapter 15

Fuel Cycle Physics

Fuel undergoes significant nuclear transformations during its life in the reactor.

Fission reactions modify isotopic concentrations and considerably affect neutron

flux calculations. Heavy isotopes undergo fission and produce absorbing fission

products that modify the neutron spectrum. Furthermore, fissile plutonium isotopes

are also formed by capture reactions for uranium 238 and thus partially regenerate

the fuel. The variations in the concentration of xenon 135—a powerful absorbing

isotope produced by fission—lead to transient reactivity perturbations that can

hinder the smooth running of the reactor for the operator: this is the so-called

“iodine pit”. Enrico Fermi experimentally discovered the “xenon effect” which may

prevent the reactor from starting, although for a short period only. In the higher

power Hanford reactor (USA), initially conceived to produce plutonium for the

atomic bomb, EugenWigner allowed for voided channels as he anticipated the need

to insert supplementary uranium pins to counter the xenon effect.

15.1 Schematic Notation for Fuel Cycle Physics

Nuclear transformations occurring in fuel (also called fuel evolution) can be studied
through the use of capture/disintegration schemes. A graphical convention is

adopted for the shift of the mass number by one, i.e. chemical elements are ordered

by increasing atomic number Z, yet the shift is one unit to the left for the mass

number of isotopes of a given chemical element with respect to the previous one.

This notation is due to the fact that in nuclear reactors, capture reactions are

predominant (naturally with fission), and thus heavier elements tend to be formed.

It would therefore be difficult to view the capture scheme graphically if isotopes of

the same mass were placed one above another simply because of the lack of room

on the sheet of paper!

© Springer International Publishing AG 2017

S. Marguet, The Physics of Nuclear Reactors, DOI 10.1007/978-3-319-59560-3_15
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15.2 Disintegration

Nuclear fuel initially contains radioactive elements and fission/capture reactions in

the reactor lead to new radioactive isotopes such as fission products or minor

actinides (Fig. 15.1).

Spontaneous fission, which is the natural decay of a heavy nucleus, must be

distinguished from neutron-induced fission (reaction induced by the neutron flux).

15.3 Neutron-Induced Reactions

These reactions take place only under neutron flux. It should be noted that radiative

capture is the major capture reaction in reactors. Some reactions (n, α) for light
target nuclei also contribute significantly, such as the capture of 10

5B, mentioned

earlier (Fig. 15.2).

15.4 The Bateman Equations

From the appearance/disappearance of a nuclide, three balance equations can be

expressed: one for the heavy nuclei, a second for fission products and a third for

activation products, all in the form of first-order differential equations. The homo-

geneous form of these differential equations was studied for families of radioactive

isotopes by Harry Bateman in 1910.1 In 1962, the inhomogeneous form (with a

A

Z - 1

A - 1

Z - 1

A meta

Z

A - 4

Z - 2

A

Z

A

Z + 1

A - 1

Z + 1

Isomeric transtion also 

called γ decayDelayed 

neutron

α

β+

p

β-

Spontaneous 

fission

Fig. 15.1 Major

disintegrations in a nuclear

reactor

1H. Bateman, Proc. Cambridge Phil. Soc. 15, 423 (1910). Harry Bateman (1882–1946) was a

British mathematician who studied at Cambridge, Gottingen and Paris. He left for the United
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fission term) was studied in the form of “linearized chains” by T. R. England

(Stamm’ler and Abbate 1983, p. 384) for the CINDER code. Below are the most

common balances (i.e. those with the most commonly encountered reactions or

decays).

15.4.1 Heavy Nuclides

The term heavy nuclides requires clarification. Usually, they refer to isotopes with

proton number larger than that of lead, which has isotopes that constitute the end of

decay chains. However, according to context, they are often defined as chemical

elements that cannot be produced by fission, and in more restricted cases, the trans-

actinides (Photo 15.1).

Certain chemical elements such as gadolinium are sometimes called heavy

nuclides but in this case, their proton number is used, since gadolinium can be

produced by fission of a fissile nucleus.

A - 7

Z - 4 A - 3

Z - 2

A

Z - 1

A + 1

Z

A - 1

Z - 1

A - 2

Z

A - 1

Z

A

Z

(n, 3n)

(n, np)

(n, γ)(n, 2n)

(n, p)

(n, f)
(n, α)

(n, 2α)

Fig. 15.2 Major neutron

capture reactions taken into

account in reactors

States in 1910 and defended his PhD thesis in 1913 at the prestigious John Hopkins University. He

became a professor at Caltech in 1917. He made several contributions to numerical analysis for

physics in various fields such as electromagnetism, fluid mechanics and geophysics. In 1936, he

became the vice-president of the American Mathematical Society. His favorite pastime was

writing pages on the properties of transcendental functions. After his death, at the end of the

1940s, a team of well-known mathematicians, numbering Arthur Erdeli and F. Oberhettinger,

worked on this huge collection: the Bateman Manuscripts were published as five famous books:

Higher Transcendental Functions Volumes 1, 2, 3, and Tables of Integral Transforms 1 and

2, which are of great interest to a reactor physicist, especially volume 1 (Erdélyi 1954), which
contains tables of Fourier and Laplace transforms.
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Let:

– N(t) be the number of nuclei of a given heavy nuclide A
ZX at a given time,

– λβþ (resp. β
�, α, γ, spontaneous fission), the decay constant of the β+ decay (resp.

β�, α, γ, spontaneous fission),
– σ(n, γ) the microscopic cross section of radiative capture (resp. σ(n, 2n) for the

reaction (n, 2n)),
– Φ the neutron flux during depletion.

The differential equation of the balance is expressed as:

dN tð Þ
dt
h
A

Z

i ¼ Φ σ n;γð ÞN tð Þ� �h
A�1

Z

i
þΦ σ n;2nð Þ N tð Þ� �h

Aþ1

Z

i
þ λβþ N tð Þ� �h

A

Zþ1

i þ λβ� N tð Þ� �h
A

Z�1

i
þ λα N tð Þ½ �h

Aþ4

Zþ2

i þ λγ N tð Þ� �h
A meta

Z

i
�Φ σcapture þ σfission þ σ n; 2nð Þ

� �� N tð Þ� �h
A

Z

i
� λβ� þ λβþ þ λα þ λγ þ λspontaneous fission

� �
N tð Þ� �h

A

Z

i
The source terms lead to an increase in N(t) and have a positive sign, whereas

those with a negative sign indicate the disappearance of the nuclide. In this

equation, only the most common capture/decay reactions have been included.

The notation:

Photo 15.1 Harry Bateman

(1882–1946) (Public

domain)
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λtotal ¼ λβ� þ λβþ þ λα þ λγ þ λspontaneous fission

introduces the notion of partial decay branching Bri (or branching ratio) for

isotopes that have several decay channels. In this case, the partial decay constants

are given by:

λi ¼ Briλtotal

15.4.2 Fission Products

As their name indicates, fission products are created during the fission of a heavy

nuclide. They are often radioactive and decay by β� or γ, and seldom through β+.
The production term by fission is the sum of the fission rates of fissile isotopes

multiplied by the fission yield of the considered isotope.

dN tð Þ
dt
h
A

Z

i ¼ Φ σ n;γð Þ N tð Þ� �h
A�1

Z

i þ λβþ N tð Þ� �h
A

Zþ1

i
þ λβ� N tð Þ� �h

A

Z�1

i þ λα N tð Þ½ �h
Aþ4

Zþ2

i þ λγ N tð Þ� �h
A meta

Z

i
�Φ σ n;γð Þ N tð Þ� �h

A

Z

i � λβ� þ λβþ þ λα þ λγ
� �� N tð Þ� �h

A

Z

i þ YGh A

Z

i
YG
h
A
Z

i is the global fission yield of isotope A
ZX, i.e.:

YG
h
A
Z

i ¼ X
All fissile nuclei F

γ Fh
A
Z

iτF
with: τF the fission rate of fissile isotope F;

γ Fh
A

Z

i the fission yield of isotope A
ZX from F.

The nuclear data libraries provide the total decay constants (λT) and the

decay branching ratios normalized to one, such that λi¼BriλT. The first term

Φ [σ(n, γ) N(t)] does not allow for the capture branch since it is assumed that

σn, γ accounts for it (meaning that there are two different cross sections for the

balance carried out for the isotope in its ground state or metastable state).

Indeed, a given reaction for a particular nuclide may not exist (thus,

σreaction¼ 0). The same is possible for a given decay.
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15.4.3 Activation Products

In some reactor structures (grids, rod bank mechanisms, baffle, steel parts, etc.),

certain isotopes have an absorption cross section that leads to the production of new

isotopes, which are often radioactive. Some emit highly penetrating rays, e.g. cobalt
60. The structure elements do not contain any fissile isotope by definition, and thus,

there is no fission production in the equation for activation products, which is very

similar to that of the heavy nuclides:

dN tð Þ
dt
h
A

Z

i ¼ Φ σ n;γð Þ N tð Þ� �h
A�1

Z

i þ Φ σ n;2nð Þ N tð Þ� �h
Aþ1

Z

i
þ λβþ N tð Þ� �h

A

Zþ1

i þ λβ� N tð Þ� �h
A

Z�1

i þ λγ N tð Þ� �h
A meta

Z

i
� Φ σ n;γð Þ þ σ n; 2nð Þ

� �� N tð Þ� �h
A

Z

i � λβ� þ λβþ þ λγ
� �

N tð Þ� �h
A

Z

i
Activation reactions are often threshold reactions or reactions such as (α, n) or

(α, p).

15.4.3.1 Example of the Cobalt 60 Chain

Cobalt (from kobold: meaning mischievous spirit due to its toxic ores) was discov-

ered in 1735. For centuries, cobalt salts have been used to obtain the blue color for

enamels and porcelain. However, if employed in a steel alloy, the latter has some

particular properties. In reactors, cobalt exists in the form of trace elements in the

zirconium of claddings (from 0.002 to 0.15%), in Inconel 600 (less than 0.1%) and

in stainless steel (less than 0.2%). One of its isotopes, cobalt 60, is radioactive and

emits β� particles. The main production channel is through capture on cobalt 59.

Cobalt 60 emits highly penetrating γ radiation (with an emission ray at 1.17 MeV

and another at 1.33 MeV). It thus represents a danger for radioprotection in the case

of over-exposure. Cobalt radiation was in fact used in radiotherapy until the 1960s

to cure certain cancers (via the destruction of target cancerous cells) by a process

inaccurately referred to popularly as the “cobalt bomb” (Fig. 15.3).
The Bateman equation for cobalt 60 is written as:

Cobalt60equation:
d 60

27Co
� �
dt

¼ Φσ
59
27Co½ �
n, γ
� 59

27Co
� �þ λTI

60m
27 Co
� �

� Φσ
60
27Co½ �
n;γð Þ

60
27Co
� �

60
27Co½ � � λβ�

60
27Co
� � ð15:1Þ
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15.5 Vectorial Form of the Bateman Equation

For a set of nuclides that depend on one another through decay chains or other

reactions, the following differential system can be expressed:

Let ~N tð Þ be the isotopic compositions vector; its components are the various

concentrations of isotopes Ni(t):

d~Nheavy tð Þ
dt

¼ A~Nheavy tð Þ for heavy nuclides

d~NFP tð Þ
dt

¼ B~NFP tð Þ þ S for fission products

d~NAP tð Þ
dt

¼ C~NAP tð Þ for activation products

8>>>>>>>><
>>>>>>>>:

These differential equations are commonly known as the generalized Bateman
differential equations. Usually for a pressurized water reactor based on a uranium/

plutonium cycle:

~Nheavy ¼

234
92U

235
92U

238
92U

⋮
244
96Cm

0
BBBBBBBB@

1
CCCCCCCCA

N
*

FP dependson the application

15.6 Calculation of Relevant Quantities for the Fuel Cycle

15.6.1 Mass Balance

One of the most extensively required calculations in fuel cycle is that of the fuel

composition at different burn-ups. This is the mass balance application. It

Co58

27

Ni59

28

Co59

27

β -
(5.26 years)

Co58m

27

Ni58

28

(n,2n)

Co60

27

(n,p)

(n,p)

Co60m

27

Ni60

28

(n,γ)

β -
(99.74 %)

TI (0.26 %)

(10.47 min)

β +
(7.49 years)

Fig. 15.3 Cobalt 60 production chain
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corresponds to a nuclide count. The mass M in grams for a nuclide in a given

volume is obtained as:

M ¼ N

N A

where: N is the Avogadro number (6.022 � 1023 mol�1),

A is the atomic mass of the considered nuclide (in g),

N is the number of nuclides in the considered volume (in number of

nuclides).

If N is expressed in nuclides/cm3, the mass is obtained in grams/cm3.

15.6.2 Burn-up

Burn-up is a particularly useful quantity which characterizes the energy which has

been produced by the fuel under flux. It is usually expressed as the ratio of the total

energy produced (expressed for industrial reactors as MWd, i.e. MegaWatt-day, or
in GWd, GigaWatt-day) to the mass in tonnes of initial heavy metals. The choice of

this reference avoids the difficulty of using a reference linked to the current mass of

fuel since during fission, the mass of heavy metals varies with time. This normal-

ization also allows direct comparisons of the efficiency of several fuel management

approaches for a given reactor series or by different fractioning of fuel for

reloading. Knowing the burn-up in MWd/t enables direct evaluation of energy by

multiplying the specific power per unit mass by the number of operating days.

15.6.2.1 Thermal Burn-up

Burn-up characterizes the amount of energy produced by a nuclear fuel. Rather than

the unit Joule/kg, engineers use an International system unit that allows rapid

calculation of the energy delivered by a nuclear reactor: the MegaWatt-day per
metric tonne (MWd/t).

Thermal burnup MWd=t½ � � Released energy MWd½ �
Initial mass of heavy metal t½ �

:

It should be pointed out that only the mass of the fissile fuel (metal) is counted

and not the total mass of the oxide UO2 in the case of UO2-PWR. Thus, the oxygen
atoms in the oxide are not included. In thermal neutron reactors, the term thermal
burn-up is employed:
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Thermalburn� up: TCT �

P
fissile nuclei

κf Nf σf Φ

 !
MW½ �

fuel mass t½ �
Δt d½ � in MWd=t ð15:2Þ

with: kf � 200 MeV/fission � 1.6 � 10�19 J/eV ¼ 3.2 � 10�17 MJ/fission

Nf concentration of a fissile nuclide in [nuclides in the considered mass]
σfΦ microscopic fission rate in [fissions/s]

Δt time increment in operating days [days]

If concentrations are expressed per metric tonne, the fuel mass is taken as equal

to 1 ton, otherwise the mass corresponding to the considered volume is used.

Thermal burn-up corresponds to the product of the Specific Thermal Power of the

reactor multiplied by the number of operating days at that power:

TBU ¼ Pspecific MW=t½ � Δt d½ �

For a 900 MWe EDF reactor with a third-core fuel management (initial enrich-

ment for 23592U is 3.25%), the unloading burn-up is 33,000 MWd/t. For a quarter-core

fuel management, (initial enrichment for 235
92U is 3.70%), it is 42,000 MWd/t. The

initial mass of heavy metal (which only includes uranium, and at most plutonium

and americium 241 forMOX fuel) must not be confused with a tonne of initial oxide
such as UO2 or PuO2, or even a tonne of heavy metal at the current burn-up. The

mass of heavy nuclides decreases significantly by fission, thereby creating fission

products. The main difficulty resides in the following formulation of the total power

produced:

Power calculation: Power MW½ � ¼
X

Fissile nuclides

κf σf Nf Φþ
X

Capturing nuclides

κcσc Nc Φ

ð15:3Þ

Thus, the quantity κf, which represents the total energy released by a neutron

inducing fission, must be defined. Nevertheless, the question arises of how to

account for the energy dissipated in water (either by the slowing down of neutrons

or by attenuation—analogous to “friction”—of γ rays in water) and in structural

elements (with the same physical phenomena). The thermal power released by the

fuel pin of a water reactor can be broken down into:

Pfuel ¼ Precoilþβ þ Pγ autoabsorption þ Pγ from neighboring pins

where: Precoil + β is the thermal power released in the fuel pin, i.e. the energy (per

unit time) of recoil of fission products that are stopped locally and the energy of β
particles that are also absorbed on the spot.
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Pγ autoabsorption is the power absorbed in the pin (called auto-absorption), where
the γ particles were emitted either by fission (prompt or delayed γ) or by capture of
the ν� 1 other neutrons released by fission (one neutron induces fission, the others

are mainly captured by (n, γ) reactions or leak out from the reactor—in small

amounts). The γ produced lose their energy in the reactor.

Pγ from neighboring pins is the power obtained from the γ rays originating from the

neighboring pins which are formed by the same mechanisms as above.

This is the power that is released in the fuel, and it must be added to that released

in the inactive structures of the core:

Pgeometry ¼ Pfuel þ Pγ waterþstructure þ Pneutron slow�down

with: Pγ water+ structure is the power deposited in the water by γ rays and in the

structures by γ stemming from radiative capture by the ν� 1 other neutrons

released by fission, as well as the γ from fission emanating from the fuel. The

contribution of massive structures such as cladding and grids is significant com-

pared to that of water.

Pneutron slow� down is the power of neutrons that are mainly slowed down in

water and release 2 MeV per neutron as kinetic energy on slowing down from the

mean energy of a Watt spectrum (2 MeV) to thermal energy (1/40 eV, i.e. almost

0 MeV). Since ν neutrons are produced (�2.5), this energy is about 5 MeV per

fission.

Numerical simulations (Monte Carlo calculations) for the deposited energy in

the structures and water showed that the power deposited outside the fuel is

around:2

Pγ waterþstructure þ Pneutron slow�down � 2:6 %

This power is injected directly into water in core thermal-hydraulic calculations,

especially if there is no need to locate the power in the cladding or in the fuel. It is

common practice to attribute to the fission energy, κf (Table 15.1), the total energy
that can be obtained from fission of the atom, i.e. the recoil energy of fission

products (about 166 MeV), the energy of prompt γ (about 8 MeV), the energy of

delayed γ (about 7 MeV), the energy of β particles (about 7 MeV), and the kinetic

energy of ν neutrons (about 5 MeV). The energy of neutrinos is lost. The energy

produced by the capture of ν� 1 neutrons that do not induce any fission is not

included in this energy balance.

The capture energy (Table 15.2), weighted by the capture rate, must be added to

the fission power by summation of the capturing isotopes in the geometry (and not

only those in the fuel since power is also released in non-fissile zones). For

2This is the value assigned in EDF codes.
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simplified calculations where parasite captures are not disregarded, a mean value of

6 MeV may be added for each supplementary radiative capture, i.e. around (ν� 1)

6 MeV¼ 8 MeV to the fission energy per isotope. Thus, the depletion flux for a

fuel normalized to a specific power in W/g may be calculated as follows:

Fluxinageometry:

Φ n=cm2=s½ � ¼
Power W=g½ �X

Fissile nuclides

κf J½ � σf cm2½ � Nf atom=g½ � þ
X

Capturing nuclides

κc J½ � σc cm2½ � Nc atom=g½ �

ð15:4Þ

While it is completely rational to integrate the power released by capture in the

calculation of the flux level (in which case, the latter is artificially increased

to compensate for the uncounted power), burn-up is a more complex matter.

Indeed, if only fission power
P

fissiles nuclides

κf σf Nf Φ and power from capturesP
capturing nuclides

κcσc Nc Φs are accounted for in the fuel zone, the power produced in

cladding and in water is neglected. This term is evaluated as being 0.5% of the total

power. It should be pointed out that this amount is less than 2.6% of the power

deposited in the structures mainly because of the fact that the kinetic energy of

neutrons is already included in the fission energy κf. Thus, the energy does not

represent the energy deposited in the fuel but rather the energy that can be obtained

in a given geometry. The definition of burn-up is hence impacted. Indeed, the

energy produced in the non-fissile zones cannot be used to define burn-up in

these zones due to the absence of fissile mass. The only power that can in fact be

measured is that delivered at the turbine, and hence, using the cycle efficiency, the

total thermal power released by the reactor is obtained (e.g. 2775 MWthermal for a

CPY series). After dividing by the mass of fissile metal in tonnes, this power

determines the specific depletion power, which is itself used to evaluate the number

of Effective Full Power Days (EFPD) by dividing burn-up by specific power.

Hence, thermal burn-up does not provide a direct snapshot of the fissions solely

in the fuel, but rather of the total energy delivered by the assembly.

It should be noted that thermal burn-up can be determined experimentally either

by exact monitoring of a reactor, giving the number of Equivalent Full Power Days

(EFPD), or by destructive measurements of fuel pins and measuring the amount of

fission products that are good indicators of burn-up, such as neodymium 148.

Table 15.1 Mean fission energy (MeV) for the main fissile isotopes

235
92U

236
92U

238
92U

238
94Pu

239
94Pu

240
94Pu

241
94Pu

242
94Pu

κf 193.1 194.5 193.8 197.4 198.5 199.5 202.5 201.6
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15.6.2.2 Fission Burn-up (for Fast Neutron Reactors)

Fission burn-up is closer to actual physical phenomena, and is interesting as it

locates the production of power geometrically and avoids the various difficulties

discussed in the definition of thermal burn-up. Two types of fission burn-up are

defined:

– %FIFA for Fission per Invested Fissile Atom, which represents the number of

fissions normalized to the number of fissile atoms:

%FIFA � 100

Ð
ΣfΦ dt

Nf 0ð Þ in %, where Nf (0) is the initial number of heavy

fissile atoms

– %FIMA for Fission per Invested Metal Atom, which is the initial number of

heavy atoms:

%FIMA � 100

Ð
ΣfΦ dt

N 0ð Þ in %, where N(0) is the number of heavy atoms.

Fission burn-up (dimensionless) is used mainly in the case of fast neutron

reactors. %FIMA is used more widely than %FIFA as it provides a better estimate

of the initial amount of nuclides (fertile nuclides also lead to fissions). 1% FIMA
corresponds to 10,000 MWd/t.

15.6.2.3 Fuel Depletion with Burn-up

For heavy nuclides, the Bateman equation can be expressed in the simplified form:

dN

dt
¼ �λN þ ΣΦ

Usually, in the case of decays (mainly α) of heavy nuclides during the uranium-

thorium cycle, decay by radioactivity is considered negligible compared to the

capture rate (λN�ΣΦ), especially for the isotopes 235
92U , 238

92U and 239
94Pu.

Hence: ΔN�ΣΦΔt
The product of flux and time, Φt, is called the neutron fluence, and is often

expressed in neutron/kilobarn. ΦΔt is thus a fluence increment. Since burn-up is

proportional to the specific power level:

Δτ ¼ Pspecific Δt

and the power itself being proportional to the flux as given by Eq. (15.4), it may be

deduced that fluence is invariable to an increase in specific power when the time

step is inversely proportional to this increase. Hence, a fuel that is subjected to

twice a given power during a time period which is halved has undergone the same

fluence, and thus the same burn-up. The concentrations of heavy nuclides of this

long period thus depend at first order on burn-up and not on time. This specificity is
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widely employed in the generation of cross-section libraries for reactor calculations

where the cross sections depending on self-shielding, especially on the concentra-

tions of resonant isotopes, are tabulated in terms of burn-up only and not concen-

trations. This approximation is justified in most cases, except that of 241
94Pu, which

has a shorter period (14.3 years) and transforms into 241
95Am, thereby leading to an

excess in absorption. This property whereby cross sections depend on burn-up only

is universally employed in calculation codes for reactor physics.

15.6.3 Activity

Activity, i.e. the number of disintegrations per second at a given time, is computed

as follows:

Radioactive activity: A Bq½ � � λ s�1½ � N atoms½ � ð15:5Þ

Since 1975, the official unit of activity is the becquerel (Bq). A more suitable

unit for industrial computations is the curie ¼ 3.7 � 1010 Bq, named in honor of

Pierre and Marie Curie, and which corresponds to the activity of one gram of

radium 226. The activity per unit volume is obtained by dividing the activity of a

given element by its volume [in (Bq/cm3)], and the same definition is applied for the

activity per unit mass [in (Bq/kg)]. A stable isotope has an activity of zero.

15.6.4 Calculation of Decay Heat

Radioactivity is associated with energy emission. The decay heat (DH) corresponds
to the energy of the radioactivity emitted per unit time for a given mass of

radioactive products (reactor core, radioactive waste container, stocking pool,

etc.). The decay heat is of paramount importance for reactor safety since even

after control rods have been inserted, a significant amount of power must still be

cooled by core cooling systems even when the reactor is not operating. This power

decays quickly after rod insertion and decreases slowly after 1 h to 1% of the

nominal power. One year after a reactor has stopped, it is still worth 1/1000 its

nominal power. For engineering applications, the empirical Way-Wigner formula,

established in 1948, can be applied (Baur 1985, p. 192):

Way-Wigner formula:
P tð Þ
P0

¼ 0:0622 t�0,2 � tþ tirrð Þ�0,2
� �

ð15:6Þ

where t is the time in seconds after rod insertion and tirr is the operating period of

the reactor in seconds. For fresh fuel, the decay heat of αemitters is called the

inherent power. The term decay heat is used for fission products.
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15.6.4.1 Summation Method

For each nuclide, i, the decay heat, DH, in watts is obtained by multiplying the

activity by the energy released per disintegration:

Decayheatof anisotope: DHi Wattð Þ ¼ λ s�1ð Þ N number of atoms of nuclide ið Þ �Eγþ �Eβþ �Eα

� �
�1:610�13

ð15:7Þ

where �Eγ , �Eβ and �Eα are the mean energies released for the radioactivity of the same

name (in MeV, and the unit conversion of 1.6 � 10�13 [J/MeV] is applied), per

nuclide considered. It may be seen that �Eγ þ �Eβ þ �Eα is the energy released for any

disintegration (γ, β or α) through the definition of mean energy. Note that it is

erroneous to suppose that an α decay emits only an energy corresponding to �Eα.

Indeed, an α or β decay is also followed by a γ decay. The total decay heat is the sum
of the power released by the set of isotopes that make up the considered medium:

Decay heatbysummation: DHtotal ¼
X
i

DHi ð15:8Þ

This calculation method, also naturally called a summation method, is exact but
requires precise knowledge of the fuel composition or the core for which the decay

heat is being computed. The Laugier curve3 method provides a simplified way to

obtain the number of isotopes that must be accounted for with respect to a given

3Frédéric Laugier (1973–) began his career at EDF/R&D in 2001 after his studies at the Ecole

Centrale de Paris. He is a world-recognized specialist in decay heat, and he has contributed to

improvement of the international norms in this field. For instance, in 2007, he proposed a didactic

representation of decay heat using Laugier curves having a precision/complexity ratio sufficient to

enable rapid calculation of this parameter.

(Courtesy Laugier)
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precision for the decay heat of a given fuel (Fig. 15.4)—since a reference calcula-

tion of decay heat with a large number of isotopes is available. The more precision

that is required, the greater the number of isotopes that must be taken into account.

Furthermore, for different cooling times, it is not the same isotopes (unfortunately!)

that require calculation. Thus, for long cooling times (geological times), only a few
isotopes with a long half-life are required whereas the decay heat for very short

cooling times (just after scram) requires over a hundred isotopes are needed.

Nowadays, the best-estimate calculations are carried out with more than 1200

isotopes for which the energy per disintegration is known. Indeed, the disadvantage

of reference codes is the long computational times involved, since at present,

calculation of the isotopic composition of an assembly takes more than half an hour.

For example, for a cooling time of 22 days (Fig. 15.5, time in days on a

logarithmic scale), 32 isotopes are required to capture 99% of the decay heat, and

95 are required for a precision of 99.9999%. For a precision of 10�12 %, 272 iso-

topes are required. The hash-and-dot plot represents the cumulated number of

isotopes required to obtain a given precision of the decay heat for any cooling

time. This number increases during cooling to allow for the fact that new isotopes

become more dominant as cooling times increase. However, the black plot at 90%

shows that fewer isotopes are required between 10,000 days and 1 million days

compared to 100 million days. Hence, it is difficult calculate the decay heat with

codes using summation since the decay chains depend on the cooling time.
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Usually, the decay heat is decomposed into three terms:

DHtotal ¼ DHdelay þ DHFP þ DHHN

The power of delayed neutrons DHdelay corresponds to the fission induced by

delayed neutrons. Due to the longer period of delayed neutrons (56.4 s), it is

assumed that their decay heat is negligible after 10 min. Nevertheless, it is the

dominant term during the initial seconds following the rod insertion. This term will

be discussed in the chapter on kinetics. The power due to fission products DHFP

corresponds to the energy released due to the γ produced by β decay of fission

products. The power due to heavy nuclides DHHN stems from the kinetic energy of

α and γ particles emitted by heavy nuclides, and seldom β decays. Common practice

separates contributions from β� decays of the 239
92U ! 239

93Np ! 239
94Pu decay chain,

which is mainly dominant during the 20 initial cooling days from those due to α
decays of heavy nuclides.

15.6.4.2 Decay Heat Burst Function

The decay heat calculation of fission products can be evaluated more quickly

without determining their concentration using the Decay Heat Power Burst Func-
tion (DHBF),which indicates the evolution of the decay heat due to fission products
from one fission per heavy nuclide considered and per incident neutron energy
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(thermal neutron at 0.0253 eV, fast neutron at 400 keV and fusion neutron at

14 MeV).4

Let [0, T] be the irradiation time interval and Δtcool the cooling time after

irradiation. If t is the time at which decay heat is being calculated with the origin

being immediately after the reactor is stopped, the decay heat at time t is the

convolution of the DHBF for each fissile isotope F by the fission rate of this isotope

integrated over the irradiation time:

DHF tð Þ ¼
ð T
0

NF τð Þ σ F
f τð Þ Φ τð Þ DHBFF T þ t� τð Þ dτ

This is the same as saying that each fission at the time τ generates a DHBF as

from time τ to T+ twhich is required. Assuming that the fission rate is constant over

the interval as shown by Fig. 15.6, the following change of variable leads to the

direct integration of the DHBF:

DecayheatevaluatedbyDHBF: DHF tð Þ ¼NF σ F
f Φ

ðTþt

t

DHBFF τ
0

� �
dτ

0 ð15:9Þ

The total decay heat is obtained by summing on the nuclides that fission:

DH tð Þ ¼
X
F

DHF tð Þ

For a load diagram modeled by steps j for constant fission rates, the formula is

extended by summing over the steps:

DH tð Þ ¼
X
F

X
j

NF σ F
f Φ

� �
j

ðθj
θjþ1

DHBFF t� θð Þ dθ with θjþ1 < θj < 0

It should be noted that the values of θj are negative in the above expression, in

accordance with Fig. 15.7. The advantage of this method is that the only data

required is the fission rates of heavy isotopes for each irradiation step of the core.

The DHBF can be measured experimentally (Dickens5 in 1980, Akiyama6 in

1982, Fig. 15.8) using a very short irradiation period for a sample and expulsion in a

4François Storrer: Contribution �a l’élaboration et la qualification de la bibliothèque DARLING
des données nucléaires de base du formulaire multifilière DARWIN de la physique du cycle du
combustible [Contribution to the conception and validation of the DARLING library of basic

nuclear data for the DARWIN scheme for fuel cycle physics], PhD thesis, University of Orsay

(1993).
5J.K. Dickens, T.A. Love and al, Nucl.Sci. Eng., 106 (1980).
6M. Akiyama, S. An, Jap. At. En. Soc., 709 (1982).

1108 15 Fuel Cycle Physics



calorimeter. However, the disadvantage of the method is that it does not account for

the decay heat due to fission products during irradiation since the DHBF are

calculated in the absence of neutron flux. Correction for flux must be applied in

order to improve the results.

15.6.4.3 Elementary Value Curves

The final method is an approach that differs slightly from DHBF, and is called the

elementary value curves (EVC) method.7 The principle is to calculate the fuel

τd

0 T

t

ΦσN i
fi

τ Time from start of irradiation

Time from reactor shutdown

)( τ−+ TtDHBF

Fig. 15.6 Decay heat burst function

0

t

DHBF (t − q)

1
θ

2
θ

3
θ

dq

….

Fig. 15.7 Decay heat for step load functions

7This is the method used in the STRAPONTIN code (S. Marguet, O. Dekens, F. Laugier et. al.),
which is the official decay heat calculation code for PWR at EDF.
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composition before irradiation of the reactor using a reduced depletion chain, which

is assumed to be satisfactory with respect to precision on fuel composition, and then

to calculate the decay heat response for each isotope in the fuel:

DH tð Þ ¼
X
i2 fuel

EVCi tð Þ

The elementary value curve for a quantity for fuel cycle G (whether decay heat

or any relevant physical quantity for the fuel cycle) for an isotope i is the function
giving the values of G for 1020 atoms (an arbitrary reference value) for the isotope

that decays naturally. The value of the EVC for an isotope i at time t is the value of

the quantity G of isotope i and all its daughters that are present at time t:

EVCG
i tð Þ ¼ Gi tð Þ þ

X
i!...!j

Gj tð Þ

It should be noted that the EVC of an isotope i can be non-zero at a time t even if

its concentration is zero (albeit after complete disappearance of isotope i). Indeed,
the EVC takes into account the contributions of the daughters j of the isotope i.

Similarly, the EVC may be increasing with time, as for 137Cs with its daughter

nucleus 137mBa, which has with a very short half-life and is in equilibrium with the
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Fig. 15.8 Comparison of DHBF (with respect to cooling time) computed by DARWIN reference

code with measures of Akiyama and Dickens (Courtesy CEA)
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father isotope, resulting in a doubling effect of the activity (proportionally to the

branching ratio), as described in Chap. 1. This effect is non-intuitive since decay

heat is a decreasing function. This phenomenon of an increasing EVC also exists for
241Pu (Fig. 15.9).

This method has the advantage of accounting for the capture of fission products

during irradiation via the fuel composition and thus the calculation of the fuel

composition for isotopes with short periods and yet with significant contribution to

decay heat, is not required. However, it is important to perform an analysis of the

important isotopes for decay heat beforehand in a pre-calculation of EVC using a

reference code (DARWIN from CEA in France). The gain in calculation time using

this simplified method (lower than a second for the fuel) is very competitive

compared to the reference codes, although it seems certain that future machines

will render such methods obsolete.

15.6.4.4 Continuous Fission Curve Method

15.6.4.4.1 Principle

“On-line” computation of decay heat, i.e. during operation of the reactor, poses a

difficult theoretical problem. Indeed, the fission energy is usually taken as 200 MeV
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Fig. 15.9 EVC for the main heavy isotopes
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per fission, and accounts for the stationary state of the energy due to γ and β decays
of fission products. The decay heat is hence already taken into account in the fission

energy if power is calculated as:

P tð Þ ¼ κΣfΦ tð Þ

Moreover, a further 8 MeV is added to allow for the energy induced by the

capture of other fission neutrons that do not contribute to the chain reaction.

Consequently, all the energy released is counted in an elementary fission, even

that which is released by radioactive decay or neutron capture. There is a problem if

the neutron flux decreases with a kinetic process. In a theoretical case in which the

flux tends towards 0, the power decreases to 0 according to the previous formula.

Yet, in a real case, there is still power due to the decay heat, which decreases slowly

during cooling. This power heats up the coolant and this process is not usually taken

into account in core calculation codes, even those dealing with reactor kinetics.

A simple method of addressing this problem is to consider the result of contin-

uous fission in the reactor between time θ and current time τ. For this time step, it is

assumed that there is one fission per second continuously and that this fission

immediately generates all the possible fission products according to their fission

yields (which depend on the fissile nuclide considered). Infinite continuous fission

is thus defined by taking the limit of the value of θ to �1. It is then assumed that

the reactor stops instantaneously at time τ, and the decay heat is calculated as a

function of time t after the reactor shuts down (Fig. 15.10).

The time origin is taken as the point at which the reactor shuts down, and the

energy after continuous irradiation for a single fission before shut-down is given by

the following (by noting that the values of θ during irradiation are negative):

0

t

)( θ−tDHBF

θ

θdΦΣ f

Fig. 15.10 Infinite continuous fission

1112 15 Fuel Cycle Physics



Q1 fission tð Þ ¼
ðθ¼0

θ¼�1
DHBF t� θð Þdθ � IDHBF tð Þ

This expression introduces the function IDHBF (for integrated DHBF), also

called the Continuous Fission Curve (CFC). It may be noted that since the values of

DHBF are in watts, the IDHBF, which are their integral over time, are given in

joules (Fig. 15.11).
The decay heating due to a constant fission rate ΣfΦ (in number of fissions per

second) is obtained by multiplying it by the energy Q1 fission(t). The contribution of

each fissile isotope i is evaluated by summing for all fissile isotopes:

DH tð Þ¼
X

i2 fissilesf g
Σf ,iΦ

ðθ¼0

θ¼�1
DHBFi t�θð Þdθ¼

X
i2 fissilesf g

Σf ,iΦ IDHBFi tð Þ

The variation per fission rate step is determined using a calculation shortcut. The

contribution of a new power step,Σ j
fΦj (the notations for summation are dropped for

the sake of simplification), is computed by difference of the infinite fission curves

between the beginning and the end of the step [θj, θj� 1] (Fig. 15.12):

contributionj tð Þ ¼ Σ j
fΦj

ðθ¼θj�1

θ¼�1
DHBF t� θð Þdθ �

ðθ¼θj

θ¼�1
DHBF t� θð Þdθ

0
B@

1
CA

¼ Σ j
fΦj IDHBF t� θj�1

� �� IDHBF t� θj
� �� �

The subtracted term corresponds to the contribution of the step prolonged at

�1, which is implicitly accounted for in the continuous fission term IDHBF
(t� θj� 1). Since the times θj are negative, t� θj� 1< t� θj, hence IDHBF
(t� θj� 1)> IDHBF(t� θj) and the contribution of the step is indeed positive. The

successive steps j before the reactor shuts down may be summed as follows:

0

1

10

100

1.E+00 1.E+02 1.E+04 1.E+06

U235th

Pu239th

sec

MeV

Fig. 15.11 IDHBF(t) for a

fission by thermal neutron

of U235 or Pu239
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DH tð Þ ¼
Xj¼þ1

j¼1

Σ j
fΦj IDHBF t� θj�1

� �� IDHBF t� θj
� �� �

The further in the past each step is, the less significant its contribution.

This method is used in the COCCINELLE code for online calculation of the

decay heat in the TREFLE simulator of the French EPR (Flamanville 3)

15.6.4.4.2 Capture Correction

While the major advantage of the infinite fission curve method is that it does not

require isotopic depletion calculation, its main drawback is that it does not allow for

the capture of fission products during irradiation. This capture effect depends on the

flux level in the reactor and on the values of the capture cross-sections of the fission

products. This effect can be pre-computed using a depletion code such as the CEA

code DARWIN and a capture correction can be deduced and applied to the decay

heat term of fission products during cooling. Studies have shown that capture

correction depends more on the fluence (and thus burn-up) than on the flux level

itself. Consequently, if the decay heating of fission products is computed at

different burn-ups, the capture correction with time can be assumed as being

independent of the flux level.

15.6.4.5 Calculation of Decay Sources and Their Spectrum

The number of decay particles—α, β or γ—emitted by the ith ray of an element of

concentration N(t) is proportional to activity as follows:

0

t

)( θ−tDHBF

1θ2θ
3

θ

θd

….

j
j
f ΦΣ

Fig. 15.12 Contribution of a step to decay heating
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Gα,β, γ
i ¼ λα,β, γ N tð Þ Iα,β, γi

100

where Iα,β, γi is the intensity of the ith ray in %, obtained from nuclear data libraries

such as JEF2. The total source is obtained by summing for all elements and the

emission rays. Summing for a given energy mesh leads to a spectrum in % of the

total source.

The independent neutron source (not induced by a neutron flux) is calculated by

accounting for the spontaneous fission (FS) radioactive decay and (α, n) reactions
for oxygen:

S ¼ SFS þ S α;nð Þ ¼ λFS N tð Þ
X
i

νi þ λα N tð Þ
X
i

ri

where νi is the number of neutrons emitted by spontaneous fission in energy group

i and ri is the number of neutrons (yield) emitted by the reaction (α, n) in energy

group i.
As α particles are roughly emitted with a 5 MeV energy by the fuel heavy nuclei,

and because most of the α particles interact with the oxygen of the oxide fuel, a

mean value of 3.3 � 10�8 neutron per α-Becquerel can be estimated, either for

UOX or MOX fuels within a 10% margin.

The notion of spectrum is identical to that given for the α, β and γ decays.

R. Babut8 estimated the uncertainty on the inherent (α, n) sources computed by the

integrated yield method as being more than 30%.

15.6.5 Photon γ and Neutron Dose Calculation

(Gambini and Granier 1986; Hine and Brownell, 1956, p. 10; Lilley, 2001, p. 181;

Mayo 1998, p. 305; Shultis and Faw 2000, p. 121; Rockwell 1956, p. 17)

The absorbed dose is defined as the ratio of the mean energy deposited by

ionizing particles in a given volume to the mass of the considered volume. The

official unit of dose is the gray (symbol Gy) and corresponds to 1 J/kg. The

specialists tend to use the older unit rad out of habit, or the CGS unit erg/g, for
which the conversions are (Baur 1985, p. 48):

1 gray ¼ 100 rad ¼ 10 000 erg=g

8Richard Babut:Modélisation des réactions (α, n) sur les noyaux légers pour déterminer la source
inhérente d’un réacteur nucléaire [Modeling of (α, n) reactions on light nuclides to determine the

inherent source of a nuclear reactor], PhD from Blaise Pascal University (2002).

15.6 Calculation of Relevant Quantities for the Fuel Cycle 1115



The dose calculation is carried out from the sources and spectra, as well as

radiation protection data. For the γ dose:

• the attenuation factor in the medium as a function of the energy of the γ particle
and the medium properties;

• the build-up factor that takes into account the contribution of scattered radiation

and the distances travelled.

For neutron doses:

• scattering, capture, and total cross-sections of interaction with matter;

• accumulation factors.

Particles that are not directly ionizing, such as neutrons and photons, deposit

their energy in matter in several ways:

– neutrons lose kinetic energy by colliding with atoms of matter (elastic or

inelastic scattering),

– these particles create charged particles, for example by pair creation in the case

of photons,

– the charged particles deposit their energy at sites other than the point of origin.

Hence, the notion of Kerma (Kinetic Energy Released in Matter) is employed in

the field of radiation protection. Baur (1985, p. 49), Shultis and Faw (2000, p. 124)

present the case of radiative capture in which the Kerma (which forms part of the

field jargon) is equal to the recoil energy of the atom, which is the only charged

particle formed. The deposited energy is the difference between the incident

neutron energy, which by capture releases the binding energy for one nucleon in

the compound nucleus, and the emitted photon energy, along with the recoil energy

which is obtained completely as heat at the collision point:

Edeposit ¼ Eneutron þ Ebinding � hν� Erecoil ¼ Kerma

In this case, the Kerma and absorbed dose are similar. However, with Compton

scattering, both the Compton electron and the scattered photon leave the considered

volume, and the local dose is zero in the absence of Bremsstrahlung while the

Kerma is equal to the kinetic energy of the Compton electron. Hence, the Kerma is

larger than the absorbed dose in the latter case. In radiation protection codes, the

Kerma is set as a cross section that depends on the material and incident particle

energy, for which the reaction rate is the Kerma energy. Finally, the equivalent dose
is a quantity that takes into account the damage caused by a particle, and allows

comparison of the effects due to particles of different masses and energies. The

equivalent dose is the product of the dose by a weighting (quality) factor Q which

ranges from 1 (X-rays) to 20 (heavy recoiling atoms). It depends on the linear

energy transfer of the particle and a second weighting factor N that allows for the

non-uniform distribution of the dose in space and energy, and is generally taken as

1 for internal sources that are ingested or inhaled (Baur 1985, p. 52).
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Equivalent Dose ¼ Dose: Q : N

The official unit of the equivalent dose is the sievert (symbol Sv), but for a dose

expressed in rad, specialists use the rem, such that:

1 sievert ¼ 100 rems

Dividing the dose (equivalent dose, resp.) by the exposure time gives the dose
rate (equivalent dose rate, resp.). For example, the natural radiation due to natural

radioactivity from Earth and cosmic rays is roughly equal to 100 mrem/year and

industrial activities must not cause irradiation of more than 0.5 rem/year for the

public, while the authorized limit for nuclear personnel is 5 rem/year. Weak doses

continue to be the subject of heated debates, and these covered under the more

general framework of the effects on the body of electromagnetic radiation

(e.g. from mobile phones, etc.) (Bertin 1991).

It is common practice to represent the radiotoxicity for 1 kg of matter and by

decay chain of heavy nuclides (4n, 4n + 1, 4n + 2, 4n + 3). The following figures set

out the results of calculations performed by R. Gillet using the CEA MECCYCO

code (1996, courtesy CEA) (Figs. 15.13, 15.14, 15.15, 15.16 and 15.17).

15.7 Isotopic Depletion Calculation

The Bateman equations can be solved analytically for simple cases, with examples

being given in the following sections.

Fig. 15.13 Radiotoxicity for 1 kg of heavy isotopes of the 4n chain (ICRP68 dose coefficients)
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15.7.1 Chain-Decay Process: Recurrence Relations

(Bessis 1978, p. 46)

An analytical solution may be found in the case of a radioactive decay series

(without isotopic coupling via the flux). Let us consider a decay chain of isotopes Ni

with radioactive decay constant λj and with n isotopes such that

N1!N2! . . . !Nj!Nj+ 1! . . . . !Nn. It may be assumed that the last iso-

tope, Nn, is stable. The decay equations are as follows:

Fig. 15.14 Radiotoxicity for 1 kg of heavy isotopes of the 4n + 1 chain (ICRP68 dose coefficients)

Fig. 15.15 Radiotoxicity for 1 kg of heavy isotopes of the 4n + 2 chain (ICRP68 dose coefficients)

1118 15 Fuel Cycle Physics



dN1

dt
¼ �λ1N1

dNjþ1

dt
¼ λjNj � λjþ1Njþ1 for i ¼ 1, n� 1

dNn

dt
¼ þλnNn

8>>>>><
>>>>>:

Assuming that only the concentration of isotope N1 is non-zero at time 0 and is

equal to N0
1, it can be shown that the calculation of the concentrations as a function

of time, valid as of j ¼ 2, is:

Fig. 15.16 Radiotoxicity for 1 kg of heavy isotopes of the 4n + 3 chain (ICRP68 dose coefficients)

Pu
239
94

Np
239
93

U
239
92

Τ = 2.3 days

Τ = 23 min

Pu
240
94

U
238
92

Τ
= 24100 years

(n,2n)
Pu239 = 0.001 barnσ

f
Pu239 = 116 barnσ

c
Pu239 = 67 barnσ

Fig. 15.17 Decay/capture scheme for 239
94Pu
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Nj ¼
Xj
i¼1

Qj�1

k¼1

λk

Qj
k¼1, k 6¼i

λk � λið Þ
N0

1 e�λi t

0
BBB@

1
CCCA:

The proof is given by recurrence:

For j ¼ 1: N1 ¼ N0
1 e�λ1 t

For j ¼ 2:
dN2

dt
¼ λ1N1 � λ2N2

Thus: N2 ¼ λ1
λ2 � λ1

N0
1 e�λ1 t þ λ1

λ1 � λ2
N0

1 e�λ2 t

which satisfies the recurrence for the first term. Since
dNjþ1

dt
¼ λjNj � λjþ1Njþ1, the

solution is expressed as:

Njþ1 ¼
Xjþ1

i¼1

Ai e�λi t

Therefore:

dNjþ1

dt
¼

d
Xjþ1

i¼1

Ai e�λi t

 !
dt

¼
Xjþ1

i¼1

�λiAi e�λi t
� � ¼ λjNj � λjþ1Njþ1

¼ λj
Xj
i¼1

Yj�1

k¼1

λk

Yj
k¼1, k 6¼i

λk � λið Þ
N0

1 e�λi t

0
BBBBB@

1
CCCCCA� λjþ1

Xjþ1

i¼1

Ai e�λi t

 !

Hence: Njþ1 ¼
Xjþ1

i¼1

Qj
k¼1

λk

Qjþ1

k¼1, k 6¼i

λk � λið Þ
N0

1 e�λi t

0
BBBB@

1
CCCCA

This formula assumes that all the values of λj are different, implying the

following:

– two different isotopes must not have strictly the same constants (fortunately, this

is seldom the case, except for a very few isotopes);

– the decay chain must not loop over itself since the same isotope would be in the

chain twice with different indices, which would lead to the previous case (similar

constants).
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A1 ! . . . ! An ! A1 ! Anþ1 ! . . . is not allowed

This approach can be extended for cases with a neutron flux by grouping capture

terms σ Φ with the decay constants, λ. However, in a true decay chain, which is

arranged such that the kth isotope involves only the k–1 previous isotopes, the

problem of looping is still possible due to α decay reactions. Indeed, by production

of a 4
2He atom, the isotope AA�4

Z�2 is produced, and the chain loops over since this

isotope also occurs earlier in the chain in order of increasing Z and A. Fortunately,
in the case of fission products, such decay reactions are negligible and can be

ignored (in general, virtually no fission products emit α particles). For the decay

chain of heavy nuclides, the α production of 242
96Cm and 244

96Cm can be taken into

account by duplicating the daughter isotopes 238
94Pu

bis and 240
94Pu

bis to avoid looping.

The calculation formula for the concentration Nj of isotope j can be extended by

assuming that all values of N0
j are non-zero at time 0. By noting that the Becquerel

equations (i.e. the Bateman equations without flux) are linear, the same formula can

be applied to the decay chain starting with N2 to calculate the contribution from N0
2

to Nj, denoted as Nj, 2:

Nj, 2 ¼
Xj
i¼2

Qj�1

k¼2

λk

Qj
k¼2, k 6¼i

λk � λið Þ
N0

2 e�λi t

0
BBB@

1
CCCA

And so on for N0
3, . . . N0

n�1. Finally:

Nj ¼
Xp¼j�1

p¼1

Nj,p ¼
Xp¼j�1

p¼1

Xj
i¼2

Qj�1

k¼p

λk

Qj
k¼p, k 6¼i

λk � λið Þ
N0

p e�λi t

0
BBB@

1
CCCA

15.7.2 Case of Heavy Nuclides

The vector form of the Bateman equation for heavy nuclides is expressed as:

d ~N tð Þ
dt

¼ A~N tð Þ

where A is a matrix of dimension order(A).
Several numerical methods can be used to solve this linear differential equation.

In general, the Runge-Kutta method of order 4 is often utilized. However, since
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A depends on time during depletion under flux, we may use the finite difference

method, which, though more onerous in terms of computational time, is very simple

to implement. There is also the matrix exponential method (Varga 1962), which

highlights the matrix properties of the Bateman system. The solution to this vector

differential equation is expressed as:
~N tð Þ ¼ eAt ~N oð Þ where eAt is the exponential of the matrix At.
Using a Taylor expansion, the matrix exponential is defined as:

eAt � I þ Atþ Atð Þ2
2!

þ . . . þ Atð Þn
n!

 !

Thus, eAt can be computed by choosing an intermediate variable θ¼ t/2m, such
that the spectral radius of the matrix Aθ is negligible compared to 1, i.e. kAθk	 1 so

that the Taylor expansion of eAθ at a finite order is warranted. eAt is obtained by

taking the result of eAθ to the power of 2m. The spectral radius of the matrix is

usually difficult to compute directly, but it can be bounded by a maximum quite

easily. Squaring the matrix successively consists in evaluating the products ∑aij ajk,
which is also denoted as aij ajk in Einstein notation. The convergence of this

squaring process is ensured if every element of the product is always smaller than

1 at each step, i.e.:

max Aj jð Þ ¼ max
i

max
j

aij
�� ��� �	 


Thus, it can be guaranteed that:

Ak k 	 max
i, k

aij:ajk
� � 	 max

i, k
aij
�� ��: ajk�� ��� � 	 order Að Þ: max Aj jð Þð Þ2

Therefore, we obtain a (highly conservative!) upper bounding value for the

spectral radius of A, and hence also for that of Aθ.

t

2m
�max

i, k
aij

�� �� ajk
�� �� 	 t

2m
order Að Þ max Aj jð Þ�2 	 1

The situation of activation products is similar to that of heavy nuclides due to

their identical form in the Bateman equation system.

15.7.3 Case of Fission Products

The vector form for the Bateman equation for fission products is written as:
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d ~N tð Þ
dt

¼ A~N tð Þ þ S

with the solution expressed as:

~N tð Þ ¼ eAt|ffl{zffl}
B tð Þ

~N oð Þ þ eAt � I
� �

A�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
C tð Þ

S

Thus:

d~N

dt
¼ AeAt ~N oð Þ þ AeAt A�1 S

A~N tð Þ þ S ¼ AeAt ~N oð Þ þ AeAt A�1 S� AIA�1|fflffl{zfflffl}
I

Sþ S ¼ d~N

dt

8>>><
>>>:

It can be seen that: B(t)¼C(t)A+ I. Since:

C 2tð Þ ¼ eA2t � I
� �

A�1 ¼ eAt � I
� �

eAt þ I
� �

A�1 ¼ eAt þ I
� �

C tð Þ
¼ B tð Þ þ Ið Þ C tð Þ:

By setting θ¼ t/2m, B(θ) can be evaluated using a Taylor expansion of C(θ)
obtained through an initial expansion of B(θ):

B θð Þ ¼ I þ Aθ þ Aθð Þ2
2!

þ . . . þ Aθð Þn
n!

C θð Þ ¼ B θð Þ � I
�� �

A�1 ¼ θ I þ Aθ

2!
þ . . . þ Aθð Þn�1

n!

" #
8>>><
>>>:

B andC can then be determined sequentially to obtain the values of B(2mθ)¼B(t)
and C(2mθ)¼C(t). Thus:

~N tð Þ ¼ ~N 2mθð Þ ¼ B 2mθð Þ � ~N 0ð Þ þ C 2mθð Þ � S

15.7.4 Reference Composition of Some PWR Fuel

Below are the mass compositions of two reference fuels. The first is a uranium oxide

fuel enriched at 3.7% (quarter core fuel management), and the second a mixed oxide

MOX fuel with a plutonium content of 5.3% (equivalent to a UOX 3.25% with a

one-third core fuel management). The mass of metal is given for an assembly. It can

be seen that second-generation plutonium (obtained from eventualMOX recycling) is

fairly degraded (less fissile isotopes compared to the amount of absorbing isotopes

such as plutonium 242). The use of second-generation plutonium is thus not possible
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(in any case not with a depleted uranium support) due to the fact that the increasing

plutonium content is near the safety limits (Tables 15.3, 15.4, 15.5 and 15.6).

15.8 Decay Chain Reduction Principle

In order to optimize computation times, not all available isotopes are used in

industrial fuel cycle analysis. The decay/capture chains are reduced to take into

account the most significant phenomena or the isotopes of interest, whence the

notion of simplified chains. Chain reduction is a complex physical problem that

requires detailed fuel cycle analysis, as it depends on the quantity that we are

seeking to evaluate. For instance, an isotope with a very short period has a high

activity at the beginning of life but at the same time, it disappears very quickly and

does not contribute significantly to the mass balance. Consequently, it is

recommended that every hypothesis used in chain reductions be set out in detail

so as to avoid dangerous mistakes.

Table 15.3 UOX 3.7% fuel: uranium and plutonium content

Uranium enriched at 3.7% (¼ core fuel management)

Loaded

(%)

Burn-up

42,000 MWd/t

(%)

42,000 MWd/t, cooled

for 3 years (%)

42,000 MWd/t, cooled for

3 years, recycled, cooled for

a further 2 years (%)

234
92U 0.034 0.020 0.020 0.020

235
92U 3.7 0.864 0.864 0.864

236
92U 0 0.505 0.505 0.505

238
92U 96.266 98.612 98.612 98.612

U Total 100 100 100 100
238
94Pu 0 2.621 2.722 2.745

239
94Pu 0 53.266 53.187 54.498

240
94Pu 0 22.277 22.288 22.837

241
94Pu 0 14.566 12.588 11.715

241
95Am 0 0.408 2.363 1.184

242
94Pu 0 6.862 6.852 7.021

Pu total – 100 100 0

1124 15 Fuel Cycle Physics



T
a
b
le

1
5
.4

U
O
X
3
.7
%

fu
el
:
u
ra
n
iu
m

an
d
p
lu
to
n
iu
m

co
n
te
n
t

U
ra
n
iu
m

en
ri
ch
ed

at
3
.7
%

(¼
co
re

fu
el

m
an
ag
em

en
t)
:
h
ea
v
y
n
u
cl
id
es

co
n
te
n
t

L
o
ad
ed

(%
)

L
o
ad
ed

(K
g
)

4
2
,0
0
0
M
W
d
/

t
(%

)

4
2
,0
0
0
M
W
d
/

t
(k
g
)

4
2
,0
0
0
M
W
d
/

t,
co
o
le
d
fo
r

3
y
ea
rs

(%
)

4
2
,0
0
0
M
W
d
/

t,
co
o
le
d
fo
r

3
y
ea
rs

(k
g
)

4
2
,0
0
0
M
W
d
/t
,
co
o
le
d

fo
r
3
y
ea
rs
,
re
cy
cl
ed
,

co
o
le
d
fo
r
a
fu
rt
h
er

2
y
ea
rs

(%
)

4
2
,0
0
0
M
W
d
/t
,

co
o
le
d
fo
r
3
y
ea
rs
,

re
cy
cl
ed
,
co
o
le
d
fo
r
a

fu
rt
h
er

2
y
ea
rs

(k
g)

2
3
4
9
2
U

0
.0
3
4

0
.1
3
8

0
.0
2
0

0
.0
8
8

0
.0
2
0

0
.0
8
8

0
.0
2
0

0
.0
8
8

2
3
5
9
2
U

3
.7

1
4
.9
8
6

0
.8
5
2

3
.7
6
2

0
.8
5
3

3
.7
6
2

0
.8
5
4

3
.7
6
2

2
3
6
9
2
U

0
0

0
.4
9
8

2
.1
9
8

0
.4
9
8

2
.1
9
8

0
.4
9
9

2
.1
9
8

2
3
8
9
2
U

9
6
.2
6
6

4
4
6
.1
3
2

9
7
.3
3
8

4
2
9
.5
6
8

9
7
.3
3
9

4
2
9
.5
6
8

9
6
.4
6
1

4
2
9
.5
6
8

2
3
7
9
3
N
p

0
0

0
.0
7
5

0
.3
3
2

0
.0
7
5

0
.3
3
2

re
cy
cl
ed

0

2
3
8
9
4
P
u

0
0

0
.0
3
1

0
.1
3
8

0
.0
3
3

0
.1
4
3

0
.0
3
2

0

2
3
9
9
4
P
u

0
0

0
.6
3
5

2
.8
0
3

0
.6
3
3

2
.8
0
3

0
.6
3
6

0

2
4
0
9
4
P
u

0
0

0
.2
6
6

1
.1
7
2

0
.2
6
6

1
.1
7
5

0
.2
6
7

0

2
4
1
9
4
P
u

0
0

0
.1
7
4

0
.7
6
7

0
.1
5
0

0
.6
6
4

0
.1
3
7

0

2
4
1
9
5
A
m

0
0

0
.0
0
5

0
.0
2
1

0
.0
2
8

0
.1
2
5

0
.0
1
4

0

2
4
2
9
4
P
u

0
0

0
.0
8
2

0
.3
6
1

0
.0
8
2

0
.3
6
1

0
.0
0
2

0

2
4
2
m

9
5

A
m

0
0

0
0

0
0

re
cy
cl
ed

0

2
4
2
9
6
C
m

0
0

0
.0
0
2

0
.0
0
9

0
0

re
cy
cl
ed

0

2
4
3
9
5
A
m

0
0

0
.0
1
7

0
.0
7
4

0
.0
1
7

0
.0
7
4
3

re
cy
cl
ed

0

2
4
4
9
6
C
m

0
0

0
.0
0
5

0
.0
2
1

0
.0
0
4

0
.0
1
9

re
cy
cl
ed

0

P
u

to
ta
l
+
A
m
2
4
1

0
0

1
.1
9
2

5
.2
6
2

1
.1
9
4

5
.2
7
0

1
.1
6
7

5
.1
4
3

P
u
to
ta
l

0
0

1
.1
8
8

5
.2
4
2

1
.1
6
6

5
.1
4
6

1
.1
5
3

5
.0
8
2

U
to
ta
l

1
0
0

4
6
1
.2
5
6

9
8
.7
0
9

4
3
5
.6
1
6

9
8
.7
0
9

4
3
5
.6
1
6

9
8
.8
3
3

4
3
5
.6
1
6

O
th
e
rs

0
0

0
.1
0
4

0
.4
5
8

0
.1
2
5

0
.5
5
0

0
.0
1
4

0
.0
6
1

T
O
T
A
L

1
0
0

4
6
1
.2
5
6

1
0
0

4
4
1
.3
1
5

1
0
0

4
4
1
.3
1
1

1
0
0

4
4
0
.7
5
9

15.8 Decay Chain Reduction Principle 1125



15.8.1 Heavy Nuclide Chain for Reactivity Calculations
of Reactors

In this case, the quantity of interest is mainly the reactivity of the fuel (its ability to

produce energy). Thus the nuclear reactions of the main isotopes undergoing fission

must be described with sufficient precision to enable satisfactory estimation of the

mass balance of heavy absorbing nuclides. Figure 15.18 shows a decay/capture

chain corresponding to the recommended library SERMA79 which was historically

used by CEA and EDF until the end of the 1990s. A recommended library is a

qualified set of nuclear data associated with a simplified chain. The SERMA79
decay chain was developed to provide a reactivity balance as close as possible to the

full chain; the isotopes in the library accounted for 99% of total absorption.

However, the mass balance is not very precise since many isotopes are missing

from the library. The products of the α decays of the curium isotopes were fixed to

“duplicated” plutonium isotopes to avoid looping of chains, which was not

supported by the APOLLO1 code. This historical chain contained 15 heavy iso-

topes, starting from 234
92U and ending with 244

96Cm. It did not contain any thorium

isotope or 23392U , and a separate chain is thus required for reactors with this particular

fuel.

Table 15.5 MOX 5.3% fuel: uranium and plutonium content

MOX at 5.30% (1/3 core fuel management)

Loaded

(%)

35,000 MWd/t

(%)

35,000 MWd/t,

cooled 3 years (%)

35,000 MWd/t,

cooled 3 years, recycled,

cooled further 2 years (%)

234
92U 0 0 0 0

235
92U 0.225 0.117 0.117 0.117

236
92U 0 0.024 0.024 0.024

238
92U 99.775 99.860 99.860 99.860

U

Total

100 100 100 100

238
94Pu 1.829 2.714 3.028 3.095

239
94Pu 57.933 40.695 40.506 42.057

240
94Pu 22.501 27.330 27.341 28.388

241
94Pu 11.061 17.87 15.601 14.525

241
95Am 1.080 1.255 3.641 1.468

242
94Pu 5.596 10.130 10.083 10.469

Pu

total

100 100 100 0
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15.8.1.1 Numerical Example: Plutonium Production in a Uranium Fuel
Assembly

Let us consider a 900 MWe reactor with a specific power of 38.3 MW/t containing

157 fuel assemblies with 461.4 kg(metal) of uranium oxide enriched at 3.25%. The

aim is to determine the amount of 239
94Pu produced after a relatively short time

period, e.g. 10 EFPD. The production scheme for 239
94Pu is as follows:

The associated Bateman equation for this chain is given by:

d 239
94Pu
� �
dt

¼ λ239
93
Np

239
93Np
� �� λ239

94
Pu

239
94Pu
� �� σ

abs
239
94Pu

239
94Pu
� �

:Φ

� σ
n; 2nð Þ
239
94Pu

239
94Pu
� �

:Φþ σ
n; γð Þ

238
94Pu

238
94Pu
� �

:Φ

Using the data from Tables 15.7 and 15.8 and considering that

σ n;2nð Þ 239
94Pu

¼ 0:001 barn, the amount of 239
94Pu produced by capture reactions of

238
92U can be evaluated under the following assumptions:

• λ239
94Pu

239
94Pu
� �

is negligible due to the very long period of 239
94Pu.

Am242m
95

U238

92U236

92U235

92

Np237

93

Am241

95

Cm242

96

Pu242

94Pu241

94Pu240

94Pu238

94 Pu239

94

Cm244
96

Am243
95

U234

92

Fig. 15.18 Decay chain for heavy nuclides from the SERMA79 recommendation
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• σ
n; 2nð Þ
239
94Pu

239
94Pu
� �

Φ is negligible since the (n, 2n) cross section of 239
94Pu is very

small. The same applies for σ
n; γð Þ

238
94Pu

238
94Pu
� �

Φ.

Since 239
92U and 239

93Np have very short periods, the production rate of 239
94Pu can

be considered the capture rate of 238
92U by chain simplification.

λ239
93
Np

239
93Np
� � ¼ σ

n; γð Þ
238
92U

238
92U
� �

Φ

Therefore:
d 239

94Pu
� �
dt

¼ σ
n; γð Þ
238
92U

238
92U
� �

Φ� σ
abs

239
94Pu

239
94Pu
� �

Φ

As the fuel assembly contains a large amount of 238
92U (461.4� 0.0325¼

14.9955 kg of 23592U and 461.4� 0.9675¼ 446.4045 kg of 23892U), it may be assumed

that its concentration varies only slightly over 10 days. The flux is also assumed to

be constant and can be evaluated by considering that it is caused only by thermal

fission of 235
92U and fast fission of 238

92U:

Φ ¼ POWER relased by a tonne

FISSION induced in the same tonne
¼ P

k
P

i2fissiles
Niσf i

A mean fission energy value of 200 MeV/fission is chosen, which also includes

the energy of approximately ν� 1 captured neutrons. The calculation is applied for

1 ton of heavy metal (on the basis of 461.4 kg per assembly, the power released is

not 38.3 MW but rather 38.3� 0.4614¼ 17.67 MW). Since the number of fissile

atoms also includes the 0.4614 coefficient, it simplifies out.

Table 15.7 Main cross

sections for uranium and

plutonium isotopes

235
92U

238
92U

238
94Pu

239
94Pu

σf [barn] 45.11 0.101 2.48 116

σa [barn] 54.84 0.984 35.29 183

Table 15.8 Main periods for uranium and plutonium isotopes

238
92U

239
92U

239
93Np 238

94Pu
239
94Pu

T (half-life) 4.468�109 years 23 min 2.3 days 88 years 24,110 years
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Φ¼ 38:3 106 Watt

200MeV�106
eV

MeV
�1:6 10�19Joule

eV
NU235�45:11 10�24 cm2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

σf U235

þNU238�0:101 10�24 cm2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
σf U238

2
64

3
75

NU235¼ 32:5 kg

235 10�3 kg:mol�1
� 6:022 1023 ¼ 8:329681 1025 atoms of U235 per tonne

NU238¼ 967:5 kg

238 10�3 kg:mol�1
:� 6:022 1023 ¼ 2:448425 1027 atoms of U238 per tonne

8>>><
>>>:
Thus: Φ¼ 2. 988594 1014 neutron . cm�2 . s�1� 3.0 1014 neutron . cm�2 . s�1

It can be seen that the number of fissions of 235
92U is more than tenfold that of

238
92U , although 238

92U has a much higher concentration:

U238 fission

U235 fission
¼ 247:29 fission

3757:52 fission
� 6:6%

Most fission reactions occur from 235
92U although there is 30 times less 235

92U than
238
92U . It should be pointed out that 238

92U is fissile only in the fast energy spectrum,

thereby explaining its low cross section for one energy group. The simplified 239
94Pu

equation is written as:

d 239
94Pu
� �
dt

¼ σ
n; γð Þ
238
92U

238
92U
� �

Φ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
� CONSTANT

�σ
abs

239
94Pu

239
94Pu
� �

Φ

The resulting equation is a first-order differential equation that can be integrated

as the sum of a general solution to a homogeneous differential equation and a

particular solution of the inhomogeneous equation. A trivial particular solution to

the inhomogeneous equation is:

239
94Pu
� � ¼ σ

n; γð Þ
238
92U

σ
abs

239
94Pu

238
92U
� �

The general solution to the homogeneous equation is given by: 239
94Pu
� � ¼

Ae� σ
abs

239
94Pu

Φt with an initial value of: 239
94Pu
� �

0ð Þ ¼ 0. Thus, the solution to

the differential equation is:
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239
94Pu
� �

tð Þ ¼
σ

n; γð Þ
238
92U

σ
abs

239
94Pu

238
92U
� �

0
1� e

�σ
abs

239
94Pu

Φt

 !

Thus, the production of 239
94Pu is 0.111 kg per fuel assembly after 10 EFPD. If

the calculation for 239
94Pu is carried out for longer time periods, the isotopic change

must be allowed as well as the production/use-up terms (Fig. 15.19).

15.8.1.2 Decay Chain for Heavy Nuclides and Fission Products from

the SERMA79 Recommendation

This recommendation (Fig. 15.18), established by the CEA/SERMA at the end of the

1970s, includes a chain of 77 important fission products for neutron capture

(Figs. 15.20, 15.21, and 15.22). The relevant choice of fission products allows for

95% of the total absorption as computed for 699 fission products. It can be noted

that by taking twice the number of isotopes (chain with 154 fission products called

incineration chain), 99.9% of the total absorption is obtained (Fig. 15.23).

Am241

95

Cm242

96

Pu242

94Pu241

94Pu240

94Pu238

94 Pu239

94

Amm242

95

95

242 Am

β -
83 %

T.I. T = 141 years

T = 16 hours

c.e. 17 %β -

T = 14.4 years

(n, γ)

85 %

(n, γ)
15 %

α
T = 163 days

Fig. 15.19 Capture of 241
95Am
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Fig. 15.20 Decay chain with 77 fission products from zirconium to indium
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Fig. 15.21 Decay chain with 77 fission products from cerium to gadolinium
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15.8.1.3 Decay Chain of Heavy Nuclides from the REL2005
Recommendation

This recommendation REL2005 (Fig. 15.23) was created at the beginning of the

2000s with nuclear data stemming from JEFF3 for use by the APOLLO2 code. It is

used at EDF for the new calculation chain ANDROMEDE.

The capture of 241
95Am is complex since it produces 15% of 242m

95 Am and 85% of
242
95Am.

242m
95 Am is itself radioactive and emits γ particles (by isomeric transition),

decaying thus into 242
95Am.

Erreur ! Référence non valide pour un signet.

Cs
133

55 Cs
134

55 Cs
135

55 Cs
136

55 Cs
137

55

Xe
133

54Xe
132

54Xe
131

54 Xe
135

54 Xe
136

54

 I
131

53  I
132

53 I
129

53

Te
129m

52Te
127m

52

 I
127

53  I
135

53

La
139

57

Fig. 15.22 Decay chain with 77 fission products from tellurium to lanthanum

Fig. 15.23 REL2005 decay chain for heavy nuclides. Since all heavy nuclides being fissile,

fission arrows are not shown
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15.8.2 Decay Chain Reduction

Chain reduction should always be carried out for a given fuel cycle application. Let

us consider the heavy nuclides that disintegrate by α decay as follows:

The decay chain is reduced as shown by Fig. 15.24 by eliminating the interme-

diate α emitter, which has a very short period and would require a longer calculation

time. This logic is applicable when only the mass balance is required (since the

intermediate emitter will be present for a very short time period). However, it

cannot be applied for activity: if the isotope disappears quickly, it has a very short

period and thus a high decay constant λ. The activity being the product of λ (high)
and the concentration N (low), it is possible that this emitter has a significant

activity. The concentration of the isotope is no longer available by chain reduction

and its activity cannot be evaluated. Using the same logic as the mass balance, a

decay chain of fission products can be simplified using the cumulated yield of an

isotope set at the head of the chain (Fig. 15.25).

However, in the case of decay with branching, reduction should be carried out

carefully for the independent yields that are carried forward. The successive

reduction of the 79
34Se chain is very informative in this regard.

15.8.2.1 79
34Se Chain Reduction

The complete model (from JEF2) for the decay/capture scheme of 79
34Se is given

Fig. 15.26:

A first reduction is carried out on the exact model using a “long-period” logic:
79m
34 Se is eliminated (Fig. 15.27):

In the final reduction, 8035Br is eliminated (Fig. 15.28):

T = 3 s

α

α + α
T = 10

8
years

α
T = 10

8
years

Fig. 15.24 Chain reduction for fission products of same mass number (isobars)
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Fig. 15.25 Chain reduction for mass balance
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Fig. 15.27 Reduced chain of 79
34Se (1st step)
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Fig. 15.28 Reduced chain of 79
34Se (2nd step)
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15.9 Activation: The Example of Control Rods

In industrial reactors such as water reactors, core reactivity is controlled using

control rods manufactured from absorbing materials such as a mixture of silver-

indium-cadmium (80%, 15%, 5% by mass) or boron carbide (B4C). These rods can
be inserted in the core (during automatic shut-down or in some operating modes),

and are thus irradiated by the neutron flux over several cycles (unlike fuel assem-

blies, which remain in the core for 3 to 4 cycles, control rods have a longer lifetime

of up to 10–15 cycles). The control rods are replaced in the event of mechanical

problems (wear-out) or abnormal swelling at the end of the rod (which is subjected

to a flux even when the rods are extracted since the lower end is just above the

active core) caused by the formation of tin (Sn) due to the activation of indium. The

activation chain of a silver-indium-cadmium rod is very complex but it can be

reduced under physical considerations by using a “long-period” logic and by taking

into account the product of the cross sections and the neutron flux (the cross section

is taken at 2200 m/s if no other one-group value is available for the considered

spectrum) and comparing it to the decay constant, λ. For a given isotope, the cross

section and flux product against λ comparison is generally ruled out with respect to

each other for a 100-fold ratio. When the cross section is very small, the decay

chains can be uncoupled, thereby making physical analysis simpler. In this case, it

is seen that the main production of tin ( 11650Sn ) arises from the use-up of 115
59In

(Fig. 15.29).

Fig. 15.29 Simplified silver-indium-cadmium chain
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15.10 Xenon Physics

15.10.1 Production of Xenon

Xenon is a noble gas with a radioactive isotope 135
54Xe that is produced directly by

fission and also mainly by β� decay of the isotope 135
53I . The latter is also a fission

product produced in much larger quantities (to be more precise, 135
53I is the decay

product of 135
52Te, which decays by emitting β� with a 1-min half-life, and is thus

neglected in the chain using the cumulated yield of iodine).

The major drawback of 13554Xe is that it is highly absorbing under thermal flux. It

has a very wide resonance:

(σ(n, γ)2200 m/s¼ 2 653 040 barns, I(n, γ)¼ 7 664 barns)9 at low energy

(0.07 eV). Furthermore, it is still produced by the radioactivity of the father isotope,
135
53I (half-life of 6.61 h, λI¼ 2.913 10�5s�1) even after reactor shutdown, and has a

large enough reactivity effect to choke the reactor (Fig. 15.30).

This production is compensated after some time by the β� decay of 135
54Xe (half-

life 9.01 h, λXe¼ 2.116 10�5s�1) and has a peak shape, called the xenon pit. This
peak may be large enough to prevent the reactor from diverging again immediately

after it stops (Kerkar and Paulin 2008, p. 242), without diluting the moderator or

removing the absorbing rods which generates more liquid effluents. The fission

yields of 13553I and
135
54Xe depend on the spectrum and the isotopic fuel composition as

shown in the following Table, but an approximate value of 6% may be used for 13553I
and 0.3% 135

54Xe in a PWR of usual enrichment (around 4% in 235
92U). The yields for

the major fissile isotopes are given in Table 15.9 for two energy groups for more

detailed calculations. There exists only the fast-group yield for isotopes that are not

fissile in the thermal domains such as 238
92U .

It can be seen that the yields of iodine 135 are almost constant for any fissile

isotope whereas that of xenon 135 is very variable. This implies that the equilibrium

concentration of xenon is doubled in a MOX fuel compared to UOX.10

β-
(6.61 hours)

I135

53

eX135

54

β-
(9.09 hours)

Cs135

55

%6≈cγ

%3.0≈iγ

eX136

54

Fig. 15.30 Xenon

135 production chain

9From JEF 2.2. It is the most absorbing fission product in thermal spectrum (but not in fast

spectrum where it is superseded by samarium 151).
10Gilles Mathonnière: Etudes de problèmes neutroniques liés �a la présence de xénon dans les ré
acteurs �a eau pressurisée [Neutron studies on the presence of xenon in pressurized water reactors],
PhD thesis at the University of Orsay (1988).

1138 15 Fuel Cycle Physics



T
a
b
le

1
5
.9

C
u
m
u
la
te
d
fa
st
an
d
th
er
m
al

y
ie
ld
s
fo
r
1
3
5

5
3
I
an
d
th
e
in
d
ep
en
d
en
t
y
ie
ld
s
o
f
1
3
5

5
4
X
e
in

%
fo
r
th
e
m
ai
n
fi
ss
il
e
is
o
to
p
es

2
3
2

9
0
T
h

2
3
3

9
2
U

2
3
5

9
2
U

2
3
8

9
2
U

2
4
0

9
4
P
u

2
4
1

9
4
P
u

2
4
2
9
4
P
u

2
3
9
9
4
P
u

2
4
2
m

9
5

A
m

2
4
1

9
5
A
m

γ i
1
3
5

5
3
If
as
t
>
4
0
0
ke
V

th
er
m
al
<
4
0
0
ke
V

5
.4
3
2
8

4
.8
7
2
3

5
.9
1
7
0

6
.5
5
1
7

7
.0
3
1
4

7
.1
0
3
8

6
.8
3
5
8

6
.5
6
0
3

6
.4
3
1
4

5
.6
6
3
4

–
4
.4
0
6
5

6
.3
1
5
8

–
–

7
.0
6
9
8

–
6
.1
9
4
9

6
.6
6
9
8

7
.0
5
6
2

γ c
1
3
5
5
4
X
ef
as
t
>
4
0
0
ke
V

th
er
m
al
<
4
0
0
ke
V

0
.0
2
7
3

1
.4
5
3
7

0
.4
5
1
0

0
.0
1
6
7

0
.5
3
6
7

0
.2
0
7
4

0
.0
8
7
3

0
.9
6
5
1

0
.7
8
1
3

1
.4
3
6
5

–
1
.4
7
0
5

0
.2
6
3
9

–
–

0
.2
0
7
6

–
1
.0
3
4
7

0
.7
5
6
0

1
.5
7
6
4

15.10 Xenon Physics 1139



15.10.2 Xenon Saturation

The depletion equations for one-energy group for 135
54Xe are expressed as (Reuss

2003, p. 248; Stacey 2001, p. 213):

Bateman equations forxenon:

d 135
53I
� �
dt

¼ γIΣfΦ� λI
135
53I
� �

d 135
54Xe
� �
dt

¼ γXeΣfΦþ λI
135
53I
� �� λXe

135
54Xe
� �� σXeΦ

135
54Xe
� �

8>>><
>>>:
The capture reaction of 135

53I is neglected due to its weak capture cross section.

(σ(n, γ)2200m/s¼ 0.02 barns, I(n, γ)¼ 0.012 barns).11 The concentration of 135
53I is

given by:

135
53I
� �

tð Þ ¼ 135
53I
� �

0ð Þe�λI t þ γIΣfΦ

λI
1� e�λI t
� �

The xenon concentration is calculated by writing the following:

135
54Xe
� �

tð Þ ¼ α e�λI t þ β e�λXet þ δ

The initial value condition implies that 135
54Xe
� �

0ð Þ ¼ α þ β þ δ. Introducing
the xenon concentration in the second differential equation leads to the evaluation

of α, β and δ:

�λIα e�λI t � λXeβ e�λXet ¼ γXeΣfΦþ λI
135
53I
� �

0ð Þ e�λI t þ γIΣfΦ

λI
1� e�λI t
� �	 


� λXe þ σXeΦð Þ α e�λI t þ β e�λXet þ δ
� �

Hence:

δ ¼ γXe þ γIð ÞΣfΦ

λXe þ σXeΦð Þ α ¼ λI
135
53I
� �

0ð Þ � γIΣfΦ

λXe þ σXeΦ� λIð Þ

β ¼ 135
54Xe
� �

0ð Þ � λI
135
53I
� �

0ð Þ � γIΣfΦ

λXe þ σXeΦ� λIð Þ � γXe þ γIð ÞΣfΦ

λXe þ σXeΦð Þ

8>>><
>>>:

These equations are notably simplified when considering fresh fuel, without any

fission products:

11from JEF 2.2
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135
53I
� �

tð Þ ¼ γIΣfΦ

λI
1� e�λI t
� �

135
54Xe
� �

tð Þ ¼ γIΣfΦ

λXe þ σXeΦ� λIð Þ e�λXet � e�λI t
� �þ γXe þ γIð ÞΣfΦ

λXe þ σXeΦð Þ 1� e�λXet
� �

In the case of a UOX fuel enriched at 3.7% 235
92U , the integrated flux is

approximately equal to 3 1014 n/cm2/s, the macroscopic fission cross section

around 0.037 cm�1 and the capture cross section for 135
54Xe about 180,000 barns.

Several reference works neglect the term λXe (2.116 10�5s�1) compared to σXeΦ
(5.4 10�5 s�1), and it can thus be inferred that the concentration reaches saturation

point when time tends towards infinity (the asymptotic concentration being the

saturated xenon):

135
54Xe
� �equilibrium ¼ γXe þ γIð ÞΣfΦ

λXe þ σXeΦð Þ � γXe þ γIð ÞΣfΦ

σXeΦð Þ ¼ γXe þ γIð ÞΣf

σXe

This asymptotic concentration is independent of the flux, and thus of the power

level. This simple result for a one-energy group must be clearly understood as it is

valid only under the assumption that λXe� σXeΦ, which is not really the case for

PWR (cf. the above values in our example). Furthermore, if more precise results are

required, the number of energy groups may be increased (for instance, two groups),

which leads to the following equation:

135
54Xe
� �equilibrium ¼ γXe1 þ γI1

� �
Σf 1Φ1 þ γXe2 þ γI2

� �
Σf 2Φ2

λXe þ σXe1Φ1 þ σXe2Φ2ð Þ

thus, simplification by the flux is not possible. However, it is correct to assert that as

the flux increases, the approximation is verified. It should be noted that the

equilibrium iodine concentration, i.e. γIΣfΦ/λI, varies linearly with the flux level

while the equilibrium xenon concentration does not depend on the flux level as a

first-order approximation, and converges towards a target concentration as shown in

Fig. 15.31, whence the notion of xenon saturation. A limit to this notion of saturated

xenon stems from the fact that the flux changes slowly in the assemblies during the

irradiation cycle (fissile nuclides are used up and capturing fission products are

formed). Numerically, 30 h are required to reach xenon saturation up to 1%, i.e. a
burn-up of 50 MWd/t for a 900 MWe PWR.

It may be seen from Fig. 15.31 that under the constant flux hypothesis, the

amount of iodine 135 produced is directly correlated to the flux level. In the case of
135
54Xe, this effect is weaker but still observable. This phenomenon shows that the

level of saturated xenon depends on the flux and that the widespread approximation

of its flux independence may lead to errors of up to 40%. Figure 15.32 illustrates

this fact with the ratio 135
54Xe
� �

0:5Φ nominal
= 135

54Xe
� �

Φ nominal
, and the choice of the

coefficients at 0.5 and 1.5 is representative of the flux variations observed in a

PWR. These ratios do not tend towards 1 as expected if the formula
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[135Xe]saturated¼ (γXe+ γI)Σf /σXe is totally valid, thereby proving the impact of the

flux on the saturation of xenon 135.

15.10.3 Xenon Poisoning After Reactor Shutdown

(Rozon 1992, p. 362)

In the case of an instantaneous reactor shutdown at time T, 135
54Xe (respectively

135
53I ) has an initial concentration of 135

54Xe
� �

Tð Þ (respectively 135
53I
� �

Tð Þ) and the

amount of xenon and iodine is given by:

Fig. 15.31 Xenon 135 saturation by flux level (�0.5/�1/�1.5)

Fig. 15.32 Xenon 135 saturation with flux level (�0.5/�1.5) normalized to saturated xenon at

nominal flux
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135
53I
� �

tð Þ¼ 135
53I
� �

Tð Þ e�λI t�Tð Þ

135
54Xe
� �

tð Þ¼ 135
54Xe
� �

Tð Þ� λI
λXe�λI

135
53I
� �

Tð Þ
	 


e�λXe t�Tð Þþ λI
λXe�λI

135
53I
� �

Tð Þ e�λI t�Tð Þ

8><
>:
The numerical calculation shows that 22 h are required for xenon to reach its

equilibrium value before the reactor shuts down. The transient 135
54Xe is more

sensitive to the initial value of 135
53I ( 135

53I
� �

Tð Þ) than that of 135
54Xe ( 135

54Xe
� �

Tð Þ)
due to the fact that there is twice as much 135

53I as
135
54Xe. The anti-reactivity of

135
54Xe,

approximately 2700 pcm at equilibrium, reaches more than 4700 pcm at the xenon

peak and hinders the divergence of the reactor if the worth of the neutron absorbers

is not modified. This effect can be alleviated by reducing the power slowly and

gradually, the main effect of which is to decrease the 135
53I concentration, which

reduces the xenon peak after shutdown (Fig. 15.33).

The instantaneous nature of the reactor shutdown is a strong hypothesis which

must be moderated due to the existence of delayed neutrons that induce fission

reactions (thereby increasing xenon and iodine production momentarily), and

furthermore, the assemblies in the core are not all subject to the nominal flux.

Indeed, the peak level and the time at which it occurs depend on the iodine level

reached before shutdown. This is also valid if the reactor power is decreased before

shutdown. Figure 15.34 illustrates the effect of the power level before shutdown on

the occurrence of the xenon peak, which varies by up to 
2 h with respect to the

shutdown calculation after irradiation under nominal flux.

The “reactor shutdown” situation also occurs during the load-following

sequence where the reactor power varies with steps and can cause time oscillations

of the 135
54Xe concentration.
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Fig. 15.33 Iodine 135 and xenon 135 transients following instantaneous reactor shutdown after

200 operating hours at nominal power
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15.11 Samarium Physics

149
62Sm is a stable samarium isotope that is produced in very small quantities by

fission and mostly by the decay of 149
61Pm with a 53-h half-life (Fig. 15.35 provides

the order of magnitude of the fission yields and the two-group capture cross-

sections). This isotope is the sixth most absorbing fission product after 135
54Xe

(Reuss 2003, p. 246) and causes an anti-reactivity effect of about 700 pcm at its

saturated concentration in a burnt fuel.

It should be carefully noted that promethium 148 cross sections have varied

significantly over the years. The thermal cross section of this isotope decreased

tenfold between the SERMA79 evaluation (cf. the previous edition of this work)

and the JEFF3 evaluation. Detailed analysis has shown that this isotope varies

significantly between each evaluation, proving that it is not well-known despite its

importance in the samarium 149 chain. Using the cross-section values, it can be

seen that 99.6% of samarium 149 production emanates from the decay of prome-

thium 149, and the rest from the capture of samarium 148.12 When the reactor is

shut down, 14961Pm, with a concentration almost half of that of samarium, decays to
149
62Sm that does not disappear under flux (Fig. 15.36) (Reuss 2003, p. 252; Stacey

2001, p. 210), and hinders the restart of the reactor just like xenon, though to a lesser

extent due to its lower absorption.

However, unlike 135
54Xe which is radioactive, the stable samarium produced

during the shutdown period does not disappear. From operating experience from

the nuclear reactor fleet, it is shown that the critical boron concentration is

overestimated by 30 ppm if this effect is neglected.

Unlike 135
54Xe,

149
62Sm is never completely saturated in the fuel and its concentra-

tion increases significantly during burn-up due to the variation of cross sections by
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Fig. 15.34 Power level effect on the xenon peak before shutdown

12David Couyras: personal communication
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spectral effects, and is weakly dependent on the flux. However, the concentration of
149
61Pm is almost proportional to the flux and is greatly impacted by a stretch-out.

15.12 Gadolinium Physics

Gadolinium is a particularly efficient neutron absorber, similar to several rare earths

(hafnium and erbium, which are also used in the nuclear industry). It was discov-

ered in 1886 as gadolinium oxide by Mérignac and Lecoq de Boisbaudian. It is a

metal with a relative (to water) density of 7.868 that is mixed homogeneously

(although not perfectly) with the fuel in its oxide form, Gd2O3.
13 However, natural
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Fig. 15.36 Evolution of samarium concentration after reactor shutdown

13Patrick Chaucheprat: Qualification du calcul des poisons consommables au gadolinium dans les
réacteurs �a eau [Experimental validation of the calculation of burnable poisons in water reactors],

PhD thesis, University of Orsay (1988).
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gadolinium contains several isotopes including those of odd mass numbers (15564Gd
and 157

64Gd) that are highly absorbing.14 Increasing the natural cycle length is carried
out by increasing the initial enrichment of assemblies. For safety reasons (boron

crystallization, negative moderator temperature feedback coefficient), the critical

boron concentration in water, allowing the core to become critical at start-up,

cannot be increased too much, nor can the assembly be enriched (peaking factor).

One solution to this problem consists in poisoning certain assemblies with gado-

linium, which is a burnable absorber given that the odd isotopes disappear during

the cycle, and thus the core reactivity increases (gadolinium oxide content of 10%,

mixed with uranium oxide). The major advantage of gadolinium is that it is used up

progressively, thus allowing a reactivity increase of around 20,000 MWd/t for the

infinite lattice case. Further, it meets several technological requirements: good

mechanical behavior, chemical stability, good thermal conductivity, easily

recycled, no significant reduction of power density, readily available and easily

managed (Fig. 15.37).

A suitable calculation scheme should allow for the effect of gadolinium on

assembly reactivity.15

15.13 The Industrial Fuel Cycle in France

(Jurain 1964)

The fuel cycle corresponds to the life cycle of nuclear matter that will be

discussed later to define the terms employed. It may be said that the nuclear fuel

is “born” at the mine and “dies” diluted in acid during recycling at the plant in The

Hague (AREVA NC). Some of its most “noble” components such as uranium and

plutonium may be used again to manufacture a new fuel: thus, there is a closed fuel
cycle (Fig. 15.38):

Gd152

64 Gd154

64
Gd155

64 Gd156

64 Gd157

64
Gd158

64 Gd160

64

0.2% 2.15% 14.73% 20.47% 15.88% 24.87% 21.90%

3000 b 215 b 1550 b 85 b 730 b 61 b 7 b

Fig. 15.37 Gadolinium capture chain with the natural isotopic abundance and the resonance

integral

14Mohamed Nasr: Etude des poisons consommables et qualification du gadolinium dans les ré
acteurs �a eau [Study of burnable poisons and experimental validation of gadolinium in water

reactors], PhD thesis, University of Orsay (1979).
15Pavel Klenov: Validation expérimentale des schémas de calcul relatifs aux absorbants et
poisons consommables dans les REP [Experimental validation of calculation schemes for con-

sumable poisons and absorbants in PWRs], PhD thesis, Université d’Aix-Marseille (1995).
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The French fuel cycle has a specific feature, shared by the Belgian cycle,

whereby plutonium can be significantly recycled through the manufacture of

MOX assemblies (for Mixed Oxide) with both UO2 and PuO2. Initially, the goal

of recycling was to provide pure and high-grade plutonium (almost pure 239
94Pu) for

the manufacture of the first French atomic bombs, since bombs with pure 235
92U

required costly technological investment with no guarantee of success during the

post-war period in France [gas diffusion technology is complex and required high

investment; for more information, see (Goldschmidt 1987)]. At the end of the

1970s, it was decided to recycle plutonium in a fleet of fast neutron reactors, such

as SUPERPHENIX, which are breeder reactors in plutonium with the use of “fertile

blankets” (rows of assemblies with pure 238
92U). The oil crisis was at its height, and

plutonium was seen as an energy raw material that could be immediately employed.

Today, the context is different, and observations no longer as clear-cut, with

plutonium stocks being considered at times as an inconvenient nuclear waste. It is

used partially in French PWR today (unlike the US strategy for example) but

second-generation plutonium (from the possible recycling of MOX) is poor in 239
94P

u and not very suitable for recycling since the plutonium content must be increased

above the limits set by the safety studies at present (about 12% of plutonium in an

assembly). Thus, a mixing technique with materials having higher plutonium

contents is required. Indeed plutonium recycling is not very intensively performed,

since only 900 MWe reactors are allowed to load such assemblies at present,

resulting in only a very slight reduction in the plutonium stock. Debates often

Fig. 15.38 Schematic representation of the French fuel cycle (http://www.french-nuclear-safety.

fr/ASN/About-ASN/Activities-monitored-by-ASN/Waste-decommissioned-facilities)
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arise between pro- and anti-recycling supporters, and at timesMOX fuel processing

itself is criticized. Solutions involving storage of entire assemblies at the end of life

(dry storage) have even been considered, but the subject of nuclear waste continues

to be a societal issue in itself.

Natural uranium is obtained from the uppermost 10 km of the Earth crust, but

small quantities are also present in sea water (about 3 mg/ton of water), thereby

making the oceans a huge uranium reservoir if an economically viable means of

extraction can be found. On land, uranium is obtained from Canada, the United

States, South Africa, Australia, Nigeria and Gabon. France does not have a signif-

icant uranium reserve, although in the past, uranium mines existed in the regions of

Lodève and Coutras. In Canada, the Cigar Lake mine contains ore with an excep-

tionally high content of 12%. By comparison, ore from the open-air Arlit mine in

Niger, discovered in 1966 by the French, has a 5% uranium content.

Uranium is produced by the enrichment process as sodium diuranate (yellow
cake containing 75% uranium). It should be noted that 165 tons of concentrated

uranium are required for a single equilibrium load of a 1000 MWe reactor (with the

fuel enriched at 3.1% in 235
92U). Uranium is then processed by the conversion factory

where the yellow cake (U3O8) is transformed to uranium hexafluoride, UF6, (this

conversion is also called fluorination). France uses the wet process, which com-

prises the following steps:

– dissolution of the concentrates in nitric acid,

– purification of uranyl nitrate using an extraction process with tributyl phosphate

(TBP),

– Precipitation of ammonium diuranate (ADU),

– Calcination to produce UO3, which when reduced produces UO2,

– Hyper-fluorination of UO2 to solid UF4,

– Fluorination of UF4 to UF6. Recycled uranium may be fluorinated, although this

is expensive due to the initial radioactivity.

Uranium enrichment is required only for water reactors. Indeed, light water is an

excellent moderator but has a relatively non-negligible capture cross-section. Thus,

natural uranium must be enriched with the fissile isotope 235
92U , in contrast with the

UNGG (Natural Uranium Graphite Gas reactors, the first French reactor) reactor,

in which the moderator comprised graphite blocks, allowing natural uranium to be

used. In practice, the UNGG reactor was slightly enriched to increase the cycle

length for economic considerations. To obtain a critical pin lattice in PWR while

meeting the thermal-hydraulic cooling constraints, a target enrichment value of 4%
235
92U is required (Fig. 15.39).

Starting with 165 tons of concentrated uranium as gaseous UF6 and assuming

depleted enrichment of 0.25% (uranium depleted by the enrichment process),

27 tons of enriched uranium at 3.1% are needed to produce one loading pattern of

assemblies (cf. Fig. 15.40). This enrichment requires 10 8000 separative work units
(SWU). At room temperature UF6 is a colorless crystalline solid; it sublimates at

56 �C and at 1 bar, making it an excellent vector in the enrichment process. The
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principle of gaseous diffusion is based on Graham’s law of effusion, which dem-

onstrates that if molecules of a gas of mass mwith Boltzmann speed distribution are

placed in a box, and a hole is made in surface S at the bottom of the box, the time

variation of the number of molecules due to leakage through the hole is inversely

proportional to the square root of the mass of that molecule:

Graham’s law:
dN

dt
¼ NS

ffiffiffiffiffiffiffiffiffiffi
kT

2πm

r
ð15:11Þ

The process thus relies on the diffusion of gaseous UF6 through a porous

membrane called a barrier. The pores are of very small radius (<200 angstroms)

and the material comprising the barrier must be as permeable as possible. Lighter

nuclides pass through the barrier preferentially, unlike the heavier ones. Gradual

enrichment thus occurs in 235
92U and also in 234

92U , which can reach a content of

400 ppm. In industrial settings, several enrichment loops are created in series and

the residue from step N is injected towards N� 1, while the concentrate from step

N goes to step N + 1. This is called a diffusion cascade (Murray 1954, p. 68). The

energy required for the compressors makes the process very costly. In France, the

Georges Besse plant operated by Eurodif employs this process. To give an idea of

the energy consumption this plant, it is often said that it uses the entire production

of a reactor from the neighboring Tricastin site.

The Georges Besse 2 enrichment plant (started in 2011), utilizes a different

enrichment principle, ultra-centrifugation, based on centrifugal force to separate

more heavy nuclei from lighter nuclei. If a container of gaseous UF6 is rotated very

rapidly, over-concentration of heavy nuclides occurs at the outer sections of the

1000 g of natural 

uranium with

0.71 % U235

54 ppm U234

154 g enriched 

Uranium with

3.25 % U235

310 ppm U234

Enrichment

0.66 SWU 

1 640 kWh (electrical) 

900 

MWe

PWR

38 000 kWh
(electrical)

5.2 g FPs

0.03 g MAs

147.3 g recycled 

uranium with:

0.9 % U235

0.4 % U236

170 ppm U234

1 ppb U232

1.5 g
Plutonium

846 g depleted 

uranium with

0.25 % U235

7 ppm U234

Fig. 15.39 Transformation of 1 kg of natural uranium for one UOX 3.25% fuel management cycle

(one-third core, unloaded at 33,000 MWd/t)
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centrifuge (namely238
92U). This process is around 20 times less expensive than gaseous

diffusion but poses complex technological problems concerning the stability and the

design of the plateaus owing to the high rotation speed (around 50,000 rpm!). Other

enrichment processes exist at the laboratory test stage, including selective excitation

Values for 3.10% enrichment%

Values for 3.70% enrichment

Fig. 15.40 NUMEC (1966) enrichment calculation rule: This calculation cardboard indicates the

mass (in kg) of SWU (UTS in French) and of natural uranium (at 0.711%) needed for a given

enrichment (in this example, 3.70%) with an imposed enrichment tail (for a tail waste value of

0.22%, see column 7, the value of SWU is 5.584 kg and that of natural uranium 7.088 kg). The first

side of the table gives the results for a rejected enrichment within the 0.10–0.28% range, and the

other side for the 0.30–0.65% range. It can be seen that the table provides values up to military

enrichments of 95% in uranium 235! For a target enrichment of 3.10%, 6.217 kg of natural

uranium with a rejected enrichment of 0.2531% are required, which for 27 tons of enriched

uranium, indicates 167 tons of natural uranium to be enriched, thereby corroborating the values

given in the text, with the residual discrepancy (165 tons) being due to the small difference in

rejected enrichment. (The Marguet collection)
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of uranium vapor by emission of a laser wave at the same specific wavelength as
235
92U . The resulting ionization enables the separation of 235

92U from 238
92U ions by

applying a magnetic field (their paths are different and they are recovered separately).

This laser procedure is highly selective16 in theory (less than 1 238
92U parasite ions for

over 10,000 235
92U ions!), thereby making it highly proliferative, which accounts for

the confidential nature of such advanced technologies.

The enrichment process is followed by the manufacture of fuel assemblies. A

PWR (the most widely used technology in France) assembly contains 264 fuel pins

and 25 guide thimbles for inserting absorbing control rods. The lattice pitch is

12.6 mm. The manufacturing plant transforms uranium hexafluoride UF6 into

uranium dioxide UO2. The oxide is then formed by sintering into fuel pellets with

a diameter of 8.2 mm, which are placed in Zircaloy tubes. An assembly for a

900 MWe reactor contains 461.4 kg of uranium metal (not to be confused with the

mass of the oxide, UO2, or with the mass of the entire assembly, which is 649 kg for

a height of 4.058 m, with 3.66 m of active height, i.e. the fuel height). An assembly

for a 1300 MWe reactor is higher (4.796 m, with an active height of 4.267 m) and

has a uranium metal weight of 538.8 kg (the total assembly mass is 760 kg, of which

610.8 kg of UO2). These assemblies make up the core loading pattern. 34.5 ton of

uranium enriched at 3.1% are required to manufacture the loading pattern of

64 assemblies for 1300 MWe reactors with one-third core fuel management

(short cycle). These reactors contain 104 ton of uranium dioxide. The fuel is placed,

in the form of pellets, in a cladding tube made of Zircaloy 4 (an alloy consisting

mainly of zirconium). The fuel is changed every 3 or 4 years (52 assemblies with

one-third core fuel management for a 900 MWe reactor or 64 assemblies for

1300 MWe reactor). The current strategy is to design longer fuel cycles by

increasing fuel enrichment so as to optimize fuel use-up (Kerkar and Paulin 2008).

Generally speaking, for economic reasons, fuel management systems are becom-

ing increasingly complex, in terms of both fuel diversity and fractioning of the

loading pattern. After its life in the reactor, the irradiated fuel is cooled in a fuel

pool before being transferred to a recycling plant (La Hague in France). Today,

recycling enables retrieval of fissile plutonium that can be used as a “raw material”

for fast neutron reactors orMOX fuel. Furthermore, recycling is also a safe means of

treating high-activity nuclear wastes (fission products), and it thus helps to decrease

the amounts to be stocked. After a minimum of 8 months of cooling (required to

attain a residual power of less than 8 kW), the irradiated fuel assemblies are

transferred to fuel casks, which can contain up to 12 assemblies (e.g. TN12 type)

and transported to the AREVA NC plant in La Hague.

The assemblies are then sheared and immersed in a rotating solvent containing

concentrated nitric acid (4 to 10 times the normal concentration). The fission

products are extracted using a solvent (tributyl phosphate or TBP) and then

decanted. This process is called the co-decontamination phase. Uranium and

16Paul Reuss states that in practice, mixtures occur, making it difficult to obtain enrichment above

3 or 4% in a single cycle.
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plutonium are separated via a second extraction cycle (counter-flow solvent in a

reductive aqueous phase). This is followed by a uranium purification cycle to

reduce the remaining traces of plutonium. The recycled uranium contains traces

of 232
92U that can lead to radioactivity problems, as well as a large quantity of 236

92U ,

which is a neutron absorber, making Enriched Reprocessed Uranium (ERU) more

difficult to use.

Active wastes at all levels of fuel recycling must be stocked. Storage of nuclear

waste is very complex: how can nuclear wastes be stored safely for thousands of

years, the time needed for radioactive decay to fall to within acceptable levels? The

deep disposal solution of is one of the most viable currently being considered.

Nevertheless, long-term deep disposal poses security problems such as inappropri-

ate water intrusion (loss of barriers and lixiviation of materials) as well as unwanted

mechanical intrusion (human). Reversible storage strategies (with the possibility of

future recycling of wastes by keeping them at an accessible location) have also been

studied. Confinement (such as sealing of waste wells, waste recycling, etc.) is more

critical since this strategy, by definition, implies more difficult access to nuclear

waste materials (Fig. 15.41).

Fig. 15.41 A proposed gallery network for sub-surface storage (50 m below ground level, Andra)
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Chapter 16

Neutronic Feedback

Understanding the effect on neutronics of the changing physical parameters of a

pile is a key element in safety analysis. These effects are known as “neutron

feedback” and have various and complex origins. In industrial reactors, a high

moderator temperature is required either to vaporize water or to increase the

thermal efficiency of the reactor. This high temperature implies significant fluctu-

ations in the fuel temperature, which in turn affects cross sections via the Doppler

effect. Furthermore, the moderator density also varies significantly, thereby

influencing neutron slowing-down.

(Hummel and Okrent 1970) for fast-neutron reactors, (Reuss 2003, p. 277) for
PWR

16.1 Effect of Fuel Temperature on the Multiplication

Factor

16.1.1 Fuel Doppler Effect

(Hummel and Okrent 1970, p. 133; Silvennoinen 1976, p. 77; Meghreblian and

Holmes 1960, p. 308)

Let the expression of the effective multiplication factor be:

keff¼ k1Pnf¼ η ε p f Pnfwhere Pnf is the non-leakage probability of the finite reactor

(Pnf ¼ e�B2
gτth= 1þ L2B2

g

� �
according to Fermi’s age theory). Deriving this expres-

sion logarithmically:

αD ¼ 1

keff

∂keff
∂T

¼ 1

η

∂η
∂T

þ 1

ε

∂ε
∂T

þ 1

p

∂p
∂T

þ 1

f

∂f
∂T

þ 1

Pnf

∂Pnf

∂T

αD is called the Doppler coefficient. The reactivity effect ρ ¼ keff�1

keff
is given by:
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∂ρ
∂T

¼ 1

keff
2

∂keff
∂T

¼ 1

keff

1

η

∂η
∂T

þ 1

ε

∂ε
∂T

þ 1

p

∂p
∂T

þ 1

f

∂f
∂T

þ 1

Pnf

∂Pnf

∂T

� �

The predominant term in this expression is due to the contribution of the

resonance escape probability ∂p/( p∂T ). The latter is significantly impacted

by the Doppler effect, which causes increased capture in the fuel resonances

(especially for 238
92U). This resonance escape probability is written as:

p ¼ e
�

Ieff NU

ξΣcNmod

where: αD � ln pð Þ 1
Ieff

∂Ieff
∂T

The relative change in Ieff is sometimes called the Doppler efficiency. In the

Narrow Resonance—Infinite Mass (NRIM) approximation, the resonance integral at

energy E0 is written as:

Iγ ¼ σ0Γγ

E0

β J ξ; βð Þ

where J(ξ, β) is the Dresner function, seen in Chap. 6, and β¼ (σm+ σe)Γ/(σ0Γγ). It

will be recalled that where the dilution cross section σm tends to infinity, β J(ξ, β)
tends towards π/2. The Doppler effect widens the resonances when the target nuclei
temperature increases. Furthermore, it should be noted that a (capture) cross section

may be modeled using the Breit-Wigner formalism with the Voigt function ψ :

σ � σ0
Γi

Γ
Ψ x; ξð Þ ¼ σ0

Γi

Γ

ξ

2
ffiffiffi
π

p
ðþ1

�1

e
�
ξ2

4
y� xð Þ2

y2 þ 1
dy

2
6664

3
7775

The capture cross sections are more sensitive to temperature than the diffusion

cross sections and we will thus focus on this reaction cross section. Usually, the area

bounded by the cross section resonance is independent of temperature:

A Tð Þ ¼
ðþ1

�1
σ x; Tð ÞdE ¼ π

2
σ0Γi

Therefore, if the resonance peak decreases, the latter widens because of the

Doppler effect. Actually, due to the self-shielding process for an absorbing material

and the fact that σ0 is not strictly constant, the area under the Voigt plot depends

slightly on temperature. To compute the absorption rate of this resonant cross
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section, it is assumed as a first approximation that the resonance is a “black trap” of

width Δ, from which no neutrons can escape. Therefore, as Δ increases with

temperature, so too does the absorption rate. In real-life physics, the trap is said

to be “grey”, but the flux is less depressed in the resonance, which is flattened by the

Doppler effect. In the end, the absorption rate increases, hence decreasing reactiv-

ity. Figure 16.1 illustrates the fact that the product of the average cross section and

the average flux (Φ for cold andΦ for hot) in the trap (i.e. the average reaction rate)
is higher for the hot case (red line) than for the cold case (in blue).

The problem may be simplified by considering a cross section with a continuous

background value of σp out of the resonance of widthΔ for the cold case and δΔ for

the hot one (δ> 1). Given that the effective cross section integral is conserved, the

peak value of the cross section falls to σ0 , γ/δ for the hot temperature. Since the flux

is inversely proportional to σt,
1 the respective microscopic capture rates in both

situations are:

Rcold ¼ σ0, γ
σ0, γ þ σp

Δ and Rhot ¼
σ0, γ
δ

σ0, γ
δ

þ σp
δΔ

Hence:
Rhot

Rcold
¼ δ σ0, γ þ σp
� �
σ0, γ þ δσp

> 1

Even though the cross section integral is conserved, the capture rate increases by

self-shielding. Defining the mean values of the cross section and the flux in a

resonance, therefore:

)Φ(E,Tcold

Δ
Log(E) Log(E)

γσ ,0)σ(T =cold

)(TcoldΦ

)Φ(Thot

δσ γ /,0=)σ(T hot

δΔ

Δ

)Φ(E,Thot

)(E,Tcoldσ

)(E,Thotσ

δΔ

Fig. 16.1 Resonance effect on flux and reaction rate

1If the balance is carried out at equilibrium, the number of neutrons lost within an energy interval

is given by:
Ð
Σt(E)Φ(E) dE¼ Ð

dE
Ð
dE0 Σs(E

0 !E)Φ(E0) +
Ð
vΣf(E)Φ(E) dE. Given that the

resonance width is narrow compared to the mean energy loss per collision (NR hypothesis), the

second term in the balance is almost constant. Thus,Φ(E)¼ cst/Σt(E).
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ð
σ E; Tcoldð ÞΦ E; Tcoldð ÞdE � σ Tcoldð ÞΦ Tcoldð ÞΔ � σ Thotð ÞΦ Thotð Þ δΔ

�
ð
σ E; Thotð ÞΦ E; Thotð ÞdE

The same reasoning may be applied for the fission rate. Finally, the Doppler

effect depends on the balance between capture and fission. In a uranium fuel,

capture on 238
92U prevails and the effect is stabilizing (Fig. 16.2 shows the hardening

effect of resonance on flux spectrum for different fuels).

16.1.2 Doppler Effect on Reactor Behavior

The increase in the absorption rate induces a negative effect on reactivity

(∂keff/∂Tfuel< 0).2 This is a stabilizing effect in the event of a power excursion.

Flux normalisé
RNR (1200 MWe) teneur 14 %
REP-MOX (900 MWe) teneur 5,30 %
REP- UOX (900 MWe) enrichissement 3,25 %

Spectre de Maxwell
Résonances de capture U238

Réson. fission PU 239

Réson. capt. PU 240

Réson. capt. PU242

Réson.
dif.  élast. Na

Réson. dif.  élast. 0

Energie des neutrons (MeV)

0,00000000,0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10

0.
00

0.
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0.
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0.
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0.
24

Diffusion inèlastique U238

Fig. 16.2 Comparison of the spectra for a Fast Neutron Reactor (SuperPhenix), a MOX

PWR, and a UOX PWR. The resonance effect leads to localized depressions in the flux. The

MOX spectrum is harder than that of the UOX case. The Maxwell distribution of the MOX fuel

is severely perturbed by the plutonium isotope resonances. Normalized flux, RNR teneur

14% ¼ SFR (1200 MWe) Pu content 14%, REP-MOX teneur 5.3% ¼ MOX PWR (900 MWe)

Pu content 5.30%, REP-UOX enrichissement 3.25%¼ UOX PWR (900 MWe) enrichment 3.25%

2Lahoussine Erradi: Etude des effets de température dans les réseaux caractéristiques des ré
acteurs nucléaires de la filière �a eau ordinaire [Study of the effects of temperature in characteristic

networks of light-water nuclear reactors], PhD, Université d’Orsay (1982).
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Indeed, in such a situation, this effect leads to a fast rise in the fuel temperature,

which is even faster if the fuel is cold. It is the fastest effect and takes place within

seconds of the sudden increase in power, especially for oxide fuel, owing to the

poor thermal conductivity of oxides compared to metals. The Doppler effect is

in fact characterized by:

– an increase in the resonance integral with temperature,

– an increase in the resonance escape probability p,
– a decrease in k1.

For instance, the mean change over an entire PWR (moderating ratio of 1.95) is:

Δk/k�� 1.8 pcm/�C. In the example above, with a mean fuel temperature of

600 �C, about 1000 pcm are lost during the power rise. The Doppler effect is an

important factor for the stability of uranium-oxide reactors in the event of a power

excursion:

• It occurs immediately, before the moderator temperature coefficient, which

occurs later,

• Since uranium oxide is a poor heat conductor, its temperature rises quickly to

high values in the central part of the pins (more than 2000 �C): reactivity
decreases even more for pins that are more enriched, which undergo the most

significant decrease in specific power,

• The Doppler effect always acts as a stabilizer to counteract temperature increase.

This is not the case for the void effect, which may change signs depending on the

geometry and the fuel loaded.

If we compare the Doppler effects for three different fuel types, 4.2% UOX,
3.2% MOX13 and 7.8% MOX3, computed in an infinite lattice with a geometric

moderating ratio of 1.66 (under-moderated), Plutonium build-up in the UOX
assembly with burn-up tends to increase the differential Doppler. Over the cycle,

the UOX behaves more like aMOX fuel as plutonium appears, and the hardening of

the spectrum promotes epithermal captures in 238
92U . Regarding MOX, the spectrum

is already hard. However, the decrease over the cycle causes a decrease in the

differential Doppler coefficient. Furthermore, MOX Pu content has a relatively

slight effect for a given isotopic composition (Fig. 16.3).

3238Pu¼ 2.10, 239Pu¼ 54.50%, 240Pu¼ 25.00%, 241Pu¼ 9.30%, 242Pu¼ 6.40%, 241Am¼ 2.70%,

depleted uranium support 0.25%
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16.2 Moderator Temperature Effect

16.2.1 Definitions

The effect of moderator temperature on reactivity is varied and complex (Glasstone

and Sesonske 1994, p. 276). If the water (moderator) temperature increases in a

PWR, the density decreases (if Nmod is the moderator concentration, dNmod/dTmod¼
� β Nmod where β is the thermal-expansion volume coefficient). Hence, moderation

is less effective and the spectrum “hardens” (shift towards the epithermal range). The

fission cross sections decrease. This effect is anti-reactive but it should be pointed out

that some capture cross sections with a 1/v tendency also decrease. This effect is

slightly counterbalanced by the decrease in the number of boron nuclei diluted in

water, which reduces the absorption rate. The amount of boron depends on the

operating point of the reactor. There is also a Doppler effect on the cross sections

of the isotopes in the water molecule (hydrogen and oxygen), especially for the

high-energy resonances of the scattering cross section of oxygen. In the end, the

total effect is negative for a PWR (∂keff/∂Tm< 0) since the major effect is a

decrease in moderation as temperature increases. A typical order of magnitude is

∂keff/∂Tm�� 40pcm/K. The moderator temperature coefficient (MTC) is usually
given as:

αm � 1

keff

∂keff
∂Tm

Although in strict terms, this equation is defined locally in the reactor, in

practice, an average temperature is used. The moderator density effects (change

in density at constant temperature) on the water cross sections are distinguished

from the temperature effects (Doppler effect). Assuming that keff depends on ρm
and Tm:
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Fig. 16.3 Reactivity effect for the differential Doppler effects for 3 fuel types in an under-

moderated lattice for a rise of 254 �C (cold case at 286 �C, hot case at 540 �C)
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dkeff ¼ ∂keff
∂ρm

				
Tm

dρm þ ∂keff
∂Tm

				
ρm

dTm

Thus: αm ¼ 1

keff

∂keff
∂ρm

				
Tm

dρm
dTm

þ ∂keff
∂Tm

				
ρm

 !
¼ αρm

dρm
dTm

þ αTm

This equation defines the isothermal density coefficient αρm , which is the relative
change in keff for a moderator density change. It takes into account the change in the

moderating ratio as moderator density changes. The constant-density moderator
temperature coefficient αTm

, also called the constant-density spectral coefficient, is
the relative change in keff for a change in moderator density under prescribed

density conditions. It allows for the Doppler effect on the moderator cross sections.

It is also an indicator of the change in target nuclei kinetic energy. It may be seen

that for a two-phase moderator, density and temperature are no longer implicitly

correlated due to the presence of an average void fraction, denoted �u. The void
coefficient is defined as:

αv � 1

keff

∂keff
∂�u

� 1

keff

δkeff
δρm

δρm
δ�u

¼ αρm
δρm
δ�u

Similarly, the pressure coefficient is equal to:

αp � 1

keff

∂keff
∂p

� 1

keff

δkeff
δρm

δρm
δp

¼ αρ
δρm
δp

These formulae show that all differential coefficients may be expressed in terms

of αρm and αTm
. The most commonly used coefficient is the moderator alpha

coefficient, which links change in reactivity to the moderator temperature:

Δρ ¼ ρ� ρref ¼ αmod Tm � T ref
m

� �
Mathematically, by the definition of reactivity ρ� (keff� 1)/keff itself:

αmod ¼ δρ

δTm
¼ 1

k2eff

∂keff
∂Tm

¼ 1

keff
αm � αm close to criticality

The moderator alpha coefficient is negative in this form and is expressed in

pcm/
�
C. In one-group theory, the following may be written:

Δρ � ρ� ρref ¼ 1� 1

keff

� �
� 1� 1

k ref
eff

 !
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Disregarding leakage effects, Δρ � Σ ref
a =vΣ ref

f � Σa=vΣf . Assuming that at

first order, only the absorption cross section changes under the influence of the

moderator, Δρ��ΔΣa/vΣf where ΔΣa � �vΣfαmod Tmod � T ref
mod

� �
. The specific

moderating ratio, that is the ratio of the moderator nuclei to fuel nuclei, is a very

useful notion.

The moderating ratio ρmVm/ρUVU may vary because of expansion effects; in

particular, for a PWR with a liquid-phase moderator, the number of moderator

nuclei NmVm decreases as the temperature rises. The moderator has two opposite

properties: it slows down neutrons (affecting the resonance escape probability p)
and it has a varying absorbing capability (affecting the thermal utilization factor f )
(Fig. 16.4).

The term technological moderating ratio is used in the industrial world and is

defined as the volume ratio between moderator and fuel. The optimum value for a

PWR is around 4 (Reuss 2003, p. 231). An under-moderated reactor operating to the

left of the maximum is stable in the event of a temperature rise with a decrease in

the moderating ratio—this effect reduces k1. On the other hand, a reactor operating

to the right of the maximum value is unstable if the temperature rises with a

decrease in the moderating ratio. All modern PWR are under-moderated by design

and must remain so during operation to ensure a negative temperature coefficient,

as prescribed by safety regulations. This limits the amount of boron used as a

soluble absorber.

16.2.2 Leakage and Absorber Effects

The reactivity of a reactor may be modeled to account for the absorption of rods and

soluble poisons (capture term C< 1), as well as for neutron leakage (characterized

by fast and thermal non-leakage probabilities, i.e. F¼ (1�Pr) (1�Pth)< 1).

Therefore:

Over-moderated

Reactors
Under-moderated

Reactors

Moderating ratio
uu

mm

V
V

ρ
ρ

f p

pf

∞kFig. 16.4 Effect of

moderating ratio on

reactivity
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keff ¼ k1FC

Using these notations and logarithmic derivation, the isothermal density coeffi-

cient is written as:

αρm � 1

keff

∂keff
∂ρm

				
Tm

¼ 1

k1

∂k1
∂ρm

				
Tm

þ 1

F

∂F
∂ρm

				
Tm

þ 1

C

∂C
∂ρm

				
Tm

We have just seen that the first coefficient has an optimum value with the

moderating ratio. Indeed, a high moderating ratio decreases the thermal utilization

factor while a low one increases the epithermal and fast absorption probability in

solid materials. The former coefficient is positive under PWR operating conditions

at nominal power since the moderating ratio is to the left of the maximum value

(such that a decrease or void density lowers reactivity). Since dρm/dTm is negative

under one-phase (water) conditions, the contribution of the first term to MTC is

negative:

1

keff

∂keff
∂ρm

				
Tm

∂ρm
∂Tm

< 0

Using the age theory to model leakage 1� Prð Þ ¼ e�B2
g τth :

F ¼ 1

1þM2B2
g

¼ e�B2
g τth

1þ L2B2
g

� � � 1

1þ τthB
2
g

� �
1þ L2B2

g

� �

Differential leakage effect may be computed:

1

F

∂F
∂ρm

				
Tm

¼ � 1

1þ τthB
2
g

� � B2
g

∂τ
∂ρm

þ τ
∂B2

g

∂ρm

 !
� 1

1þ L2B2
g

� � B2
g

∂L2

∂ρm
þ L2

∂B2
g

∂ρm

 !

Geometrical buckling depends solely on the geometry at first order:

αF ¼ 1

F

∂F
∂ρm

				
Tm

� � B2
g

1þ τthB
2
g

� � ∂τ
∂ρm

� B2
g

1þ L2B2
g

� � ∂L2

∂ρm

For a large reactor, it is assumed that a decrease in density causes an increase in

leakage of epithermal and thermal neutrons that is inversely proportional to the

moderator density for first approximation. Hence, the coefficient αF is positive and
its contribution to the MTC is negative. The control/capture means for the reactor

may be modeled in a very simplified way by decomposing the effect of rods as a

function of the number of inserted rod steps n and their reactive worths w(n,Tb).
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The rod worths increase as the rod temperature rises (owing to the Doppler effect

with an increase of thermal captures).

Crods ¼ 1� nw n; Tbð Þ

In practice, the rod temperature is close to that of the moderator, hence:

αrodsTm
¼ 1

Crods

∂Crods

∂Tm

				
ρm

¼ �n

C

∂w
∂Tm

< 0 and αrodsρm
¼ 1

Crods

∂Crods

∂ρm

				
Tm

¼ �n

C

∂w
∂Tm

dTm

dρm
> 0

For the soluble boron effect, a first approximation may be made using the

following hypothesis:

Cboron ¼ Σ m
a

Σm
a þ Σboron

a

¼ Nm σa Tmð Þ
Nm σa Tmð Þ þ Nboron σborona Tmð Þ

In this equation, changes in concentration prevail over changes in cross sections

(moreover, the boron cross section is unaffected by the Doppler effect):

αboronTm
¼ 1

Cboron

∂Cboron

∂Tm
¼ 1

Cboron

∂Cboron

∂ρm

				
Tm

dρm
dTm

þ 1

Cboron

∂Cboron

∂Tm

				
ρm

� �Cst CB
∂Nm

∂ρm

			
Tm

dρ

dTm
> 0

This is true so long as the amounts of boron atoms and of water molecules

depend linearly on the specific boron concentration CB (not to be confused with the

capture ratio Cboron). The spectral term, disregarded hitherto, is positive if a rise in

water temperature leads to hardening of the spectrum, thereby decreasing boron

capture, thus increasing the capture ratio Cboron:

1

Cboron

∂Cboron

∂Tm

				
ρm

> 0

It may be concluded that if the MTC is negative in PWR, the contribution of the

control rods is negative, contrary to boron contribution. Both are proportional to

their anti-reactivity. At the end of the cycle, boron contribution fades out.

16.2.3 Pressure Effect

Given that water density is increased by rises in isothermal pressure but decreased

by rises in isobaric temperature, it may be inferred that the two effects are of

different signs. This effect is negligible for a PWR close to its operating state point.
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16.2.4 Graphite Moderator

If the moderator is in solid state (e.g. French UNGG or the British Magnox), the
moderator temperature effect depends on graphite expansion (Kahan and Gauzit

1957). The migration area varies with the moderator density as:

M2 ¼ M2
ref

ρm, ref
ρm

� �2

where:
∂M2

∂T
¼ �2M2

ref

ρ2m, ref
ρ3m

∂ρ
∂T

¼ �2
M2

ρm

∂ρm
∂T

For a large reactor: keff¼ k1/(1 +M2B2). Subsequently, close to criticality, the

approximation k1� 1 +M2B2 is warranted and by logarithmic derivation, we

obtain:

∂keff
keff

¼ ∂k1
k1

� ∂M2B2

1þM2B2
� ∂ε

ε
þ ∂η

η
þ ∂f

f
þ ∂p

p
� ∂M2B2

k1

where:

1

keff

∂keff
∂T

� �B2

k1

∂M2

∂T
¼ 2

B2M2

k1ρm

∂ρm
∂T

The linear expansion coefficient α appears in the density change:

ρm ¼ ρm, ref

1þ α T � Tref

� �3
Finally, deriving this density law with respect to temperature we obtain:

1

keff

∂keff
∂T

� �6α
B2M2

k1
� �6α

k1 � 1

k1
< 0

To this effect, which always has a negative sign, the expansion of the core

lattice must be added. Thus, the geometrical buckling B2 is modified. By definition

of the keff:

∂keff
keff

¼ �2M2B
k1

keff 1þM2B2
� �2 ∂B ¼ �2M2B

1

1þM2B2
� �∂B � �2

M2B

k1
∂B

Hence:
1

keff

∂keff
∂T

� �2
M2B

k1

∂B
∂T
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For simplification purposes, the reactor is assumed to be spherical with

expanding radius R¼Rref (1 + α(T� Tref)) and with geometrical buckling B¼ π/R.
It can be deduced that:

1

keff

∂keff
∂T

� 2
M2B

k1

π

R2

∂R
∂T

¼ 2α
M2B2

k1
¼ 2α

k1 � 1

k1

A cylindrical core must be expanded both radially and axially and its buckling

is given as B2¼ (π/H )2 + ( j0 , 1/R)
2, which complicates the formulae. Neverthe-

less, the general conclusion remains the same. The expansion effect of the size of

the graphite pile is positive but is still three times less than the negative effect of

the graphite. Overall, the effect is weak, of the order of a few dozen pcm per

degree of graphite temperature, and is thus far smaller than the effect of a liquid

moderator.

For the resonance escape probability, (Poulter 1963, p. 641) proposed the law:

p Tð Þ ¼ p 20�Cð Þ 1� 17; 010�5
1� p 20�Cð Þ
p 20�Cð Þ

TS K½ � � 293 K½ �
� � !

where TS [K] is the average fuel surface temperature. Appendix 2 of (Poulter, 1963)

shows the semi-empirical correlations and adjustments used in the design of British

Magnox reactors.

16.2.5 Neutron Spectrum Shift

When the moderator temperature rises, as seen in Chap. 7, the neutron spectrum

shifts towards higher energies and “hardens”. This effect impacts the cross sections

of all the isotopes in the reactor and not only those in the moderator (Fig. 16.5).

cold
hotΦ (E)

E

Fig. 16.5 Hardening of

thermal spectrum with

moderator temperature
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16.2.6 Void Effect

The voiding of a reactor must be considered during an accident. The moderator flows

out through a breach located on the primary loop. By design, the void effect

is negative for French PWR with the usual fuel types. However, it may become

hazardous beyond a given plutonium content (as in the case of MOX where

the plutonium content exceeds 12%). The absence of water, resulting in a

decrease in the thermalizing power of the reactor, shifts the spectrum to higher

energies where some even-even isotopes of plutonium or 238U may undergo

fission. This increases the reactivity and the reactor becomes somewhat like

a “fast-neutron” reactor. The total void effect for an infinite cell lattice of the

three fuel types described previously shows that an increase in MOX content signif-

icantly decreases the safety margin to criticality. It should be noted that these

calculations do not take into account the dropping of control rods, which accounts

for the disadvantageous factor f in the four-factor formula (Fig. 16.6).

In water-cooled piles, the foregoing effect is stabilizing for PWR with fuel

having a low plutonium content. However, for piles moderated by heavy water

and cooled by light water, the decrease in absorption of light water (with a capture

rate far higher than heavy water) may lead to stability problems.

For sodium-cooled fast reactors,4 the sodium void effect has several conse-

quences (Hummel and Okrent 1970, p. 82). First, it promotes neutron leakage

from the fissile zone, which is beneficial for safety. However, the decreased capture

on sodium and, above all, the spectrum shift to a pure fission spectrum results in

a positive void coefficient, especially for plutonium fuel (for uranium fuel, the
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Fig. 16.6 Reactivity effect of complete voiding (moderating ratio ¼ 1.66)

4Gérald Rimpault: Etude de l’effet en réactivité de vidange de sodium dans les expériences
critiques �a neutrons rapides, transposition aux réacteurs de puissance [Study of the effect on

reactivity of sodium voiding in critical fast-neutron experiments, transposition to power reactors],

PhD thesis, Université d’Aix-Marseille (1979).
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effect is almost zero). Using certain design tricks such as reducing the size of the

pile, using thinner solutions, or facilitating the voiding of the upper plenum,

the void coefficient may be decreased or rendered negative. Unfortunately, limiting

the core size or the breeding gain is not compatible with the design of an

industrial reactor. The sodium void effect may be partial if a rise in the sodium

temperature causes it to boil, leading to a void fraction.

16.3 Boron Effect in Pressurized Water Reactors

16.3.1 Differential Efficiency of Boron

The boron effect is not a temperature effect, yet it is often associated with

neutronic reactivity feedback. Reactivity control throughout the cycle is achieved

by gradually decreasing the amount of boric acid diluted in the primary-loop water.

Starting from an initial concentration of 1000–1500 ppm at BOC, it is diluted up

to the natural cycle length, the burn-up at which the reactor is just critical without any

boron. The boron differential effect is around �8 pcm/ppm in a UOX reactor. This

value is very sensitive to the spectrum and falls to�2 pcm/ppm in aMOX spectrum.

This decrease in integral boron efficiency for MOX reactors requires increase

of the boron concentration at start-up or the use of other means of reactivity

control (rods, burnable neutron poison such as gadolinium, in the fuel) since the

boron concentration cannot be increased indefinitely (see paragraph below).

Besides, even if it were possible, the risk of boron crystallization in water by

saturation at a given temperature is not negligible. Nonetheless, a positive MTC
would be reached well before boron saturation in water. Besides, the amount

of boron is also limited in a safety context to prevent dilution accidents. The

boron differential effect is always negative but varies significantly according to

the loading pattern (Fig. 16.7).
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Fig. 16.7 Boron differential effect computed for a 500 ppm change in an under-moderated lattice

(1.66)
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16.3.2 Boron Effect on the Moderator Differential
Coefficient

Another effect of the boron particularly important for the safety concerns the

differential moderator differential coefficient. The more the boron concentration

is important and the more this coefficient, usually negative, increases. Figure 16.8

shows that from 1500 ppm, this coefficient becomes positive at low temperature,

and that from 2000 ppm, this one becomes positive below 180 �C. The negativity of
this differential moderator coefficient during operation is a crucial element of safety

in the case of a power excursion, because it allows a strong introduction of anti-

reactivity as far as the temperature of the water increases. In operation, it is at the

beginning of the cycle that the boron concentration is strongest. It is thus at this
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Fig. 16.8 Boron effect on the moderator differential effect (UOX, 3.25%, natural boron)

16.3 Boron Effect in Pressurized Water Reactors 1167



moment that it is necessary to watch over not to exceed a too strong boron

concentration. The solution spends by the implementation of consumable poisons

mixed in the solid fuel (gadolinium oxide for example) or of fixed (and further

removed) absorbing rods placed in some tube guides (Pyrex glasses with boron

carbide inclusion).

16.4 Power Coefficient

The fuel temperature is not easily obtained in a power reactor. Instead, the differ-
ential power coefficient is used:

αP � 1

keff

∂keff
∂P

¼ 1

keff

∂keff
∂Teff

∂Teff

∂P

where Teff is the mean effective temperature, a notion described in the chapter

on the Doppler effect. This coefficient is around�2 to�10 pcm/% Nominal power.

16.5 Feedback Modeling

(Silvennoinen 1976, p. 202)

The calculation of neutronic feedback involves computation of the thermal

properties of materials within the core and of their impact on cross sections. It is

assumed that the temperatures and densities at all points in the core are

known, although this determination (thermalhydraulics) is outside the scope of

this book. Very broadly, the change in macroscopic cross section may be written

in terms of its partial derivatives with respect to certain feedback parameters. Let

CRN (for Contre-Reactions Neutroniques in French) be the feedback parameter

tuple previously described, i.e. (Tmod, ρmod, Tfuel, NXe, NB, Ni, . . .) where Ni is the

concentration of an additional isotope having a feedback effect (other than xenon-

135 and boron). Xenon-135, being the most absorbing fission product, is considered

separately in all international models. It is supposed that the microscopic depletion

of these isotopic feedback parameters is known in the fuel (or water for boron). It is

further assumed that the cross section values for the reference feedback parameter

tuple are known, i.e. CRN0 ¼ T0
mod; ρ

0
mod; T

0
comb;N

0
Xe;N

0
B;N

0
i ; . . .

� �
. This parameter

vector is chosen such that it corresponds to the standard state of the reactor: this is

the “center” of the possible feedback parameter grid. Let N be the number of

isotopes required to ideally describe the macroscopic cross section and n the

number of isotopes considered as the independent feedback parameter (other than

xenon-135 and boron-10). The cross section affected by feedback from a reference

state 0 is modeled as follows using a Taylor series up to order 1:
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Σ CRN
a ¼ ΣCRN0

a þ ∂Σa

∂Tmod

ΔTmod þ ∂Σa

∂ρmod

Δρmod þ
∂Σa

∂Tfuel
ΔTfuel þ ∂Σa

∂NXe
ΔNXe

þ ∂Σa

∂NB
ΔNB þ

Xn
i¼1

∂Σa

∂Ni
ΔNi

Where the effect of the feedback parameter is marked, the expansion can be

extended to order 2, which includes mixed terms. Using CRNi for the ith feedback

parameter, the cross section may be expressed for M feedback parameters as:

ΣCRN
a ¼ ΣCRN0

a þ
XM
i¼1

∂Σa

∂CRNi
Δ CRNi þ 1

2

XM
i¼1

∂2Σa

∂CRN2
i

Δ CRNið Þ2

þ
X
i 6¼j

∂2Σa

∂CRNi∂CRNj
ΔCRNiΔ CRNj þ . . .

Physical analysis of the weight for the differential feedback coefficients deter-

mines the order up to which a given parameter must be expanded in the formula.

Given that the density of water may be expected to be an influential parameter for

PWR, it is thus expanded at higher orders. If a macroscopic cross section

(e.g. absorption) is developed using these N physical elements, by definition:

Σ CRN
a ¼

XN
i¼1

Niσ
i
a ¼ Σ res

a þ NXeσXe þ NBσB þ
Xn
i¼1

Niσ
i
a

The residual macroscopic cross section Σ res
a represents the absorption of the

remaining isotopes which are not considered as feedback parameters. The partial

derivative of Σa with respect to any feedback parameter (e.g. moderator tempera-

ture) is expressed as:

∂Σa

∂Tmod

¼
∂ Σ res

a þ NXeσXe þ NBσB þ
Pn
i¼1

Niσ i
a

� �
∂Tmod

¼ ∂Σ res
a

∂Tmod

þ NXe
∂σXe
∂Tmod

þ NB
∂σB
∂Tmod

þ
Xn
i¼1

Ni
∂σ i

a

∂Tmod

and similarly for moderator density and fuel temperature. For xenon (in fact

xenon-135), the following is used:

∂ NXeσXeð Þ
∂NXe

¼ σXe þ NXe
∂σXe
∂NXe

� �

Hence:
∂Σa

∂NXe
¼ ∂Σ res

a

∂NXe
þ σXe þ NXe

∂σXe
∂NXe

� �
þ NB

∂σB
∂NXe

þ
Xn
i¼1

Ni
∂σ i

a

∂NXe
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Boron is considered in the same way as xenon. For all other feedback parameter

isotopes, j (thus modeled with microscopic depletion in the core calculation codes),

the following is obtained:

∂Σa

∂Nj
¼ ∂Σ res

a

∂Nj
þ NXe

∂σXe
∂Nj

þ NB
∂σB
∂Nj

þ σj þ Nj
∂σj
∂Nj

� �
þ
Xn

i¼1, i 6¼j

Ni
∂σ i

a

∂Nj

The partial derivatives of microscopic cross sections with respect to the

amount of other isotopes should be pointed out as they represent their respective

spectral effect. Thus an absorbing isotope modifies the spectrum, thereby leading

to modification of the cross sections of the other isotopes. This effect is referred

to in the literature as historical correction to emphasize the fact that it is produced

by drift in the fuel history during microscopic depletion, carried out at feedback

conditions other from the reference conditions. These may be large enough

(of the order of 10% of a macroscopic cross section) to cause significant errors

during the cycle if overlooked. The goal of a generalized feedback model is to

choose the predominant terms among the partial derivatives of macroscopic cross

sections and to evaluate these derivatives in an analytical or tabulated manner

with sufficient precision for industrial use (time/simplicity/precision ratio). A

particular use of the feedback model is for a cross section in a medium, with almost

unvarying physical properties except for its concentration. This is the case for fast

reactors, where cross sections do not vary much because of the hard spectrum, even

with burn-up. Besides, the fission products are less absorbing than in PWR.5,6

Hence:

Σ tð Þ ¼ Σ t0ð Þ þ t� t0ð ÞdΣ
dt

þ t� t0ð Þ2
2

d2Σ

dt2
þ . . .

where
dΣ

dt
¼

d
PN
i¼1

Niσi

� �
dt

¼
XN
j¼1

∂
PN
i¼1

Niσi

� �
∂Nj

dNj

dt
¼
XN
j¼1

σj þ Nj
∂σj
∂Nj

� �
dNj

dt

The proposed reasoning as a function of time may also be extended to burn-up in

a similar way.

5Loı̈ck Martin-Deidier:Mesure intégrale de la capture des produits de fission dans les réacteurs �a
neutrons rapides [Integral measurement of the capture cross-section of fission products in fast-

neutron reactors], PhD thesis, Université d’Orsay (1979).
6Philippe Coppe: Etude de la représentation des produits de fission dans les réacteurs de la filière
�a neutrons rapides [Study of the representation of fission products in fast-neutron reactors], PhD

thesis, Université d’Orsay (1978). The weak absorption of fission products (the highest capture

cross section in the SuperPhenix spectrum is for samarium 151 and is barely 4 barns!) must be

compared to the high burn-up (100,000 MWd/ton) reached in fast reactors. In SuperPhenix, for a

300-day cycle, the weight of fission products is estimated at 2300 pcm, or 75% of the total loss in

reactivity.
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16.5.1 A Simple Model: Power Feedback

One of the simplest models considered is to account for the power effect in

two-group diffusion calculation for a PWR. A change in normalized power

P causes a change, assumed linear, of the water density:

ΔρH2O ¼ P� 1ð Þ dρH2O

dP

This density change induces two major effects: first, the variation of the

absorption cross section ΔΣa, transport one ΔΣt and scattering one ΔΣs, with

the same sign as ΔρH2O and linked to the change in the amount of water molecules

NH2O:

ΔΣ ¼ Voliq NH2OσH2O

dρH2O

ρH2O

where Voliq is the proportion of water in the material.

The change in total cross section induces a change of the diffusion coefficient:

ΔD ¼ D
ΔΣt

Σt þ ΔΣt

In addition, the hardening of the spectrum due to a simultaneous change in the

slowing-down capacity of water (a change in slowing-down density) mainly impacts

the fast absorption cross section, which is usually expressed as a logarithmic derivative:

dΣ

Σ
¼ s �½ �

dρH2O

ρH2O

The power rise leads to an increase in fuel temperature which induces a Doppler

effect. The latter mainly affects the absorption cross section with an experimental

saturation effect modeled empirically by:

ΔΣa, 1 ¼ α1P

1þ α2P
� α1
1þ α2

The effect of the absorbing materials such as boron (of concentration NB) and

xenon (of concentration NXe) on the absorption cross sections (hence, the total cross

section also) is considered linear:

ΔΣa ¼ ΔNBσB þ ΔNXeσXe
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The transfer cross section Σ1! 2 varies according to the law:

Σ1!2

Σa, 1 þ Σ1!2

¼ e�
Σa,1
Σs

The coefficients used in the previous equations are calculated once only by the

different branch calculations (for each feedback tuple) using a transport code before

the core code. This simple and fast model is implemented in the JASON7 pin-by-pin

diffusion code at EDF. This methodology allows calculation of the critical boron

concentration with a dispersion of less than 30 ppm.

16.5.2 An Advanced Feedback Model: The Lefebvre-Seban
Model

Jean-Claude Lefebvre (1939–2011) (on the left) spent his whole career until 1999 at EDF after

obtaining Master’s in Reactor Physics in 1967. He helped lay the foundations of the official

computation scheme for EDF PWR cores by programming the JONAS pin-cell diffusion code and

the JANUS 2D core code. His theoreticals, though disarmingly simple, were sufficiently precise to

stand the test of time for the past 30 years. As a result, the computation scheme to which he

contributed significantly, so much so that he may be considered as its “founding father”, is still in

use. and will indeed be used to compute the future EPR reactor. His major theoretical contributions

are the two-group neutron feedback model for EDF, together with Roger Seban, and the official

reflector model alongside Philippe Lebigot. (Courtesy Lefebvre/Courtesy Seban)

7J.M. Fabre, Code Jason note de présentation [Presentation note for Jason code], Note EDF
E-SE-PN-86-146-A (1986)
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Roger Seban (1949–) (on the right) obtained his “Génie Atomique” engineering degree (1974),

after a Master’s in Reactor Physics. His work as a freshly-qualified engineer in October 1976 at

SEPTEN with Jean-Claude Lefebvre led to the design of an industrial feedback model to challenge

the Framatome computation chain, obtained via its license with Westinghouse and which EDF

does not hold. This pragmatic and fast model runs a large number of daily loading calculations

with the pre-calculations obtained from the CEA transport code APOLLO-1. Roger Seban was

appointed head of the Nuclear Mechanical Department at EDF/CNEN before working as technical

director of EDF/CNEPE from 2001 to 2004. He then held a number of high-responsibility posts in

China on reactor projects at Daya Bay and Ling’Ao. He returned to the R&D division of EDF in

2013 as head of the “Future Reactor” project.

In the early 1980s, J. C. Lefebvre and R. Seban proposed a new model for the main

feedback effects.8 This model was simple and efficient for a two-group diffusion

calculation with a cut-off energy at Ec¼ 0.625 eV, corresponding to a cut-off
temperature Tc¼ 7 243 K such that kTc¼ 0.625 eV and at a lethargy uc.
Disregarding absorption when compared to the slowing-down outside a narrow

resonance (γΣa� ξΣs), we saw in the chapter on slowing down that the slowing-

down density is given by the Greuling-Goertzel model:

Slowing-down density :
q uð Þ ¼ e

� Σa

ξΣs
u

if 0< u < ures,

q uð Þ ¼ e
� Σa

ξΣs
u
e
�Γ
ξ if ures< u < uc,

8><
>:

ð16:1Þ

8J.C. Lefebvre, R. Seban: Nouveau modèle de contre-réactions neutroniques appliqué au calcul
des cœurs de réacteurs [A new model of neutronic feedback applied to reactor core calculations],
Note EDF E-SE –TB 81-117 A, 1982.
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The term pres � e
�
Γ
ξ is the probability of escaping a narrow resonance (Γ� ξ).

The flux expression in the fast group (lethargy lower than the cut-off) is as follows:

Φ1 ¼
ðuc
0

Φ uð Þdu ¼
ðuc
0

q uð Þ
ξΣs uð Þ þ γ Σa uð Þ du

¼
ðuR
0

e
� Σa

ξΣs
u

ξΣs uð Þ þ γ Σa uð Þ duþ
ðuc
uR

e
� Σa

ξΣs
u
e
�Γ

ξ

ξΣs uð Þ þ γ Σa uð Þ du

Thus:

Φ1 � 1

Σa
1� e

� Σa

ξΣs þ γΣa
ures þ e

�Γ

ξ
:

e
� Σa

ξΣs þ γΣa
ures � e

�
Σa

ξΣs þ γΣa
uc

0
B@

1
CA

2
64

3
75

Using a first order Taylor expansion of the exponentials:

e
� Σa

ξΣs þ γ Σa
ures � 1� Σa

ξΣs þ γ Σa
ures

The equation for the fast flux is:

Fast flux in the Lefebvre-Seban model :

Φ1 ¼ 1

ξΣs þ γ Σa
ures þ uc � uresð Þe�Γ

ξ

h i
ð16:2Þ

The slowing-down current q and the flux Φ1 change in particular with the boron

concentration via the fast absorption cross section Σa, with the fuel temperature

Tfuel via the resonance width Γ (the Doppler effect itself varies as
ffiffiffiffiffiffiffiffiffi
Tfuel

p
), and with

the water density NH2O via the moderating power ξ Σs and the fast absorption cross

section Σa. The effect of other isotopes on the spectrum, and thus on the cross

sections, is disregarded for the time-being. Introducing the absorption term into the

thermalization equation twists the spectrum with respect to Maxwell’s spectrum.

J. Horowitz and O. Tretiakoff proposed that this twist be characterized as a

discrepancy between the true spectrum and Maxwell’s spectrum. In Chap. 7, we

saw that this leads to the definition of the neutron density as:

n xð Þ ¼ m xð Þ þ 2 rHT e xð Þ

where e(x) represents the coupling density between the fast and thermal domains

and rHT is the spectral index related to the proportion of neutrons crossing the
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cut-off energy. The spectral index rHT (characterizing coupling between the two

domains) is written as:

rHT ¼ q xð Þ
vT ξΣs xð Þ

In a two-group model, the Horowitz-Tretiakoff spectral index is given as:

Horowitz-Tretiakoff spectral index : rHT ¼

ffiffiffiffiffi
T0

T

r
ξΣs

Σ̂ a

þ 2

ffiffiffiffiffi
T0

Tc

r ð16:3Þ

From the expression of rHT, it may be deduced that the operating parameter

effects can be applied to the effective cross sections (the moderating power ξΣs is

almost constant). However, in diffusion codes, energy (usually two groups)-

averaged cross sections are employed. The use of effective cross sections requires

a relation linking them to energy-averaged cross sections. For this purpose, a

function Φcondensed is needed to characterize the number of neutrons at each point,

as well as the reaction rate distribution. Therefore, the following is defined:

Σcondensed Φcondensed ¼
ð1
0

Σ vð ÞΦ vð Þdv:

Thus, Φcondenseed needs only to be defined to deduce a definition for Σcondense.

Φcondense is normally assumed to be the integral of the flux spectrum:

Φcondensed ¼ Φ ¼
ð1
0

v n vð Þdv

The average cross section is thus:

Σcondensed ¼ Σ ¼
Ð1
0

Σ vð Þvn vð ÞdvÐ1
0

vn vð Þdv

Another condensation method consists in using the Westcott effective cross

sections defined as:

Σ̂ ¼
Ð1
0

Σ vð Þvn vð Þdv
v0
Ð1
0

n vð Þdv

In the CEA codes APOLLO1 and APOLLO2, the relation between effective and

average cross sections is obtained through a parameter called Unita defined as:
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Σ̂ a

Σa

¼
Ð vc
0
φ vð Þdv

v0
Ð vc
0
n vð Þdv ¼

Ð vc
0
vn vð Þdv

v0
Ð vc
0
n vð Þdv ¼

�v

v0
¼ 1

Unita

This parameter is determined once the neutron density representation n(x) is
known. Indeed:

Unita ¼ v0
Ð xc
0

m xð Þ þ 2 re xð Þ½ �dxÐ xc
0
v m xð Þ þ 2 re xð Þ½ �dx ¼ 1þ 2 r�e

�xm þ 2 r�xe

v0
vT

where: �e ¼ �
ffiffiffiffi
T
Tc

q
, �xm ¼ 2ffiffi

π
p , �xe ¼ �xrefe � Log

ffiffiffiffiffiffi
T
Tref

q
where T is the moderator tem-

perature, Tc the cut-off temperature and Tref the reference cut-off temperature.

The evaluation of the spectral index leads to the determination of the Unita
parameter to compute the average cross sections used in the diffusion codes. In the

Lefebvre-Seban model, the nuclear parameters (cross sections, neutron flux,

slowing-down density) are tabulated as a function of burn-up and are correlated

with operating parameters (fuel temperature, moderator temperature, moderator

density, boron concentration, xenon concentration). In the fast energy domain, the

slowing-down density and the fission cross section are influenced by changes in the

boron concentration, fuel temperature (Doppler effect) and water density. More-

over, the scattering and transfer cross sections are also affected by changes in the

moderator density. In the thermal energy domain, the neutron flux, the fission cross

section and the transfer cross section are influenced by the moderator temperature

and, the boron and xenon concentrations. Finally, the ratio of the production cross

section to the amount of absorption is modified by changes in the moderator

density. Doppler feedback is modeled with three coefficients: αqD, αΦD and αfD:

Doppler feedback :
ln

1

q

� �
� ln

1

qref

� �
¼ αqD

ffiffiffiffiffiffiffiffiffi
Tfuel

p �
ffiffiffiffiffiffiffiffiffi
T ref
fuel

q� �
Φ1 � Φ ref

1 ¼ αΦD
ffiffiffiffiffiffiffiffiffi
Tfuel

p �
ffiffiffiffiffiffiffiffiffi
T ref
fuel

q� �
vΣf 1 � vΣ ref

f 1
¼ αfD

ffiffiffiffiffiffiffiffiffi
Tfuel

p �
ffiffiffiffiffiffiffiffiffi
T ref
fuel

q� �
8><
>:

ð16:4Þ

The boron effect, with NB the concentration of boron nuclei per cm
3, is modeled

using three coefficients, αqB, αΦB and αfB:

Boron feedback :
ln

1

q

� �
� ln

1

qref

� �
¼ αqB NB � Nref

B

� �Nref
W

NW

Φ1 � Φ ref
1 ¼ αΦB NB � N ref

B

� �
vΣf 1 � vΣ ref

f 1
¼ αfB NB � N ref

B

� �
8><
>:

ð16:5Þ

The water density effect is modeled using five coefficients:
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Water density effect :

ln
1

q

� �
� ln

1

qref

� �
¼ αqW

NW � N ref
W

NW N ref
W

" #

Φ1 � Φ ref
1 ¼ αΦW

NW � N ref
W

NW N ref
W

" #
vΣf 1 � vΣ ref

f 1
¼ αf W q� qref

� �

Σtr1 � Σ ref
tr1 ¼ αt W NW � Nref

W

� � ξΣs � ξΣ ref
s

� �
ξΣ ref

s

¼ αξW
NW � Nref

W

N ref
W

" #

8>>>>>>>>><
>>>>>>>>>:

ð16:6Þ

NW represents the amount of moderator molecules per cm3 and Σtr1 is the fast

transport cross section. The feedbacks also modify the thermal cross sections. The

moderator density effect is difficult to model to obtain a satisfactory expression for

the changes in the fission and absorption effective cross sections. Hence, the effective

absorption and the fuel multiplication coefficient η ¼ vΣf =Σa2 are modeled as:

Thermal effect of water density :

Σtr2 � Σ ref
tr2 ¼ βtW NW � N ref

W

� �
Σ̂ a2 � Σ̂ ref

a2

Σ̂ ref
a2

¼ βaW
NW � N ref

W

N ref
W

 !
η� ηref

ηref
¼ βηW

NW � N ref
W

N ref
W

 !
8>><
>>:

ð16:7Þ

To simplify the equations, let:

x � NW � N ref
W

NW N ref
W

and X � NW � N ref
W

N ref
W

Then:

ln
1

q

� �
� ln

1

qref

� �
¼ αqW x

Φ1 � Φ ref
1 ¼ αΦW x

η� ηref

ηref
¼ βηW X

8>>>><
>>>>:

Studies have evaluated the precision of this model depending on the calculation

of the coefficients αqW, αΦW and βηW. A simple method to determine these coeffi-

cients is by use of the difference between two calculations carried out at two

different water densities. Thus, two values of x are obtained, for example one at

nominal density 0.7169 g/cm3 and the other at a hotter density (left derivative of the

nominal operation point) of 0.5 g/cm3. A colder density of 0.8 g/cm3 may be chosen

for the right derivative. The plots in x (or in X for the fuel multiplication coefficient

η) obtained by this approach may be compared to those for precise calculations

carried out with the APOLLO2 code for each density (called ‘GAB’ calculations).
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The results (Figs. 16.8, 16.9, 16.10 and 16.11) show that there is a good agreement

for the calculations on the right and on the left, especially for hotter conditions than

the nominal ones (x< 0). The calculations with the right derivative as 0.8 improves

the results for the following parameters: ln(1/q), η and Φ1 for densities lower than

0.7169 g/cm3, which may seem paradoxical.

Further studies have shown that this model is not valid at very low densities

(<0.3 g/cm3) for severe accidents in which linear behavior in ΔNW is no longer an

acceptable approximation, as is the dissociation of feedback effects. The model

may be upgraded using polynomials of degree two or three, and introducing mixed

effects for the water density on other feedbacks. Water temperature affects cross

sections through the Doppler effect:

Thermal effect of water temperature :

Σ̂ a2 � Σ̂ ref
a2

Σ̂ ref
a2

¼ βaT

ffiffiffiffiffiffiffiffiffiffi
TH2O

p �
ffiffiffiffiffiffiffiffiffiffi
T ref
H2O

q
ffiffiffiffiffiffiffiffiffiffi
T ref
H2O

q
0
B@

1
CA

v Σ̂ f 2 � v Σ̂ ref
f 2

v Σ̂ ref
f 2

¼ βfT

ffiffiffiffiffiffiffiffiffiffi
TH2O

p �
ffiffiffiffiffiffiffiffiffiffi
T ref
H2O

q
ffiffiffiffiffiffiffiffiffiffi
T ref
H2O

q
0
B@

1
CA

8>>>>>>>><
>>>>>>>>:

ð16:8Þ

Fig. 16.9 Precision of the Lefebvre-Seban model on the fuel multiplication coefficient for 8.65%

MOX (Parity MOX project). The most precise values are those of the “GAB” points. The linear

model is obtained by the left derivative (0.05 g/cm3) and on the right (0.8 g/cm3), with respect to a

reference density of 0.7169 g/cm3. (EDF calculations performed by F. Hollinger/F. Adel in 2003)
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Boron concentration has a linear influence over transport, absorption and fission

cross sections, as does xenon-135:

Boronandxenon thermal effects :

Σtr2 � Σ ref
tr2 ¼ βtB NB � N ref

B

� �
Σ̂ a2 � Σ̂ ref

a2
¼ βaB NB � N ref

B

� �
v Σ̂ f 2 � v Σ̂ ref

f 2
¼ βfB NB � N ref

B

� �
8>>><
>>>:

Σtr2 � Σ ref
tr2 ¼ βtXe NXe � N ref

Xe

� �
Σ̂ a2 � Σ̂ ref

a2
¼ βaXe NXe � N ref

Xe

� �
v Σ̂ f 2 � v Σ̂ ref

f 2
¼ βfXe NXe � N ref

Xe

� �
8>>><
>>>:

ð16:9Þ

Fig. 16.10 Precision of the Lefebvre-Seban model for fast flux (conditions as for Fig. 16.8)

Fig. 16.11 Precision of the Lefebvre-Seban model for the logarithm of the slowing-down density

(conditions as for Fig. 16.8)
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The average cross sections in the thermal group are determined using the

effective cross sections and the Unita parameter. First, the rHT parameter is com-

puted in nominal conditions (denoted ref):

r refHT ¼

ffiffiffiffiffiffiffiffiffiffi
T0

T ref
H2O

s

ξΣ ref
s

Σ̂ ref
a2

þ 2

ffiffiffiffiffi
T0

Tc

r

In addition, the mean reduced speed weighted by the function e(x) is also

computed in the same conditions:

�xrefe ¼
ðxc
0

x e xð Þ dx ¼
1� 2 r refHT

ffiffiffiffiffiffiffiffi
T ref
H2O

Tc

r" #

2 r refHT Unitað Þref
ffiffiffiffiffiffiffiffiffiffi
T0

T ref
H2O

s
� �xm

2 rr�efHT

Using the feedback models, new effective cross sections are obtained, along with

the following new parameters:

r crnHT ¼

ffiffiffiffiffiffiffiffiffiffi
T0

TH2O

r
ξΣ crn

s

Σ̂ crn
a2

þ 2

ffiffiffiffiffi
T0

Te

r �xcrne ¼ �xrefe � 1

2
ln
TH2O

T ref
H2O

and, finally, the Unita parameter after applying feedback:

Unitað Þcrn ¼
1� 2r crnHT

ffiffiffiffiffiffiffiffiffiffi
TH2O

Tc

r
 �
�xm þ 2 r crnHT �xcrne

� �
ffiffiffiffiffiffiffiffiffiffi
T0

TH2O

s

The average cross sections in the thermal group are obtained using Unita:

Σ̂ crn
a2

¼ Unitað Þcrn Σ̂ r�ef
f 2

v Σ̂ crn
f 2

¼ Unitað Þcrn v Σ̂ r�ef
f 2

(

Without leakage, the slowing-down current q and the integrated fast flux Φ1 are

linked by the transfer cross section from group 1 to group 2 Σr: q(xc)¼ΣrΦ1. The

infinite lattice hypothesis (zero buckling) relates the neutron quantities in the fast

domain very simply. The neutron balance equations normalized to one produced

neutron are:
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Σa1 Φ1 þ ΣrΦ1 ¼ vΣf 1 Φ1 þ vΣf 2 Φ2

keff
¼ 1

Σa2 Φ2 � ΣrΦ1 ¼ 0:

8<
:

The cross sections Σa1 and Σr are deduced using the feedback on Φ1 and q.
Nevertheless, the feedback model in the fast group is valid only in infinite lattice.

Therefore, using “0” (zero-buckling calculation) and “crn” (calculation after apply-

ing neutron feedback):

Σ0,crn
r ¼ q0,crn

Φ0,crn
1

Σ0,crn
a1

¼ 1� q0,crn

Φ0,crn
1

However, in the APOLLO2 assembly calculations, the cross sections are usually

homogenized using a non-zero critical buckling term, equal to the material buck-

ling. Hence, in this model, leakage correction is necessary. The semi-empirical

corrections used are :

Material buckling effect :

k01 ¼ k1
1þ B2

m aB2
m þ b

� � D0
1 ¼

D1

1� γB2
m

, γ ¼ 3:942

vΣ0
f1 ¼

vΣf1

1� βB2
m

, β ¼ 4:03 Σ0
r ¼ Σre

α
D1

ΣrþΣa1
B2
m , α ¼ 0:245 ð16:9Þ

The parameters a and b are determined from two APOLLO2 calculations for

assemblies with two different enrichments. Neutron quantities without the “0”

index are obtained from an APOLLO2 calculation with non-zero material buckling.

The coefficients α, β and γ come from an empirical fit. It should be pointed out that

the thermal group values are not corrected for leakage. The fast cross sections

including the leakage effect are determined by solving a second-order equation in

B2
m iteratively:

keff ¼ Σ crn
r

Σ crn
a1

þ Σ crn
r þ Dcrn

1 B2
m

vΣ crn
f 1

Σ crn
r

þ vΣ crn
f 2

Σ crn
a2

þ Dcrn
2 B2

m

" #
¼ 1

This resolution is carried out given that the cross sections also depend on the

material buckling B2
m through the semi-empirical laws governed by Eq. 16.9. Since

the cross sections have a physical sense in the latter, the roots are real. One is

strongly negative, thus corresponding to a non-physical case in which the leakage is

largely over-estimated with respect to the reaction rate in the medium. The other

root may be positive or negative and is close to 0—this is the value being sought. It

has been observed that for densities lower than 0.3 g/cm3, i.e. where there is a void
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fraction above 60% at 70 bars, the homogeneous feedback model fails. For

instance, beyond these conditions, the k1 calculated with the model increases

with the void fraction. This may be explained by the fact that there is a strong

hypothesis in the calculation: the effect of the five parameters on the cross sections

are taken to be uncoupled, and each effect is thus computed separately and added

afterwards. However, although this hypothesis is valid in the standard operating

range of the reactor, this is no longer the case when the density is decreased

drastically. Indeed, feedback effects depend on the spectrum, which changes

significantly when the moderator density varies. As for the fuel composition, the

model accounts for the fact that the reference values of the parameters change

during depletion to the reference feedback parameter values: T ref
H2O

¼ 306
�
C,

ρ ref
H2O

¼ 0:71 g=cm3, T ref
UO2

¼ 600
�
C—these are the average values in a reactor

core. For this purpose, a linear correction with the historical moderator density is

applied to the cross sections. This correction is defined locally in terms of burn-up

by:9

ρhistorical ~r; τð Þ ¼
Ð τ
0
ρH2O

~r; τ0ð Þ dτ0

τ

A correction coefficient linearly linking the cross section correction to the

historical density change is defined as:

Historical moderator density correction : Si cm2=g½ � �
ΔΣi

ρ ~r; τð Þ � ρ ref
H2O

ð16:10Þ

Coefficient Si is computed for each cross section type using a depletion calcu-

lation, carried out at a different operating point by changing the water density. This

type of correction makes unfortunately the coefficient Si having a physical dimen-

sion. We can get rid of this problem by another definition of the coefficient Si
(as used in EDF), such as:

Σi � Σi, ref

Σi, ref
� Si �½ � 	

ρ ~r; τð Þ � ρr�efH2O

ρr�efH2O

It has been observed that in practice, this approach is highly reliable for

operating points close to the nominal values. Such corrections may be neglected

if the isotopic depletion is computed and the macroscopic cross section is deduced

using the concentrations obtained through the depletion calculation:

9Some authors, like R. D. Mosteller in Impact of moderator history on physics parameters in
pressurized water reactors, Nuclear Science and Engineering, 98, pp. 149–153 (1988), use the

term historical water temperature, defined in the same way as the historical density. Similarly,

others use a historical boron concentration or a historical fuel temperature. The moderator density

effect is predominant over the others.
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Σi ¼
XN
j¼1

Nj σ
j
i

Nonetheless, it should be noted that the microscopic cross sections also depend

on the concentrations of other isotopes. Further, these cross sections are very rarely

tabulated in terms of isotopic composition given the high dimension of the required

tabulation space. In this case, a microscopic cross section model is required,

coupled with the use of a macroscopic feedback parameter such as a spectrum

index. Thorough analyses of this phenomenon have shown that 90% of the effect on

cross sections is due to isotopic concentrations. In addition, the leakage effects

remain regardless of the model used, since the cross sections are not homogenized

using the true core buckling. This effect is worth 200 pcm discrepancies on core

calculations.

16.6 Historical Isotopic Correction

In the previous paragraphs, the historical isotopic effect in the Lefebvre-Seban

model through the use of historical densities was described. Where there is a core

code with an isotopic depletion module, the macroscopic cross sections are gener-

ally computed using a residual cross section and the microscopic cross sections of

the n isotopes considered in the microscopic depletion (henceforth called micro-
isotopes):

Σ CRN
a ¼ Σ res

a þ
Xn
i¼1

Niσ
i
a

To obtain the spectral effect caused by a single isotope, for which the reference

concentration is not known, the partial derivatives ∂σ i
a=∂Nj and ∂Σ res

a =∂Nj must

be calculated for all micro-isotopes j, as well as the residual cross section (absorp-

tion, fission, etc.). This can be very onerous since several branch calculations are

needed around each reference state point in the phase space. The reference deple-

tion calculation as a function of burn-up is a “characteristic line” in the feedback

phase space, and represents change in a neutron parameter (a cross section for

instance). The branch calculations are then viewed as the points in a feedback

parameter grid:

The example described in Fig. 16.12 is a feedback grid where the water density

and the moderator temperature (Doppler effect of the moderator cross sections

only) are changed on the first grid (
20%). Uncoupling the effects of these two

parameters results in linearizing the effects in the vicinity of the operating point.

The central line is the nominal depletion calculation (i.e. computed at the nominal

feedback parameter values) with burn-up. The spectral effect inevitably leads to the
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fact that depleting the fuel from the initial burn-up at non-nominal parameter values

(for example T0
mod � 20%; ρ0mod þ 20%

� �
) will deviate in relation to the state point

in the corresponding grid. This deviation is quantified graphically by the arrow m.
Similarly, the grids for other feedback parameters may be represented (Fig. 16.12).

The spectral-isotope technique (Marguet, developed in 2009) is a simple and

efficient approach: it consists in introducing a pseudo-isotope, which is character-

istic of the spectral effects due to the historical isotopic effect. Assuming that all

micro-isotopes are absorbing, the absorption spectral effect of these isotopes may

be summarized through a spectral-isotope N∗
, created by weighting the reaction

rates of all the micro-isotopes per energy group (G groups in the core calculation):

σ∗a N
∗Φ ¼

XG
g¼1

Xn
i¼1

Niσ
i
a,gΦg

Supposing that only captures are important for the historical effects, the cross

section of the spectral-isotope is modeled using a 1/v law and an arbitrary cross

section of σ2200m/s¼1 barn. The spectral-isotope concentration in the core code can

thus be computed. The feedback effect of the spectral-isotope is obtained through

an additional dimension (which is unique so as to avoid a large number of branch

calculations) in the feedback phase space. In practice, this is done with the lattice

code by changing the concentration of the absorbing isotope as 1/v. Hence, the
differential feedback coefficients ∂σ i

a=∂N
∗ and ∂Σ res

a =∂N∗ are obtained. For the

other grid points not on the N∗ axis, it may be assumed that N∗ is equal to the

reference value N∗0 (this is not completely accurate if the definition of N∗ is

considered, since the values of the other parameters in the branch calculations

modify the σ i
a,g, which are used in the weighting formula). To avoid setting any
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Fig. 16.12 Branch calculations in the feedback phase space
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hypothesis on the spectral-isotope, the branch calculations are computed using the

microscopic reaction rates σ∗a N
∗Φ as the feedback parameter. The approach can be

enhanced by creating a spectral-isotope for each energy group in the core calcula-

tion. Such a model effectively takes into account both the historical isotopic effect

(especially the deviation in concentration) and the cooling effects for a reactor

shutdown (e.g. americium-241 build-up). In conclusion, regarding the spectral-

isotope calculation, it may be useful to choose only those isotopes that undergo

significant concentration changes with respect to feedback conditions while

disregarding those highly correlated with burn-up such as 235U and 238U.
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Chapter 17

Reactor Kinetics

The goal of reactor physics is to maintain the reactor in a stable state. Nevertheless,

the reactor must be brought to a stable state at full power, starting from a cold

shutdown state. Further, a reactivity incident may modify the stable state thus

achieved. Reactor kinetics studies the transient time phenomena and is the starting

point of studies for reactivity accidents.

(Akcasu et al. 1971; Ash 1979; Bell and Glasstone 1970; Hetrick 1993; Keepin

1965; Planchard 1995, p. 215; Ott and Neuhold 1985; Rozon 1992; Soodak 1962,

p. 248; Tellier 1993; Weaver 1963, 1964, 1968)

17.1 Prompt Neutrons

The starting hypothesis is that fission neutrons are emitted instantaneously as the

incident neutron is absorbed. The emitted neutrons are said to be prompt neutrons,

with a prompt emission spectrum (e.g. a Watt spectrum). Wigner proposed a

didactic space-time representation of the fission phenomenon (Fig. 17.1):

0 A neutron, usually at thermal energy, in a water-moderated reactor, collides

with a heavy nucleus.

1 The heavy nucleus is excited and splits up, just as a water droplet would be

cut in two (liquid drop model).

2 The two fragments spread apart from one another, taking with them a

considerable amount of the energy released by fission in the form of kinetic

energy (approximately 170 MeV).

3 Prompt neutrons are emitted (�99% of neutrons are emitted within 10�14 s

of fission). Two or three prompt fast neutrons are emitted.

4 Prompt γ rays are emitted (�7 γ rays).

5 The medium significantly slows down the fission fragments, and this phe-

nomenon is more extensive if the density of the medium, ρ, is high. All the
kinetic energy is then transformed into heat.

© Springer International Publishing AG 2017
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17.1.1 Evolution of a Hypothetical Prompt Neutron Reactor

A purely theoretical reactor is considered, in which the neutron population is

multiplied only by prompt neutrons. The diffusion equation describing the neutron

flux Φ for one energy group is expressed as:

D Δ Φ|fflfflfflffl{zfflfflfflffl}
Leakage from reactor

by diffusion

� Σa Φ|fflffl{zfflffl}
Absorption
of neutrons

þ S|fflffl{zfflffl}
Source

of neutrons

¼ ∂n
∂t|fflfflfflfflffl{zfflfflfflfflffl}

Change in
neutron population

with D[cm] the diffusion coefficient and Σa cm�1½ � the macroscopic absorption cross

section. The flux is defined as Φ� n v, and hence, the neutron density change

(specifying the nature of the source term) is written as:

1

v

∂Φ
∂t

¼ DΔΦ� ΣaΦþ Sf|fflfflffl{zfflfflffl}
Fission source

þ Sd|fflfflffl{zfflfflffl}
Other sources
at start�upð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Sources

The multiplication factor in an infinite medium is expressed as:
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k1 � production

absorption
¼ νΣf

Σa

Given L, the length of thermal diffusion, usually in cm:

L cm½ � �
ffiffiffiffiffiffiffiffiffi
D

Σa

r
or : L2 � D

Σa

The quantity Sf represents the fission sources. Sd represents the sources at the

reactor start-up, such as a californium source placed at the center of the reactor for

divergence and removed soon after. The amount of neutrons absorbed at thermal

energy for a given generation is ΣaΦ. In an infinite medium, k1ΣaΦ new thermal

neutrons are available for the next generation, i.e. νΣfΦ neutrons (Fig. 17.2).

The fission source term is given by Sf¼ k1ΣaΦ. Thus:

1

v

∂Φ
∂t

¼ DΔΦþ k1 � 1ð Þ ΣaΦ

Which, when divided by the absorption cross section Σa on both sides, becomes:

1

Σav

∂Φ
∂t

¼ L2ΔΦþ k1 � 1ð Þ Φ

In a finite reactor, the non-leakage probability of the geometrical design should

be taken into accounted for (Fig. 17.3).

In a finite reactor, neutrons can disappear by absorption during slowing-down, as

in an infinite medium (resonance escape probability factor p), by fast leakage from

the epithermal finite lattice (non-leakage factor e�B2
g τth where Bg is the geometrical

buckling of the reactor and τth the thermal Fermi age) and by thermal leakage,

which will be implicitly taken into account by solving the diffusion equation with

zero flux at the extrapolated surface. e�B2
g τth is the non-leakage probability of the

reactor in the presence of absorption in the fast and epithermal energy range; p is the
resonance escape probability during slowing-down. Thus, the fission source is:

Eth

E0

ΦΣa
Eth

ΦΣk a

Infinite 
lattice

p
ΦΣk a

loss during

slowing-down

p

Fig. 17.2 Diagram

showing the neutron

balance between two

generations of thermal

neutrons
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Sf ¼ k1ΣaΦ e
�B2

g τth

The flux equation is written as:
1

v

∂Φ
∂t

¼ DΔΦþ ΣaΦ k1 e
�B2

g τth � 1

� �
Or, alternatively:

1

Σav

∂Φ
∂t

¼ L2ΔΦþ k1 e
�B2

g τth � 1

� �
Φ

‘[s] is the time interval designating the mean neutron lifetime between the release

of a neutron and its loss in the reactor. This time corresponds to the time of slowing-

down and then the diffusion of a neutron before it is lost by sterile or fertile capture,

or a new fission reaction. Assuming that the reactor is infinite, this time period is

denoted as ‘Bg¼0 which, as will be seen later, is modified by neutron leakage at any

energy (characterized by e�M2B2
g ), which modifies the neutron lifetime. The fact

that the reactor is finite in space decreases the average neutron lifetime, whereas

a reactor with a reflector will provide neutrons with a longer lifetime. Given that

n/‘0 is the number of thermal neutrons lost per unit time in an infinite reactor, it is

assumed that the neutrons are re-emitted instantaneously after absorption of the

incident neutrons. Hence, k1 n/‘0 is the number of neutrons released at the new

generation by the loss of n/‘0 neutrons. Thus, the balance is (Weaver 1963, p. 35):

Δn

Δt
¼ k1

n

‘0
� n

‘0

which is expressed as a continuous time derivative thus:

dn

dt
¼ k1 � 1

‘0
n

Hence, the exponential growth law:

p
ΦΣk a

: non-leakage probability

Eth Eth

E0

ΦΣa

Infographie Marguet

p : resonance escape 

probability

Fig. 17.3 Reactor of finite volume (here a cylindrical reactor)
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Exponential growth law for prompt neutrons in an infinite lattice:

n tð Þ ¼ n 0ð Þ e
k1�1
‘0

� �
t ð17:1Þ

An exponential growth law for the neutron population is obtained. The latter

increases when k1 increases or the neutron lifetime decreases. This behavior is

known as prompt over-critical (prompt subcritical respectively if k1< 1) since

only prompt fast neutrons lead to neutron multiplication. The average neutron
lifetime in an infinite lattice is given by:

Prompt neutron lifetime in an infinite lattice: ‘0 � λ

v
¼ 1

vΣa
ð17:2Þ

where λ is the average absorption length (the mean distance travelled by a neutron

in an erratic way before its absorption, including scattering), and v is the mean

velocity of the neutrons. ‘0 is the average time interval between the birth of the

neutron by fission and its loss, usually at thermal state, by absorption [the notations

here are the same as those of (Glasstone and Edlund 1972)]. It is inversely

proportional to the macroscopic absorption cross section (if the medium is more

abundant, the neutron has a lower chance of survival). In a reactor with natural

uranium, this time is of the order of 10�3 s, but this decreases to 10�4 s in a reactor

with enriched uranium. The velocity used in this formula is the mean neutron

velocity in the reactor (and not that of fast neutrons), assuming that the slowing-

down time is differentiated from the scattering time. In a finite reactor, the

non-leakage probability of the medium must be multiplied by ‘0 to account for

leakage (Kahan and Gauzit 1957, p. 167). Thus:

Prompt neutron lifetime in an infinite lattice: ‘Bg
¼ ‘0

1þ L2B2
g

ð17:3Þ

For larger piles, in which there is a smaller degree of geometrical buckling, this

effect may be disregarded. The term average neutron generation time, also called

the neutron renewal period, is defined by some authors, (Lewins 1978, p. 57) as the

mean time for a neutron to produce a new generation of neutrons1:

Prompt neutron generation time: ‘ � 1

vνΣf
ð17:4Þ

Nonetheless, the notion of neutron generation time can be ambiguous if a precise

physical meaning is attached to it. The mean free path is defined as:

1To avoid any confusion with Greek letter, nu (ν) used in the production cross section and the

velocity, exceptionally, we use the velocity in non-italics ν as for the remaining equations. Some

references use the symbol Λfor the generation time.
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λt ¼
ðþ1

0

xe�ΣtxΣtdx ¼ 1

Σt

It is the average distance travelled between two collisions given that e�Σtx is the

non-collision probability for path x. The time ‘t¼ λt/v is the mean time between two

collisions in which the neutron travels part of a straight line. The mean free

(collision-free) path of absorption (capture, fission or scattering respectively) is

the average distance between the emission of the neutron and its absorption after the

first collision. It is expressed as:

λa ¼
ðþ1

0

xe�ΣtxΣadx ¼ Σa

Σ2
t

¼ Σa

Σt
λt

(resp. λc¼Σc λt/Σt, λf¼Σf λt/Σt or λs¼Σs λt/Σt). Indeed, the absorption of a neutron

supposes that there has been no previous interaction, meaning that the neutron

travels in a straight line until it is absorbed (is captured, induces fissions or is

scattered, respectively). These distances are the product of the mean free path and

the considered reaction probability, and they have an additive property such that:

λt ¼ λa þ λs ¼ λf þ λc þ λs

If these mean free paths are divided by the velocity, the mean free times of flight
are obtained, which are also additive. The mean free absorption path can be

computed by weighing path x by the non-absorption probability e�Σax (but scatter-

ing is possible), then by the absorption probability on the path dx (hence, Σa dx):

λa ¼
ðþ1

0

xe�ΣaxΣadx ¼ 1

Σa

Dividing this mean path by the velocity gives the average time between emission

and absorption. This can also be applied to the mean fission path (average distance

between emission and fission in a non-straight line) and for capture (average

distance between emission and capture in a non-straight line):

λf ¼
ðþ1

0

xe�ΣaxΣf dx ¼ Σf

Σ2
a

and λc ¼
ðþ1

0

xe�ΣaxΣcdx ¼ Σc

Σ2
a

and not 1/Σf or 1/Σc as might be expected. It should be noted from the above that

1/(Σfv) is not the mean time between emission and fission (resp. 1/(Σcv) for capture)
since, using the respective mean free paths, ‘f ¼ Σf = Σ2

av
� 	

and ‘c ¼ Σc= Σ2
av

� 	
are
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obtained. Furthermore, the lack of physical meaning of the length in terms of mean

path makes physical interpretation of the neutron generation time risky. Some

authors see it as the neutron generation time normalized to one neutron produced

by sheer intellectual construction.2 I personally prefer to see only a definition in the

neutron generation time: ‘ � ‘Bg
=keff .

Numerical example: Given a thermal neutron reactor with the following prop-

erties: Σa¼ 0.076 cm�1, D¼ 0.21 cm, B2
g ¼ 0:01 cm2. In a thermal Maxwell

spectrum at 20.44 �C (293.59 K) where v0¼ 2200 m . s�1, the mean velocity is

given by:

�v ¼ 2ffiffiffi
π

p
ffiffiffiffiffi
T

T0

r
v0 ¼ 2480 m:s�1

where the prompt neutron lifetime in an infinite lattice of the order of 50 μs:
‘0¼ 5.3 � 10�5 s and ‘Bg

¼ 5:16 � 10�5 s for a PWR. This value should be

compared with those of Natural UraniumGraphite Gas (UNGG) reactors, of the order

of 10�2� 10�3 s, and of fast neutron reactors, at 10�6 s. The exponential growth

law leads to a keff of 1.00100 (100 for 100,000 in reactivity) with n(t)� n(0) e20 t. In
this case, with just 100 pcm of over-criticality (very slightly more than 10 ppm of

natural boron in the moderator, the same order of magnitude as the uncertainty of

measure of boron in a reactor), the neutron population “explodes” due to the 20 in

the exponential term, making the reactor virtually uncontrollable by any method

known to man. The reactor period, T, which corresponds to the time period in

which the neutron population is multiplied by e, is given by:

Prompt period of infinite reactor: T ¼ ‘0
k1 � 1

ð17:5Þ

which for a 100 pcm of reactivity: T� 0.05 s. This is not technologically viable,

since no automatic system or human action can possibly counteract such a surge in

power.

17.1.2 Flux Calculation: Point Reactor Hypothesis

The mean neutron lifetime in an infinite lattice (the 0 index is for geometrical

buckling of zero) ‘0� 1/(Σav) appears in the flux equation:

2This analogy means that if all couples had twins at 20, this would be equivalent to have one child

at 10, and a second one 10 years later. This example shows that the calculation of the population

over a long period is identical in both cases, even if the basic hypothesis is inconsistent.

17.1 Prompt Neutrons 1193



‘0
∂Φ
∂t

¼ L2ΔΦþ k1 e�B2
g τth � 1

� �
Φ

The hypothesis (not always verified!) that the space and time variables are

separable is applied:

Φ ~r; tð Þ ¼ φ ~rð Þ Ψ tð Þ

This principle consists in assuming that the time variation of the flux is homo-

geneous in space, which has been known for obscure historical reasons in English

as the “point-kinetic model”. This can lead to the erroneous assumption that a 0D

hypothesis is being applied (this particular model will be studied later). This

factorization of the flux is inserted in the diffusion equation:

‘0 φ ~rð Þ d Ψ tð Þ
dt

¼ L2 Ψ tð Þ Δφ ~rð Þ þ k1 e�B2
g τth � 1

� �
φ ~rð Þ Ψ tð Þ

The time variables are grouped on the LHS of the equation and the space

variables on the RHS to give:

‘0
Ψ tð Þ

d Ψ tð Þ
dt

¼ L2Δφ ~rð Þ
φ ~rð Þ þ k1 e�B2

g τth � 1

Close to criticality, the spatial shape of the flux φ ~rð Þ obeys (at first-order

approximation) to a fundamental mode—this is the second approximation of the

point kinetics model:

Δφ ~rð Þ þ B2
gφ ~rð Þ ¼ 0

where:
‘0

Ψ tð Þ
d Ψ tð Þ

dt
¼ k1 e�B2

g τth � 1� L2B2
g

Dividing by 1þ L2B2
g, the following can be expressed:

keff ¼ k1
1þ L2B2

g

e�B2
g τth ¼ k1

1þM2B2
g

where: keff � 1 ¼ ‘0

1þ L2B2
g

1

Ψ tð Þ
d Ψ tð Þ
dt

By denoting the prompt neutron lifetime in an infinite medium as: ‘Bg
� ‘0

1þL2B2
g
,

the following is obtained:

dΨ tð Þ
dt

¼ keff � 1

‘Bg

Ψ tð Þ

Using Φ ~r; 0ð Þ ¼ φ ~rð Þ Ψ 0ð Þ ¼ Cst φ ~rð Þ, finally, the following can be written:
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Φ ~r; tð Þ ¼ Φ ~r; 0ð Þ e
keff �1

‘Bg
t

By calculation, the following growth law is obtained: n tð Þ ¼ n 0ð Þ e
keff �1

‘Bg
t
, with

Φ� n v found as usual.

Returning to the previous numerical example and using the reactivity

ρ� (keff� 1)/keff expressed in pcm (pour cent mille—literally “per 100,000”), a

100 pcm increase in reactivity (as seen in Fig. 17.4), (ρ� keff� 1 when keff is close
to 1) leads to exponential behavior of the flux: keff¼ 1.001, ρ� 100 pcm, Φ ~r; tð Þ �
Φ ~r; 0ð Þ e20 t (Fig. 17.5).

Under these conditions, the reactor is uncontrollable. Fortunately, this simplified

approach does not account for a fraction of neutrons emitted a certain time after

fission, i.e. deferred or delayed neutrons, which play a pivotal role in the stability of
the reactor.

17.2 Delayed Neutrons

After the discovery of fission in 1939, Roberts, Hafstad, Meyer and Wang observed

the emission of deferred neutrons,3 sometimes several dozen seconds after fission.

Roberts and his team bombarded a uranium nitrate bottle with a beam of deuterium.

Using an ionization chamber with a boron deposit, they detected the presence of

neutrons up to 2 min after the end of irradiation. Two possible explanations were

put forward: either direct disintegration of certain fission products emitting neu-

trons or photodisintegration emitting high-energy photons, a solution that was later

rejected (Figs. 17.6 and 17.7, Photo 17.1).

This phenomenon was explained by Niels Bohr and John A. Wheeler4 as the

result of a nuclear excitation, followed by β� decay of the fission fragments. Well

before sustained chain reactions were being considered, the importance of deferred

neutrons to control the reaction was understood. The basic mechanism is as follows:

in some cases, fission of a heavy nucleus produces a fission product far from the

stable-isotope region. One of the two fragments has an excess of neutrons. Most

3R. B. Roberts, J. R. Hafstad, R. C. Meyer and P. Wang: The delayed neutron emission which
accompanies fission of uranium and Thorium, Phys. Rev. 55 (664), March 1939.
4John Archibald Wheeler (1911–2008). American theoretical physicist. After receiving his PhD

from John Hopkins University in 1933, he taught at the University of North Carolina, then, from

1938, at Princeton, becoming one of the youngest professors at this prestigious university. In 1939,

together with Niels Bohr he proposed an explanation for nuclear fission. He contributed to the

Manhattan Project at the Hanford plutonium-producing reactor site. He predicted xenon poisoning

by which reactor start-up could be stopped. Wheeler worked on reactor physics between 1941 and

1945. On returning to Princeton, he worked on quantum gravitation and relativity, and it was he

who coined the term “black hole”. He directed the theoretical physics center in Texas in 1976. In

1969 he was awarded the Franklin Medal for his fission theory.
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fission products are β�-radioactive but some isotopes with a large excess of

neutrons can also be β� , n (a phenomenon also known as neutron decay). This is

possible if the isotope is in an excited state above the binding energy of the neutron

to the daughter isotope. The neutron decay period is that of the isotope with a

neutron excess, known as a precursor. Figure 17.8 shows the Wigner representation

of fission, with the deferred neutrons added. The latter are emitted in small

quantities but with significant delay with respect to the initial absorption for prompt

neutrons. This delay modifies the average neutron lifetime significantly as will be

shown next.

Photo 17.1 John Wheeler (Pinceton)
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6 One of the fission products has a large excess of neutrons and decays with β� , n
(emission of an electron and a neutron). In the above diagram, the other fission product

is assumed to be stable
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A common mistake is to assume that since delayed neutrons are produced in

small quantities when normalized to one fission, their effect can be disregarded.

This is not the case at all, since most neutrons in a reactor are, in fact, “hidden” in

the precursors, concentrations of which are 1000 greater than the effective neutron

density. The precursors are somewhat equivalent to a reservoir or buffer stock of

neutrons for the core.

This is due to the fact that the radioactive periods of precursors can be very long

compared to the life of the prompt neutrons, thereby increasing the mean neutron

generation time.

Given the particular fission case: 1
0nþ 235

92U ! 87
35Br þ 147

57Laþ 1
0nþ 1

0n, bro-
mine 87 is radioactive with β� decay having a period of 55.7 s:

87
35Br ! 87

36Kr
∗ þ 0

�1e
�

The resulting krypton 87 has a large excess of neutrons and decays almost

instantaneously according to two modes (Fig. 17.9):
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%702.6 MeV=−β

%30

8 MeV=−β

%9.2

250 keVEneutron =
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Fig. 17.9 Decay scheme of Bromine 87
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87
36Kr

∗ !
86
36Kr þ 1

0n 2:9 %ð Þ
87
37Rb þ 0

�1e
�

97:1 %ð Þ

(

Hence, Bromine 87
35Br is a precursor for delayed neutrons. As a fission product,

87
35Br is produced with a yield depending on the energy of the incident neutron and

the fissile nucleus. Other precursors have been identified, and the particular case of

iodine 137
53I with period 22.72 s should be noted.

137
53I ! 137

54Xe
∗ þ 0

�1e
�

then 137
54Xe

∗ ! 136
54Xe þ 1

0n

Let βi be the number of deferred neutrons emitted by the fission product i

(precursor) after a fission, and λi the decay constant of the precursor. The value of

βi depends on the heavy fissile nucleus and the energy of the incident neutrons

(hence, the spectrum of neutrons in the reactor). βi is expressed in pcm (the number

of deferred neutrons is very small) of the total amount of neutrons emitted by

fission. For 87
35Br in the reaction 235

92U þ n
� 	

thermal
, β87

35
Br ¼ 21 pcm. This is equiv-

alent to 21� 10�5 neutrons emitted with a period of 55.7 s for one emitted neutron.

Historically, delayed neutrons were grouped into six precursor families (it was long

thought that only six fission products emitted delayed neutrons. In fact, there are

about a hundred of them). Recent developments have led to a finer description with

eight families. An exhaustive compilation of kinetic data is given in Tuttle

(Table 17.1).5

17.2.1 Delayed Neutron Fraction

The delayed neutron yield is the number of delayed neutrons brought to one fission

such that nd/F. The total delayed neutron fraction β, i.e. the sum over all delayed

neutron fractions for precursors of delayed neutrons, is equal to the ratio between

the delayed neutron yield nd/F and the number of neutrons emitted by fission, ν:

Delayed neutron fraction: β �
X

i 2 precursorf g
βi β �

nd
F

ν
ð17:6Þ

Each precursor family groups the precursors with similar periods. A mean period is

associated with each family. The latter is computed as the average period for (β�,n)
decays for precursors in the family. The families are generally called delayed

neutron groups, which should not be confused with the energy groups in a calcu-

lation discretized in energy (Tables 17.2 and 17.3).

5R. J. Tuttle: Delayed-neutron data for reactor-physics analysis, Nuclear science and engineering,
56, pp. 37–71 (1975).

17.2 Delayed Neutrons 1199



17.3 Effect of Delayed Neutrons on Reactor Kinetics

As seen previously, if all the neutrons emitted by fission were prompt, the reactor

would not be controllable. Given θi the mean lifetime of precursor i (henceforth, the
precursor group will be simply denoted as precursor). The neutrons emitted by the

precursor appears after a time period of θi. The mean delay of the group is then βi θi.

Table 17.1 Delayed neutron fractions for fast and thermal incident neutrons

Heavy nucleus

Fast fission Thermal fission
nd
F ν β nd

F ν β
241
94Pu – – – 0.0154 3.14 0.00490

240
94Pu 0.0088 3.3 0.00260 – – –

239
94Pu 0.0063 3.09 0.00200 0.0061 2.87 0.00210

238
92U 0.0412 2.79 0.01480 – – –

235
92U 0.0165 2.57 0.00640 0.0158 2.43 0.00650

233
92U 0.0070 2.62 0.00260 0.0066 2.48 0.00260

232
90Th 0.0496 2.44 0.02030 – – –

Non-fissile systems at the considered energy are not given here

Table 17.2 Kinetic data for six precursor groups

Group T λ 235
92U þ nth

239
94Pu þ nth

233
92U þ nth

1 87
35Br
� 	

55.7 0.0124 21 7 23

2 137
53I

� 	
22.72 0.0305 142 63 79

3 6.22 0.111 128 45 67

4 2.30 0.301 257 69 74

5 0.61 1.14 75 18 14

6 0.23 3.01 27 9 9

Pcm 650 210 270

Table 17.3 Effect of incident neutron energy on kinetic parameters of certain fissile systems

Neutron

energy

Fissile

isotope

Delayed neutron

yield per fission

ν number of

neutrons per

fission

β delayed

neutron

fraction

λ ¼ βP
i 2 precursorf g

βi
λi

0.0253 eV 235
92U 0.0158 2.432 0.00650 0.0767

0.0253 eV 239
94Pu 0.0061 2.874 0.00212 0.0648

0.0253 eV 233
92U 0.0066 2.482 0.00266 0.0543

1.45 MeV 235
92U 0.0165 2.570 0.00642 0.0784

1.58 MeV 239
94Pu 0.0063 3.090 0.00204 0.0683

1.45 MeV 233
92U 0.0070 2.620 0.00267 0.0559

After Hetrick (1993)
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Therefore, intuitively, the mean thermal neutron generation lifetime is no longer

‘0 as in the hypothetical case in which all neutrons were prompt. In fact, it is the

average of the prompt lifetime and the deferred lifetime ‘ defined as:

‘ ¼ ‘0 þ
X
i

βiθi

The mean lifetime θi of an isotope of period Ti (corresponding to the decay

constant λi) is the time in which the number of nuclei is divided by the Neper

constant e:

θi ¼ 1

λi

This result can be obtained by considering that out of n neutrons emitted in the

core, there are n(1� β) prompt neutrons with mean lifetime and there are nβ
delayed neutrons. Since θ ¼P

i

βiθi=β is the mean lifetime of the precursors

averaged over the precursor families, the mean lifetime of neutrons emitted by

the precursors is:

‘0 þ θ ¼ ‘0 þ
X
i

βiθi=β

The average, weighted by the number of neutrons for each type, leads to the

generation time:

n‘ ¼ n 1� βð Þ‘0 þ nβ ‘0 þ
X
i

βi
θi
β

 !

hence, the previous result:

Average of prompt anddelayed neutron lifetimes: ‘ ¼ ‘0 þ
X
i

βiθi ð17:7Þ

Applied to the system 235
92U þ 1

0nthermal this leads to:

X
i � 6

βiθi ¼ 21
1

0:0124
þ 142

1

0:0305
þ 128

1

0:111




�þ257
1

0:301
þ 75

1

1:14
þ 27

1

3:01

�
	 10�5 s

¼ 8:43 10�2 s
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Which is around 0.1 s. In a true PWR spectrum, the lifetime of prompt neutrons

in an infinite lattice is ‘0� 2� 10�5 s, which significantly increases the mean

lifetime of prompt and delayed neutrons:

‘ ¼ ‘0 þ
X
i � 6

βiθi � 2� 10�5 þ 8:4� 10�2 where: ‘ � 0:1 s

The lifetime of prompt neutrons in a reactor is shorter than the lifetime of fast

neutrons scattering off a pure moderator (Table 17.4) due to absorption by heavy

nuclei.

Where T is the reactor period (time interval after which the flux is multiplied by e):

Φ ~r; Tð Þ ¼ e Φ ~r; 0ð Þ ¼ Φ ~r; 0ð Þ e
keff�1

‘
T

Thus, the period of the real reactor is:

Period of real reactor: T ¼ ‘

keff � 1
ð17:8Þ

If ρ ¼ 100 pcm ¼ 0.00100, then T� 100 s, in contrast with the 0.05 s period

obtained by assuming that the reactor contained only prompt neutrons. This is

equivalent to saying that “the reactor is 2000 times less responsive”. Practically,
the multiplication factor can be decomposed into two terms:

keff ¼ keff 1� βð Þ þ keff β

In a reactor that can be controlled, keff (1� β) is such that it is slightly under

1. Therefore, the increase in the number of neutrons is principally due to the term

keffβ, i.e. the delayed neutrons. Where keff (1� β)> 1, i.e. keff> 1/(1� β)� 1 + β,
the reactor will be over-critical only with prompt neutrons. The reactor is said to be

prompt over-critical. This state is reached when a reactivity of ρ¼ 1� 1/keff¼ β is

inserted, and it is amplified dangerously where ρ> β. The reactor quickly becomes

uncontrollable, as shown in the numerical example for the prompt critical reactor.

The unit of reactivity is the dollar (symbol $, 1/100 of a $ ¼ 1 cent); although

mysterious for the uninitiated public, this unit is simply the reactivity expressed in

multiples of β. Hence, if β¼ 700 pcm and ρ ¼ 1400 pcm are inserted, this is

equivalent to the insertion of 2 $. The situation can be summed up as follows:

Table 17.4 Fast neutron

lifetimes in a moderator
Moderator Fast neutron lifetime(s)

Water 2 � 10�4

Heavy water 0.14

Beryllium 4 � 10�3

Graphite 1.6 � 10�2

From Glasstone and Sesonske (1994, p. 242)
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keff< 1 The reactor is sub-critical. Starting from

a stable state, the power decreases. The

fission power fades out leaving only the

residual decay power due to fission

products t

Power

keff¼ 1 The reactor is critical. Starting from a

stable state, the power remains constant

t

Power

1 < keff <
1

1�β
The reactor is delayed over-critical.
Starting from a stable state, the power

increases in a controllable manner

t

Power

keff 
 1
1�β

The reactor is prompt-critical. Starting
from a stable state, the power increases

dangerously, becoming a threat to fuel

integrity, and in the end, to the reactor

itself if the geometry loss is explosive t

Power

17.4 Neutron Kinetics Equation

The neutron balance at one energy group, as previously seen, is written as:

∂n tð Þ
∂t

¼ 1

v

∂Φ
∂t

¼ DΔΦ� ΣaΦþ S

which, in the case of a start-up without an independent source, is:

1

v

∂Φ
∂t

¼ DΔΦþ k1 � 1ð Þ ΣaΦ

The term k1 ΣaΦ, which represents the neutron fission source, can be broken

down into the production of prompt neutrons (1� β)k1 ΣaΦ and of delayed

neutrons β k1 ΣaΦ ¼P6
i¼1

λiCi, where Ci is the precursor concentration. The pre-

cursor decay rate, given by:
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�dCi

dt
¼ λiCi

is equal to the rate of creation of deferred neutrons emitted by the precursor. The

quantity
P6
i¼1

λiCi is, thus, the rate of appearance of delayed neutrons, irrespective of

their origin.

Hence: k1 1� βð Þ ΣaΦþ
X6
i¼1

λiCi

 !
� ΣaΦþ DΔΦ ¼ 1

v

∂Φ
∂t

Assuming that the flux obeys the fundamental mode: ΔΦþ B2
g Φ ¼ 0

The geometrical buckling can be introduced in the diffusion equation:

k1 1� βð Þ �M2B2
g � 1

� �
Φþ

X6
i¼1

λiCi

Σa
¼ 1

v Σa

∂Φ
∂t

as well as the migration area:

M2 �
Ð1
0

D Eð Þ Φ Eð Þ dEÐ1
0

Σa Eð Þ Φ Eð Þ dE

and the prompt neutron lifetime, which in an infinite lattice, is given by:

‘0 � 1
v Σa

and in a finite medium by: ‘Bg
� 1

v Σa 1þM2B2
g

� � ¼ ‘0

1þM2B2
g

Since: keff ¼ k1
1þM2B2

g

the following is obtained: keff 1� βð Þ � 1
� 	

ΦþP6
i¼1

λiCi

Σa 1þM2B2
gð Þ ¼ ‘Bg

∂Φ
∂t

by dividing the previous equation by 1þM2B2
g. The neutron density equation is

deduced since Φ(t)¼ n (t) v:

∂n tð Þ
∂t

¼ keff 1� βð Þ � 1
� 	

n tð Þ
‘Bg

þ
X6
i¼1

λiCi

‘Bg
vΣa 1þM2B2

g

� �
If ‘Bg

¼ 1

v Σa 1þM2B2
gð Þ is inserted, the neutron kinetics equation is established:
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Neutron kinetics equation:
∂n tð Þ
∂t

¼ keff ρ� βð Þ
‘Bg

n tð Þ þ
X6
i¼1

λiCi ð17:9Þ

17.4.1 Precursor Concentration

The precursor Ci is assumed to be 100% radioactive fission product. The precursor

is itself produced by fission of fissile atoms with a yield γi. The Bateman equation

for these precursors is written as:

∂Ci

∂t
¼ �λiCi|fflffl{zfflffl}

Radioactive decay

of species i

þ γi ΣfΦ|{z}
Fission rate|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Number of precursor

nuclei i created by fission

with yield γi

þ Cyσ
y
aΦ|fflfflffl{zfflfflffl}

appearance

by capture

on nucleus Cy

� Ciσ
i
aΦ|fflffl{zfflffl}

loss by capture

The number of delayed neutrons ni from the precursor Ci is written as:

∂ni
∂t

¼ þλiCi|fflffl{zfflffl}
Radioactive decay

of species i creating

neutrons ni

� βi k1 ΣaΦ|ffl{zffl}
Absorption rate|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Number of neutrons dispappearing

by absorption proportionally

to their quantities βi

� λnni|{z}
Radioactive decay

of neutrons by β�

The radioactive decay of neutrons is due to the fact that the free neutron is

naturally β� radioactive with a period of 11 min. In practice, in most kinetic cases,

the natural decay of neutrons is disregarded (11 min is more than 10 times greater

than the longest period of delayed neutrons: 87
35Br of period 55.7 s. Further, since

the concentration of neutrons ni is negligible compared to Ci, it may legitimately be

advanced that λnni< < λiCi/10 000). Furthermore, the loss and creation of pre-

cursors under neutron flux are also disregarded since the corresponding absorption

cross sections are very small. The very definition of βi is equivalent to the number of

delayed neutrons with respect to the total number of neutrons emitted:

βi �
γiΣfΦ

νΣfΦ
¼ γi

ν

Substituting γi in the expression of
∂Ci

∂t , simplified under the previous hypotheses,

the following is obtained:
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∂Ci

∂t
¼ �λiCi|fflffl{zfflffl}

Radioactive

decay

of species i

þ βi k1ΣaΦ|fflfflffl{zfflfflffl}
Number of

neutrons produced

¼ νΣfΦ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Number of precursors

of species i produced

If the precursor is not 100% radioactive with neutron decay (as for 87
35Br where

only 2.9% of decays produced a neutron), the branching ratio of neutron decay Bri
must be taken into account in the formula for neutron production ni:

∂ni
∂t

¼ þBriλiCi � βi k1 ΣaΦ

Multiplication of the equation ∂Ci

∂t by Bri leads to:

∂ BriCið Þ
∂t

¼ �λiBriCi þ BriγiΣfΦ

The rate of loss of Bri Ci is equal to the rate of creation of ni:

∂ BriCið Þ
∂t

þ ∂ nið Þ
∂t

¼ 0

where: βi k1 ΣaΦ¼BriγiΣfΦ
Since, by definition, k1 � νΣfΦ

ΣaΦ
and βi ν�Bri γi, the following is obtained:

∂ BriCið Þ
∂t

¼ �λi BriCið Þ þ βi k1 ΣaΦ

Taking into account the decay branching ratio in the precursor concentration, the

same equation is obtained as for the case in which the precursor is 100% radioactive

with neutron decay. The quantity Bri Ci is the number of latent neutrons in the part

of 87
35Br (for example) that produces deferred neutrons. The precursor is not

technically a fission product but rather the contribution of this fission to neutron

production. In practice, this is often a source of confusion for many people.

17.4.2 Point-Reactor Kinetics

(Akcasu et al. 1971, p. 49)

1206 17 Reactor Kinetics



The term point-reactor kinetics conveys the hypothesis that the flux can be

factorized as a product of two functions, one dependent on time and the other on

space (i.e. Φ ~r; tð Þ ¼ φ ~rð Þ Ψ tð Þ). In practical cases, the space-dependent function

may also vary with time. To assume that it is constant over time intervals, it is

recalculated for a next time step. Classically these equations are written as:

∂n tð Þ
∂t

¼ ρ� βð Þ
‘Bg

=keff
n tð Þ þ

X6
i¼1

λiCi

∂Ci

∂t
¼ �λiCi þ βi k1ΣaΦ ¼ �λiCi þ βi k1vΣan tð Þ

¼ �λiCi þ βi keff 1þM2B2
g

� �
vΣan tð Þ

The following can be written:
∂Ci

∂t
¼ �λiCi þ βi keff

‘Bg

n tð Þ
where, by denoting ‘ � ‘Bg

=keff the effective lifetime of prompt neutrons, also

called the neutron generation time (Hetrick 1993, p. 10), the classical equations

from all books on neutron kinetics (Hetrick 1993; Keepin 1965; Ott and Neuhold

1985; Rozon 1992; Tellier 1993) are obtained:

Point-reactor kinetics equations with 6 groups of delayed neutrons:

∂n tð Þ
∂t

¼ ρ� βð Þ
‘

n tð Þ þ
X6
i¼1

λiCi tð Þ
∂Ci tð Þ
∂t

¼ �λiCi tð Þ þ βi
‘
n tð Þ

8>><
>>: ð17:10Þ

Expressed in this form, it should be borne in mind that ‘ integrates the keff (t)
(which is why it is called the effective lifetime of prompt neutrons or generation
time). It must not be confused with the average lifetime of prompt and delayed

neutrons, ‘, which includes delayed neutrons with a lifetime 1000-fold greater.

These equations are considered by assuming that ‘ is almost constant, thereby

implying a reasonable change in reactivity. Where this is not the case, it is better

to use equations in which ‘0 is explicitly utilized. The form of the point-kinetics

equations allows a simple physical analysis of the neutron population. Neverthe-

less, the spatial effects should be carefully taken into account using an appropriate

weight of the neutron parameters in the model (lifetime, delayed neutron fraction).

If the equation on the precursor concentrations is summed on the number of

precursor groups, the following is obtained:
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X
i

∂Ci tð Þ
∂t

¼
X
i

�λiCi tð Þ þ
X
i

βi
‘
n tð Þ �

X
i

λiCi tð Þ þ β

‘
n tð Þ

Adding this equation to the first equation on n(t) leads to:

∂ n tð Þ þP
i

Ci tð Þ

 �

∂t
¼ ρ

‘
n tð Þ

The sum of precursor concentrations Ctot �
P
i

Ci tð Þ is the amount of potential

neutrons in the reactor. In general, this is more than the amount of neutrons actually

present in the reactor. If reactivity ρ is positive, the amount of neutrons n(t) +Ctot

increases. If ρ is negative, n(t) +Ctot decreases. It should be noted that if ρ is

negative (respectively positive), n(t) may increase (respectively decrease) if Ctot

decreases (respecively increases). This is contrary to the common belief that if ρ is

negative, n(t) always decreases (respectively ρ positive, n(t) increases). However,
this is true if the insertion of reactivity occurs during a permanent state in which n(t)
and Ctot are constant. In a transient situation, the analysis should be done for each

case (the history of the neutron population n(t) and Ctot is required).

17.4.3 Mobile Fuel

The case in which the fuel is mobile, as for molten salt reactors or in experiments in

which the fuel is oscillated (e.g. in the progressive poisoning method of Gérard

Gambier), requires a transport term for precursors with velocity V(t) along the

z axis:

∂Ci ~r; tð Þ
∂t

þ V tð Þ∂Ci ~r; tð Þ
∂z

¼ �λiCi ~r; tð Þ þ βi
‘
n ~r; tð Þ

17.5 Nordheim Equation

If the flux is factorized as the product of a spatial function and a time function

(Glasstone and Edlund 1972, p. 297):

Φ ~r; tð Þ ¼ Φ0 ~rð Þ eωt

Ci ~r; tð Þ ¼ Ci
0 ~rð Þ eωt

(
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it may be assumed that the reactor is close to the critical state, i.e. Φ0 ~rð Þ obeys the
fundamental mode ΔΦ0 ~rð Þ þ B2

gΦ0 ~rð Þ ¼ 0.

where: ωþ λið Þ Ci
0 ¼ βik1ΣaΦ0

and: keff 1� βð Þ � 1
� 

Φ0 þ
P6
i¼1

λiCi0

Σa 1þM2B2
gð Þ ¼ ‘Bg

ωΦ0

By substituting Ci0 by its expression in terms of Φ0, removing the latter, and

introducing the reactivity term, the previous equation is written as :

Nordheim Equation: ρ ¼ keff � 1

keff
¼ ‘Bg

ω

1þ ‘Bg
ω
þ 1

1þ ‘Bg
ω

X6
i¼1

βiω

ωþ λi
ð17:11Þ

This is the first form of the Nordheim Equation (after Lothar W. Nordheim),6

also known as the “Inhour Equation” (Hetrick 1993, p. 20; Ash 1979, p. 31). This

equation has seven roots (for a standard 6-group delayed neutron calculation) called

the frequencies. By definition, keff tends to 1 where ρ tends to infinity, and where keff
tends to zero (non-multiplying medium) ρ tends to �1. This equation can be

analyzed graphically giving the seven frequencies, i.e. the solutions to the

Nordheim Equation for a given reactivity, by drawing a horizontal line with

equation ρ¼ f(ω) in the diagram (Photo 17.2).

The points of intersection with the Nordheim curve give the solutions. In

Fig. 17.10, the solutions for “positive reactivity” and “negative reactivity” are

shown. In the latter case, it can be seen graphically that all roots are negative,

indicating that the neutron population will decrease in an exponential manner, and

at infinity, it will behave as the most negative root, i.e. the largest period of the

reactor. Hence, for any anti-reactivity inserted, the convergence of the reactor

cannot be faster than the radioactive decay of 87
35Br. However, in the case of a

reactivity insertion, one root is always positive and can increase indefinitely when ρ
tends to 1, i.e. ρ is much larger than β–, which is synonymous for prompt critical

behavior that leads to an explosion. Graphically, as reactivity approaches β, the
effect of a shorter generation time tends to increase the frequency ω1, thereby

leading to a much faster increase in the neutron population in the event of reactivity

insertion. The second form of the Nordheim Equation is obtained by setting

‘ ¼ ‘Bg
=keff . From the first form, the following may be written:

6Lothar Wolfgang Nordheim (1899–1985), a German physicist of Jewish origin, emigrated to the

United States in 1934 like many German physicists, due to the rise of Nazism. He taught at Duke

University where he spent most of his career as of 1937. He was appointed head of the theoretical

physics group of the Clinton laboratories, the ancestor of Oak Ridge National Laboratories in the

Manhattan Project. He worked on kinetics problems and explosions in the wake of development of

the hydrogen bomb. He also contributed to nuclear shell theory. The Fowler-Nordheim model

establishes that the emission of electrons under an electric field at the surface of a metal follows a

Fermi-Dirac distribution and obeys the tunneling effect. The latter has many practical applications.
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ρ 1þ ‘Bg
ω

� 	 ¼ ‘Bg
ωþ

X6
i¼1

βiω

ωþ λi

where ρ ¼ �‘Bg
ω ρ�1ð Þ þP6

i¼1

βiω

ωþ λi
¼ �‘Bg

ω
keff � 1

keff
�1

� �
þ
X6
i¼1

βiω

ωþ λi
¼

‘Bg

keff
ωþ

X6
i¼1

βiω

ωþ λi
Thus:

Photo 17.2 Lothar Nordheim in 1954 (Duke University)

ω7

6λ− 5λ−
4λ− 3λ− 2λ− 1λ−

βρ /

ω6

ω7 ω6

ω5 ω4

ω5 ω4

ω3

ω3

ω2

ω2

0

ω1

0>ρ

0<ρ

gB�
1

−

ω1

1

ω

Infographie Marguet

β/10−3=�

β/10−4=�

β/10−5=�

1 10

Fig. 17.10 Graphical representation of the first form of the Nordheim Equation
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Second form of the Nordheim Equation: ρ ¼ ‘ωþ
X6
i¼1

βiω

ωþ λi
ð17:12Þ

It should be pointed out that for large values of ω, the function ρ ¼ ‘ωþ P6
i¼1

βiω= ωþ λið Þ tends to ρ¼ ‘ω+ β. Yet, by definition, ρ cannot increase beyond

1. The introduction of ‘ ¼ ‘Bg
=keff , which is not constant since it depends on ρ via

the formula keff¼ 1/(1� ρ), shows that the graph of ρ¼ ‘ω+ β is not a straight line,
as is often shown in several reference books. This is the case for small reactivity

changes under the hypothesis that ‘� constant (Fig. 17.11).

The roots ωi are once again the abscissa of the intersection of the plot ω¼ f(ρ)
with the horizontal line of abscissa ρ. The ordinate gives the reactivity (and not ρ/β
as in Fig. 17.10), the region with ρ> 1 is not possible by definition of reactivity.

Several references [including Hetrick (1993)] present the graphic solution in the

previous manner, with the axes inverted as in Fig. 17.12. The Nordheim Equation

may also be established by direct formulation. Where n(t) is the number of neutrons

emitted in a generation and ‘Bg
the lifetime in finite medium during Δt, n tð ÞΔt=‘Bg

neutrons are lost and they create keff 1� βð Þ n tð ÞΔt=‘Bg
prompt neutrons and

Σi λiCi delayed neutrons.

dn tð Þ
dt

¼ keff 1� βð Þ n tð Þ
‘Bg

� n tð Þ
‘Bg

þ
X6
i¼1

λiCi

dCi

dt
¼ keff βi

n tð Þ
‘Bg

� λiCi

8>>><
>>>:

6λ−
5λ− 4λ− 3λ− 2λ− 1λ−

ρ

1

ω0

β

βωρ += �

Infographie Marguet

Fig. 17.11 Graphical representation of the second form of the Nordheim Equation
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Since: βik1ΣaΦ ¼ βik1 Σav|{z}
1
‘0

n tð Þ ¼ βi
k1
‘0
n tð Þ and : k1

‘0
¼ keff

‘Bg

the previous formulation is obtained. Finally, the neutron population and the

precursor concentrations are the sum of the seven exponential terms (in a

six-delayed-neutron-group calculation), or more generally, of the nr + 1 exponential
terms if nr is the number of delayed neutron groups.

n tð Þ ¼
X7
k¼1

Ak eωkt Ci tð Þ ¼
X7
k¼1

γik eωkt

The divergence period T is the time such that n(t) is multiplied by the Neper

constant e in the reactor (or stable period). When t increases, the positive solution
ω1 gives asymptotic behavior (if ρ> 0):

n tð Þ � A1 eω1t

The divergence period in this case is worth T¼ 1/ω1. If ρ< 0, ω1 is the less

negative root. Then, n tð Þ � A1 eω1t, and T¼ |ω1|
�1. If ρ� 1, then ‘Bg

ω � ‘ω � 1:

– λ1  

– λ2  

– λ3  

– λ4  

– λ5  

– λ6  

βρ
ω

−
=

λi

βiΣi

ρ
ω =

ω

ω1 

ω7 

0 ρ β ρ

Infographie Marguet

+�

�

Fig. 17.12 Graphical representation of the second form of the Nordheim Equation Graphical plot

of the form ω¼ g(ρ)
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ρ � ‘ωþ
X6
i¼1

βiω

λi
) ω ¼ ‘

‘þP6
i¼1

βi=λi

If ρ tends to 1, the divergence period tends to 0, i.e. the reactor can be made to

diverge as fast as desired. If ρ tends to �1, the divergence period tends to 1/λ1,
i.e. the mean lifetime of the precursor having the longest period (~57 s). This limits

overwhelming of the chain reaction by natural decay. Taking T¼ 1/ω1, ρ can be tied
to the divergence period as:

Hence: ρ ¼ keff � 1

keff
¼ ‘ω

1þ ‘ω
þ 1

1þ ‘ω

X6
i¼1

βiω

ωþ λi

If ‘ω is diregarded compared to 1, which is acceptable, the reactivity equation

can be simplified:

ρ � ‘ωþ
X6
i¼1

βiω

ωþ λi
¼ ‘

T
þ
X6
i¼1

βi
1þ λ iT

This form of the Nordheim Equation led to it being called the “Inhour Equation”
(the period being the inverse of time). 1 Inhour is the amount of positive reactivity

corresponding to an asymptotic increase of power for a reactor period of 1 h. In the

English-speaking world, the “Dollar” unit (symbol $) is obtained by dividing the

reactivity ρ by β. Therefore, a reactivity of 2 Dollars is obtained if ρ¼ 2β.

17.6 “Prompt Jump” Notion: Insertion of a Reactivity Step

Assuming that the reactor is initially in a critical state at equilibrium, an “instan-

taneous” amount of reactivity is inserted by some means (e.g. boron dilution with

an amount of non-borated or insufficiently-borated water, rod removal, etc.)

(Fig. 17.13).

For t < 0, ∂Ci

∂t ¼ 0 ) C0
i ¼ βi

λi
k1Σað Þ0�Φ0

0

ρ

t

Fig. 17.13 Insertion of a

reactivity step
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For t¼ 0, the flux and precursor concentrations are continuous. The flux is given

with six delayed-neutron groups, and the precursor concentration by:

Φ ¼ Φ0

X7
k¼1

αk eωkt and Ci ¼ C0
i

X7
k¼1

γik eωkt

For t> 0, the following is obtained:

∂Ci

∂t
¼ C0

i

X7
k¼1

ωkγike
ωkt ¼ βi k1Σað Þ0þ Φ0

X7
k¼1

αke
ωkt � λiC

0
i

X7
k¼1

γike
ωkt

where: C0
i γik ¼ βi k1Σað Þ0þΦ0

αk
ωk þ λi

for
i ¼ 1 to 6

k ¼ 1 to 7

�

Thus: C0
i ¼

X7
k¼1

C0
i γi,k ¼ βi k1Σað Þ0þΦ0

X7
k¼1

αk
ωk þ λi

¼ βi
λi

k1Σað Þ0�Φ0

The sum of the previous equation can also be computed:

X7
k¼1

αk
ωk þ λi

¼ k1Σað Þ0�
k1Σað Þ0þ

1

λi
i ¼ 1 to 6

and
X7
k¼1

αk ¼ 1

After a sufficiently long time, the flux behaves as a growing exponential term:

Φ � Φ0 α1 eω1t since the only root is positive. For short times, the effect due to the

other exponential terms fades out quickly, such that the flux increases very rapidly

to take the shape of a jump, known as a “prompt jump” (Lamarsh and Baratta 2001,

p. 343; Weaver 1968, p. 49) (Fig. 17.14).

1 2 3

1

0 t (s)

Φ
0
(r)

Φ(r,t)

Prompt-jump 

te 1

1
ωα≈

Fig. 17.14 Behavior of flux

after insertion of a reactivity

step ρ > 0 at time t ¼ 0
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17.7 Age Theory in the Kinetics Equation for Thermal

Neutrons

(Meghreblian and Holmes 1960, p. 551)

The neutron kinetics equation for one energy group was established earlier.

However, the neutron diffusion equation can be corrected to account for thermal

neutrons by determining the non-leakage factor e�B2
gτth during slowing-down in

the Fermi age theory, with B2
g being the geometrical buckling of the pile. Let the

thermal neutron diffusion equation be:

DΔΦth � ΣaΦth þ S ¼ 1

v

∂Φth

∂t
where Φth is the thermal flux.

Neglecting the start-up sources, the thermal neutron source term can be written

as:

S ¼ k1ΣaΦth e�B2
gτth in thermal neutrons per cm3 and per second

The source term originates from fast neutrons, i.e. k1ΣaΦth/p. These fast

neutrons can either be captured during the slowing-down process, leaving

p� k1ΣaΦth/p neutrons, or else they can escape the pile with a non-leakage

probability of e�B2
gτth , leaving k1ΣaΦth e�B2

gτth neutrons (Fig. 17.15).

Accounting for delayed neutrons divides the neutron source term into two parts:

a source of prompt fast neutrons, (1� β) k1 ΣaΦth/p, and a source of delayed fast

neutrons,
P
i

βik1ΣaΦth=p ¼P
i

λiCi. The thermal neutrons corresponding to these

two fast neutron sources are obtained by multiplying by the non-leakage probability

e�B2
gτth and by the resonance escape probability p, to give the thermal neutron

source:

Fig. 17.15 Blaquière representation of kinetics equation of thermal neutrons
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Sth ¼ 1� βð Þ k1ΣaΦth e�B2
gτth þ

X
i

λiCi

 !
p e�B2

gτth

Hence :
1

v

∂Φth

∂t
¼DΔΦth�ΣaΦthþ 1�βð Þ k1ΣaΦth e

�B2
gτth þ

X
i

λiCi

 !
p e�B2

gτth

Introducing the thermal scattering area, L2�D/Σa, and the lifetime of prompt7

neutrons in an infinite medium, ‘0� 1/(v Σa), the following is obtained

(Fig. 17.16):

‘0
∂Φth

∂t
¼ L2ΔΦth þ 1� βð Þ k1 e�B2

gτth � 1
� �

Φth

þ p
e�B2

gτth

Σa

X
i

λiCi

 !

This equation is identical to that obtained in the chapter on neutron diffusion

using the “large-size reactor” approximation:

e�B2
gτth � 1� B2

gτth and M2 ¼ L2 þ τth

The precursor equation is given by:

∂Ci

∂t
¼ �λiCi þ βi

k1
p

ΣaΦ

Similar to the space-time decomposition of the flux and the precursor concen-

trations as seen previously, the following is set:

Φth ~r; tð Þ ¼ Φ0 ~rð Þ eωt

Ci ~r; tð Þ ¼ Ci0 ~rð Þ eωt

�

and, assuming that the reactor is close to a critical state, the flux obeys a funda-

mental mode:

ΔΦ0 ~rð Þ þ B2
gΦ0 ~rð Þ ¼ 0

where: Ci, 0 ~rð Þω eωt ¼ �λiCie
ωt þ k1

p βiΣaΦ0 ~rð Þ eωt

7This may seem paradoxical in a thermal neutron equation, but it is indeed the prompt neutron

lifetime, i.e. the mean time between the birth of a (prompt) neutron and the birth of (prompt)

neutrons of the new generation appearing in the equation. The reader should bear in mind the

obvious statement that a neutron can only be thermal if it was initially fast.
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Fig. 17.16 Delayed neutrons (six groups) in the Blaquière representation
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thus: Ci, 0 ~rð Þ ¼ k1
p

βi
ωþ λið ÞΣaΦ0 ~rð Þ

This formula leads to computation of the initial precursor concentrations.

Inserting this expression in the neutron kinetics equation, the following is obtained:

‘0Φ0 ~rð Þ ω eωt ¼ �L2 eωt B2
g Φ0 ~rð Þ þ 1� βð Þ k1 e�B2

gτth � 1
h i

Φ0 ~rð Þ eωt

þp
e�B2

gτth

Σa

 X
i

λi e
ωt k1

p

βi
ωþ λið Þ ΣaΦ0 ~rð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ci,0 ~rð Þ

!

Which, by eliminating Φ0 ~rð Þ eωt, can be simplified to:

‘0ω ¼ �L2B2
g � 1þ 1� βð Þ k1 e�B2

gτth þ k1 e�B2
gτth

X
i

λiβi
ωþ λi

Using the neutron lifetime in the geometry with buckling Bg:

‘Bg
¼ ‘0= 1þ L2B2

g

� �
, then: keff ¼ k1e�B2

gτth= 1þ L2B2
g

� �
, and using the proportion

of the delayed neutrons β ¼P
i

βi, the following equation is reached:

keff � 1 ¼ ‘Bg
ωþ keff

X
i

βiω

ωþ λi

Inserting the reactivity ρ� (keff� 1)/keff, the classical Nordheim Equation is

established:

ρ ¼ ‘Bg
ω

1þ ‘Bg
ω
þ 1

1þ ‘Bg
ω

X
i

βiω

ωþ λi

17.8 Reduced Kinetics Equations

Let the differential equations for neutron kinetics previously encountered be:

dn tð Þ
dt

¼ keff 1� βð Þ n tð Þ
‘Bg

� n tð Þ
‘Bg

þ
X6
i¼1

λiCi tð Þ

dCi tð Þ
dt

¼ keff βi
‘Bg

n tð Þ � λiCi tð Þ

8>>>><
>>>>:
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The second form of the Nordheim equation is obtained by setting

‘ � ‘Bg
=keff ¼ ‘Bg

1� ρð Þ. In general, it is assumed that ‘ varies weakly.

dn tð Þ
dt

¼ ρ� β

‘
n tð Þ þ

X6
i¼1

λiCi tð Þ
dCi tð Þ
dt

¼ βi
‘
n tð Þ � λiCi tð Þ

8>><
>>:

Several works use the reduced equation above only, which can lead to confusion

regarding the value of ‘, about which the reader should take care. Henceforth, the

term ‘ will be used as far as possible.8 In the chapter dedicated to fission, data is

given concerning the six delayed neutron groups.

The data on the six delayed neutron groups were presented in the chapter on

fission. The value of λ, denoting an average delayed neutron group, is obtained as

follows:

λ ¼ βP6
i¼1

βi=λi

:

If all precursors are properly known, this formula may be generalized as follows:

λ ¼ βP
precursors

βi=λi

The following table gives the classical values for the main fissile systems

(Tables 17.5 and 17.6):

8There is (unfortunately) some confusion regarding notation in the references on neutron kinetics,

and also on occasion, regarding the numerical values of prompt neutron lifetimes. The following

table gives corresponding definitions from the better-known references.

Marguet

Keepin

(1965,

p. 166)

Hetrick

(1993,

p. 6)

Ott and

Neuhold

(1985, p. 24)

Reuss

(2003,

p. 119)

Prompt neutron lifetime

in an infinite medium
‘0 ¼ 1

vΣa ‘1 ‘1

Prompt neutron lifetime

in a finite medium
‘Bg

¼ ‘0
1þL2B2

g ‘ ‘0 ‘ θ

Effective prompt neutron

lifetime or generation

time

‘ ¼ ‘Bg
keff

¼ 1
vνΣf Λ ‘ Λ ‘
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It is clear that if β varies significantly according to the fissile or fertile isotope in

question, from 0.0223 for 232Th to 0.00227 for 239Pu (i.e. tenfold), the value of λ,
perhaps more important for kinetics, remains around 0.08, corresponding to a mean

lifetime for precursors of 12.5 s.

17.9 Kinetics with an Imposed Neutron Source

The particular case of a neutron source independent of the flux, such as the

spontaneous fission of some heavy nuclei or an external neutron source as for

Accelerator Driven Systems (ADS, in which a particle accelerator powers a sub-

critical reactor by firing a beam at a neutron-producing target), may be approached

with the Laplace transform. Let the kinetics equation with a source be:

dn tð Þ
dt

¼ ρ� β

‘
n tð Þ þ

X6
i¼1

λiCi tð Þ þ q tð Þ
dCi tð Þ
dt

¼ βi
‘
n tð Þ � λiCi tð Þ

8>><
>>:

With n( p) , Ci( p) and q( p) the Laplace transforms of the time variable of n(t),
Ci(t) and q(t), the following is obtained (Weaver 1963, p. 40):

Table 17.5 Kinetic data for

thermal fission
Isotope ν β β/λ λ
233U 2.2866 0.00281 0.050 s 0.0562 s�1

235U 2.2423 0.00700 0.089 s 0.0787 s�1

239Pu 2.8799 0.00227 0.033 s 0.0688 s�1

241Pu 2.9340 0.00545 0.060 s 0.0908 s�1

Table 17.6 Kinetic data for

fast fission (based on U235

spectrum)

Isotope ν β β/λ λ
232Th 2.44 0.02230 0.225 s 0.0991 s�1

233U 2.62 0.00266 0.048 s 0.0665 s�1

235U 2.57 0.00660 0.084 s 0.0786 s�1

238U 2.79 0.01610 0.124 s 0.1300 s�1

239Pu 3.09 0.00212 0.031 s 0.0684 s�1

240Pu 3.32 0.00289 0.038 s 0.0743 s�1

241Pu 2.99 0.00544 0.062 s 0.0877 s�1

From Keepin and Lewins, referenced by R. Barjon

1220 17 Reactor Kinetics



pn pð Þ � n 0ð Þ ¼ ρ� β

‘
n pð Þ þ

X6
i¼1

λiCi pð Þ þ q pð Þ

pCi pð Þ � Ci 0ð Þ ¼ βi
‘
n pð Þ � λiCi pð Þ

8>><
>>:

Using a mathematical shortcut in which n( p) is set as the product K( p)N( p),
which is invertible by an inverse Laplace transform, and where N( p) is the image of

the solution without an imposed source:

K pð Þ ¼ n 0ð Þ þ q pð Þ þ
X6
i¼1

λiCi 0ð Þ
λi þ p

N pð Þ ¼ ‘

‘p� ρþ p
X6
i¼1

βi
λi þ p

8>>>>>><
>>>>>>:

For a constant source, q(t)¼Q, the inverse Laplace leads to:

n tð Þ ¼
X6
i¼0

αi
ωi

eωi t � 1ð ÞQþ eωi t
ρn 0ð Þ
‘

� �

ρ ¼ ‘ωi þ
X6
i¼1

βiωi

λi þ ωi
pour ωi¼ 0 �a 6:

8>>>><
>>>>:

The values of ωi are the roots of the second form of the Nordheim equation. For a

critical pattern (ρ¼ 0 where ω0¼ 0), the following is obtained (Fig. 17.17):

n tð Þ ¼ n 0ð Þ þ α0Qtþ
X6
i¼1

αi
ωi

eωi t � 1ð Þ Qþ eωi t
ρn 0ð Þ
‘

� �

Wyman and Harms generalized this approach9 by projecting the flux onto a basis

of fundamental modes from a two-group diffusion equation and one group of

delayed neutrons.

17.10 Delayed Neutron Spectrum

The delayed neutron spectrum, often noted as χd(E) (the index p denotes prompt

neutrons) or χ1(E) (the index 0 here denotes prompt neutrons), is not identical to the

prompt neutron emission spectrum. The two deviate, especially at low energies. On

9D. R. Wyman, A. A. Harms, Kinetics of driven multiplying media, Nuclear Science and Engi-

neering, 83, p. 483 (1983).
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average, the energy of delayed neutrons is of the order of 400 keV rather than the

2 MeV mean energy of the prompt neutrons. The spectrum of delayed neutrons

released by the main emitters was measured very precisely by Greenwood and

Watts.10 In the continuous-energy model with one group of delayed neutrons, the

neutrons are counted whatever their energy. This approximation may be corrected

by introducing the effective beta, βeff, obtained by weighting β by the adjoint fluxes

or importances of the two intensities of the prompt and delayed neutrons using a

formalism set up by G. Keepin11 (1965, p. 164) (Fig. 17.18).

These importances, with a weight of 0.97 in PWR, suggest that βeff is smaller

than β. The importance function (the adjoint flux with the fission source as adjoint

source)Φ∗ ~r;Eð Þ is the probability of a neutron at position~r and energy E inducing

fission somewhere inside the reactor (Stacey 2001, p. 141). The relative importance

of the delayed neutrons of group I of the fissile isotope F is given by12,13:

t

0n

0nQ
�
ρ

+

)1(0
effknQ −<

�

Q

effk
Q
−

=
1

�

Q0α

)1(0
effknQ −=

�

)1(0
effknQ −>

�
effk

Q
−

=
1

�

effk
Q
−

=
1

�

effk
Q
−

=
1

�

effk
Q
−

=
1

�

Critical: linear evolution

Sub-critical: 
stabilized evolution

)(tn

Infographie Marguet
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n∞

n∞

Fig. 17.17 Evolution of reactor with imposed source

10R. C. Greenwood, K. D. Watts:Delayed neutron energy spectra of Br87, Br88, Br89, Br90, I137,
I138, I139 and Te136, Nuclear Science and Engineering, Vol. 126, pp. 324–332 (1997).
11G. Keepin, Progress in Nuclear Energy, Vol. 1, Series 1, Pergamon Press, London (1956).
12S. Das: The importance of delayed neutrons in nuclear research—a review, Progress in Nuclear
Energy, Vol. 28, No. 3, pp. 209–264 (1994). This import journal on delayed neutrons concludes

this chapter perfectly. It contains several recent data (particularly on delayed spectra and βeff for
several experiments).
13D. Saphier, D. Ilberg, S. Shalev, S. Yiftah: Evaluated delayed neutron spectra and their
importance in reactor calculations, Nuclear Science and Engineering, 62, pp. 660–694 (1977).
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I Fd, i ¼
ð
V

d~r

ð1
E¼0

χ F
d, i Eð ÞΦ∗ ~r;Eð ÞdE

ð1
E
0¼0

νΣ F
f Φ ~r;E

0
� �

dE
0

The importance of the prompt neutrons is given by:

I Fp ¼
ð
V

d~r

ð1
E¼0

χ F
p Eð ÞΦ∗ ~r;Eð ÞdE

ð1
E
0 ¼0

νΣ F
fissionΦ ~r;E0ð ÞdE0

These importances enable the calculation of an importance function used to

transform the delayed neutron fraction to the effective fraction used in a point-

kinetics model (Fig. 17.19):

βF
i,eff ¼

I Fd, i β
F
iP

F

1�P
i

βF
i

� �
I Fp þP

i

I Fd, i β
F
i


 �

The delayed neutron spectrum is integrated for multi-group kinetics equations.

Let G be the number of energy groups with six groups of delayed neutrons (in the

standard model):
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Fig. 17.18 Emission spectra by group of delayed neutrons (adapted from Batchelor and Hyder)

analyzed by Keepin (1965, p. 94) and Weaver (1964, p. 340)
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1

vg

∂Φg

∂t
¼DgΔΦg�ΣagΦgþ

XG
g0¼1

Σg0!gΦg0 þ 1�βð Þ χ0,g
XG
g0¼1

νΣf gΦg

 !
þ
X6
i¼1

χi,gλiCi

∂Ci

∂t
¼ βi

X6
g0¼1

νΣf gΦg

 !
�λiCi

8>>>>><
>>>>>:

g¼ 1,G

i¼ 1,6

χ0 , g is the prompt neutron spectrum and χ1 , g is the normalized spectrum of delayed

neutrons, both normalized such that:

XG
g¼1

χ0,g ¼ 1 and
XG
g¼1

χ1,g ¼ 1

for i ¼ 1,6. The PWR are often calculated with two energy groups (thermal cut-off

at 0.625 eV). Thus:

1

v1

∂Φ1

∂t
¼D1ΔΦ1� Σa1 þΣrð Þ Φ1þ 1�βð Þ χ0 νΣf 1Φ1þνΣf 2Φ2

� 	þX6
i¼1

χi,1λiCi

1

v2

∂Φ2

∂t
¼D2ΔΦ2�Σa2Φ2þΣrΦ1

∂Ci

∂t
¼ βi νΣf 1Φ1þνΣf 2Φ2

� 	�λiCi

8>>>>>>><
>>>>>>>:

BATCHELOR and BONNER

BURGY, PARDUE, WILLARD and WOLLAN
(Estimated uncertainty: ± 20 %)

–E = 430 KeV    (Estimated uncertainty:  ±10%)
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Fig. 17.19 Total emission spectrum for delayed neutrons (adapted from Batchelor and Bonner)

analyzed by Keepin (1965, p. 93)
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It has been assumed that no neutrons are created in thermal group 2 other than by

scattering (ΣrΦ1 with Σr¼Σ1! 2) from group 1; while not rigorously accurate, this

is acceptable for first-order effects. For a 3D reactor, the kinetic quantities must be

spatially weighted. Writing the diffusion equation in matrix form, the following

operators are used:

P ¼
νΣf 1 νΣf 2

0 0

" #
the production operator

K ¼
Σa1 þ Σr � D1Δ 0

�Σr Σa2 � D2Δ

" #
where Δ is the Laplace operator

Φ ¼
Φ1

Φ2

" #

8>>>>>>>>>>><
>>>>>>>>>>>:
In the static case, the diffusion equation is written as: 1

keff
P� K

� �
Φ ¼ 0

Let the adjoint flux be Φ∗ ¼ Φ∗
1 ,Φ∗

2

� 
, which verifies the adjoint system of

equations:

Φ∗ 1

keff
P∗ � K∗

� �
¼ 0

where the adjoint operators are the transpose of the direct operators (if all their

terms are real):

P∗ ¼ νΣf 1 0

νΣf 2 0


 �
K∗ ¼ Σa1 þ Σr � D1Δ �Σr

0 Σa2 � D2Δ


 �

First-order perturbation theory gives the calculation of the change in reactivity

dρ¼ � d (1/keff) with ρ¼ 1� (1/keff):

dρ ¼
Φ∗ � 1

keff
dP� dK

� �
Φ

Φ∗ � PΦ

where � is the matrix product with:

Φ∗ � PΦ ¼ Φ∗
1 ,Φ∗

2

�  νΣf 1 νΣf 2

0 0


 �
Φ1

Φ2


 �
¼ Φ∗

1 ,Φ∗
2

�  νΣf 1Φ1 þ νΣf 2Φ2

0


 �
¼ Φ∗

1 νΣf 1Φ1 þ Φ∗
1 νΣf 2Φ2

The thermal adjoint flux Φ∗
2 no longer appears in the previous result, which is

contrary to the (wrong) expression that would “naturally” be written:
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Φ∗
1 νΣf 1Φ1 þ Φ∗

2 νΣf 2Φ2. The matrix form of the kinetics equation may be

expressed as:

1

v

∂Φ
∂t

¼ 1� βð Þ PΦ� KΦþ
X6
i¼1

λiCiχ

with
1

v

∂Φ
∂t

¼
1

v1

∂Φ1

∂t
1

v2

∂Φ2

∂t

2
664

3
775 and

X6
i¼1

λiCiχ ¼
X6
i¼1

λiCiχi, 1

0

2
64

3
75

8>>>>>>><
>>>>>>>:

∂Ci

∂t
¼ βiνΣfΦ� λiCi and νΣfΦ ¼ νΣf 1 ; νΣf 2

�  Φ1

Φ2


 �
¼ νΣf 1Φ1 þ νΣf 2Φ2

Classically, the solution is sought in the form of:

Φ ¼ Φ1

Φ2


 �
¼ α eωt ¼ α1 eωt

α2 eωt


 �
where:

∂Φ
∂t

¼ ωΦ and, similarly:
∂Ci

∂t
¼ ωCi

with: ωCi¼ βiνΣfΦ� λiCi i.e.: Ci ¼ βiνΣfΦ

ωþ λi

Hence:
X6
i¼1

λiCi ¼
X6
i¼1

βiλi
ωþ λi

νΣfΦ

Inserting the time derivative of the flux in the matrix form of the kinetics

equation leads to:

ω
1

v
Φ ¼ P� Kð Þ Φ� βPΦþ

X6
i¼1

λiCiχ

P� Kð Þ Φ� ω
1

v
Φþ

X6
i¼1

λiβi
ωþ λi

χ � β

� � !
PΦ ¼ 0

8>>>><
>>>>:

Since 1
keff

P� K
� �

Φ ¼ 0, P� Kð Þ Φ ¼ 1� 1
keff

� �
PΦ ¼ ρPΦ

the following is obtained: ρPΦ ¼ ω 1
v �

P6
i¼1

λiβi
ωþ λi

χ � βi

� �
P

� �
Φ

with the matrix form of the Nordheim equation:

Matrix form of Nordheim equation:

Φ∗ � ρPΦ ¼ Φ∗ � ω
1

v
�
X6
i¼1

λiβi
ωþ λi

χ � βi

� �
P

 !
Φ ð17:13Þ
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In comparison with the point-kinetics model, the 3D effect and the importance

are taken into account by weighting with the adjoint flux and integrating over the

volumes, which for two energy groups gives:

β
F

i ¼ βF
i1

Ð
volumeΦ

∗
1 νΣf 1Φ1d~r þ βF

i2

Ð
volumeΦ

∗
1 νΣf 2Φ2d~rÐ

volume Φ∗
1 νΣf 1Φ1 þΦ∗

1 νΣf 2Φ2

� 	
d~r

where F is the index of the fissile system. βi for the fissile systems composition is

obtained by summing over all of these systems:

β
F

i ¼
P
F

βF
i1

Ð
volumeΦ

∗
1 νΣf 1Φ1dvþ βF

i2

Ð
volumeΦ

∗
1 νΣf 2Φ2dv

h i
P
F

Ð
volume Φ∗

1 νΣf 1Φ1 þ Φ∗
1 νΣf 2Φ2

� 	
dv

� 
For a core, the integration volume is the core itself, i.e. all the assemblies in

it. The total β is given by β ¼P6
i¼1

βi. The prompt neutron lifetime is given in

(Keepin 1965, p. 165):

‘ ¼
Ð
volume

Φ∗
1 Φ1

v1
dvþ Ðvolume Φ2Φ∗

2

v2
dvÐ

volume Φ∗
1 νΣf 1Φ1 þ Φ∗

1 νΣf 2Φ2

� 	
dv

The thermal adjoint flux Φ∗
2 appears in the numerator since:

‘Bg
¼ Φ∗ � 1

v Φ

Φ∗ � Σa 1þM2B2
g

� �� �
Φ

from the analogy with ‘Bg
¼ vΣa 1þM2B2

g

� �h i�1

, which was shown previously.

‘0 ¼
Φ∗ � 1

v Φ

Φ∗ � Σa Φ
, ‘ ¼ ‘Bg

keff
, keff ¼ νΣf

Σa 1þM2B2
g

� � where: ‘Bg
¼ Φ∗ � 1

v Φ

Φ∗ � PΦ
keff

Hence:

‘ � ‘Bg

keff
¼

Φ∗ � 1

v
Φ

Φ∗ � PΦ

Φ∗ � 1

v
Φ ¼ Φ∗

1 ,Φ∗
2

�  1

v1
Φ1

1

v2
Φ2

2
664

3
775 ¼ Φ∗

1

1

v1
Φ1 þ Φ∗

2

1

v2
Φ2

8>>>>>>>><
>>>>>>>>:
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Following the same reasoning, the group-wise βeff for delayed neutrons is given

by:

βieff ¼
P
F

βF
i1

Ð
volumeΦ

∗
1 νΣf 1Φ

1
1

� 	 Φ1

Φ1
1

_I dvþβF
i2

Ð
volumeΦ

∗
1 νΣf 2Φ

1
2

� 	 Φ2

Φ1
2

_I dv


 �
P
F

Ð
volume Φ∗

1 νΣf 1Φ
1
1

� 	 Φ1

Φ1
1

þΦ∗
1 νΣf 2Φ

1
2

� 	 Φ2

Φ1
2

� �
dv

where _I is the importance that includes the delayed neutrons effect (which depend

on the fuel type)—of the order of 0.97 for a PWR. Φ1
1 ,Φ1

2 are the fast and thermal

fluxes in an infinite medium, since the real fast and thermal fluxes prevailing in the

reactor, Φ1,Φ2, resulting from a core calculation, are not available in the neutron

physics library. βeff is the sum of the group-wise βeff for delayed neutrons:

βeff ¼
X6
i¼1

βieff

The foregoing shows that the experimental value of βeff depends heavily on

calculation of the importances and fluxes in an infinite lattice. Recent works14 have

shown that theβeff obtained for UOX andMOX fuel has a 2% uncertainty within one

standard deviation. This is consistent with the criteria required by the Nuclear

Energy Agency specialists, who set a 5% uncertainty level at one standard deviation

for industrial reactors.

The Nordheim equation in question is as follows:

ρ ¼ ‘Bg
ωþ

X6
i¼1

βieff

1þ λi
ω

with:

λi ¼
P
F

βF
i1

Ð
volumeΦ

∗
1 νΣf 1Φ

1
1

� 	 Φ1

Φ1
1

dvþ βF
i2

Ð
volumeΦ

∗
1 νΣf 2Φ

1
2

� 	 Φ2

Φ1
2

dv


 �
P
F

β F
i1

λ F
i1

Ð
volumeΦ

∗
1 νΣf 1Φ

1
1

� 	 Φ1

Φ1
1

dvþ β F
i2

λ F
i2

Ð
volumeΦ

∗
1 νΣf 2Φ

1
2

� 	 Φ2

Φ1
2

dv


 �

14Véronique Zammit-Averlant: Validation intégrale des estimations du paramètre béta effectif
pour les réacteurs MOX et incinérateurs [Integral validation of calculations of the effective beta

parameter for MOX reactors and incinerators], thesis at the University of Aix-Marseille (1998).
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17.11 First-Order Perturbations

A first-order perturbation in a critical reactor causes a change in reactivity of:

dρ ¼
Φ∗ � 1

keff
dP� dK

� �
Φ

Φ∗ � PΦ
¼

ÐÐÐ
Reactor

Φ∗ � 1
keff

dP� dK
� �

Φ dxdydzÐÐÐ
Reactor

Φ∗ � PΦ dxdydz

with dK� dA� dDΔ since

K ¼ Σa1 þ Σr � D1Δ 0

�Σr Σa2 � D2Δ


 �
¼ Σa1 þ Σr 0

�Σr Σa2


 �
� �D1Δ 0

�D2Δ


 �
If the numerator of the reactivity perturbation is expanded, the following is

reached:ððð
Reactor

Φ∗ � 1

keff
dP� dK

� �
Φ dxdydz¼

ððð
Reactor

Φ∗ � 1

keff
dP� dA

� �
Φ dxdydz

þ
ððð

Reactor

Φ∗ � dDΔΦ dxdydz

Since: div f grad
��!

Φ
� �

¼ f ΔΦþ grad
��!

f � grad
��!

Φ and using the Ostrogradski

theorem with the external surface S of the reactor:ððð
Reactor

div~k dxdydz ¼
ðð
S

~k:~n dS

the following is obtained:ððð
Reactor

Φ∗ � dDΔΦ dxdydz ¼
ðð
S

Φ∗ � dD grad
��!

Φ:~n dS

�
ððð

Reactor

grad
��!

Φ∗ � grad
��!

Φ dD dxdydz

At the external surface of the reactor, the boundary condition linking the

diffusion current to the extrapolated length λ is used:
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~J � �Dgrad
��!

Φ ¼ Φ

3λ
~n

where: ðð
S

Φ∗ � dD grad
��!

Φ:~n dS ¼ �
ðð
S

Φ∗ � dD

D

Φ

3λ
:~n dS

Finally:

dρ¼

ÐÐÐ
Reactor

Φ∗� 1
keff

dP�dA
� �

Φdxdydz� ÐÐÐ
Reactor

grad
��!

Φ∗� grad
��!

Φ dDdxdydz�ÐÐ
S

Φ∗� dD
D

Φ
3λ:~n dSÐÐÐ

Reactor

Φ∗� PΦdxdydz

It should be noted that the surface term is zero in the case of the Lefebvre-

Lebigot reflector model used at EDF, which assumes that the diffusion coefficients

of the reflector are constant, hence dD{S}� 0. For two-energy groups, the previous

equation is written as:

dρLefebvre�Lebigot ¼

ððð
Reactor

Φ1
∗ 1

keff
δνΣf1 � δΣa1 � δΣr

� �
Φ1 þ Φ1

∗ 1

keff
δνΣf2

� �
Φ2 dxdydz

þ
ððð

Reactor

Φ2
∗δΣrΦ1 dxdydz�

ððð
Φ2

∗δΣa2Φ2 dxdydz

�
ððð

Reactor

δD1 grad
��!

Φ1
∗ grad
��!

Φ1 dxdydz�
ððð

Reactor

δD2 grad
��!

Φ2
∗ grad
��!

Φ2 dxdydz

ððð
Reactor

νΣf1Φ1
∗Φ1 þ νΣf2Φ1

∗Φ2

� 	
dxdydz

In a 2D calculation, the absorption cross sections must be corrected to account

for axial leakage. Hence, δΣa1 is substituted by δΣa1 þ δD1B
2
1, z and δΣa2 by

δΣa2 þ δD2B
2
2, z. As a general rule, the perturbation of cross sections is computed

either by the difference between two static calculations with a weakly-perturbed

parameter (e.g. temperature, density, boron, xenon, etc.) or by direct derivation

(mathematical) if an analytical feedback parameter model is available, as is the case

for the Lefebvre-Seban model used at EDF or any interpolation model with known

coefficients.
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17.12 Numerical Reactimeter

The numerical reactimeter (aka reactivity meter) installed in a reactor uses exper-

imental signals which come from the Nuclear Power Chambers (NPC). The latter

are inserted in a 0D kinetics model, enabling computation of the doubling time

using the following method.

Starting with the two-group kinetics equation (and disregarding up-scattering):

1

v1

∂Φ1 tð Þ
∂t

�D1ΔΦ1 tð Þþ Σa1þΣ1!2ð ÞΦ1 tð Þ¼
X

F2 fissilesf g
1�βF
� 	

νΣ F
f 1Φ1 tð ÞþνΣ F

f 2Φ2 tð Þ
� �

þ
X

F2 fissilesf g

XG
g¼1

λFg C
F
g tð Þ

1

v2

∂Φ2 tð Þ
∂t

�D2ΔΦ2 tð ÞþΣa2Φ2 tð Þ¼Σ1!2Φ1 tð Þ

8>>><
>>>:

ð17:14Þ

The delayed neutron precursors, differentiated for each group g (usually six

precursor groups) and for each fissile isotope i (usually a dozen of fissile system),

are described by the following equation:

∂CF
g tð Þ
∂t

¼ �λFg C
F
g tð Þ þ βF

g νΣ F
f1Φ1 tð Þ þ νΣ F

f 2Φ2 tð Þ
� �

ð17:15Þ

βg ¼
X

F2 fissilesf g
βF
g βF ¼

XG
g¼1

βF
g β ¼

XG
g¼1

βg

The solutions for the fluxes and concentrations are generally sought in the

following form:

Φ1 tð Þ ¼ Φ1 e
ωt,Φ2 tð Þ ¼ Φ2 e

ωt,Ci
g tð Þ ¼ Ci

ge
ωt

Equation (17.14) is written as follows using these forms in time:

ωþ λFg

� �
CF
g ¼ βF

g νΣ F
f1Φ1 þ νΣ F

f2Φ2

� �
which, when summed over the groups g, leads to:

XG
g¼1

ωþ λFg

� �
CF
g ¼

XG
g¼1

βF
g νΣ F

f1Φ1 þ νΣ F
f2Φ2

� �
¼ βF νΣ F

f 1Φ1 þ νΣ F
f 2Φ2

� �

giving:
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X
F2 fissilef g

XG
g¼1

λFg C
F
g ¼

X
F2 fissilef g

βF νΣ F
f 1Φ1 þ νΣ F

f 2Φ2

� �

�ω
X

F2 fissilef g

XG
g¼1

βF
g

ωþ λFg
νΣ F

f 1Φ1 þ νΣ F
f 2Φ2

� �

The latter term can be substituted into Eq. (17.14) to give:

1

v1
ωΦ1�D1ΔΦ1þ Σa1þΣ1!2ð ÞΦ1¼

X
F2 fissilef g

νΣ F
f1Φ1þνΣ F

f 2Φ2

� �
�ω

X
F2 fissilef g

XG
g¼1

βF
g

ωþλFg
νΣ F

f1Φ1þνΣ F
f2Φ2

� �
1

v2
ωΦ2�D2ΔΦ2þΣa2Φ2¼Σ1!2Φ1

8>>><
>>>:

This equation can also be expressed as:

D1ΔΦ1� Σa1þΣ1!2ð ÞΦ1þ
X

F2 fissilef g
νΣ F

f1Φ1þνΣ F
f 2Φ2

� �
¼ω

1

v1
Φ1þ

X
F2 fissilef g

XG
g¼1

βF
g

ωþλFg
νΣ F

f1Φ1þνΣ F
f2Φ2

� �2
4

3
5

D2ΔΦ2�Σa2Φ2þΣ1!2Φ1¼ 1

v2
ωΦ2

8>>>><
>>>>:

This system of two equations can be written in the form:

P� Kð ÞΦ ¼ ωαΦ

where P and K are the operators defined previously. Using the usual notations, the

permanent state is characterized by:

1

keff
P� K

� �
Φ ¼ 0

The scalar product Φ∗� is applied to these two equations since it contains both

the energy aspect (two neutron groups) and the spatial aspect (integration over the

volume)

Φ∗ � P� Kð Þ Φ ¼ Φ∗ � ωαΦ

Φ∗ � 1

keff
P� K

� �
Φ ¼ 0

8<
:

By substitution, the following equation is readily obtained:

ρ � 1� 1

keff
¼ ω

Φ∗ � αΦ

Φ∗ � PΦ

which can be expressed with two energy groups:
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ρ¼ω

ððð
Reactor

Φ∗
1 Φ1

v1
þΦ2Φ∗

2

v2
dxdydzþ

ððð
Reactor

X
F2 fissilef g

XG
g¼1

βF
g

ωþ λFg
Φ∗

1 νΣ
F
f 1Φ1þΦ∗

1 νΣ
F
f 2Φ2

� �
dxdydz

ððð
Reactor

X
F2 fissilef g

Φ∗
1 νΣ

F
f 1Φ1þΦ∗

1 νΣ
F
f2Φ2

� �
dxdydz

The reactor period is given by T � 1
ω and the doubling time by Td � ln 2

ω .

Using the definitions seen earlier:

‘ ¼

ÐÐÐ
Reactor

Φ∗
1 Φ1

v1
þ Φ2Φ∗

2

v2
dxdydz

ÐÐÐ
R�eeactor

P
F2 fissilef g

Φ∗
1 νΣ

F
f 1Φ1 þ Φ∗

1 νΣ
F
f2Φ2

� �
dxdydz

βg ¼

ÐÐÐ
Reactor

P
F2 fissilef g

βF
g Φ∗

1 νΣ
F
f 1Φ1 þ Φ∗

1 νΣ
F
f2Φ2

� �
dxdydz

ÐÐÐ
Reactor

P
F2 fissilef g

Φ∗
1 νΣ

F
f 1Φ1 þΦ∗

1 νΣ
F
f2Φ2

� �
dxdydz

and:

λg ¼

ÐÐÐ
Reactor

P
F2 fissilef g

βF
g Φ∗

1 νΣ
F
f 1Φ1 þΦ∗

1 νΣ
F
f2Φ2

� �
dxdydz

ÐÐÐ
Reactor

P
F2 fissilef g

β F
g

λ F
g

Φ∗
1 νΣ

F
f1Φ1 þ Φ∗

1 νΣ
F
f 2Φ2

� �
dxdydz

Finally, the law linking reactivity and doubling time is obtained:

ρ ¼ ‘
ln 2

Td
þ
X
g

βg
1þ λg

Td

ln 2

From this formula, a numerical reactimeter may be defined with coefficients

‘, βg, λg being obtained via 3D core calculation. The doubling time is obtained from

measurements registered by power chambers. In France, reactimeters are based on

inverse resolution of the point-kinetics equations in which reactivity is given by the

solution to the coupled system, with the neutron population, n(t), being taken as the
image of the signals measured by the external chambers:

ρ tð Þ ¼
X
g

βg þ ‘

dn tð Þ
dt

�
X
g

λgCg tð Þ

n tð Þ

dCg tð Þ
dt

¼ βg
‘
n tð Þ � λgCg tð Þ

8>>>>>>><
>>>>>>>:
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17.13 Practical Evaluation of Prompt Neutron

Generation Time

The prompt neutron generation time in a reactor R can be computed in the multi-

group formalism15 by:

‘ ¼

ÐÐÐ
R

PG
g¼1

Φ∗
g Φg

vg
dV

ÐÐÐ
R

P
i2 fissiles½ �

PG
g¼1

PG
h¼1

1� βið Þχ i
p,g þ βi χ

i
d,g

h i
νiΣ i

f hΦ
∗
g Φh dV

where: G is the number of energy groups for the calculation, χ i
p, g is the spectrum

of emitted prompt neutrons in group g and by isotope i, χ i
d, g is the spectrum of

emitted delayed neutrons in group g and by isotope i, vg is the mean neutron

velocity in group g, νiΣ i
f h is the production cross section of isotope i in group h,

Φh is the direct flux in group h, andΦ
∗
g is the adjoint flux (or importance) in group g.

In a reactor divided into two regions (e.g. with different materials), a summation

must be computed over all the regions with different cross sections, fluxes, and

neutron velocities. The generation time of prompt neutrons in a reactor may be

measured by perturbation (for example, by inserting an absorber at the center of a

mock-up reactor). By linearizing the Nordheim equation with respect to the prompt

neutron generation time:

ρ ¼ ‘ωþ
X6
i¼1

βiω

ωþ λi
¼ ‘ω Tð Þ þ b Tð Þ

The coefficients ω(T ) and b(T ) depend on the period of the reactor. Let us

assume two states for the reactor, respectively i and j (two peripheral loadings for

example). These will be perturbed similarly from a reference state 0 (of measurable

period T i
0) to reach a perturbed state 1 (with period T i

1):

Δρ i
0!1 ¼ ‘ ω i

1 � ω i
0

� 	þ bi
1 � bi

0

� 	 ¼ Δρ j
0!1 ¼ ‘ ω j

1 � ω j
0

� �
þ bj

1 � bj
0

� �
,

where: ‘ ¼
bi
1 � bi

0

� 	� bj
1 � bj

0

� �
ω j
1 � ω j

0

� �
� ω i

1 � ω i
0

� 	

15On the different calculation techniques related to reactivity measurements, see Joao Manoel

Losada Moreira: Space-time analysis reactivity measurements, PhD at The University of

Michigan, 1984.
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In practice, this perturbation is created by inserting a rod with alternating leaded

parts, fuel parts enriched at 3.5% uranium 235 and voided parts in the reactor

(of UNGG type with natural uranium). This rod is oscillated up and down as in

“oscillation” experiments. The experiment is repeated with N configurations, and

the coefficients ω(T ) and b(T ) are measured. The values of Δρ are plotted as a

function of ‘ on the same graph. This leads to a series of plots that cross the abscissa

axis at the required ‘ being sought, up to the measurement uncertainty. The period

of the reactor for a given state is measured by divergence (doubling-time method).

For each divergence, several periods are measured, with only the last ones being

retained for calibration of the electronic system and for transient problems

(Fig. 17.20).

17

Δρ (pcm)

L en ms
0,98 ms

16

15

14

13
0 1 2 3 4

Fig. 17.20 Measurement of generation time of prompt neutrons by perturbation in the Marius pile

[From Gérard Gambier: Détermination du temps de vie des neutrons prompts [Determining the life

time of prompt neutrons], EDF HF 11/76/73 report (1973)]
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The stability of the doubling-time measurement over several periods is an

indicator of the reliability of the measured time. The doubling time must be

measured to the nearest hundredth of a second for the computation to be sufficiently

precise and practically meaningful. A maximum time interval of 0.02 s is therefore

allowed between two measurements for a given configuration. In reality, the change

in reactivity with the doubling time is not exactly linear, and a slightly longer time

interval may be permitted for longer periods (lesser reactivity). If the experiments

are carried out at different pressures, corrections to allow for the non-simultaneous

effect of pressure on the measurement must be applied in order to bring all the

measurements to the same pressure (for small pressure changes, a linear effect of

pressure on the doubling time may be assumed). Applied to the Marius reactor with

natural uranium fuel, this method resulted in ‘¼ 0.98� 0.05 ms. The calculation

code used at that time predicted ‘¼ 0.93 ms. This result confirms the 1 ms approx-

imation usually used in UNGG computations.

17.14 Main Causes of Reactivity Changes

(Weaver 1968, p. 50)

Below we describe the insertion of reactivity by focusing on the specific physics

of water-moderated reactors. In this case, the change in the neutron flux is caused

by:

– increased amount of fissile nuclei. This is the case for the loading phase in which

assemblies are placed in the core. A mistake during loading can lead to a critical

mass of assemblies before loading of the core is complete;

– increased neutron moderation, e.g. by increasing the water density, which

enhances neutron thermalization;

– decreased neutron capture in the fuel, e.g. due to a decrease in fuel temperature

causing diminished Doppler effect;

– decreased neutron capture in the core by non-fuel materials, e.g. due to ejection

of an absorbing rod.

17.14.1 Increased Fissile Nuclei

Save for a mistake during the initial reactor design, this situation can occur during

loading phases. When the reactor is being loaded, the reactivity is deliberately

increased to reach criticality. If an assembly is wrongly positioned, a critical mass

can be formed, which is a potential hazard for an “open vessel”. For example, and

although there were no radiological consequences, an incident of this type occurred

during the loading of unit 4 at Dampierre (cycle 18, loading at 2000 MWd/ton

owing to an in-cycle shutdown). A mistake during the transfer of an assembly
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between the pool in the fuel storage building and the pool in the reactor building led

to mispositioning of 114 assemblies (the 25th assembly was not transferred, and its

place was occupied by the 26th, and so on until the 139th). In this case, the core

remained sub-critical and the reactivity level never exceeded 0.96. However, had

conditions been more unfavorable (BOL core, reduced boron concentration), crit-

icality could have been reached with an open vessel. Since this incident, visual

controls have been set up.

17.14.2 Increased Neutron Moderation

There may be several reasons for an increase in neutron moderation, either through

a decrease in water temperature (increasing the density), an increase in pressure

(rise in the number of water molecules in a given volume), or a change in geometry

leading to an increase in the local ratio of moderator-to-fuel volumes (assembly

flowering, differential temperature dilation, etc.). Of these three reasons, the first is

included in the accident studies of uncontrolled power extraction by the secondary

loop, which leads to “cold hammering” in the primary loop as in the Steam Line
Break. In theory, loss of geometry is controlled by mechanical supports in the

assembly (grids, baffle bracers). The risk should thus be negligible for a well-

defined core (fast reactors, in which geometry loss leads to high reactivity changes,

constitute a separate case, and the solution involves a rigid hexagonal tube binding

the assembly and a spacer wire enclosing the fuel pins). The problem of pressure is

averted by means of safety valves to ensure a maximum design pressure.

17.14.3 Decreased Neutron Capture

There are two types of cause. The first is the negative Doppler effect resulting from

uncontrolled cooling of the fuel (triggered by “cold hammering” from a Steam Line
Break for example). Causes of the second type are not fuel-related:

– decrease in burnable absorbers like gadolinium,

– decrease in soluble boron concentration (uncontrolled dilution, shown by oper-

ational feedback to be far more common in shutdown states than at full power),

– decay in the most absorbing fission product in PWR: xenon-135,
– uncontrolled rod motion (rod ejection, where the effect is more hazardous at zero

power due to delayed Doppler feedback).

These causes lead to widely divergent reactivity changes (Table 17.7).
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17.15 Reactivity Accident: Insertion of Very High

Reactivity Value

Instances of high reactivity insertion are found in accident analysis or

“accidentology”.

17.15.1 Analysis with One Group of Delayed Neutrons

The calculations are simplified by assuming only one group of delayed neutrons.

The Nordheim equation is simplified to:

ρ ¼ ‘Bg
ω

1þ ‘Bg
ω
þ 1

1þ ‘Bg
ω

βω

ωþ λ
first form of the Nordheim equation

or ρ ¼ ‘ωþ βiω

ωþ λ
second form of the Nordheim equation

Table 17.7 Main causes of reactivity changes

Speed of

reactivity

insertion

Magnitude taken in

dimensioning

studies to account

for the phenomenon Mitigation

Dilution of boric acid 1 pcm/s 2000 pcm – Design of REA and CVCS

boration circuits that limit

the dilution rate

– Protection systems and

alarms to inform the operator

that action must be taken

Remark: The probability of

occurrence is much greater

during shutdown

Extraction of regulating

rod banks during normal

functioning

20 pcm/s 2000 pcm – Emergency shutdown with

a high power threshold or

low DNBR

Extraction of regulating

rod banks in an abnormal

sequence

100 pcm/s 2000 pcm – Doppler effect is efficient

before emergency shutdown

Cooling by power extrac-

tion via secondary loop

(Steam Line Break type)

100 pcm/s 6000 pcm – Security Injection response

– Emergency shutdown with

worsening scenario (jammed

rod bank)

– Operator response required

(defective steam generator)

Control rod ejection

(at zero power, which is

the most detrimental since

the Doppler Effect is

delayed)

9000 pcm/s 900 pcm (worth of

the most anti-

reactive rod bank)

– Doppler effect is effective

before emergency shutdown
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In this case, two roots constitute solutions to this equation, but only one of these

is positive: ω0>>ω1 (and, in the general case, for six delayed neutron groups,

ω0>>ωi for i from 1 to 6). The stable period of the reactor is given by T¼ 1/ω0.

The flux assumes the following shape Φ r; tð Þ ¼ Φ0 rð Þ eω0t. If there were no

delayed neutrons, the solution to the Nordheim equation would be significantly

increased (cf. the dotted line, Fig. 17.21). Since ω0> λ, ω0 can be calculated by

simplifying the Nordheim equation:

ρ ¼ ‘ω0 þ βi ω0

ω0 þ λ
� ‘ω0 þ βi where: ω0 � ρ� βi

‘
¼ keff 1� βð Þ � 1

‘Bg

In practical cases, ω1j j <<
1

‘Bg

where: ρ ¼ ‘Bg
ω

1þ ‘Bg
ω
þ 1

1þ ‘Bg
ω

βω

ωþ λ
If ‘Bg

ω is disregarded with respect to 1, ρ � ‘Bg
ωþ βω= ωþ λð Þ can be written.

The second form of the Nordheim equation is obtained with ‘Bg
instead of ‘. Using

the exact second form of the Nordheim equation, the two roots can be computed:

‘ω2 þ ‘ λþ β � ρð Þ ω� ρλ ¼ 0 Δ ¼ ‘ λþ β � ρð Þ2 þ 4ρλ‘

ω0 ¼
� ‘ λþ β � ρð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ λþ β � ρð Þ2 þ 4ρλ‘

q
2‘

ω1 ¼
� ‘ λþ β � ρð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ λþ β � ρð Þ2 þ 4ρλ‘

q
2‘

< 0

8>>>>><
>>>>>:

It should be noted that ω0 may be positive or negative, depending on the sign of ρ
(it is in fact of the same sign). If:

ω1 ω0

–λgB

1

�
−

ω

Without delayed neutrons

With delayed neutrons

ρ

1

Fig. 17.21 Nordheim diagram with and without delayed neutrons
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n tð Þ ¼ α0 eω0t þ α1 eω1t

C tð Þ ¼ γ0 eω0t þ γ1 eω1t

�
at t ¼ 0:

n0 ¼ α0 þ α1
C0 ¼ γ0 þ γ1

�

The concentration of delayed neutrons, initially C0, is given by the stationary

equation for t< 0:

dC tð Þ
dt

¼ 0 ¼ keff β n0
‘Bg

� λC0

Thus, the initial concentration: C0 ¼ keff β n0
‘Bg λ

¼ β n0
‘λ . The constant coefficients

are coupled by the following conditions:

α0 þ α1 ¼ n0

γ0 þ γ1 ¼
keff βn0
‘Bg

λ

8<
:

By inserting n(t) and C(t) in the point-kinetics equations, the coupled differential
equation system is obtained:

dn tð Þ
dt

¼α0 ω0 e
ω0tþα1 ω1 e

ω1t¼ρ�β

‘
α0 e

ω0tþα1 e
ω1tð Þþλ γ0 e

ω0tþγ1 e
ω1tð Þ

dC tð Þ
dt

¼ γ0 ω0 e
ω0tþγ1 ω1 e

ω1t¼β α0 eω0tþα1 eω1tð Þ
‘

�λ γ0 e
ω0tþγ1 e

ω1tð Þ

8>><
>>:

α0 ω0 � ρ� β

‘
α0 � λγ0


 �
eω0t þ α1 ω1 � ρ� β

‘
α1 � λγ1


 �
eω1t ¼ 0

βα0
‘

� λγ0 � γ0ω0


 �
eω0t þ βα1

‘
� λγ1 � γ1ω1


 �
eω1t ¼ 0

8>><
>>:
These two equations are valid for any value of t. Thus, the coefficients in front of

the exponentials are deduced as being equivalent to zero. The solution of this

system of four equations with four unknowns leads to:

α0 ¼ n0
ω1 λþ ω0ð Þ
λ ω1 � ω0ð Þ γ0 ¼ n0

β

‘λ

ω1

ω1 � ω0ð Þ ¼ C0

ω1

ω1 � ω0

α1 ¼ �n0
ω0 λþ ω1ð Þ
λ ω1 � ω0ð Þ γ1 ¼ �n0

β

‘λ

ω0

ω1 � ω0ð Þ ¼ �C0

ω0

ω1 � ω0

8>>><
>>>:

Since the product of the roots are given by ω0ω1¼ � ρλ/‘ and their sum worth

ω0 +ω1¼ � (λ+ (β� ρ)/‘), the following may be expressed:
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α0 ¼ n0
ω1 þ ω0ω1

λ

� �
ω1 � ω0ð Þ ¼ n0

ω1 � ρ

‘

� �
ω1 � ω0ð Þ and

α1 ¼ �n0
ω0 þ ω0ω1

λ

� �
ω1 � ω0ð Þ ¼ �n0

ω0 � ρ

‘

� �
ω1 � ω0ð Þ

17.15.2 Analysis of the Case of ρ >> β: The Reactivity
Accident

Under this hypothesis, the signs of the following coefficients can be predicted as:

β þ ‘ λ� ρ < 0, ‘λ << ρ� β, 4ρ‘λ << β þ ‘ λ� ρð Þ2

Using the usual values: the decay constant for a unique group of delayed

neutrons is λ� 10�1 s�1, the prompt neutron lifetime ‘� 2 � 10�5 s, in a

PWR. Hence, ‘λ� 2 � 10�6 or 0.2 pcm. Using a Taylor expansion of the square

root: (1 + x)1/2¼ 1 + x/2� x2/8 + . . ., the roots ω0 and ω1 can be simplified:

ω0 �
� ‘λþβ�ρð Þþ ρ�β� ‘λ

z}|{negligible
0
@

1
A 1þ1

2

4ρ‘λ

ρ�β� ‘λð Þ2�
1

8

4ρ‘λ

ρ�β� ‘λð Þ2
 !2

þ . . .

2
4

3
5

2 ‘

�
2 ρ�βð Þþ 1

2

4ρ‘λ

ρ�βð Þ�
1

8

16ρ2‘2λ2

ρ�βð Þ3
 !

þ . . .

" #
2 ‘

¼ ρ�β

‘
þ ρλ

ρ�β
� ρ2‘λ2

ρ�βð Þ3þO
ρ3‘2λ3

ρ�βð Þ5
 !

8>>>>>>>>>><
>>>>>>>>>>:
where, at the first order: ω0 � ρ�β

‘ > 0

Similarly, the second root is given by:

ω1�
� ‘λþβ�ρð Þ� ρ� ‘λ�βð Þ 1þ1

2

4ρλ‘

ρ�β� ‘λð Þ2�
1

8

4ρ‘λ

ρ�β� ‘λð Þ2
 !2

þ . . .

2
4

3
5

2 ‘

and, finally: ω1 � � ρλ

ρ� β
þ ρ2‘λ2

ρ� βð Þ3 � O
ρ3‘2λ3

ρ� βð Þ5
 !

where, at the first order: ω1 � � ρλ

ρ� β
< 0

To compute the neutron concentration coefficients α, the difference between the

two roots ω0 and ω1 are determined:
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ω1 � ω0 � � ρλ

ρ� β
þ ρ2‘λ2

ρ� βð Þ3 �
ρ� β

‘
þ ρλ

ρ� β
� ρ2‘λ2

ρ� βð Þ3
" #

� � ρ� β

‘
� 2ρλ

ρ� β

Since 2ρλ‘<< (ρ� β)2, at the first order, the following may be written:

ω1 � ω0 � �ω0 ¼ � ρ� β

‘
< 0

After calculation, this leads to:

α0 ¼ n0
ω1 λþ ω0ð Þ
λ ω1 � ω0ð Þ � n0

ρ

ρ� β
> 0

α1 ¼ �n0

ω0 λ� ρλ

ρ� β

� �
λ ω1 � ω0ð Þ � �n0

β

ρ� β
< 0

8>>>><
>>>>:

The neutron concentration is given by:

Neutron concentrationduring a reactivity excursion:

n tð Þ ¼ n0
ρ

ρ� β
e
ρ� β

‘
t � β

ρ� β
e
� ρλ

ρ� β
t

 !
ð17:16Þ

It should be noted that for t¼ 0, n(t¼ 0)¼ n0 is obtained despite the simplifica-

tions in calculations of roots ω0 and ω1, and of coefficients α0 and α1, thereby
illustrating their valid use. As for the concentration coefficients for the delayed

neutrons:

γ0 ¼ C0

ω1

ω1 � ω0ð Þ � C0

1

1þ ρ� βð Þ2
ρ‘λ

> 0

γ1 ¼ �C0

ω0

ω1 � ω0ð Þ � C0

1

1þ ρ‘λ

ρ� βð Þ2
> 0

8>>>>>>><
>>>>>>>:

The coefficients γ0 and γ1 consistently verify that γ0 + γ1¼C0, despite the

simplifications, thus, guaranteeing the initial condition at t¼ 0. Therefore, the

approximate solutions n(t) and C(t) of the point-kinetics equations are obtained as

follows:
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High positive reactivity:

Φ tð Þ � n tð Þv ¼ Φ0

ρ

ρ� β
e
ρ�β
‘ t � β

ρ� β
e
� ρλ
ρ�β t

� �
with Φ0 � n0v

C tð Þ ¼ C0

1

1þ ρ� βð Þ2
ρ‘λ

e
ρ�β
‘ t þ 1

1þ ρ‘λ

ρ� βð Þ2
e
� ρλ
ρ�β t

0
BBB@

1
CCCA

8>>>>>>><
>>>>>>>:

ð17:17Þ

Assuming that power varies linearly with flux, we have:

P tð Þ ¼ P0

ρ

ρ� β
e
ρ� β

‘
t � β

ρ� β
e
� ρλ

ρ� β
t

 !

where P0 is the power at the time of injection of reactivity. It will be seen later that

this formulation is identical to the case of anti-reactivity insertion (e.g. rod inser-

tion). Following injection of reactivity in the form of a reactivity step, if the neutron

concentration is plotted over time, a prompt jump occurs (i.e. a jump caused by the

negative term) and decays quickly, thereby reducing the neutron levels from n0 to
n0 ρ/(ρ� β). Furthermore, there is no prompt jump for the delayed neutron concen-

tration given that the coefficients of the exponential terms describing C(t) are both
positive. At infinity, n(t) and C(t) increase according to the larger (positive)

exponential term eω0t. At t¼ 0:

dC tð Þ
dt

¼ γ0 ω0 þ γ1 ω1 ¼ C0

ω1

ω1 � ω0

ω0 � C0

ω0

ω1 � ω0

ω1 ¼ 0

The gradient of the delayed neutron concentration is continuous (and zero) at the

origin (Fig. 17.22).

17.15.3 Insertion of Low Reactivity 0 � ρ << β

For low reactivity insertion, the following hypotheses are used:

λ <<
1

‘
, ωj j <<

1

‘
, β � ρ � β, ‘λ << β � ρ, ‘λþ β � ρ > 0

Solutions ω0 and ω1 are inverted due to the sign of ‘ λ+ β� ρ:
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ω0 ¼
� ‘λþ β � ρð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘λþ β � ρð Þ2 � 4ρλ ‘

q
2‘

� ρλ

β � ρ
> 0

ω1 ¼
� ‘ λþ β � ρð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘λ� β � ρð Þ2 � 4ρλ ‘

q
2‘

� � β-ρ

‘
< 0

8>>>><
>>>>:

The same solutions as for the case of ρ> > β are found, with the indices 0 and

1 inverted.

ω1 � ω0 ¼ ρ� β

‘
� ρλ

β � ρ
¼ � β � ρð Þ2 þ ρλ‘

‘ β � ρð Þ � � β � ρ

‘

� �

The same applies to the coefficients of the neutron and precursor concentrations:

α0 � n0
β

β � ρ
γ0 � C0

1

1þ ρ‘λ

β � ρð Þ2

α1 � �n0
ρ

β � ρ
γ1 � C0

1

1þ β � ρð Þ2
ρ‘λ

8>>>>>>><
>>>>>>>:

t

0

ρ

(t) tρ

t

n0

0n
βρ

ρ
− t

entn �
βρ

βρ
ρ −

−
≈ 0)(

t

C(t)

n(t)

C0
( )

t
e

λρ
βρ

CtC �

�

βρ−

−
+

≈
20

1

1
)(

Infographie Marguet

Fig. 17.22 High reactivity step: prompt jump in neutron concentration
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As in the case of the reactivity accident, the same coefficients are obtained, but

with the indices 0 and 1 inverted:

Low positive reactivity:

n tð Þ ¼ n0
β

β � ρ
e

ρλ
β�ρ t � ρ

β � ρ
e�

β�ρ
‘ t

� �

C tð Þ ¼ C0

1

1þ ρ‘λ

ρ� βð Þ2
e

ρλ
β�ρ t þ 1

1þ ρ� βð Þ2
ρ‘λ

e�
β�ρ
‘ t

0
BBB@

1
CCCA

8>>>>>>><
>>>>>>>:

ð17:18Þ

It should be noted that a prompt jump exists even for a low reactivity insertion.

17.16 Anti-reactivity Insertion

In this case, roots ω0 and ω1 are both negative. Usually, (‘ λ + β� ρ)2>> |4ρ λ‘|,
enabling simplification of the roots to:

ω0 �
� ‘ λþ β � ρð Þ þ ‘ λþ β � ρð Þ 1þ 4ρλ‘

2 ‘ λþ β � ρð Þ

 �

2‘
� ρλ

β � ρ
< 0

ω1 �
� ‘ λþ β � ρð Þ � ‘ λþ β � ρð Þ 1þ 4ρλ‘

2 ‘ λþ β � ρð Þ

 �

2‘
� ρ� β

‘
< 0

8>>>>>><
>>>>>>:
The root with the most negative value is ω1. The same solutions as for the “low

positive reactivity insertion” (previous paragraph) are obtained, and are written

using the positive modulus of ρ so as to have positive quantities:

Negative reactivity:

n tð Þ ¼ n0
β

β þ ρj j e
� ρj jλ

βþ ρj j t þ ρj j
β þ ρj j e�

βþ ρj j
‘ t

 !

C tð Þ ¼ C0

1

1� ρj j‘λ
ρj j þ βð Þ2

e
� ρj jλ

βþ ρj j t þ 1

1� ρj j þ βð Þ2
ρj j‘λ

e�
βþ ρj j
‘ t

0
BBB@

1
CCCA

8>>>>>>>><
>>>>>>>>:

ð17:19Þ

A negative prompt jump is seen for the neutron concentration and is even more

marked if the inserted reactivity is extremely negative for a negative step. Finally, it
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should also be noted that the concentration of delayed neutrons cannot decay faster

than lim
ρ!�1 e

� ρj jλ
β þ ρj j t ¼ e�λt, which is the radioactive decay for delayed neutron

precursors. In other words, while a reactor can be made to diverge as fast as needed

by injecting sufficient reactivity, it may be made to converge faster than the natural

decay period of the delayed neutron group with the highest decay constant (bromine

87 with a 55.7 s period), and the total fade-out of the fission reaction takes at least

5 min (approximately 10 periods of bromine 87) (Fig. 17.23).

17.17 Overview of Cases

We have seen that the solutions of n(t) and C(t) are identical simply with the indices

0 and 1 inverted (assuming that 0 is the index for the positive root). In all three cases

(valid for ρ>> β or ρ<< β), the following can be written:

t

0

0<ρ

ρ(t)

t

n(t)n0
t

λρ

eβntn ρβ

ρβ
+

−

+
≈ 0)(

t

C(t)

C0

( )

t
λρ

e

βρ

λρ
CtC ρβ +

−

+
−

≈

2

0

1

1
)(

�

Infographie Marguet

Fig. 17.23 Negative reactivity step: a prompt jump is observed for the neutron concentration, and

is more marked as reactivity becomes more negative
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Point� kinetics solutions where ρ is not too close to β:

n tð Þ ¼ n0
β

β � ρ
e

ρλ
β�ρ t � ρ

β � ρ
e�

β�ρ
‘ t

� �

C tð Þ ¼ C0

1

1þ ρ‘λ

ρ� βð Þ2
e

ρλ
β�ρ t þ 1

1þ ρ� βð Þ2
ρ‘λ

e�
β�ρ
‘ t

0
BBB@

1
CCCA

8>>>>>>><
>>>>>>>:

ð17:20Þ

When the inserted reactivity approaches the value of β, the previous formulae

cannot be used (due to the presence of ρ� β in the denominator of certain terms).

The roots should be expressed without approximation. Graphic analysis of the

Nordheim diagram shows that there is no discontinuity at the value of ω0 along

the reactivity zone enclosing β. At most, it increases significantly as ρ approaches β.
In particular, the prompt jump is not related to the fact that ρ is exactly equal to β
and in reality, it occurs only if ρ< β (Fig. 17.24).

17.18 Reactivity Step

Let a positive reactivity step be inserted in the core up to a time T. Graphical
analysis of the previous solutions leads to (ρ<< β case) (Fig. 17.25):

Suppose that T is much greater than ‘/(β� ρ). For 0� t� T, the same results as

for a prompt jump are obtained. There is no discontinuity in the gradient of C(t) at
the instant when the reactivity changes, which is logical. When criticality is reached

–

1

Infographie Marguet

Without 
delayed 
neutrons

With one group of

delayed neutrons 

β

λgB�
1−

ω1 ω0 ω

ρ

Fig. 17.24 Nordheim diagram with and without delayed neutrons
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again (ρ¼ 0), C(t) stabilizes at a new equilibrium state higher than the previous

state. The reactivity step is now positive. After t¼ T, the kinetics equations must be

solved with ρ¼ 0:

dn tð Þ
dt

¼ �β

‘
n tð Þ þ λC tð Þ

dC tð Þ
dt

¼ β

‘
n tð Þ � λC tð Þ

8><
>:

The sums of the neutron concentration and of the precursors do not vary with

time when reactivity is zero:

d n tð Þ þ C tð Þð Þ
dt

¼ 0

where: n(t) +C(t)¼Cst¼ nT+CT

Finally:

�
βλ

)C(n
ρ
β

TT

+

+

t

00

ρρ(t)

T

t

n(t)

n0

n0ρβ
β
−

t
en0tn ρβ

ρλ

ρβ
β −

−
≈)(

nT

�
βλ

)C(nλ TT

+

+

T

t

C(t)

C0

cT

T

( )

tρλ

e

βρ
λρCtC ρβ −

−
+

≈

2

0

1

1
)(

�
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Fig. 17.25 Reactivity step

1248 17 Reactor Kinetics



nT � n0
β

β � ρ
e

ρλ
β�ρ T

CT � C0

1

1þ ρ‘λ

ρ� βð Þ2
e

ρλ
β�ρ t þ 1

1þ ρ� βð Þ2
ρ‘λ

e�
β�ρ
‘ t

0
BBB@

1
CCCA � C0 e

ρλ
β�ρT

8>>>>>>><
>>>>>>>:

The general solution may be found in the form n(t)¼ α0 + α1e
ω(t�T ) and

C(t)¼ γ0 + γ1e
ω(t�T ). Since n(t) +C(t)¼Cst¼ nT+CT, α1 + γ1¼ 0:

t ¼ T
n tð Þ ¼ nT ¼ α0 þ α1
C tð Þ ¼ CT ¼ γ0 þ γ1

�
dn tð Þ
dt

¼ α1ω eω t�Tð Þ ¼ �β

‘
α0 þ α1 eω t�Tð Þ
� �

þ λ γ0 þ γ1 eω t�Tð Þ
� �

dC tð Þ
dt

¼ γ1ω eω t�Tð Þ ¼ β

‘
α0 þ α1 eω t�Tð Þ
� �

� λ γ0 þ γ1 eω t�Tð Þ
� �

8>><
>>:

Which, after calculation, becomes:

Response to a reactivity step:

n tð Þ ¼ λ nT þ CTð Þ
λþ β

‘

þ
β

‘
nT � λCT

λþ β

‘

e� λþβ
‘ð Þ t�Tð Þ

C tð Þ ¼
β

‘
nT � CTð Þ

λþ β

‘

�
β

‘
nT � λCTð Þ

λþ β

‘

e� λþβ
‘ð Þ t�Tð Þ

8>>>>>>>>><
>>>>>>>>>:

ð17:21Þ

When t tends to infinity, the neutron concentration stabilizes at λ(nT+CT)/

(λ+ β/‘), the precursor concentration stabilizes at β(nT+CT)/‘/(λ+ β/‘), and the

ratio C(t)/n(t) tends towards β/(‘λ). In practice, a reactivity step can simulate the

flow of a slug of unborated water (although coarsely if the Doppler effect is

disregarded), followed by borated water. Such an incident may occur in the event

of problems in the boration circuit (CVCS).

17.19 Dropped Control Rod, Insertion of a Large Amount

of Anti-reactivity

In the case of an automatic scram or an emergency shutdown of a 900 MWe PWR,

dropping of the rod banks R + G1 + G2 + N1 + N2 leads to the insertion of anti-

reactivity, depending on the loading pattern at that particular point during the cycle.
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This anti-reactivity is estimated at around ρ¼ � 8000 pcm. In this case, with

β + ‘λ� ρ> 0, which is the same as for the insertion of weak reactivities, but with

β� ρ� � ρ, since |ρ|>> β, i.e. injection of high reactivity. 4ρ λ ‘<< (‘λ+ β� ρ)2 is
still verified (Fig. 17.26):

where: ω0 � ρλ

β � ρ
< 0 ω1 � ρ� β

‘
< 0

Similarly, the solutions to the point-kinetics model in which ρ is not close to β,
and thus those with insertion of a reactivity step, remain valid. If control rods are

dropped, |ρ| is around 5–10 β, therefore, ω0! � λ. This corresponds to the equa-

tions of negative reactivity injection:

n tð Þ� n0
β

βþ ρj j e
� ρj jλ
βþ ρj j tþ ρj j

βþ ρj j e
�βþ ρj j

‘ t

 !
� n0

β

βþ ρj j e
�λ tþ ρj j

βþ ρj je
�βþ ρj j

‘ t

� �

C tð Þ�C0

1

1� ρj j‘λ
ρj jþβð Þ2

e
� ρj jλ
βþ ρj j tþ 1

1� ρj jþβð Þ2
ρj j‘λ

e�
βþ ρj j
‘ t

0
BBB@

1
CCCA �C0

1

1� ‘λ

ρj j
e�λ tþ 1

1� ρj j
‘λ

e�
βþ ρj j
‘ t

0
BB@

1
CCA

8>>>>>>>><
>>>>>>>>:
Core convergence depends on the radioactivity of the delayed neutron group

having the longest period, and it cannot be stalled any quicker. A few seconds after

the rod drop, the residual power due to the deferred neutrons remains predominant.

17.20 Reactivity Ramp

(Hetrick 1993, p. 78; Hummel and Okrent 1970, p. 256; Rozon 1992, p. 174; Stacey

2001, p. 184)

Let us assume that the reactivity takes the form of a ramp function with gradient

γ after an initial “jump” in amplitude of ρ0 (Fig. 17.27):

n(t)n0

ten0tn0
λ

ρβ
β −

+
≈)(

t

c(t)c0

tλe

ρ
λc0

−

−
�

1

1

t

n0 ρβ
β
+

Fig. 17.26 Dropping of control rods
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Starting from the one-group delayed neutron equations:

dn tð Þ
dt

¼ ρ� β

‘
n tð Þ þ λC tð Þ

dC tð Þ
dt

¼ β

‘
n tð Þ � λC tð Þ

8><
>:

the precursor concentration may be eliminated from these two equations to obtain a

second-order equation:

‘
d2n

dt2
þ β � ρþ λ‘ð Þdn

dt
� λρþ dρ

dt

� �
n ¼ 0

In the case of a ramp, this equation simplifies to:

d2n

dt2
þ β � ρ0 þ λ‘� γtð Þ

‘

dn

dt
� λρ0 þ γ þ γtð Þ

‘
n ¼ 0

which (Hetrick 1993, p. 79) writes out in its canonical form:

d2n

dt2
þ Atþ Bð Þdn

dt
þ Ctþ Dð Þn ¼ 0

Using a mathematical shortcut, this equation may be simplified to a Weber

equation. A decomposition, of the form n(t)¼ x(t) y(t), is written in which x(t)
verifies an equation that simplifies the problem. This arbitrary (for the time

being) decomposition of n(t) is inserted in the second-order ODE and leads to:

x
d2y

dt2
þ y

d2x

dt2
þ 2

dx

dt

dy

dt
þ Atþ Bð Þ x

dy

dt
þ y

dx

dt

� �
þ Ctþ Dð Þxy

¼ x
d2y

dt2
þ y

d2x

dt2
þ Atþ Bð Þdx

dt
þ Ctþ Dð Þx


 �
þ dy

dt
2
dx

dt
þ Atþ Bð Þx


 �
¼ 0

Adopting x(t) in particular as the solution of:

2
dx

dt
þ Atþ Bð Þx ¼ 0 i:e: : x tð Þ / e�

AtþBð Þ2
4A

t

ρ
tt γρρ += 0)(

γ

Fig. 17.27 Reactivity ramp
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allows elimination of the
dy

dt
term. The y coefficient may then be calculated:

d2x

dt2
þ Atþ Bð Þdx

dt
þ Ctþ Dð Þx ¼ x �A2

4
t2 þ C� AB

2

� �
tþ D� A

2
� B2

4


 �

allowing the ODE to be simplified to:

d2y

dt2
� A2

4
t2 � C� AB

2

� �
t� D� A

2
� B2

4

� �
 �
y ¼ 0 ð17:22Þ

The reader will recognize the ODE of the form:

d2y

dt2
� at2 þ btþ c
� 	

y ¼ 0

the solutions of which are the parabolic cylinder functions deduced from the

confluent hypergeometric functions 1F1(a, b, z), also known as M(a, b, z)
(Abramowitz and Stegun 1972). Using a linear change in variable in time:

t¼ ατþ κ, this equation can be written in two different forms16:

d2y

dτ2
� τ2

4
þ h

� �
y ¼ 0 and

d2y

dt2
þ τ2

4
� h

� �
y ¼ 0

These equations are called the Weber equations after Heinrich Friedrich Weber

(1843–1912). Their solutions are generalized in the form:

d2Dn xð Þ
dx2

� τ2

4
� n� 1

2

� �
Dn xð Þ ¼ 0

Further, the parabolic cylinder functions Dn(x) are a restriction of the (Edmund

T.) Whittaker Wk,m(x) functions, and solutions to (Erdélyi 1953, p. 264):

d2Wk,m xð Þ
dx2

þ �1

4
þ k

x
þ
1

4
� m2

x2

0
B@

1
CAWk,m xð Þ ¼ 0

if Dn xð Þ ¼ 1ffiffiffi
x

p 2
n
2
þ1

4Wn
2
þ1

4
,�1

4

1

2
x2

� �
:

Comparing the first form with Eq. (17.20) leads to the following by

identification:

16Here we have the exact form of the Weber equation, with the ¼ coefficient. However, (Hetrick

1993) chose to write it without this coefficient, resulting in modified values of α and κ.
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α4a ¼ α4
A2

4
¼ 1

4

For a positive ramp, γ> 0 and A> 0, the solution retained is α2A¼ � 1 (for a

negative gradient, the other solution is kept) such that:

α ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

A
¼ �

ffiffiffi
‘

γ

svuut
Extending the identification process gives the following:

2α3κaþ bα3 ¼ 0

α2bκ þ cα2 þ α2aκ2 ¼ h

�
hence:

κ ¼ 2C� AB

A2
¼ ‘

γ

β � ρ

‘
� λ

� �
h ¼ �1

2
þ D

A
� CB

A2
þ C2

A3
¼ 1

2
þ λβ

γ

8>><
>>:

where:

d2y

dτ2
� τ2

4
þ 1

2
þ λβ

γ

� �
y ¼ 0 with: t ¼ �

ffiffiffi
‘

γ

s
τ þ ‘

γ

β � ρ

‘
� λ

� �

the solution of which is the parabolic cylinder function D�1� λβ/γ(τ) of order

ν¼ � 1� λβ/γ—it is tabulated or expanded in Taylor series in some mathematical

references ((Abramowitz and Stegun 1972) or as a function of Mathematica).

Hetrick (1993, p. 81) points out that where ν is an integer (negative), Dn(x) reduces
to a Hermite function, i.e. φn xð Þ ¼ Hn xð Þe�x2=2 where Hn(x) are the Hermite

polynomials17 of degree n. The response of n(t) to a ramp function can be computed

using simpler functions (e.g. error function, exponential function, etc.). For exam-

ple, (Hetrick 1993) gives the following analytical results:

n tð Þ
n0

¼ e
γ
2‘ t

2� β
‘ t 1þβ

ffiffiffiffiffiffiffi
π

2γ‘

r
e

β2

2γ‘ erf
βffiffiffiffiffiffiffi
2γ‘

p
� �

�erf
β� γtffiffiffiffiffiffiffi
2γ‘

p
� �� �� �

λβ

γ
¼ 0, ρ0 ¼ 0

n tð Þ
n0

¼ β2

γ‘
e�λt�β�λ‘� γt

β
e
γ
2‘ t

2� β
‘ t 1þβ

ffiffiffiffiffiffiffi
π

2γ‘

r
e

β�λ‘ð Þ2
2γ‘ erf

β�λ‘ffiffiffiffiffiffiffi
2γ‘

p
� �

�erf
β�λ‘� γt

2γ‘

� �� �� �
 �
λβ

γ
¼ 1, ρ0 ¼ 0

8>>>>>>>><
>>>>>>>>:

The first formula is used in cases of high ramps with λβ/γ<< 1 (reactivity

accident).

17The first Hermite polynomials are: H0(x)¼ 1, H1(x)¼ 2x, H2(x)¼ 4x2� 2, H3(x)¼ 8x3� 12x.
The Hermite functions are orthogonal in L2(ℜ):

Ð
ℜ
φn xð Þφm xð Þdx ¼ 0 n 6¼ m.

17.20 Reactivity Ramp 1253



17.21 Reactivity Transient

For illustration purposes, a reactivity transient at low power (of the order of a mW)

is shown. This negligible power level ensures that there will be no temperature

effect on the core behavior (the Doppler effect, which decreases reactivity when

power increases thereby heating the fuel). In addition, this also allows observation

of the core behavior as pure exponential functions following the prompt jumps,
which appear with each increase or decrease in reactivity (Fig. 17.28).

In the particular case of a decrease in reactivity from +100 pcm to +50 pcm, it

may be seen that even if the reactivity remains positive, the power decreases during

the prompt jump to follow an exponential that grows more slowly than in the case of

+100 pcm. This effect is contrary to the widespread idea: “power increases when
reactivity is positive”. It also depends on the prompt and on delayed neutron

concentrations, and on any changes therein before the reactivity jump. Soon after

the reactivity transient, this maxim is verified.

17.22 Power Excursion

When a large amount of reactivity is inserted accidentally, initially, the power

behaves exponentially provided that the core does not heat up, and the Doppler

effect begins, halting the power excursion. In the 1940s, relatively simple models

were set up to determine the energy released during a power pulse.

t

0

ρ(t)

t

n(t)

n0

Infographie Marguet
Fig. 17.28 Core behavior

at low power due to changes

in reactivity
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17.22.1 The Nordheim-Fuchs Model

The model developed by Lothar Nordheim and Klaus Fuchs (1911–1988)18 in 1946

assumes that the neutron population varies exponentially and disregards the effect

due to delayed neutrons (Hetrick 1993, p. 164; Lewins 1978, p. 201; Hummel and

Okrent 1970, p. 258; Rozon 1992, p. 296), R. Scalettar in (Weaver 1964, p. 254;

Weisman 1977, p. 411) (Photo 17.3):

dn

dt
� ρ� β

‘
n tð Þ

The difference ρ� β is sometimes referred to as prompt reactivity [ρp in Rozon

(1992)]. The contribution of delayed neutrons is disregarded. The cause of the

accident is considered to be a reactivity step, ρ0, that is counterbalanced by Doppler
feedback, modeled by �αD(T� Tref), where αD is the Doppler coefficient in pcm/K
and T� Tref the difference in temperature with respect to the reference temperature

at the beginning of the accident. Reactivity obeys a law of the form:

Doppler feedback: ρ tð Þ ¼ ρ0 � αD T � Tref

� 	 ð17:23Þ

This type of behavior is suitable for modeling control rod ejection, where the

reactivity is injected almost instantaneously (the rod is removed from its position by

a sudden fall in pressure caused by disruption of the control casing, which leads to a

pressure difference of approximately 150 bars between the top and the bottom of

the core in a PWR). The force and speed of the event is such that power cannot be

easily transferred to the moderator for cooling, particularly since the heat flux far

Photo 17.3 (a) Lothar

Nordheim (left) et (b) Klaus
Fuchs (right) (Public
domain)

18Klaus Fuchs, a German-born British scientist who worked on the Manhattan Project. He was

famously tried as a USSR spy and in 1950 he was sentenced to 14 years in prison. (The Rosenbergs

were also convicted for espionage and sentenced to the electric chair, despite international protest).

He was released after 9 years and immigrated to East Germany.
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exceeds the critical flux, and a steam film isolates the fuel. The accident is assumed

to be quasi-adiabatic, hence leading (Hetrick 1993, p. 161) to write:

ρUO2
CUO2

p

dT

dt
� q W=m3½ � ¼ κΣfΦ � κΣf n tð Þv

which may be expressed more concisely as:
dT

dt
¼ Kn tð Þ

If the accident cannot be considered adiabatic, the temperature at a given point in

the reactor will depend on the temperatures in the other zones, and hence, on

neutron density. This model is no longer applicable. The change in reactivity

over time can be calculated by setting:

dρ

dt
¼ dρ

dT

dT

dt
¼ �αKn tð Þ

Suppose that
dn

dρ
�

dn
dt
dρ
dt

,
dn

dρ
¼ � ρ� β

αK‘
is obtained and can be easily integrated as:

n ρð Þ ¼ Cst� ρ� βð Þ2
2αK‘

If the initial value is such that the amount of neutrons is small, i.e. n(ρ0)� 0, the

constant term is approximately:

n ρð Þ � ρ0 � βð Þ2
2αK‘

� ρ� βð Þ2
2αK‘

The maximum of n(t) is reached when its time derivative, dn/dt, is zero, which is
when ρ¼ β, in other words when the reactor is prompt critical. At this point, the

Doppler and thermal-hydraulic feedbacks will stop the accident. The maximum

neutron concentration, and thus power, is worth the following with a first-order

approximation:

nmax ρ¼βð Þ ¼ ρ0 � βð Þ2
2αK‘

It should be noted that the plot of n(ρ) is parabolic and symmetrical with respect

to the maximum point. The frequency ω0¼ (ρ0� β)/‘ of the prompt jump owing to

a reactivity step of ρ0 can be written in the formula. This reactivity step drives the

power excursion in time at the beginning of the accident. The accident ends when

the neutron population becomes negligible, which is when ρ(tfin)� β¼ � (ρ0� β).
This is the point at which the parabola is once again worth zero. The increase in fuel

temperature is:
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Tfin � Tref ¼
ρ0 � ρ tfin

� 	
αD

¼ 2 ρ0 � βð Þ
αD

In adiabatic cases, the energy released by the power excursion is computed as:

Nordheim� Fuchs model: ΔE ¼ Tfin � Tref

K
¼ 2 ρ0 � βð Þ

αDK
ð17:24Þ

This very simple model gives a quick estimate of the power peak and the total

energy released. The latter is proportional to the difference between the initial

reactivity and the delayed neutron fraction, and is inversely proportional to the

Doppler coefficient. This explains the importance of these two parameters. Further,

reactivity can be integrated with respect to time since:

dρ

dt
¼ �αKn ρð Þ ¼ � ρ0 � βð Þ2

2‘
þ ρ� βð Þ2

2‘

the integration of which is simplified by assuming that the time basis starts at the

moment of the power peak, i.e.:

ρ tð Þ ¼ β � ρ0 � βð Þ th ρ0 � βð Þt
2‘

� �

1/ω0¼ ‘/(ρ0� β) is sometimes called the asymptotic relaxation of the reactor

(Weaver 1964, p. 254). The neutron concentration is obtained by:

n tð Þ ¼ � 1

αK

dρ

dt
¼ 1

αK

ρ0 � βð Þ2
2‘

þ ρ� βð Þ2
2‘

" #
¼ nmax ρ¼βð Þ sec h2

ρ0 � βð Þt
2‘

� �

This proves that the power of the reactor can be written in the form of:

P tð Þ ¼ Pmax ρ¼β;t¼tmaxð Þ sec h2
ρ0 � βð Þ t� tmaxð Þ

2‘

� �

Finally, the energy released,E tð Þ ¼ Ðt
t0

P t0ð Þdt0, which is the integral of the power,
is written as (Fig. 17.29):

E tð Þ ¼ ρ0 � βð Þ
αDK

1þ th
ρ0 � βð Þt

2‘

� �
 �

The practical width of the pulse at mid-height is 3.52/ω0 and the position of the

power peak is given by:
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tmax � t0 ¼ 1

ω0

ln
4Pmax

P0

� �

In this approach, no properties pertaining to delayed neutrons are used (since

they are disregarded) other than the fraction β. This reasoning is valid only for a

characteristic period of the accident worth ΔE/nmax(ρ¼ β)¼ 4/ω0, which is fairly

small compared to the shortest period for a delayed neutron group, itself worth

0.2 s. Beyond this period, the delayed neutrons must be taken into account and the

adiabatic hypothesis revised. Further, for an actual reactor, very large reactivity can

excite the higher fundamental modes. In (Weaver 1964), Scaletar developed a flux

expansion on the eigenmodes, which corrects the Nordheim-Fuchs model by

integrating space effects. If assuming that a reactivity step of taken reactivity

ρ0 to make the reactor prompt critical is too coarse, a reactivity ramp may be

used such that:

ρ� β ¼ γ t� tpc
� 	

t

ρ

0
ρ

β

t

t

nP

E

EΔInfographie Marguet

Fig. 17.29 Symmetrical

pulse in Nordheim-Fuchs

theory
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tpc is the time when the reactor becomes prompt critical (Rozon 1992, p. 187). This

makes the shift in the time basis very simple: τ� t� tpc to solve the prompt-critical

equation:
dn τð Þ
dτ

¼ ρ τð Þ � β

‘
n τð Þ with the following initial value: ρ(τ¼ 0)¼ β

Assuming a reactivity ramp, integration of this equation leads to:

n tð Þ ¼ n tpc
� 	

e
γ
2‘ t�tpcð Þ2 with tpc � β

γ

The previous exact calculations for the ramp suggest that n tpc
� 	 � 2n0

ffiffiffiffiffiffiffi
π

2γ‘

r
.

The Nordheim-Fuchs model is useful on account of its technical simplicity.

Improvements were proposed in the 1950s such as taking into account the linear

dependence of the heat capacity and the differential Doppler coefficient varying

with temperature, and in particular, delayed neutrons for slower accidents, by

calculating the following perturbation:

δn ¼ 1

‘

ðX
λiCi

with:

Ci tð Þ ¼ Ci 0ð Þe�λi t þ βue
�λit

ðt
0

n τð Þeþλiτ dτ

� Ci 0ð Þe�λi t þ βue
�λi t

ðt
0

nmax ρ¼β;t¼tmaxð Þ sec h2
ρ0 � βð Þ τ � tmaxð Þ

2‘

� �
eþλiτ dτ

In this approach,19 the precursor concentration is computed using the solution to

the Nordheim-Fuchs model without the delayed neutrons to compute the first-order

perturbation δn (Fig. 17.30).

17.22.2 The Chernick Model

J. Chernick, from Brookhaven National Laboratory, models20 the effect of the core

temperature on neutron kinetics end of 1951. Equations are written as follow:

19Ajoy K. Ghatak: Non-linear prompt neutron kinetics in multi-group diffusion, theory, PhD
thesis, Cornell University (1963). The Nordheim-Fuchs model is thoroughly described. The use

of higher modes in plane geometry is worked out to its limits.
20J. Chernick: The dependence of reactor kinetics on temperature, Rapport BNL-173, 38 pages,

20 décembre 1951.

17.22 Power Excursion 1259



dn tð Þ
dt

¼ keff � 1
� 	

n tð Þ
‘

Parameter ‘ is the mean generation time taking into account the delayed neu-

trons. The dependence of reactivity versus temperature is modelled through a linear

law, wich origin is the ambiant temperature (20 �C). It should be noted that the

model uses a so-called “core temperature”, without discriminazing between fuel

and water moderator:

keff T K½ �
� 	 ¼ keff T ¼ 293 K½ �

� 	� αT T K½ � � 293K
� 	

Therefore of course:

Core temperature feedback:

keff T K½ �
� 	� 1 ¼ keff T ¼ 293 K½ �

� 	� 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kexc

�αT T K½ � � 293K
� 	 ð17:25Þ
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Fig. 17.30 High power excursion in a fast-neutron reactor under the influence of a reactivity ramp

of dkeff/dt¼ 6.4 s�1 [adapted from (Hummel and Okrent 1970, p. 278)]
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A distinction between water and fuel would lead to a same distinction between

differential coefficients αmod and αfuel. New parameter kexc is an image of the

reactivity of the cold state of the reactor. The variation of the core temperature is

govern by a differential equation taking into account the power released, allegedly

supposed linear to the number of neutrons, and a “relaxation” constant λ due to the

cooling of the fuel by water:

Thermal behaviour of the reactor:
dT tð Þ
dt

¼ γ n tð Þ � λ T tð Þ � 293Kð Þ ð17:26Þ

Two steady solutions are possible (αT> 0 , λ> 0):

n t ¼ þ1ð Þ ¼ 0, T t ¼ þ1ð Þ ¼ 293K, keff t ¼ þ1ð Þ ¼ keff T ¼ 293 K½ �
� 	

which is a perfect cooling down to ambiance, and the asymptotic solution:

n t ¼ þ1ð Þ ¼ λkexc
αT γ

, T t ¼ þ1ð Þ � 293K ¼ kexc
αT

Deriving the temperature differential equation with respect to time and by

eliminating the neutron concentration in the resulting second order equation,

leads to:

d2T tð Þ
dt2

þ λ� kexc
‘

� �
dT tð Þ
dt

� λ
kexc
‘

T tð Þ ¼�αT T tð Þ� 293Kð Þ
‘

dT tð Þ
dt

þ λ T tð Þ� 293Kð Þ
� �

Non-linear terms were left on the right-side member of the equation, wich can be

further simplified using:

ϖ0 � kexc
‘

Therefore:

d2T tð Þ
dt2

þ λ�ϖ0ð Þ dT tð Þ
dt

� λϖ0T tð Þ ¼ � αT T tð Þ � 293Kð Þ
‘

dT tð Þ
dt

þ λT tð Þ
� �

A close mathematical analysis of this equation shows that, with a positive

temperature coefficient (αT< 0), divergent temperature solutions occurs, with

only stable solutions when ϖ0< 0 (very low initial keff), whereas a negative

temperature coefficient (αT> 0) produces convergent solutions, sometimes oscil-

lating around the asymptot T1 (depending on the value ofϖ0). Chernick writes the

equation under adimensional form and analyses the stability with the help of a

phase diagram (adimensional temperature versus adimensional derivate of the

temperature). Singular and saddle points occur, depending on the value of the

different physical parameters.
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17.22.3 The Bethe-Tait Model

(Hetrick 1993, p. 223; Hummel and Okrent 1970, p. 263)

In 1956, Hans Bethe (1906–2005) and J. H. Tait proposed a model for the energy

released in fast reactors based on a first-order perturbation approach for the

diffusion equation with one energy group (Weisman 1977, p. 417) (Photo 17.4).

The fast reactors have short generation times and may undergo mechanical core

compaction under accidental conditions. The very fast power excursion can lead to

fusion of the core, or even vaporization of the fuel. Fusion of the fuel leads to

compaction of the core in the lower parts of the vessel by gravitational pull. This

may cause an increase in reactivity of up to 50 Dollars per second! Above a given
threshold, the pressure generated by the accident and the energy released are

considered to be linked by a linear formula. The temperature effects are due only

to pressure gradients. If an ideal reactivity excursion with a ρ¼ β + γt ramp function

and without feedback effects is considered such that the reactor is prompt critical at

t¼ 0, the neutron population obeys the following growth law (Hetrick 1993,

p. 223):

Photo 17.4 The renowned

1956 Risley RHM(56)113

report (declassified) by

H. Bethe and J. H. Tait:

“An estimate of the order
of magnitude of vigorous
interaction expected should
the core of a fast reactor
collapse” (Public domain)
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dn

dt
¼ γ t

‘
n thus, n tð Þ ¼ n tpc

� 	
e
γ t2

2‘

The energy released is proportional to the integral of the power P(t), which is

directly proportional to this neutron population:

E tð Þ ¼
ðt
0

P τð Þdτ ¼ P tpc
� 	 ðt

0

e
γ t2

2‘ dτ

It may be seen that this expression contains the error function. For γt2/(2‘)>> 1,

the following may be written:

E tð Þ / n tpc
� 	 ‘

γt
e
γ t2

2‘

If a threshold of released energy is fixed at Ethreshold, the time taken to reach this

value is given by the transcendental equation:

γ t2threshold
‘

¼ ln
γ tthresholdEthreshold

‘n tpc
� 	 !2

At this threshold energy, the excess pressure leads to a loss in geometry which

returns the reactivity to β. This threshold was calculated by Bethe-Tait as being

worth 105 J/kg. Numerically, it may be seen that the excursion is more severe if the

accident starts at low power, since reactivity will have more time to increase before

reaching the threshold. Another explanation, not apparent in this model, is that the

Doppler effect will be delayed due to the thermal inertia of the fuel if the accident

occurs at low power, when the fuel is “cold”. The excess energy E(t)�Ethreshold

generates pressure that induces mechanical stress such that the fuel moves towards

the over-critical zone to decrease the reactivity.

Assuming that the flux obeys a one-energy group diffusion equation:

�div Dgrad
��!

Φ
� �

þ ΣaΦ ¼ νΣfΦ

Since Σa¼Σc +Σf, the first-order perturbation owing to the change in the

diffusion coefficient is written as:

δkeff ¼ keff � k0eff ¼

Ð
Reactor

�δD grad
��!

Φ
� �2

þ ν� 1ð ÞδΣf � δΣc

� 	
Φ2


 �
dr3Ð

Reactor

νΣfΦ2dr3
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In this formula, k0eff represents the reactivity immediately after the reactivity

injection that caused the accident. The adjoint flux is usually included in the

perturbation formula but, for a fast reactor, the fast direct flux provides a good

estimate of the adjoint flux. In a one-energy group calculation, the appropriately-

normalized adjoint flux is exactly equal to the direct flux. Nonetheless, the

weighting of the diffusion coefficient by the square of the flux gradient is not a

formal justification (Hetrick 1993, p. 225). The increase in reactivity due to core

compaction, equivalent to an increase in material densities, ρc, is described by the

differential efficiency of compaction of the core materials, Wc(r). The global effect
is obtained by summing over the reactor volume:

Compaction effect: keff � k0eff ¼
ð

Reactor

δρc Wc rð Þdr3 ð17:27Þ

The change in density is caused by the shift in fuel position, i.e.:

δρc ¼ �div ρc~uð Þ

where ~u is the shift that is not uniform in all directions. This expression is

substituted in Eq. (17.23) and the result integrated by parts:

keff � k0eff ¼
ð

Reactor

ρc~u ~Wc rð Þdr3

The effects of this shift on the physical properties of the fuel are given by:

δΣf ¼ �div Σf~u
� 	

δΣc ¼ �div Σc~uð Þ
δD ¼ div D~uð Þ � 2~u:grad

��!
D

8<
:

These are substituted in the perturbed equation and the divergence terms are

integrated by parts to eliminate ~u, giving:

δkeff ¼ keff � k0eff

¼

Ð
Reactor

~u: 2grad
��!

D grad
��!

Φ
� �2� �

þ Dgrad
��!

grad
��!

Φ
� �2� �

� 2grad
��!

Φ divDgrad
��!

Φ


 �
d3rÐ

Reactor

νΣfΦ2d3r

which may be simplified to:
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δkeff ¼ keff � k0eff

¼

Ð
Reactor

~u: 1
Dgrad
��!

Dgrad
��!

Φ
� �2� �

� 2grad
��!

Φ div Dgrad
��!

Φ
� �
 �

d3rÐ
Reactor

νΣfΦ2d3r

This formula can be compared to Eq. (17.23) using the differential efficiency

W such that:

keff � k0eff ¼
ð

Reactor

ρc~u ~W rð Þd3r

with

First-order perturbationof neutron properties:

~W ¼
grad
��!

Dgrad
��!

Φ
� �2� �

� 2grad
��!

Φ div Dgrad
��!

Φ
� �

ρcD
Ð

Reactor

νΣfΦ2d3r
ð17:28Þ

which may be determined for simple types of geometries of the following form (see

Table 17.8):

W ¼ � α

rDρc

DdΦ
dr

� 	2Ð
Reactor

νΣfΦ2d3r

The kinetics equation linking displacement and pressure is given by:

ρc
d2~u

dt2
¼ �grad

��!
p

Deriving Eq. (17.24) twice with respect to time gives the following:

d2keff

dt2
¼

ð
Reactor

pdivW
!

d3r

Table 17.8 Form parameter of differential efficiency

Slab reactor Infinite cylindrical reactor Spherical reactor

α 0 2 4
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Bethe and Tait considered that the spatial shape of the flux and power obeyed a

parabolic law with respect to the radius, i.e.:

Φ rð Þ / 1� q
r

R

� �2
where R is the radius of the core. This flux shape leads to the calculation of the

differential efficiency W. For a spherical reactor, the following is obtained

(Weisman 1977, p. 419):

divW
!¼ � 48q2F

4πΣtrνΣf R
7ρc 1� 6q

5
þ 3q2

7

� �
where F is a form factor accounting for the blankets of radial thickness ΔRblank:

F ¼

Ðr¼R

r¼0

νΣfΦ2d3r

Ðr¼RþΔRblank

r¼0

νΣfΦ2d3r

In this model, divW
!

is constant whereas in real-life situations, it decreases with

distance from the center of the reactor. Bethe and Tait modeled the pressure using a

linear state equation with respect to the difference from the threshold energy:

p E; ρcð Þ ¼ 0 when E < Ethreshold

p E; ρcð Þ ¼ γ � 1ð Þρc E� Ethresholdð Þ when E 
 Ethreshold

�

The γ constant is equal to 2 in the historical model. It is the ratio of the heat

capacities of the gas and solid in the problem.

17.23 Subcritical Approach: Reactor Start-Up

(Murray 1954, p. 159)

For a subcritical reactor, the flux level cannot be maintained constant due to

leakage or high amounts of capture. The only means of reaching a permanent state

is by introducing a neutron source. Let S be an imposed neutron source. The neutron

concentration at equilibrium is given by:

n ¼ S‘ 1þ keff þ k2eff þ k3eff þ . . .
� �

¼ S‘

1� keff
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In other words, the source must exactly balance the loss of neutrons due to

under-multiplication between two generations, i.e. n(1� keff). However, the source
emits S ‘n neutrons between two generations, thus S ‘n¼ n(1� keff). For a PWR
start-up, these sources can be of various types. For the first cores, a spontaneous

fission source was used, for instance 252
98Cf inserted in the core only for the very first

divergence. The primary source pin is composed of only 0.2 mg of 25298Cf which has
an intensity of 4.4 � 108 neutrons/s (ν252

98Cf
¼ 3, 7560) with a neutron emission

spectrum (for three energy groups) of:

χ 14MeV;500 keV½ � ¼ 0:996 χ 500 keV;50 keV½ � ¼ 0:003 χ 50 keV;0 eV½ � ¼ 0:001

This source is located inside a hermetic double-steel shielded cermet to ensure

confinement of fission products. The source pin is inserted at the center of the

reactor during the first loading and then withdrawn. When the core is irradiated, the

(γ,n) reactions produced by antimony-beryllium Sb-Be sources, also known as

secondary sources, are used, with a more thermal spectrum than that of californium:

χ 14MeV;500 keV½ � ¼ 0:040 χ 500 keV;50 keV½ � ¼ 0:940 χ 50 keV;0 eV½ � ¼ 0:020

The photons required for the reaction come from the irradiated assemblies, with

neutron production being proportional to the level of irradiation of the core. The (α,
n) reactions can also be considered at a lesser level. They are produced by the effect
of the α–radioactivity from heavy nuclei on light nuclei such as oxygen. Therefore,

the neutron concentration, and thus the power, may be augmented by increasing the

core reactivity (Fig. 17.31).

In reality, inserting a reactivity step instantaneously is not feasible (and for

obvious safety reasons, it is not recommended). Instead, a reactivity ramp is

inserted by removing the rods at a given velocity for example. The faster the rods

are removed, the faster criticality is reached, but it is also reached at a lower neutron

level (Fig. 17.32).

Care must be taken to ensure that the reactivity insertion is slow and well

controlled in order to avoid “blind” divergence, i.e. the flux detection systems—

in this case, the external chambers—can efficiently detect changes in the neutron

flux, especially during recalibration phases. For a continuous reactivity insertion,

there is no means of detecting when criticality has been reached based on the

neutron level plots.

17.24 Reactor Stability

(Advances Nuclear Science and Technology Vol. 6, 1972, p. 45; Akcasu et al. 1971,
p. 251; Ash 1979; Weaver 1963, 1968)
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Fig. 17.31 Subcritical approach for core start-up
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Fig. 17.32 Subcritical approach with insertion of a reactivity ramp
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We have seen that, owing to feedback effects, reactivity depends on physical

reactor parameters such as component temperatures. Certain feedback effects like

moderator temperature have higher time constants than others, such as the Doppler

effect, due to the establishment of thermal transfer with the coolant. The existence

of an oscillating power regime due to feedbacks has been seriously considered, or

even a resonant regime without any countermeasures. In the 1950s, Ackroyd et al.

analyzed21 the stability criteria for such a problem. Let us start from the kinetics

equations with the total power of the reactor P(t) and the contribution to power of

the ith group of delayed neutrons, Ci(t) (it is no longer the precursor concentration if
power is used rather than the usual neutron concentration):

dP tð Þ
dt

¼ ρ� β

‘
P tð Þ þ

X6
i¼1

λiCi tð Þ
dCi tð Þ
dt

¼ βi P tð Þ
‘

� λiCi tð Þ

8>><
>>:

If relatively slow phenomena are considered, i.e. those for which dP(t)/
dt<< βP(t)/‘, the term dP(t)/dt can be disregarded without assuming that power

is constant. Setting the reduced variables p(t)¼ βP(t)/‘ and R(t)¼ ρ(t)/β, the kinet-
ics equations are written as:

p tð Þ 1� R tð Þð Þ ¼
X6
i¼1

λiCi tð Þ
dCi tð Þ
dt

þ λiCi tð Þ ¼ βi p tð Þ
β

8>>><
>>>:

Using the Nordheim technique, the time variation of the parameters is expressed

using an exponential form:

p tð Þ ¼ p0 eω t and Ci tð Þ ¼ C0
i eω t

This leads to the Nordheim equation with the following notations:

R ¼ 1�
X6
i¼1

λi
ωþ λi

βi
β
¼
X6
i¼1

ω

ωþ λi

βi
β

As previously seen, if R> 0, the frequency ω is positive and the power grows

exponentially. If R< 0, all the frequencies are negative and the power decays

exponentially. If R¼ 0, the power remains stable. If a periodic solution is sought,

21R. T. Ackroyd, G. H. Hinchin, J. E. Mann, J. D. McCullen: Stability considerations in the design
of fast reactors, Proc 2nd Conf. on peaceful uses of atomic energy, 1958, Vol 12 p. 230.
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the frequency should be written in the imaginary form iω such that eiω t is periodic,

thus:

R iωð Þ ¼
X6
i¼1

iω

λi þ iω

βi
β

R(iω) is the characteristic transfer function of the response of the reactor to periodic
reactivity insertion.

Reactivity may be expressed in the following form:

ρ tð Þ ¼ ρcontrol tð Þ þ
∂ρ
∂Tk

Tk � T ref
k

� �
where ρcontrol(t) is the reactivity of the control management systems (boron, control

rods) with respect to a reference situation and ∂ρ/∂Tk is the differential reactivity
coefficient with respect to the k component temperature, compared to a reference

temperature T ref
k . If the reactivity oscillation effect δρ¼ βχ eiω t is modeled with

perturbations:

R tð Þ ¼ R0 þ reiω t

p tð Þ ¼ p0 þ πeiω t

Ci tð Þ ¼ C0
i þ cie

iω t

8<
:

Inserting these formulae in the reduced Nordheim equation and keeping only the

first-order terms leads to:

π þ p0 r ¼
X6
i¼1

λi ci

dci
dt

þ λi ci ¼ βi
β
π

8>>><
>>>:

or even:

Nordheim equation perturbed at the first order:

π

p0

X6
i¼1

iω

λi þ iω

βi
β

 !
¼ r ð17:29Þ

The oscillation in reactivity creates an oscillation in the temperatures of the

materials at the same frequency, but a phase shift for each physical phenomenon

(e.g. conduction, convection, etc.) and with a complex transfer function Gk(ω):

Tk tð Þ ¼ T0
k þ

π

p0
β Gk ωð Þ eiω t
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The changes in reactivity and in the feedback parameters can be linked by:

reiω t ¼ χ eiω t þ
X
k

π

p0
αk Gk ωð Þ eiω t

where substituting r in Eq. (17.25) gives:

π

p0

X6
i¼1

iω

λi þ iω

βi
β

 !
¼ χ þ

X
k

π

p0
αk Gk ωð Þ

or:
π

χ p0
¼ 1

R iωð Þ �P
k

αk Gk ωð Þ
� �

This equation relates the amplitude of the change in power to that of the change

in reactivity. The transfer function R(iω) may be measured using an oscillation

experiment at low power. A resonance phenomenon is possible if

R iωð Þ ¼P
k

αk Gk ωð Þ, which enables the resonant frequency of ωR to be found. If

the latter exists for a power level p0 that is lower than the maximum power inducing

an emergency stop, the risk of an oscillating resonant amplitude must be consid-

ered. It should be noted, however, that the calculations were performed based on the

hypothesis that dP/dt is negligible, which is not consistent with resonant behavior.

However, the conclusion remains valid as the resonant condition is approached.

Stability analysis is of the utmost importance for fast-neutron reactors in which

feedback effects are very significant due to their geometry, and for boiling water

reactors due to void fraction feedback.

17.25 Space-Time Xenon Oscillations

We have seen that the isotope 135
54Xe is a highly absorbing fission product. An

increase in flux in a region of the core (e.g. by moving the control rods) is associated

with a short-term decrease in the 135
54Xeconcentration (increase in captures), which is

compensated by an increase in creation by fission (the medium is more reactive),

leading to a decrease in flux due to absorptions being more favorable (Lamarsh and

Baratta 2001, p. 383). This effect, stabilizing in theory, is impacted by the delayed

effect of 135
53I, which produces 135

54Xe with a 6.61-hour period. In more detrimental

cases, a spatial xenon oscillation is noted in the core and must be the damped by

the operator (Weaver 1964, p. 350; Kerkar and Paulin 2008, p. 243). The initial

cause of the flux deformation may be the insertion of a control rod, for instance,
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which creates an axial oscillation. The equations governing this phenomenon are

written (with one energy group) as follows:

d 135
53I
� 
dt

¼ γIΣfΦ� λI
135
53I
� 

d 135
54Xe
� 
dt

¼ γXeΣfΦþ λI
135
53I
� � λXe

135
54Xe
� � σXeΦ

135
54Xe
� 

1

v

∂Φ
∂t

� div Dgrad
��!

Φ
� �

þ ΣaΦ ¼ νΣfΦ

8>>>>>>><
>>>>>>>:

ð17:30Þ

Given the xenon time constants, the delayed neutron effect is disregarded.

The stationary state is defined by a space-dependent state vector,

u0 ~rð Þ ¼ 135
53I
� 

0
; 135

54Xe
� 

0
; Φ0

� �
, and the foregoing system of differential equa-

tions may be summarized as:

∂u ~r; tð Þ
∂t

¼ f u ~r; tð Þð Þ

f u ~rð Þ; tð Þ is a non-linear function in u ~r; tð Þ. The stationary state is stable if a

perturbationΔu ~r; tð Þ of stationary state u0 ~rð Þ tends to zero as time tends to infinity.

∂ u0 ~rð Þ þ δu
�
~r; t
	� 	

∂t
¼ ∂ δu ~r; tð Þð Þ

∂t
¼ f u0 ~rð Þ þ δu ~r; tð Þð Þ

� f u0 ~rð Þð Þ|fflfflfflffl{zfflfflfflffl}
0

þδu ~r; tð Þ ∂f
∂u

u0 ~rð Þ½ �

In practice, power is linked to changes in isotope temperatures and concentra-

tions via the feedback parameters. Inserting the first-order perturbations δu in the

state parameters leads to:

δP ¼ P� P0

¼ αDoppler Tfuel � Tfuel
0

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

δTfuel

þαModerator Tmod � Tmod
0

� 	|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
δTmod

þ . . .¼
X

feedback
paramters

αkδuk

ð17:31Þ

Since power is related to the flux by P¼ κΣfΦ, Eq. (17.26) may be written in the

form:
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d 135
53I
� 

0
þδI

� �
dt

¼γI
P0þδP

κ
�λI

135
53I
� 

0
þδI

� �
d 135

54Xe
� 

0
þδXe

� �
dt

¼γXe
P0þδP

κ
þλI

135
53I
� 

0
þδI

� �
�λXe

135
54Xe
� 

0
þδXe

� �
�σXeΦ

135
54Xe
� 

0
þδXe

� �
1

v

∂ P0þδPð Þ
∂t

�DΔ P0þδPð ÞþΣa P0þδPð Þ¼νΣf P0þδPð Þ

8>>>>>>>>><
>>>>>>>>>:
This equation is here synonymous with the fact that the reference state vector

P0;
135
53I
� 

0
; 135

54Xe
� 

0
; Tfuel

0 ; Tmod
0 ; : . . .

� �
verifies Eq. (17.26). Thus, the following

system of differential equations for the perturbations is obtained:

d δIð Þ
dt

¼ γI
δP

κ
� λI δIð Þ

d δXeð Þ
dt

¼ γXe
δP

κ
þ λI δIð Þ � λXe δXeð Þ � σXeΦ δXeð Þ

1

v

∂ δPð Þ
∂t

� DΔ δPð Þ þ Σa δPð Þ ¼ νΣf δPð Þ

8>>>>>>><
>>>>>>>:

The Laplace operator for the power perturbation may be modeled by a

discretization with finite differences for example. Therefore, the values of the

perturbations are known at the points surrounding the current point in the spatial

mesh. Given that the power perturbation verifies Eq. (17.27), perturbations are

generally sought in the following form (Hitchcock 1960):

d δuið Þ
dt

¼
Xn
j¼1

aijδuj

The integer n represents the number of state parameters. Each perturbation is a

solution of this system of differential equations of order n, and is written as:

δuj ~r; tð Þ ¼
Xn
i¼1

δuij ~rð Þ eωj t

Hence the non-trivial solution with coefficients aij verifying the following must

be found:

a11 � ω a12 	 	 	 a1n
⋮ a22 � ω ⋮
⋮ ⋮
an1 an2 	 	 	 ann � ω

��������

�������� ¼ 0

This n-degree determinant has n roots ωj, real or complex. Since ω intervenes

only in the form of ajj�ω on the diagonal, then, if ωj¼ λ+ iθ is a solution, then so
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too will be the complex conjugate ωj ¼ λ� iθ. In this case, the stability is

guaranteed if all the eigenvalues ( frequencies) have a negative real part (Planchard
1995). If only one root is positive or zero, the system is unstable. It can be proved

that the imaginary parts are bounded by a constant depending on the physical data

of the problem. If the function u ~r; tð Þ depends on control parameter c (for instance,
the absorption of control rods), then change in this parameter beyond a critical

value c0 may turn the real part of the frequency ω0 6¼ 0 positive, as a result of which

the problem becomes unstable and adopts a stable periodic behavior. This is known

as the Hopf bifurcation (1942) (Iooss and Joseph 1995; Callier and Desoer 1991;

Merriam 1964).
The increase in the control command parameter beyond c0 up to a value of c1

may lead to a second frequency ω1 6¼ 0 (Planchard 1995). Hence, the numerical

calculation of the largest eigenvalue for the linearized equations (Eq. 17.27) of a

reactor would enable the stability margin to be determined with respect to the action

of an operator (insertion/extraction of a control rod). This knowledge optimizes the

countermeasures in the event of oscillations. The physics of Fig. 17.33 is as follows:

a control rod is inserted in the core (e.g. to lower the power using a rod bank). The

immediate decrease in flux and power in the upper part of the core due to absorp-

tions by the rod has two consequences: first, the amount of xenon-135 increases in

the upper part since it no longer disappears through captures, and second, the

iodine-135 produced directly by fission—unlike xenon-135, which is formed by

the decay of iodine-135—decreases with the flux. This decrease lowers the amount

of xenon with a delay due to the decay of iodine (6.61 h). There is thus a phase

difference between the iodine-135 and xenon-135 concentrations, which may

remain and lead to an axial-offset power transient of apparent period of 20–30 h,

depending on the initial iodine concentration. This phenomenon can lead to an

automatic shutdown if the axial-offset power is too positive (power/axial-offset

diagram). In practice, the operator may use the regulating bank R to damp the

oscillation by inserting the rod bank when power increases in the upper part, and

withdrawing it when the sinusoidal function decreases. Experimentally, the phe-

nomenon worsens and becomes more unstable as the core is depleted. In cycle-

stretching cases with reduced power, the situation worsens as boron is depleted, and

the operator may add more boric acid to limit the effluents.

The example illustrated in Fig. 17.34 consists in inserting group R from an

all-out (all rods withdrawn) position to that in which 50 steps are still extracted, in

150 s. The rod is left inserted in the core for half an hour and then removed. The

effect is observed over a transient lasting 120 h. The xenon-135 oscillations (the star

with eight vertices) and iodine-135 (the star with four vertices) have an amplitude

which depends on the power level of the core. Further, these amplitudes are more

significant at EOL than at BOL. In addition, the amplitudes may be divergent

towards the EOL, thereby indicating that a Hopf bifurcation has been crossed

during depletion without any rod problems. These studies also show the existence

of a “natural” bifurcation of the reactor during depletion. The axial-offset (star with

five vertices) is more prominent when iodine and xenon are out of phase. It should
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be pointed out that the unstable reactor behavior related to a Hopf bifurcation is also

characteristic of BWR, which tend to become more unstable at low-flow regimes

and at high power levels due to void fraction oscillations (incidental transient from

LaSalle Reactor, Unit 2 in the USA).22

17.26 Mechanical Kinetic Effects

We saw previously how changes in thermal-hydraulic parameters influence reactor

kinetics. The effect of a geometry variation due to mechanical stresses can also be

investigated. A further equation is added to account for the resistance due to inertial

acceleration, mechanical damping and elastic resistance to distortions.23 The period

of mechanical oscillation is assumed to be negligible compared to the mean neutron

lifetime including the delayed neutrons (about 10 s). If y is the (dimensionless)

perturbation on the density of material inside the core, it is assumed to obey the

following equation:

Fig. 17.34 Xenon instabilities (studies by Patrick Erhard, EDF, 2008)

22Tomoaki Suzudo: Reactor noise analysis based on nonlinear dynamic theory—application for
power oscillation, Nuclear Science and Engineering, 113 pp. 145–160 (1993).
23A.S. Thompson, B.R. Thompson, A model of reactor kinetics, Nuclear science and engineering,

100, pp. 783–88 (1988).
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d2y

dt2
þ cm

dy

dt
þ ω2

m yþ bTð Þ ¼ 0

where cm is the damping factor, ωm is the natural mechanical frequency of the

component which creates the vibration leading to the change in reactivity, and b the
thermal expansion coefficient of the component of mass M. This equation is added

to the usual equations (αT> 0):

ρ ¼ ρ0 � αTT þ αyy
dP

dt
¼ �αTT þ αyy� β þ ρ0
� 	

Pþ βP0

‘

P� P0 ¼ cpM
dT

dt

8>>><
>>>:

The temperature is eliminated from the previous equation system, and the

following is obtained:

d2Log P
P0

� �
dt2

þ β

‘

d P�P0

P

� 	
dt

þ αTP0

cpM‘

P� P0

P

� �
¼ αy

‘

dy

dt

If the mechanical equation is inserted in the previous equation, a 4th-degree

equation on power is reached, using the dimensionless variables �p � Log P=P0ð Þ
and p¼ (P�P0)/P:

d4�p

dt2
þ cm

d3�p

dt3
þ ω2

m

d2�p

dt2
þ β

‘

d3p

dt3
þ cm

d2p

dt2
þ ω2

m

dp

dt


 �
þ ω2

T

d2p

dt2
þ cm

dp

dt
þ ω2

mp


 �
þ ω2

mω
2
yp ¼ 0

withω2
T ¼ αTP0= cpM‘

� 	
andω2

y ¼ αybP0= cpM‘
� 	

. In a reactor, the coefficients are

such that the system is stable to mechanical stress. Nevertheless, in some cases, a

resonance mode may be excited. A stability condition of the type P0αyb< cpMβcm
is reached. The latter does not depend on the generation time, demonstrating that

there is an increasing risk of permanent oscillations with respect to the initial

power.

17.27 Neutron Noise

(Pazsit and Pal 2007; Annual review of nuclear science Vol. 2, 1953, p. 145; Stacey
2001, p. 177; Thie 1981; Uhrig 1970; Weaver 1964; Williams 1974; Progress in
nuclear energy Vol. 9, 1985; Progress in nuclear energy Vol. 15, 1985; Duquesne
et al. 1960, p. 195)

17.27 Neutron Noise 1277



The notion of neutron noise covers two different areas. First, the fact that

correlation exists between the neutrons of a fission chain in the chain reaction,

and second, that pseudo-periodic change in the properties of the medium (geome-

try, neutron properties, etc.) leads to a variation of same frequency, which may be

detected either by a single detector or by comparing the signals for two detectors in

different positions.

17.27.1 Noise Concept, Spectral Analysis

(Grivet and Blaquière 1958)

If the power of a stabilized reactor is determined by a detector measuring the

reaction rate, experimentally, the count rate fluctuates around a mean value. This

mean value may be computed in a deterministic way with high precision.

Disregarding the mechanical causes (structural vibrations,24 formation of steam

bubbles, etc.), this change in the count rate originates from the statistical nature of

the fission process—each fission does not produce the same number of neutrons.

Hence, a fission releasing four neutrons will generate more energy on average

during the subsequent fissions than a fission that releases one neutron only. Fol-

lowing the same reasoning, each neutron produced will not travel the same distance

in the reactor and will not have the same lifetime. All these phenomena are known

only statistically. The large amount of neutrons in the reactor, as well as the creation

and loss of neutrons, is connected by random statistical phenomena, which might

suggest that the neutron population follows a Poisson distribution25 due to the law

of large numbers. However, the events that occur are not independent of one

another. This correlation between the father and daughter neutrons in a chain

reaction is what causes the divergence from Poisson distribution.26

Analysis of neutron fluctuations has very interesting applications (Thie 1981): it

is possible to study microscopic fluctuations that occur at any power level but which

constitute the only stochastic process at very low power, where they can be detected

and analyzed. Moreover, the macroscopic fluctuations caused by changes in reac-

tivity due to several factors may also be studied. Finally, neutron fluctuations may

occur in cases of geometry perturbation (e.g. assembly vibration, baffle

deformation).

Noises are random stochastic phenomena characterized by statistical properties.

Three types of noise are generally observed:

24Several such applications are described in: Progress in Nuclear Energy, Vol. 29, No 3–4 (1995).
25On Poisson distribution, see (Ross 1992).
26Jean Tachon: Etude neutronique d’une pile �a neutrons thermiques au plutonium «Proserpine»:
corrélations entre neutrons dans une réaction en chaı̂ne [Neutron study of the Proserpine

plutonium thermal neutron reactor: correlations between neutrons in a chain reaction], PhD thesis,

Science Faculty of Paris, 1960.

1278 17 Reactor Kinetics



– non-stationary noise whose properties are always time-dependent. By definition,

these noises have no mathematically interesting properties.

– stationary noises whose statistical properties are time-independent. This means

that the noise is unchanged statistically by any shift in the time basis.

– ergodic noises (Uhrig 1970, p. 10), which are stationary noises if, for several

statistically equivalent readings of the noise, the mean reading for a given time

interval (statistical mean) is equivalent to the average in time for the same

reading (time average).

A noise is said to be centered if its mean value is zero, and Gaussian if its

distribution around a mean value obeys a Maxwell-Gauss law. A noise is called

white if all frequencies are present in equal degree. Some useful definitions for the

analysis of noise include: the auto-correlation function of a noise x(t), given by:

Rx,x τð Þ � lim
T!þ1

1

2T

ðþT

�T

x tð Þ x tþ τð Þdt

The inter-correlation function is written as:

Rx,y τð Þ � lim
T!þ1

1

2T

ðþT

�T

x tð Þ y tþ τð Þdt

The mean power of a noise of frequency ω is:

Px,x ωð Þ � lim
T!þ1

1

2T

ðþT

�T

x tð Þ e�iωt dt

0
@

1
A2 ¼ ðþ1

�1
Rx,x τð Þ e�iωτ dτ

which is the Fourier transform of the auto-correlation function. The virtually

identical concept of Auto Power Spectral Density is also used (Williams 1974,

p. 34):

APSDx,x ωð Þ � 1

2π

ðþ1

�1
Rx,x τð Þ e�iωτ dτ

and, as a corollary, the inter-correlation power and spectrum (Cross Power Spectral
Density):

Px,y ωð Þ �
ðþ1

�1
Rx,y τð Þ e�iωτ dτ and CPSDx,y ωð Þ � 1

2π

ðþ1

�1
Rx,y τð Þ e�iωτ dτ
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If a noise y(t) is the result of an amplification of a noise x(t) (respectively

attenuated) by a transfer function F(ω), the signal y(t) is:

y tð Þ ¼
ðþ1

�1
f t� t0ð Þx t0ð Þdt0 with: f tð Þ ¼

ðþ1

�1
F ωð Þeiωt dω

The inter-correlation power is worth:

Px,y ωð Þ ¼
ðþ1

�1
dτ e�iωt lim

T!þ1
1

2T

ðþT

�T

dt x tð Þ
ðþ1

�1
f tþ τ � t0ð Þx t0ð Þdt0

0
@

1
A

¼ F ωð Þ
ðþ1

�1
dt0 e�iω t0�tð Þ lim

T!þ1

ðT
0

x tð Þx t0ð Þdt
0
@

1
A ¼ F ωð ÞPx,x ωð Þ

Similarly: Py , y(ω)¼ [F(ω)]2Px , x(ω). If the transfer function consists of an

attenuation γ and a delay Δt, the inter-correlation between y(t) and x(t) is written as:

Rx,y τð Þ � lim
T!þ1

1

2T

ðþT

�T

x tð Þ y tþ τð Þdt

¼ γ lim
T!þ1

1

2T

ðþT

�T

x tð Þ y tþ τ � Δtð Þdt ¼ γRx,x τ � Δtð Þ

thereby, leading to the power:

Px,y ωð Þ ¼ γ e�iωΔt Px,x ωð Þ

17.27.2 Neutron Correlations

In 194427 Richard Feynman, Frederic de Hoffman and H. Saber proposed an

elementary theory adapted to prompt neutrons, which shows that the probability

27R. P. Feyman, F. de Hoffmann, H. Serber: Statistical fluctuations in the water boiler and the
dispersion of neutrons emitted per fission, Los Alamos Scientific Laboratory report LA-101

(1944).
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of detecting a first neutron at time 0, and a second neutron t with the same ancestor

as the first neutron in the chain reaction, is given by:

P tð Þdt ¼ Cþ Ae
�

1�keff 1�βeffð Þ
‘Bg

t

 !
dt

where C corresponds to the non-correlated background noise, which is the product

of the detector efficiency, ε, and the neutron concentration, and A is the amplitude

coefficient of the correlated part, which is proportional to the average number of

prompt fission neutrons ν and to the ratio:

kp
1� kp

� 1� βeff
� 	

keff

1� 1� βeff
� 	

keff

At low power,28 in order for the background noise not to overwhelm the

correlated part, fundamental reactor properties such as the βeff may be obtained.

If a given reaction (e.g. fission) produces ν neutrons and occurs F times (fission

rate) per second on average, the power of this neutron source is worth ν2F.
Denoting p(ν) as the probability of a fission releasing ν neutrons (in physics, ν is

always an integer but the problem is considered from a general mathematical point

of view, with a probability density), by definition, the following is obtained:ð
p νð Þdν � 1 and

ð
νp νð Þdν � ν

If there are n neutrons in a reactor, the number of neutrons undergoing sterile

capture or escaping from the reactor per unit time is written as follows (using the

conventional notation for cross sections in diffusion theory):

n

‘

Σn, γ þ DB2

Σf þ Σn, γ þ DB2

This is equivalent to giving a negative production value of�1 to this reaction. At

the same time, F0 ¼ n

‘

Σf

Σf þ Σn, γ þ DB2
fissions occurred per second, of which a

proportion p(ν) will release ν neutrons, with the loss of the fission neutron.

28Gregory D. Springs: The reactor noise threshold, Nuclear Science and Engineering, 116, pp.

67–72 (1994). The author precisely defines the limit that must not be exceeded in order for the

measurement to be useful. For a critical PWR with a prompt neutron lifetime of 10�3 s, the limit of

0.00025 W is found. This can be measured (with difficulty!) in an industrial reactor (fission power

is largely exceeded by residual power). For an over-critical stable reactor, this constraint is less

strict. For a stable sub-critical reactor, the criterion depends on the source.
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A production value ν� 1 is attributed to this type of reaction. The power of the

fission noise is thus calculated as:

Pfission ¼ n

‘

1

Σf þ Σn, γ þ DB2
Σn, γ þ DB2
� 	 �1ð Þ2 þ Σf

ð
p νð Þ ν� 1ð Þ2 dν|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ν2�2νþ1

2
66664

3
77775

The criticality condition is written as: νΣf ¼ Σf þ Σn, γ þ DB2, hence:

Pfission ¼
n
‘ ν ν� 1ð Þ

ν
¼ n

‘

ν2 � ν

ν

 !

If a small reactivity variation of ρ is inserted by disregarding the effect of

delayed neutrons, the point-kinetics equations show that the change induced in

the amount of neutrons is:

dn

dt
� ρ

‘
n

This neutron source produces a noise of power:

Pρ, fission ¼ 1

F0

ν2 � ν

ν2

 !
where F0 is the number of fissions per second.

D � ν2 � ν
� �

=ν2 is called the Diven factor (Williams 1974, p. 28). As seen

earlier, Eq. (17.1) gives the behavior of prompt neutrons in a reactor without any

imposed source, i.e.:

n tð Þ ¼ n 0ð Þ e
kp�1

‘Bg

� �
t

where kp� (1� βeff) keff is the multiplication factor of prompt neutrons. The use

of such a multiplication factor is equivalent to considering one group of fission

neutrons without delayed neutrons. In a sub-critical reactor in which an indepen-

dent source of S neutrons is inserted, the equation governing the neutron popu-

lation is:

dn

dt
¼ ρ� βeff

‘
nþ S ¼ kp � 1

‘Bg

nþ S ¼ �αnþ S
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The coefficient α � 1� kp
� 	

=‘Bg
¼ βeff � ρ
� 	

=‘ (Uhrig 1970, p. 51; Williams

1974, p. 37), is called the α�Rossi coefficient after Italian physicist Bruno Rossi,29

who proposed the first experiments using the fission neutron correlations in 1944. It

is for this reason that these techniques are called Rossi� α and are used in several

applications, such as measurement of the effective fraction of delayed neutrons

(Photo 17.5).30

At low power and disregarding delayed neutrons, the reactor behaves like a

Markov system31 with a correlation time of 1/α� ‘/(β� ρ).

Photo 17.5 Bruno Rossi

(Public domain)

29Bruno Rossi (1905–1993) studied in Padua and Bologna. He received his PhD in Physics in 1937

and worked in Florence and Padua, before leaving Italy in 1938 for Denmark and subsequently

moving to Great Britain. In the United States, he worked on the Manhattan project as co-director of

the detectors group, and was in charge of instrumentation for physics testing of the atomic bomb.

From 1946, he taught physics at MIT, where he became a worldwide expert in cosmic rays. At the

end of his career, he was working on plasma physics and astrophysics.
30Gregory D. Springs: Two Rossi� α techniques for measuring the effective delayed neutron
fraction, Nuclear Science and Engineering, 112, pp. 161–172 (1993).
31Andrey Andreyevitch Markov (1856–1922) was a Russian mathematician and a student of

Tchebychev at the University of St Petersburg. He became a member of the science academy of

the same city in 1886. He is the author of several major works in probability theory, particularly

Markov inequality: if X is a real discrete random variable with values in R+, then P(X
 a)�E(X)/a
where E(X) is the expected value of X.More generally, when X is a random numerical variable and

a strictly positive increasing function, then for any a> 0: P(X
 a)�E(φ(X))/φ(a). A Markov

process is a random finite state without past memory where the next state in the process depends

solely on its present state. To simplify, only the present state and not past states, influences the

future. It should be noted that his son, also named Andrey, was also a prominent Russian

mathematician.
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Andrey Markov (1856–1922) (Public domain)

If a neutron counter with a Poisson response function were available, i.e. with a

random count rate averaged over several counts (sufficient in statistical terms)

proportional to the mean neutron loss, i.e. the sub-critical permanent regime in

fission rate F, the number of counts per second measured by the counter during a

counting time of Δt would be (Fig. 17.35):

ch i ¼ εFΔt

In this formula, ε is the detector efficiency. Let two neutrons be nA and nB, each
one leading to a fission at time t0. The correlation that a daughter neutron contrib-

uting to the count rate at time t1 (up to dt1) is of the same family as the neutron

contributing to the count rate at t2 (up to dt2) is determined. If all the neutron pairs

are counted at these two times, the pair nA
1 ; n

A
2

� 	
is from the same father neutron nA

(these are called coupled pairs) while the pair nA
1 ; n

B
2

� 	
is released by two different

tt1 t2

An

Bn

An1

An2

Bn2

Infographie Marguet

t0

1dt 2dt

Fig. 17.35 Correlated

fission neutrons
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fathers (these are called accidental pairs). The occurrence probability that an

accidental pair is the product of the occurrence probability of the two events

nA
1

� 	
and nB

2

� 	
, thus εFdt1 εFdt2¼ ε2F2 dt1 dt2 (Williams 1974, p. 39). The

occurrence probability for a coupled pair is the result of four probabilities: the

probability of fission during a time interval dt1, which is dt1 vΣf ¼ dt1= ν‘ð Þ where
ν is the mean number of neutrons produced by fission. Given that one fission at time

t0 produces ν neutrons with probability p(ν), the neutrons released and belonging to
this fission descent will be amplified at time t1 by a factor of e�α t1�tð Þ. They
therefore increase to νe�α t1�tð Þ and their probability of contributing to the count

rate during the time interval dt1 is ενe�α t1�tð Þ dt1= ν ‘ð Þ. Following the same

reasoning, the probability of another neutron from the same generating fission

contributing to the count rate over time dt2 is worth ε ν� 1ð Þe�α t2�tð Þ dt2= ν ‘ð Þ.
The coefficient (ν� 1) is used due to the fact that the neutron considered is from

another fission branch than the first detected neutron, and hence absorbed at t1. For a
number of fissions Fdt, the occurrence probability of a coupled pair is the product

of the probabilities:

Fdt

ν2 ‘2
ε2ν ν� 1ð Þp νð Þe�α t1þt2�2tð Þ dt1 dt2

The total number of coupled pairs is obtained by integrating over the initial time

of the generating fission and over all neutrons produced:

ðt1
�1

dt
F

ν2‘2
ε2 e�α t1þt2�2tð Þ dt1 dt2

ð
ν

dνν ν� 1ð Þp νð Þ

¼ F

2αν2 ‘2
ε2 ν2 � ν
� �

e�α t2�t1ð Þdt1 dt2

Summing the number of coupled and accidental pairs, the total number of

neutron pairs contributing at dt1 for the first, and at dt2 for the others, is:

F

2α‘2
ε2

ν2 � ν

ν2
e�α t2�t1ð Þ þ ε2F2

" #
dt1 dt2

The α�Rossi method consists in studying the decay of the neutron families over

a time period of the order of magnitude of 1/α. This is done by decomposing the

time period into time intervals, called time gates, which may or may not be

continuous. A neutron counter is placed in the pile. An impulse triggers the channel

selector, which measures the probability of a neutron being counted at instant

[t, t+ dt] after another has been registered at time t1¼ 0. The number of pairs is

calculated as follows:

17.27 Neutron Noise 1285



npairs tð Þdt ¼ F

2α‘2
ε2

ν2 � ν

ν2
e�α t þ ε2F2

" #
dt

Developed initially for fast reactors in having a short generation period and in

which several father-daughter neutron chains do not usually overlap, this method

works very well at low power where the statistical nature predominates and where

the detectors are not saturated.

The reduced variance method consists in measuring the average and the standard

deviation of a count rate over a time interval Δt. For this purpose, we integrate the
number of pairs for t12 [0, t2] and t22 [0,Δt], i.e.:

ðΔt
0

dt2

ðt2
0

dt1
F

2ν2 ‘2
ε2 e�α t2�t1ð Þ

ð
ν

dνν ν� 1ð Þp νð Þ
2
4

3
5þ

ðΔt
0

dt2

ðt2
0

dt1ε
2F2 ¼

F

2α2 ‘2
ε2

ν2 � ν

ν2
1� 1� e�αΔt

αΔt

� �
Δtþ ε2F2 Δtð Þ2

2

If c is the count rate, the total number of pairs can be directly evaluated by

counting the mean number of combinations of pairs of c numbers (integer, with

possible extension to real numbers), thus hc (c� 1)/2i¼ ðhc2 i� hciÞ/2. By defini-

tion of the mean count rate: hci� εFΔt, where:

c2
� �� ch i

2
¼ ch i2

2
þ ch i

2

ε

α2 ‘2
ν2 � ν

ν2
1� 1� e�αΔt

αΔt

� �

Since α� (βeff� ρ)/‘, finally32:

c2
� �� ch i2

ch i ¼ 1þ ε

βeff � ρ
� 	2 ν2 � ν

ν2
1� 1� e�αΔt

αΔt

� �

This expression shows the respective role of the Diven factor, the reactivity and

the coefficient α. For a true Poisson distribution, ðhc2 i� hci2Þ/hci¼ 1 would be

obtained. The complementary term represents the difference with respect to

Poisson distribution. Hence, measurement of the sub-criticality level can be

obtained, with a sample application being measurement of the shutdown anti-

reactivity margin [R. Uhrig in Weaver (1964, p. 1) and T. Stern and J. Valat in

Weaver (1964, p. 27)].

32Williams (1974) used a mean fission time defined by τf¼ 1/(vΣf), which can be related to the

generation time by τf ¼ ν ‘. Here, the choice was made so as to avoid new definitions of the

lifetime, which could prove confusing.
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17.27.3 The Feynman-α Method

In a Markov chain, the state of a system at the current time determines its evolution

without considering its past states. In other words, the process has “no memory”.

This is the case for a fissile system without delayed neutrons and its evolution over

time is characterized by the probability of having n neutrons at time t, given that

there were n0 at time t0, i.e. p(n, t/n0, t0).
Can this probability be characterized more precisely? If the state at an interme-

diate time tm is considered, by summing over all the possible intermediate states, the

following can be written:

Chapman-Kolmogorov Equation:

p n; t=n0; t0ð Þ ¼
X
8m

p n; t=m; tmð Þp m; tm=n0; t0ð Þ ð17:32Þ

This is the Chapman-Kolmogorov Equation. The probability increment for a

time increment of dt is defined as:

wn,m tð Þdt � p n; tþ dt=n; tð Þ

This is an infinitesimal transition probability. The normalized probabilities

p(n, t+ dt/n, t) verify:

8t
X
n

p n; tþ dt=n; tð Þ ¼ 1 ¼
X
n

wn,m tð Þdt

By introducing the probability wn , n(t), the following may be written:

wn,n tð Þdt ¼ 1�
X
m<n

wn,m tð Þdt

The Chapman-Kolmogorov equation is then written by substituting t by t+ dt
and tm by t:

p n; tþ dt=n0; t0ð Þ ¼
X
8m

wn,m tð Þdtp m; t=n0; t0ð Þ

¼
X
m<n

wn,m tð Þdtp m; t=n0; t0ð Þþ 1�
X
m<n

wn,m tð Þdt
 !

p n; t=n0; t0ð Þ

which is expressed in the form of a differential equation called the direct master

equation:
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Direct master equation:

dp n; t=n0; t0ð Þ
dt

¼
X
m<n

wn,m tð Þp m; t=n0; t0ð Þ �
X
m<n

wn,m tð Þdt
 !

p n; t=n0; t0ð Þ

ð17:33Þ

What has been developed until now is not connected with neutron physics.

Describing the counting process of the detector introduces neutron behavior into

the concept. Assuming that the counter is located in or around a reactor to measure

the neutron flux, it works by producing a response when neutrons are captured by

the detecting surface characterized by a detection cross section ΣD. Each neutron

reacting with the detector is called a “stroke”, which is the pulse detected by the

incremental stroke counter. The processes describing the transition from one state

to another one, i.e. the possibility of obtaining n neutrons at time t+ dt and c stroke
detections integrated over the time interval [0, t+ dt] during a sufficiently small

time increment for only one interaction, of any type, to take place, may be described

as follows:

– There are n neutrons at time t and the inherent source S of the reactor creates a

new neutron. The detector does not detect any strokes, as shown by the following

scheme:

n ) þ 1 ) nþ 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Reactor

= c ) ) c|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Detector

– There are n+ 1 neutrons at time t and one of the neutrons is captured in the core.
The capture cross section of the latter is Σc and the flux in the core isΦ� (n+ 1)v
where v is the speed of the neutrons. The detector does not detect any supple-

mentary strokes:

nþ 1 ) � 1 ) n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Reactor

= c ) ) c|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Detector

– There are n+ 1� ν neutrons at time t and one neutron induces a fission in the

core (the fission cross section being Σf) leading to the release of ν new fission

neutrons with a distribution χ(ν) (the mean value being ν) and the flux in the

reactor is Φ� (n + 1� ν)v. The detector does not detect any strokes:

nþ 1� ν ) þ ν ) nþ 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Reactor

= c ) ) c|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Detector

– There are n+ 1 neutrons at time t and one of the neutrons interacts with the

detector. The detector counts a stroke:
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nþ 1 ) ) nþ 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Reactor

= c� 1 ) þ 1 ) c|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Detector

For this problem, the direct master equation is:

Direct master equation for a reactor=detector system:

dp n; c; t=n0; 0; t0ð Þ
dt

¼ Sp n� 1; c; t=n0; 0; t0ð Þ
þ nþ 1ð ÞvΣcp nþ 1; c; t=n0; 0; t0ð Þ
þ
X
ν

nþ 1� νð ÞvΣf χ νð Þp nþ 1� ν; c; t=n0; 0; t0ð Þ

þ nþ 1ð ÞvΣDp nþ 1; c� 1; t=n0; 0; t0ð Þ
� Sþ nvΣc þ nvΣf þ nvΣD

� 	
p n; c; t=n0; 0; t0ð Þ

ð17:34Þ

The last term should be interpreted as the probability of obtaining n neutrons and
c strokes at time t+ dt, given that they were already the same at time t. This term is

negative in the direct master equation.

To study this differential equation that accounts for the changing number of

neutrons per fission via the distribution χ(ν), the probability-generating functions

were introduced historically. They are defined in a general fashion by:

F x; y; tð Þ ¼
X
n

X
c

P n; c; tð Þxnyc and f xð Þ ¼
X
ν

χ νð Þxν

It should be noted that F 1; 1; tð Þ ¼P
n

P
c
P n; c; tð Þ ¼ 1, and similarly,

f 1ð Þ ¼P
ν
χ νð Þ ¼ 1

The time dependence at t0 has been omitted for the sake of concision. By

deriving these functions, some average values may be computed:

∂F x; y; tð Þ
∂x

¼
X
n

X
c

P n; c; tð Þnxn�1yc

∂F x; y; tð Þ
∂y

¼
X
n

X
c

P n; c; tð Þxncyc�1

∂f xð Þ
∂x

¼
X
ν

χ νð Þνxν�1

8>>>>>>><
>>>>>>>:

It should be pointed out that for the particular values x¼ y¼ 1:
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∂F x;y;tð Þ
∂x

���
x¼y¼1

¼
X
n

X
c

P n; c; tð Þn � �n

∂F x;y;tð Þ
∂y

���
x¼y¼1

¼
X
n

X
c

P n; c; tð Þc � �c

∂f xð Þ
∂x

���
x¼y¼1

¼
X
ν

χ νð Þν � ν

8>>>>>><
>>>>>>:

Applying the same reasoning, the second derivatives lead to the second-order

moments:

∂2
F x;y;tð Þ
∂x2

���
x¼y¼1

¼
X
n

X
c

P n; c; tð Þn n� 1ð Þ � n n� 1ð Þ
∂2

F x;y;tð Þ
∂y2

���
x¼y¼1

¼
X
n

X
c

P n; c; tð Þc c� 1ð Þ � c c� 1ð Þ
∂2

F x;y;tð Þ
∂x∂y

���
x¼y¼1

¼
X
n

X
c

P n; c; tð Þcn � cn

∂2
f xð Þ
∂x2

���
x¼y¼1

¼
X
ν

χ νð Þν ν� 1ð Þ � ν ν� 1ð Þ

8>>>>>>>>>><
>>>>>>>>>>:

The differential equations governing the generating functions may be

established by composition of direct master equations:

d
X
n

X
c

p n; c; tð Þxnyc

dt
¼ S

X
n

X
c

p n� 1; c; tð Þxnyc

þ
X
n

X
c

nþ 1ð ÞvΣcp nþ 1; c; tð Þxnyc

þ
X
n

X
c

X
ν

nþ 1� νð ÞvΣf χ νð Þp nþ 1� ν; c; tð Þxnyc

þ
X
n

X
c

nþ 1ð ÞvΣDp nþ 1; c� 1; tð Þxnyc

�
X
n

X
c

Sþ nvΣc þ nvΣf þ nvΣD

� 	
p n; c; tð Þxnyc

which is written by assuming that n and c are very large, such that

F x; y; tð Þ ¼
X
n

X
c

P n; c; tð Þxnyc �
X
n

X
c

P n� 1; c; tð Þxn�1yc

�
X
n

X
c

P nþ 1; c; tð Þxnþ1yc

Similarly: F x; y; tð Þ ¼P
n

P
c
P n; c; tð Þxnyc �P

n

P
c
P n; c� 1; tð Þxnyc�1
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Thus, the following equation is reached:

∂F x; y; tð Þ
∂t

¼ Sx
X
n

X
c

p n� 1; c; tð Þxn�1ycp n� 1; c; tð Þ

þvΣc

X
n

X
c

nþ 1ð Þp nþ 1; c; tð Þxnyc

þ
X
n

X
c

X
ν

nþ 1� νð ÞvΣf χ νð Þp nþ 1� ν; c; tð Þxnyc

þvΣD

X
n

X
c

nþ 1ð Þp nþ 1; c� 1; tð Þxnyc

�
X
n

X
c

Sp n; c; tð Þxnyc þ x
X
n

X
c

nvΣc þ nvΣf þ nvΣD

 !
p n; c; tð Þxn�1yc

or:

∂F x; y; tð Þ
∂t

¼ S x� 1ð ÞF x; y; tð Þ þ vΣc 1� xð Þ∂F x; y; tð Þ
∂x

þ f xð Þ � xð ÞvΣf
∂F x; y; tð Þ

∂x

þvΣD y� xð Þ∂F x; y; tð Þ
∂x

ð17:35Þ

Deriving this equation with respect to x, the following is obtained:

∂2
F x;y;tð Þ
∂t∂x

¼SF x;y;tð Þ�S x�1ð Þ∂F x;y;tð Þ
∂x

þvΣc 1�xð Þ∂
2
F x;y;tð Þ
∂x2

�vΣc
∂F x;y;tð Þ

∂x
þ f xð Þ�xð ÞvΣf

∂2
F x;y;tð Þ
∂x2

þ df xð Þ
dx

�1

� �
vΣf

∂F x;y;tð Þ
∂x

þvΣD y�xð Þ∂
2
F x;y;tð Þ
∂x2

�vΣD
∂F x;y;tð Þ

∂x

For the particular case of x¼ y¼ 1, the following is reached:

d�n

dt
¼ S� vΣc�nþ v ν� 1ð ÞΣf �n� vΣD�n

This equation may be written in the usual kinetics equation form:

Kinetics of mean number of neutrons:
d�n

dt
¼ �α�nþ S ð17:36Þ

with α ¼ vΣc � v ν� 1ð ÞΣf þ vΣD. Using the usual neutron notations:

k1 � νΣf

Σa
, the generation period or the effective lifetime of prompt neutron

‘ � 1
vνΣf

¼ ‘Bg
keff
, the reactivity ρ � keff�1

keff
, and the absorption cross section of the

reactor: Σa�Σc+Σf+ΣD. It should be noted that this definition assumes that the
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detector is placed inside the reactor, which is not very important given that ΣD has a

low value in general. The following may be expressed:

α ¼ vΣc � v ν� 1ð ÞΣf þ vΣD ¼ v Σa � νΣf

� 	 ¼ vνΣf
1

k1
� 1

� �

¼ 1

‘

1þM2B2
g

keff
� 1

 !
� �ρ

‘

The differential equation giving the number of strokes is obtained by deriving

Eq. (17.4) with respect to the number of strokes is obtained by deriving Eq. (17.4)

with respect to y:

∂2
F x; y; tð Þ
∂t∂y

¼ S x� 1ð Þ∂F x; y; tð Þ
∂y

þ vΣD
∂F x; y; tð Þ

∂x
þ vΣD y� xð Þ∂

2
F x; y; tð Þ
∂x∂y

þvΣc 1� xð Þ∂
2
F x; y; tð Þ
∂x∂y

þ f xð Þ � xð ÞvΣf
∂2

F x; y; tð Þ
∂x∂y

Applying this equation at x¼ y¼ 1:

d�c

dt
¼ vΣD�n

The efficiency of the detector is introduced as ε � ΣD

Σf
.

The equations for the second-order moments are obtained by deriving Eq. (17.4)

twice with respect to x, to y, or to x and y.

dn n� 1ð Þ
dt

¼ 2Sn þ vΣf ν ν� 1ð Þ nc � 2αn n� 1ð Þ

dc c� 1ð Þ
dt

¼ 2vΣDnc

dnc

dt
¼ Sc þ vΣDn n� 1ð Þ � αnc

8>>>>>>><
>>>>>>>:

The discrepancies in moments are given as:

μn,n � n n� 1ð Þ � �nð Þ2

μc,c � c c� 1ð Þ � �cð Þ2
μn,c � nc � �n �c

8><
>:

Inserted in the previous differential equations, the following equations are

obtained:
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dμn,n
dt

¼�d �nð Þ2
dt

þ 2Snþ vΣf ν ν� 1ð Þn � 2αμn,n � 2α �nð Þ2

¼�2�n
d �nð Þ
dt|ffl{zffl}

�α�nþ S

þ2Snþ vΣf ν ν� 1ð Þn � 2αμn,n � 2α �nð Þ2

dμc,c
dt

¼�d �cð Þ2
dt

þ 2vΣD μn,c þ �n�c
� 	¼�2�cvΣD�nþ 2vΣD μn,c þ �n�c

� 	¼ 2vΣDμn,c

dμn,c
dt

¼�d �n�cð Þ
dt

þ Scþ vΣD μn,n þ �nð Þ2
� �

� α μn,c þ �n�c
� 	

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

After grouping of terms:

dμn,n
dt

¼ vΣf ν ν� 1ð Þ n � 2αμn,n

dμc,c
dt

¼ 2vΣDμn,c

dμn,c
dt

¼ vΣDμn,n � αμn,c

8>>>>><
>>>>>:

The initial value conditions of this differential system at the beginning of the

count by the detector are:

μc,c t¼0ð Þ ¼ 0 and μn,c t¼0ð Þ ¼ 0

If the reactor is stabilized (stationary state), the flux and thus the number of

neutrons are constant (therefore, n is constant), i.e.:

dμn,n
dt

¼ 0 where μn,n ¼
vΣf ν ν� 1ð Þ n

2α

By inserting this result in the expression of
dμn,c
dt

and by integration, the

following is obtained:

μn,c tð Þ ¼ v2ΣDΣf ν ν� 1ð Þ n
2α2

1� e�α tð Þ ¼ εv2Σ2
f ν ν� 1ð Þ n
2α2

1� e�α tð Þ

Obviously, for a stabilized reactor, when time tends to infinity, μn , c(t) tends to a
constant that is proportional to the mean number of neutrons in the reactor and the

detector efficiency. We can also compute μc , c simply by:

μc,c tð Þ ¼ v3Σ2
DΣf ν ν� 1ð Þn

α2
t� 1� e�α t

α

� �
¼ ε2 v3Σ3

f ν ν� 1ð Þn
α2t

1� 1� e�α t

α t

� �
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Integration of the average count rate enables calculation �c of using the fact that

�c 0ð Þ ¼ 0:

d�c

dt
¼ vΣD�n ) �c tð Þ ¼ vΣD�n t ¼ εvΣf �n t

�c tð Þ may then be introduced in μc , c(t):

μc,c tð Þ ¼ c tð Þ εv
2Σ2

f ν ν� 1ð Þ
α2

1� 1� e�α t

α t

� �

While working on the Manhattan Project in the 1940s, Richard Feynman com-

puted the ratio of variance to mean count rate:

c2 � cð Þ2
c

¼ c c� 1ð Þ � cð Þ2
c

þ 1¼ μc,c tð Þ
c

þ 1¼ 1þ εv2Σ2
f ν ν� 1ð Þ
α2

1� 1� e�α t

α t

� �

Using the Diven factor: D � ν ν� 1ð Þ
ν2

:

Feynman-α formula:

c2 � cð Þ2
c

¼1þ εv2ν2Σ2
f D

α2
1�1�e�α t

αt

� �
¼1þ εD

α2‘2
1�1�e�α t

αt

� �
ð17:37Þ

The same formula is found as that established in the paragraph on neutron

correlations. The fluctuation in count rate allows measurement of coefficient α,
which is proportional to the reactivity (Photo 17.6).

Photo 17.6 Richard

Feynman (Public domain)
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17.27.4 Delayed-Neutron Effect

For a subcritical reactor with a source of delayed neutrons, the delayed-neutron

equation is written as:

dn

dt
¼ kp � 1
� 	

keff

‘
n tð Þ þ

X
i

λi Ci

dCi

dt
¼ βi

‘
n tð Þ þ λi Ci i ¼ 1, ::,Number of precursors

8>><
>>:

If p(n,Ci, t) is the probability of the state of the reactor, i.e. having n neutrons and
Ci precursors at time t, the variance of the neutron population σ2n,n is written as:

σ2n,n ¼
X
i

ð
n

p n;Ci; tð Þn2 dn�
X
i

ð
n

p n;Ci; tð Þndn
0
@

1
A2 ¼ n2

� �� nh i2

Similarly, the neutron/precursor covariances are:

σ2n,i¼
ð
n

p n;Ci;tð ÞnCidndCi�
ð
n

p n;Ci;tð Þndn
0
@

1
A ð

n

p n;Ci;tð ÞCidCi

0
@

1
A¼ nCih i� nh i Cih i

σ2i,j¼
ð
n

p n;Ci;Cj;t
� 	

CiCjdCidCj�
ð
n

p n;Ci;tð ÞdCi

0
@

1
A ð

n

p n;Cj;t
� 	

CjdCj

0
@

1
A¼ CiCj

� �� Cj

� �
Cih i

8>>>>>><
>>>>>>:

To move ahead, we must introduce a conditional probability, p(ν, c1, . . . , c6), of
an absorption inducing the release of ν prompt neutrons and ci precursors of the
species i (in the six-group precursor families hypothesis). This probability is

evaluated by considering all the possible reactions. On one hand, the sterile captures

without fission are considered as being worth 1� kp=ν with kp=ν the number of

absorptions with fission. The fissions are decomposed as:

kp
ν
p νð Þ 1� νβð Þ emitting ν prompt neutrons without emission of delayed neutrons

kp
ν
p νð Þνβi 1� f ν; ið Þð Þ emitting ν prompt neutrons and a precursor of species i. f(ν,

i) is the probability of the other possible events when the fission has given ν
prompt neutrons and a precursor i.

kp
ν
p νð Þνβi νβj=i 1� g ν; i; jð Þð Þ emitting ν prompt neutrons, a precursor of species

i and a precursor of species j. βj/i is the fraction of the conditional production of

j given that a precursor i was produced. g(ν, i, j) is the extension of f(ν, i) to two

precursors.

This reasoning is generalized for six (or more) delayed-neutron groups. In fact,

during a given fission, only one or, at most, two precursors may be produced, since
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ternary or higher fissions are negligible and the known precursors are seldom in the

same father-daughter nuclei chain. Further, assuming that there is no correlation

between the emission of prompt neutrons and that of precursors, the problem is

simplified:

f ν; ið Þ ¼ βi g ν; i; jð Þ ¼ 0 βj=i ¼ βj

Courant and Wallace proposed33 a probability-generating function. The general
principles are described in (Williams 1974, p. 20):

F x;yi;yj

� �
¼1�kp

ν
þkp

ν

ð
ν

dν p νð Þ xν 1�νβð Þþ
X
i,j

νβi yi 1�νβj
� 	þ νð Þ2βiβjyi yj

" #0
@

1
A

set up such that F(1, 1, 1)¼ 1, the derivatives of which are:

Fx ¼ ∂F x;yi;yjð Þ
∂x

����
x¼y¼1

¼ kp

Fx,x ¼ ∂2
F x;yi;yjð Þ
∂x2

����
x¼y¼1

¼ kp
ν2 � ν

ν

Fyi,yj ¼
∂2

F x;yi;yjð Þ
∂yi∂yj

����
x¼y¼1

¼ kpνβiβj

Fyi ¼
∂F x;yi;yjð Þ

∂yi

����
x¼y¼1

¼ kpβi

Fx,yj ¼
∂2

F x;yi;yjð Þ
∂x∂yi

����
x¼y¼1

¼ kpνβi

8>>>>>>>>><
>>>>>>>>>:
With these notations, the differential equations on the variances may be written

by averaging the kinetics equations. The derivatives of the generating functions

appear in these equations, thereby ensuring that the calculations of these variances

are possible.

17.27.5 Application to Measurement of Void Fraction
Instabilities

The neutron noise methods have been used successfully for boiling-water reactors

to investigate the propagation of the void fraction in an assembly cluster. Using

axial neutron flux measurements, the auto- and inter-correlations of these signals

are measured at different heights z1 and z2. Fluid mechanics equations show that the

transport of the void fraction in a section is written as follows, using the usual

conventions:

33E. D. Courant, P. R. Wallace, Fluctuations of the number of neutrons in a pile, Phys. Rev. Vol
72, December 1947.
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∂α
∂t

þ Ck
∂α
∂z

¼ S

with the kinematics wave velocity:Ck ¼ Vg þ α j
∂C0

∂α
þ α

∂Vgj

∂α
, Vgj the relative

velocity, j the superficial velocity, and Vg¼C0 j+Vgj the interface transfer term:

S ¼ Γg

ρg
1� C0α

ρl � ρg
ρl

� �

A classical perturbation analysis around a time-averaged value of the quantities

appearing in these equations leads to the equations governing the behavior of

these perturbations. Using a Fourier spectral analysis in the simple case in which

there is no mass transfer between the liquid and gaseous phases (∂α=∂z ¼ 0, δS
¼ S� �S ¼ 0), the change in the void fraction at position z2 is the delayed image of

that existing at z1 (Fig. 17.36):

α t; z2ð Þ ¼ α t� ΔT; z1ð Þ

thus: δα(ω, z2)¼ e�iωΔT δα(ω, z1)

2
z

1
z

Infographie Marguet

Fig. 17.36 Measurement

of void fraction fluctuation

by neutron noise
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with: ΔT ¼
ðz2
z1

dz

Ck

At high frequencies (above 1 Hz), it is considered that only four sub-assemblies

of the BWR cluster will significantly influence the measurement, thereby leading to

fluctuations in the flux under the form resulting from the effects of the four

sub-assemblies:

δΦ ω; z2ð Þ ¼ Α
X4
k¼1

δαk ω; z2ð Þ ¼ Α
X4
k¼1

e�iωΔT δα ω; z1ð Þ

δΦ ω; z1ð Þ ¼ Α
X4
k¼1

δαk ω; z2ð Þ

8>>>><
>>>>:

In these expressions, A is a constant value. The powers of the auto- and inter-

correlated noise are given by:

PΦ ω; z1ð Þ ¼ Α
X4
k¼1

P ω; z2ð Þ
PΦ ω; z1; z2ð Þ ¼ Αe�iωΔTPΦ ω; z1ð Þ

8><
>:

In a more general and, above all, a more realistic case, in which the mass transfer

is not zero, corrective terms taking into account the fluctuation in steam production,

δΓg, and in velocity, δCk, are incorporated:

PΦ ω; z1; z2ð Þ ¼ Α e�iωΔT
X4
k¼1

γkPαk ω; z1ð Þ þ R ωð Þ
" #

Several applications related to random changes in thermal-hydraulic or mechan-

ical conditions are developed in (Williams 1974).

17.27.6 Application to Detection of Vibrations

Numerous sources of vibrations impact the reactor core, from the oscillations of

structures such as assemblies, the basket supporting the core, and even the vibra-

tions of the primary pumps.34 These vibrations modify the neutron flux detected by

34André Brillon: Le bruit neutronique [Neutron background noise], Bulletin de la Direction des

Etudes et Recherches d’EDF, Epure n�17, pp. 3–13, Janvier 1988, from which the illustration is

taken.
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the external chambers, which may register signals that are out of phase, as for an

oscillation of the basket (Fig. 17.37).

Variations in water gap thickness induce a vibration of the same frequency on

the power measurement. The signal spectral analysis35 has an enormous amount of

data and leads to the detection of unusual signals once the nominal signal is known

(Fig. 17.38).

A defect in the integrity of internal structures (e.g. disruption of the flexible

support of the thermal shield, fluence of the spacer ring, etc.) is detected by a

modification of the vibratory signature. Even the impact of a new fuel (obtained

from a new fuel provider) placed at the core periphery has been detected due to the

different vibration mode (vibration in D at 3.7 Hz or in S at 6.4 Hz). Similarly, the

presence of baffle water squirts—set up when there is a gap between the baffle

Opposition de
phase entre
chambres
basses opposées

SB4

—+
ΔΦΔΦ
Φ0Φ0

SB3

Coeur

ΔϕΔ
ϕϕ

Fig. 17.37 Oscillation of the basket: the signals in the opposite external chambers are out of phase

35On spectral analysis, the lecture of (Kay 1988) is very helpful.
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plates—has also been detected. Water may force its way through owing to the

pressure difference between the by-pass and the active core (head loss between the

baffle and the core is different). These squirts may cause breaches in the

peripheral pins.

In this way, in August 1985, analysis of neutron noise led to the detection36 of a

more intense vibration of a rod bank in the Hungarian Paks-2 reactor.
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Primary pumps
Vibration of top of basket in core

Vibration of thermal screen
Vibration of basket in core and of supporting ring

Vibration of fuel
Reactivity background noise

Fig. 17.38 Neutron noise measured by the external chambers

36I. Pazsit, O. Gl€ockler: On the neutron noise diagnostics of pressurized water reactor control rod
vibrations: III Application at a power plant, Nuclear science and engineering, 99, pp. 313–328

(1988).
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Chapter 18

Computation Methods in Diffusion Theory

The diffusion equation turns out to be easier to solve than the Boltzmann equation,

especially for large 3D reactors. This explains its widespread use in industrial

calculation schemes. We will now deal with a few classical methods—without

expatiating on the numerical methods used for solving linear systems (there is

abundant literature available on this particular subject matter)—so as to focus on

the aspects dealing with neutronics.

Hassit in (Progress in nuclear energy Vol. 2, 1958, p. 271; Planchard 1995;

Young 1971; Wachspress 1966).

18.1 Calculation Meshes

Reactor calculations imply spatial discretization. Using a PWR example, we will

consider meshes which are universally used by codes to discretize the diffusion

equations and to calculate feedbacks. These meshes take into account the actual

borderlines of the constituent elements of the core: the fuel pin assemblies, the

supporting grids, the reflectors and the control rods. The physical configuration of a

PWR core is represented by a parallelepipedic mesh. Indeed, the assemblies are

arranged in a grid and have a square-shaped section. The fuel pins are furthermore

arranged in a periodic lattice within an assembly (Figs. 18.1, 18.2, 18.3, and 18.4).

Thus, several layers of nested parallelepipedic meshes are employed:

– The neutronic diffusion mesh, normally the most refined mesh, on which the

neutron flux is discretized.

– The thermalhydraulics mesh, on which coolant temperatures are discretized.

– The feedback mesh, on which neutron feedback is computed.

– The burn-up mesh, on which fuel burn-up is evaluated.

– The cylindrical thermal mesh (in the case of PWRs), which is used to solve the

heat equation for the fuel pin.

© Springer International Publishing AG 2017

S. Marguet, The Physics of Nuclear Reactors, DOI 10.1007/978-3-319-59560-3_18
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All calculation codes1 employ these different meshes to some extent, and some

may coincide (e.g. the coolant and feedback meshes). Generally, the different

meshes are defined such that one of them “includes” the others to avoid complex

mesh projection problems:

– Power, which depends on the flux, is computed on the diffusion mesh.

– All the different thermalhydraulics quantities are defined on the

thermalhydraulics mesh.

Fig. 18.1 Radial geometry

of a 900 MWe PWR core

cladding

gap

fuel

rings of the 

thermal mesh

Fig. 18.2 Radial section of

a fuel pin

1In this chapter, we illustrate the example with the EDF 3D neutronics diffusion code,

COCCINELLE.
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– Neutronics feedbacks are defined on the feedback mesh. Neutronics quantities

such as the cross sections lie on this mesh.

– The burn-up gradients, which show the non-uniform depletion of fuel within a

given assembly, are defined on the burn-up mesh. The latter, which takes into

account differential fuel burn-up due to variations in feedback parameters,

implies that the thermalhydraulics mesh must be equally refined.

For the axial direction, the “inclusion” rules defined above still hold. Neverthe-

less, the position of supporting grids may be a further constraint if they are modeled

by a supplementary absorption term.

assembly
mesh

diffusion
mesh

irradiation
mesh

thermohydraulic
mesh

Fig. 18.3 Section of the

mesh of a set of three

assemblies

diffusion
mesh

thermohydraulic
mesh

grids

assembly irradiation
mesh

Fig. 18.4 Axial meshes
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18.2 Multi-group Diffusion Equations

18.2.1 General Case

(Bussac and Reuss 1985; Duderstadt and Hamilton 1976, p. 301; Ferziger and

Zweifel 1966, p. 221; Lewis and Miller 1993; Stacey 2001, p. 129; Glasstone and

Sesonske 1994, p. 201; Planchard 1995, p. 79; Soodak 1962, p. 119)

Diffusion equations are usually considered using a multi-group approach, that is

the energy spectrum range is divided into G intervals or energy groups [Eg,Eg+ 1]

for which the multi-group neutron flux Φg is computed such that:

Multi-group diffusion equation:
1

vg

∂Φg

∂t
� div Dg grad

��!
Φg

� �
þ Σt,gΦg

¼ χg
XG
g0¼1

vΣf ,g0Φg0 þ
XG
g0¼1

Σs,g0!gΦg0

ð18:1Þ

where χg is the proportion of neutrons (fast) produced in group g. Physical consid-
erations lead to some rules regarding these equations. Above 3 eV, there is no

up-scattering (no gain in energy is possible), which leads to a lower limit in energy

with separation of the fast flux (where several terms of the slowing-downmatrix, which

is a triangular matrix, are equivalent to zero) and the thermal flux (where the matrix is

full). In practice, the absorption cross section is written in the equation rather than the

total cross section, with the presence of the self-scattering term in the RHS term:

Σa,gΦg ¼ Σt,gΦg � Σs,g!gΦg

Most industrial PWR codes worldwide use a two-group energy mesh and six

delayed neutron groups, the case of Boiling Water Reactors (BWR) generally

requires more energy groups to account for strong spectral effects due to axial

void fractions. In PWR, the following equations are to be solved:

1

v1

∂Φ1

∂t
¼ div D1 grad

��!
Φ1

� �
þ 1�βð Þ vΣf ,1Φ1þ vΣf ,2Φ2

� �� Σa,1þΣs,1!2ð ÞΦ1þ
X6
i¼1

λi Ci

1

v2

∂Φ2

∂t
¼ div D2 grad

��!
Φ2

� �
�Σa,2Φ2þΣs,1!2Φ1

∂Ci

∂t
¼� λi Ciþβi vΣf ,1Φ1þ vΣf ,2Φ2

� �
for i¼ 1,6

8>>>>>>>><>>>>>>>>:
In a stationary system, the six-group precursor concentrations are given by:

λiCi ¼ βi vΣf , 1Φ1 þ vΣf , 2Φ2

� �
for i ¼ 1, 6

To compute a critical state, an iterative method is used in which the production

term is divided by keff, which is updated after each iteration. The choice of dividing
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the production terms by the multiplication factor is arbitrary (another term of the

equation, like the slowing-down term for example, could have been divided), but it

appears that this approach was decided by G. Birkhoff and R. S. Varga in the 50s

(Planchard 1995, p. 81).

18.2.2 “1.5”-group Diffusion

(Stamm’ler and Abbate 1983, p. 436)

As seen earlier, most industrial thermal core calculation schemes use two energy

groups: a fast group and a thermal group. The diffusion equations in static are as follows:

�div D1 grad
��!

Φ1

� �
þ Σt, 1Φ1 ¼

X2
g0¼1

νΣf ,g0Φg0

keff
þ Σs, 1!1Φ1 þ Σs, 2!1Φ2

�div D2 grad
��!

Φ2

� �
þ Σt, 2Φ2 ¼ Σs, 1!2Φ1 þ Σs, 2!2Φ2

8>>>><>>>>:
The fast flux equation can be decoupled by simplifying the up-scattering term as

follows:

Σs, 2!1Φ2 � Σs, 2!1

Φ2

Φ1

� �
1
Φ1

where (Σs , 2! 1Φ2/Φ1)1 is the asymptotic value computed in an infinite lattice

using a spectral code. This approach, also called 1.5-group diffusion, is used in the

French 3D COCCINELLE code at EDF, as well as in other well-known codes

(PRESTO, etc.). This simplification speeds up calculations without significantly

affecting their precision.

18.2.3 Adjoint Diffusion

(Stacey 2001, p. 481)

If a perturbation δΣ (given that δνΣf , g0 is a perturbation of νΣf , g0) of the

neutronic properties of a critical reactor, leading to a reactivity perturbation δkeff
to obtain a new critical state, the equation of the perturbed flux is as follows:

�div DgþδDg

� �
grad
��!

ΦgþδΦg

� �� �
þ Σt,gþδΣt,g

� �
ΦgþδΦg

� �
¼ χg

XG
g0¼1

vΣf ,g0 þδνΣf ,g0
� �

Φg0 þδΦg0
� �

keffþδkeff
þ
XG
g0¼1

Σs,g0!gþδΣs,g0!g

� �
ΦgþδΦg

� �
By multiplying this equation by Φ∗

g , for now an arbitrary value that verifies Φ∗
g

rS
!� � ¼ 0 at the limits of the reactor, then integrating the resulting equation over the
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total volume of the reactor and summing over the energy groups afterwards, then,

using the fact that Φg verifies the non-perturbed equation, thereby canceling the

first-order terms, and by substracting the non-perturbed equation from the perturbed

equation, the following equation is obtained:

ð
V

d3r
XG
g¼1

Φ∗
g

�div Dggrad
��!

δΦg

� �� �
�div δDggrad

��!
Φg

� �� �
�div δDggrad

��!
δΦg

� �� �
þΣt,gδΦgþδΣt,gΦgþδΣt,gδΦg

24 35

¼
ð
V

d3r
XG
g¼1

Φ∗
g

χg
XG
g0¼1

vΣf ,g0Φg0 þvΣf ,g0δΦg0 þδvΣf ,g0Φg0 þδvΣf ,g0 δΦg0
� �

keff þδkeff

�χg
XG
g0¼1

vΣf ,g0Φg0

keff
þ
XG
g0¼1

Σs,g0!gδΦgþδΣs,g0!gΦgþδΣs,g0!gδΦg

� �
266664

377775
This expression may be simplified by ignoring second-order terms such as δΣt , g

δΦg and by integrating by parts twice the term:ð
V

d3rΦ∗
g div Dg grad

��!
δΦg

� �� �
¼

ð
V

d3r div
�
Φ∗

g Dg grad
��!

δΦg

� ��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Ð

S

d2r Φ∗
g Dg grad

��!
δΦgð Þ:~n

�
ð
V

d3rDg grad
��!

Φ∗
g :grad
��!

δΦg

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Ð

V

d3r div DgδΦggrad
��!

Φ∗
g

� �
�
Ð
V

d3r δΦgdiv Dggrad
��!

Φ∗
g

� �

The first term on the RHS is rewritten by using the Ostrogradski theorem. The

same is done for the second term of the RHS to produce the following:ð
V

d3rΦ∗
g div Dggrad

��!
δΦg

� �� �
¼
ð
S

d2rΦ∗
g Dggrad

��!
δΦg

� �
:~n

�
ð
S

d2r δΦgDggrad
��!

Φ∗
g :~nþ

ð
V

d3rδΦgdiv Dggrad
��!

Φ∗
g

� �

If the perturbed flux is equivalent to zero at the surface S, as is the non-perturbed
flux, then δΦg is also equivalent to zero, and the second term is thus canceled out.

SinceΦ∗
g was chosen such that it is zero at the boundary, the first term is hence zero

also. Now, only the third term remains. By inserting this result in the initial

equation, after inverting g and g0, we obtain the following:

ð
V

d3r
XG
g¼1

δΦg �div Dggrad
��!

Φ∗
g

� �
þΣt,gΦ

∗
g � vΣf ,g

keff þ δkeff

XG
g0¼1

χg0Φ
∗
g0 �

XG
g0¼1

Σs,g!g0Φ
∗
g0

" #
¼ 0
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This equation can only be verified for all values of δΦg if the term between square

brackets is zero. This equation is simply the multi-group diffusion equation where the

source and slowing-down operators are transposed. In the chapter on the transport

equation, we have seen that this corresponds to the adjoint equation, which is found in

perturbation theory. Thus,Φ∗
g is themulti-group adjoint flux. The reader will note that

the boundary condition used for the adjoint flux (equivalent to zero at the surface)

does not correspond to the boundary condition used to define the neutronics impor-

tance (angular importance equivalent to zero for inwards directions).

In addition, the adjoint flux of the one-group diffusion problem is equal to the

direct flux under the same boundary conditions (Duderstadt and Hamilton 1976,

p. 222), since the diffusion, absorption and production operators are all self-adjoint

at one-energy group.

18.2.4 Taking into Account the Neutron Over-Production
Cross Sections

It is sometimes needed to take into account uncommon-reaction cross sections

(Σn , 2n, Σn , 3n,. . .) in the multi-group diffusion equations. This is done by adding

loss of neutrons in the left hand side of the equations and adding new production of

neutrons on the right hand side, including a multiplicity factor:

1

vg

∂Φg

∂t|fflfflfflffl{zfflfflfflffl}
time increase

�div Dg grad
��!

Φg

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

leakage

þΣa,gΦg|fflfflffl{zfflfflffl}
absorption

þ Σn,n0,g!g þΣn,2n0,g!g þΣn,3n0,g!g


 �
Φg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

loss through inelastic scattering inside thegroup itself

þ
XG

g0¼gþ1

Σn,n0,g!g0 þΣn,2n0,g!g0 þΣn,3n0,g!g0

 �

Φg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
loss through inelastic scattering to other groups

þ
XG
g0¼g

Σn,n,g!g0Φg|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
loss through elastic scattering

slowing down to more thermalgroups

¼
χg
XG
g0¼1

vΣf ,g0Φg0

keff|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
production per fission

þ
Xg�1

g0¼1

Σn,n0,g0!g þ 2Σn,2n0,g0!g þ 3Σn,3n0,g0!g


 �
Φg0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

arrival through inelastic scattering from faster groups

þ Σn,n0,g!g þ 2Σn,2n0,g!g þ 3Σn,3n0,g!g


 �
Φg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

arrival through inelastic scattering inside the group itself

þ
Xg
g0¼1

Σn,n,g0!gΦg0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
arrival through elastic scattering from

faster groups
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A simple hypothesis is made that all new neutrons arrive in the same group (2 for

Σn , 2n, 3 for Σn , 3n,. . .). If it is not the case, an “appearance” probability should be

taken into account similar to a Watt spectrum. Notation Σn , n’ means inelastic

scattering, where Σn , n means elastic scattering. As well for the neutron over-

producing cross sections, in most usual discretization of the energy groups, the

loss term per elastic scattering simplifies in two terms: first, scattering inside the

group itself, and second, scattering in the adjacent inferior group:

XG
g0¼g

Σn,n,g!g0Φg � Σn,n,g!gΦg þ Σn,n,g!gþ1Φg

As well as for the arrival through elastic scattering from faster groups:

Xg
g0¼1

Σn,n,g0!gΦg0 � Σn,n,g�1!gΦg�1 þ Σn,n,g!gΦg

If should be pointed out that there is no elastic loss through Σn , 2n , g! g’ as a new

free neutron is produced, therefore it is for sure an inelastic reaction. Equations are

strongly simplified using:

Σelast
s,g �

XG
g0¼g

Σn,n,g!g0 and Σinelast
s,g0!g � Σn,n0,g0!g þ 2Σn, 2n0,g0!g þ 3Σn, 3n0,g0!g þ . . .

18.3 The Power Iteration Method

(Gastinel 1966, p. 334; Planchard 1995, p. 129; Stewart 1973, p. 340; Strang and

Fix 1973, p. 216; Wachspress 1966, p. 83)

18.3.1 General Considerations

Given an operator K with ki eigenvalues, ordered such that |k1|� |k2|� |k3|� � �,
corresponding to the eigenfunctions Φi by choosing the normalization

Ð
Φ2

i d
3r

¼ 1 for the eigenfunctions:

K Φi½ � ¼ kiΦi

Any value of the flux Φ can be expanded as a linear combination of the

eigenfunctions:
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Φ ¼
X
i

φiΦi

Applying K successively to the flux, we obtain:

K Φ½ � ¼
X
i

φikiΦi, K2 Φ½ � � K K Φ½ �½ � ¼
X
i

φik
2
iΦi, K3 Φ½ � ¼

X
i

φik
3
iΦi � � �

If |k1|> |k2|� |k3|� � �, then lim
n!1

1

k n
1

Kn Φ½ � ¼ Φ1 and k1 ¼ lim
n!1

Kn Φ½ �
Kn�1 Φ½ �

At any point in the reactor, the limit value of Kn[Φ]/Kn� 1[Φ] tends towards the
largest eigenvalue. It is possible to determine an algorithm to obtain the second

eigenvalue.2 We also show that if φ1¼ 0, the algorithm converges towards the

second eigenfunction. Assuming:

Φ ¼
X
i

φi þ xψ ið ÞΦi

By applying the K operator n times, and assuming that the eigenvalues are well

ordered, we obtain:

lim
n!1

1

k n
1

Kn Φ½ � ¼ lim
n!1

1

k n
1

φ1 þ xψ1ð Þk n
1Φ1 þ φ2 þ xψ2ð Þk n

2Φ2

� �
lim
n!1

Kn Φ½ �
Kn�1 Φ½ � ¼ lim

n!1
φ1 þ xψ1ð Þk n

1Φ1 þ φ2 þ xψ2ð Þk n
2Φ2

φ1 þ xψ1ð Þkn�1
1 Φ1 þ φ2 þ xψ2ð Þkn�1

2 Φ2

8>>><>>>:
The arbitrary choice of x¼ �ψ1/φ1 leads to a limit value of k2, when the choice

x¼ �ψ2/φ2leads to k1. Nevertheless, φ1 ,ψ1 ,φ2 ,ψ2 are all unknowns in our

problem. Given that the method converges within the reactor, it is sufficient to

choose two regions. The scalar product for region Vj is defined as:

f ; gh iVj
�
ð
Vj

f :g d2r

Whence:

lim
n!1

Ð
Vj

φ1 þ xψ1ð Þk n
1Φ1 þ φ2 þ xψ2ð Þk n

2Φ2 d3r ¼ lim
n!1 φ1 þ xψ1ð Þk n

1 Φ1; 1h iVj
þ

φ2 þ xψ2ð Þk n
2 Φ2; 1h iVj

The eigenvalues computed over the two zones Vα and Vβ are

the same, thus leading to:

2Thomas E. Booth: Power iteration method for the several largest eigenvalues and eigenfunctions,
Nuclear Science and Engineering, 154, pp. 48–62 (2006).
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kα ¼ lim
n!1

φ1 þ xψ1ð Þk n
1 Φ1; 1h iVα

þ φ2 þ xψ2ð Þk n
2 Φ2; 1h iVα

φ1 þ xψ1ð Þkn�1
1 Φ1; 1h iVα

þ φ2 þ xψ2ð Þkn�1
2 Φ2; 1h iVα

¼ lim
n!1

φ1 þ xψ1ð Þk n
1 Φ1; 1h iVβ

þ φ2 þ xψ2ð Þk n
2 Φ2; 1h iVβ

φ1 þ xψ1ð Þkn�1
1 Φ1; 1h iVβ

þ φ2 þ xψ2ð Þkn�1
2 Φ2; 1h iVβ

¼ kβ

Using x¼ �ψ1/φ1 over one region and x¼ �ψ2/φ2 over another, it is possible

to calculate the two eigenvalues on the fly. The error on k2 decays in (|k3|/|k2|)
n,

while the error on k1 decays as (|k3|/|k1|)
n.

18.3.2 Matrix Representation

Classically, we may write the equation system in matrix form. For the sake of

brevity, we will focus on a system of two equations with two energy groups without

any up-scattering, without any loss of generality for the multi-group problem.

Given the operators (without up-scattering):

A1 ¼ �div D1 grad
��!½ �

� �
þ Σa, 1½ � þ Σ1!2½ �

A2 ¼ �div D2 grad
��!½ �

� �
þ Σa, 2½ �

8<:
We therefore have the following:

A1 0

�Σs, 1!2 A2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

Φ1

Φ2

� 
¼ 1

keff

νΣf , 1 νΣf , 2

0 0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

B

Φ1

Φ2

� 
|fflffl{zfflffl}

Φ

Which we may write in matrix form with an eigenvalue problem

(Durand 1961; Wilkinson 1965):

K Φ½ � ¼ kΦ

where K¼A�1B. The production term is artificially and arbitrarily divided by the

multiplication factor keff, transforming the criticality problem to an eigenvalue

problem. This mathematical shortcut enables numerical iteration over a given

parameter. The physical solution being actually sought to obtain the neutron flux

should be positive everywhere. Mathematically, this corresponds to searching the

neutron flux for the largest eigenvalue. The flux is determined up to the nearest

multiplication factor. The latter is evaluated by normalizing the powers per assem-

bly (which are derived from the neutron flux via the energy production cross section

κΣf to the power of the whole core. The system to be solved consists of two coupled

equations. The power iteration method (Stacey 2001, p. 84; Duderstadt and
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Hamilton 1976, p. 219), potentially accelerated by a semi-iterative Chebychev

method (Wachspress 1966, p. 157; Hageman and Young 1981, p. 45), may be

used to compute the keff and the fast and thermal neutron fluxes. Let the fission

source be equal to Ψ ¼ νΣf , 1 Φ1 + ν Σf , 2 Φ2, giving:

Φ1

Φ2

� �
¼ 1

keff

A�1
1 Ψ

A�1
2 Σs, 1!2A

�1
1 Ψ

� �
Applying matrix B to the above system, we obtain:

BΦ¼ νΣf ,1Φ1þ νΣf ,2Φ2

0

� �
� Ψ

0

� �
¼ 1

keff

νΣf ,1A
�1
1 Ψ þ νΣf ,2A

�1
2 Σ1!2A

�1
1 Ψ

0

� �
� 1

keff
T Ψ½ �

We are, therefore, led to solve the T[Ψ ]¼ keffΨ system with T½ � � νΣf , 1A
�1
1 þ

νΣf , 2A
�1
2 Σs, 1!2A

�1
1 . In fact, we are looking for the largest eigenvalue of matrix T.

We use the power iteration method for this purpose as it allows the search for the

largest eigenvalue for a square matrix. Assuming that Ψ n and k n
eff are known for the

n external iteration, we can calculate Ψ n ¼ νΣf , 1Φn
1 þ νΣf , 2Φn

2 by solving the

following equation system:

A1Φ
nþ1
1 ¼ 1

k n
eff

Ψ n

A1Φ
nþ1
2 ¼ Σs, 1!2Φ

nþ1
1

8<:
When convergence is reached, we obtain: T[Ψ n]¼ keffΨ

n where:

Ψ nþ1 ¼ keffΨ
n=k n

eff . This allows the eigenvalue to be updated:

knþ1
eff ¼ Ψ nþ1

��Ψ nþ1
� �
Ψ nþ1

��Ψ n
� � k n

eff

where the scalar product is defined as a volume integral:

Ψ nþ1
��Ψ nþ1

� � ¼ ð
reactor

Ψ nþ1Ψ nþ1d3r Ψ nþ1
��Ψ n

� � ¼ ð
reactor

Ψ nþ1Ψ nd3r

Convergence can be tested either by the relative variation of knþ1
eff with respect to

k n
eff , with no guarantee of convergence on the fluxes, or by calculating knþ1

eff � k n
eff

max
i2mesh

Ψ nþ1
i =Ψ n

i

� �
and knþ1

eff � k n
eff min

i2mesh
Ψ nþ1

i =Ψ n
i

� �
to ensure convergence when:
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knþ1
eff � knþ1

eff

knþ1
eff

� ε

This last criterion encompasses global convergence on keff as well as conver-

gence on the fluxes, with the former converging much faster than the latter. Since

the global convergence of the power iteration method is slow, it is usually accel-

erated using the Chebyshev polynomials. The iterations that calculate Φnþ1
1 and

Φnþ1
2 as a function of Φn

1 and Φn
2 are called inner iterations. They are the iterations

that solve the two linear systems.

18.3.3 Chebyshev Acceleration

(Planchard 1995, p. 137)

Assuming that the eigenvalue keff is known, the solution vector Ψ verifies the

following equation (Photo 18.1):

ψ ¼ 1

keff
Tψ � Qψ , with : Q � 1

keff
T

If it is further supposed that k n
eff is sufficiently close to keff (in practice, this is

rapidly the case as the convergence on the eigenvalue is very fast whereas that on

the eigenvector requires a larger number of iterations), the error defined by εn¼Ψ n

�Ψ is written as:

Photo 18.1 Pafnuty

Chebyshev (1821–1894)

(Public domain)
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εn ¼ Qεn�1 ¼ Q � Q� � �Q|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n times

ε0 ¼ Qnε0

where ε0 is the initial error. The goal is to create a polynomial acceleration method.

Thus, instead of multiplying the initial error by a power of Q, it is multiplied by a

polynomial expression in Q. The solution obtained by this acceleration method is

denoted as eψm and eεn ¼ eψ n � ψ the accelerated error at the nth iteration. If all the

eigenvalues of Q are real and the eigenvectors generate the complete solution space

(although positive-definite, the matrix is not symmetric), we can write:

ε ¼
X
i

αiφi where: eεn ¼ Pn Qð Þε ¼
X
i

αiPn λið Þφi

where λi and φiare the eigenvalues and eigenvectors of matrix T respectively, with

λ0¼ keff being the largest eigenvalue and 0< λn< λn� 1< � � � < λ1< λ0. Mathemat-

ically speaking, the power iteration method exhibits convergence problems as the

dominance ratio Pm(x) approaches one. Hence, a polynomial acceleration of this

type is equivalent to finding polynomials called residual polynomials that verify

Pm(1)¼ 1 and such that Max|ffl{zffl}
i¼1, n

Pm λið Þf g is minimal. The Chebyshev polynomials

verify this constraint (this property was used earlier in the chapter on the transport

equation). They are defined as:

Chebyshev polynomials:
T0 xð Þ ¼ 1

T1 xð Þ ¼ x
Tmþ1 xð Þ ¼ 2xTm xð Þ � Tm�1 xð Þ for m � 2

8<:
ð18:2Þ

Analytically, the Chebyshev polynomial Tm(x) of degree m is written as:

Tm xð Þ ¼ cos m arccos xð Þð Þ if xj j < 1

ch m argch xð Þð Þ if xj j � 1

�
Here, the appropriate values of Pm(x) are given as:

Pm xð Þ ¼ Tm
2
σx� 1
� �

Tm
2
σ � 1
� �

A cyclic Chebyshev semi-iteration method consists of partitioning the outer

iterations into cycles of Chebyshev iterations. The maximum length of the cycle
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is ten outer iterations. The index of the outer iteration is denoted m + p and p is that

of the current Chebyshev iteration. The value being sought is eΨ mþp. The recurrence

relation describes the evolution of the accelerated errors:

For p ¼ 1 eεmþ1 ¼ P1 Qð Þεm ¼ T1
2
σQ� I
� �

T1
2
σ � 1
� � εm ¼ 4

σ
α1Qεm � 2α1εm

For p> 1, thanks to the recurrence relation on the Chebyshev polynomials:

eεmþp ¼ Pp Qð Þεm ¼ Tp
2
σQ� I
� �

Tp
2
σ � 1
� � εm

¼ Tp�1
2
σ � 1
� �

Tp
2
σ � 1
� � 2

2

σ
Q� I

� �
Pp�1 Qð Þεm|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}eεmþp�1

� Tp�2
2
σ � 1
� �

Tp
2
σ � 1
� � Pp�2 Qð Þεm|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}eεmþp�2

where: eεmþp ¼ 4
σ αpQeεmþp�1 � 2αpeεmþp�1 � βpeεmþp�2

with:
αp ¼ 1

2

σ

2� σ
βp ¼ 0 if p¼ 1

αp ¼ ch p� 1ð Þγð Þ
ch pγð Þ βp ¼

ch p� 2ð Þγð Þ
ch pγð Þ if p> 1

8><>: and γ ¼ argch 2
σ� 1
� �

Given that: eεmþp ¼ eψmþp � ψ and εmþp ¼ ψmþp � ψ
where:

eψmþp ¼ 4

σ
αpQeψmþp�1 � 2αpeψmþp�1 � βpeψmþp�2 � 4

σ
αpQ� 2αpI � βpI � I

� �
ψ

With the normalization condition of Pm(1)¼ 1, the last term of the previous

equation cancels out. It thus reduces to:

eψmþp ¼ 4

σ
αpQeψmþp�1 � 2αpeψmþp�1 � βpeψmþp�2

The estimation of the dominance ratio σ is carried out as follows: after a first

cycle of initial power iterations, a first estimate is computed:

bσ ¼ Ψmþp � Ψmþp�1
�� ��
Ψmþp�1 � Ψmþp�2
�� ��
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This estimate is updated at the end of each acceleration cycle. The error is then

computed E ¼ Ψmþp � Ψmþp�1
�� ��

Ψmþ1 � Ψm
�� �� and the new estimate for the next cycle bσ 0 is

calculated:

If E <
1

ch p� 1ð Þγð Þ then bσ 0 ¼ bσ
2

cos
arccos Ech pγ � γð Þð Þ

p� 1

� �
þ 1

� 
If E >

1

ch p� 1ð Þγð Þ then bσ 0 ¼ bσ
2

ch
argch Ech pγ � γð Þð Þ

p� 1

� �
þ 1

� 
When the new estimate, bσ 0

, which is normally close to the ratio λ0/λ1, is greater
than 1, the Chebyshev acceleration is temporarily suspended to carry out a cycle of

power iterations (approximately 5) and so on.

18.4 Finite Difference Method

(Mitchell and Griffith 1980; Planchard 1995, p. 126; Strang and Fix 1973, p. 16)

18.4.1 Formalism

The numerical discretization of Eq. (18.1) leads to a leakage term (div Dg grad
��!

Φg

� �
)

of second order with respect to the space variable. The Finite Difference (FD)
method consists in discretizing the continuous problem in a discrete one in which

the flux is calculated at specific positions in the reactor. Marchuk and Shaidurov

(1983) and Godunov and Ryabenki (1964) thoroughly describe the mathematical

aspects of the finite difference method, particularly the order of convergence of the

method [see also (Clark and Hansen 1964, p. 75)]. The simplest approach assumes

that the neutron quantities are known at the same positions where the flux is to be

solved for. For example, (Stacey 2001, p. 82; Clark and Hansen 1964, p. 149; Walter

and Reynolds 1981, p. 111) in 1D radial geometry for fast reactors:

Given that Δxi� xi+ 1� xi and Δxi� 1� xi� xi� 1 (Fig. 18.5) and the diffusion

equation is integrated over a control volume x
i�1=2

; x
iþ1=2

�
h

. This is called Central

Finite Differences.3

3Mathematically, the Finite Difference method does not require any integration on a control

volume but only the substitution of each term in the equation by its discretized form. In practice,

this is equivalent to integrating around the position being considered and relates this method to the

Finite Volume method.
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ðxi�1=2

xi�1=2

1

vg

∂Φg

∂t
�div Dggrad

��!
Φg

� �
þΣt,gΦg�χg

XG
g0¼1

νΣf ,g0Φg0 �
XG
g0¼1

Σs,g0!gΦg0

" #
dx¼0

Each term in the integral is then substituted by its approximation in Finite

Difference:

ðxi�1=2

xi�1=2

ΣgΦgdx�Σ i
gΦ

i
g Δxi 8Σg

ðxi�1=2

xi�1=2

div Dggrad
��!

Φg

� �
dx�Dg

dΦg

dx

����
iþ1=2

�Dg
dΦg

dx

����
i�1=2

�Diþ1
g þDi

g

2

Φiþ1
g �Φ i

g

Δxi
�Di

gþDi�1
g

2

Φ i
g�Φi�1

g

Δxi�1

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
Hence, a system of linear equations of unknown Φ i

g is obtained, for which the

boundary conditions ( Φ1
g ¼ 0 and Φn

g ¼ 0 for example) or Robin boundary

conditions (see equation below) are required.

Φg þ 3Dg λg
dΦg

dn
¼ 0

The Finite Volume method is an alternative approach and consists in calculating

the flux at the vertices of a calculation mesh in which the neutron quantities

(diffusion coefficient, cross sections) are assumed constant in the mesh. By exten-

sion, the neutron quantities are said to be known at the “center of the mesh”, which,

although a simplification, is nevertheless useful for understanding. Hence, Φ(i, j, k)
denotes the neutron flux at the vertex (i, j, k) whereas Σ(i, j, k) denotes the neutron
quantity in the mesh [xi, xi+ 1]	 [yj, yj + 1]	 [zk, zk + 1] the volume of which is given

by Δxi .Δyj .Δzk (Fig. 18.6).
The finite volume method at the “vertex” consists in integrating the equation on

an elementary volume surrounding the flux. The elementary volume considered is

Flux discretization points

Neutron coefficient discretization points

x

In 1D

2

1i
2

1i1i i 1i+ +--

Fig. 18.5 Finite

Differences in 1D
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centered on the vertex (i, j, k) across the range x
i�1=2

; x
iþ1=2

� 	 y
j�1=2

; y
jþ1=2

�	
hh

z
k�1=2

; z
kþ1=2

�
h

. The z-axis oriented in the same direction as the insertion of the

control rods.

In 2D, the reaction rates and the source term are given by the contribution of

4 half-cells (without the energy-group indices for the sake of concision):

ðð
Control
surface

ΣΦd2r ¼ Φ i; jð Þ
4

Xi0¼iþ1

i0¼i

Xj0¼jþ1

j0¼j

Σ i0; j0ð ÞΔxi0 Δyj0

In 3D, applying the same principles as in 2D, summing is performed for the

contributions from two planes of axial meshes, i.e. 8 half-cells:

ððð
Control
volume

ΣΦd3r ¼ Φ i; j; kð Þ
8

Xi0¼iþ1

i0¼i

Xj0¼jþ1

j0¼j

Xk0¼kþ1

k0¼k

Σ i0; j0; k0ð Þ Δxi0 Δyj0 Δzk0

We can employ the same expressions at the boundaries of the core assuming that

the neutron quantities in the required regions are worth zero, which is equivalent to

defining the limits of integration for the volume integrals differently. The flux

gradient is approximated by a simple finite difference method as seen in the 1D
example. The derivative in x for the flux at the center of the meshes is thus

expressed as:

Flux discretization points

Neutron coefficient discretization points

i-1,j-1,k-1

i,j-1,k-1 i,j,k-1

i-1,j,k-1

i-1,j-1,k

i,j,ki,j-1,k

i,j,k

i-1,j,k

x
y

z

In 3D

i,j

i+1,j

y

i,j

i+1,j+1

i,j+1

In 2D

x

x
In 1D

i i+1

Fig. 18.6 Discretization in the finite difference method
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∂Φ
∂x

i� 1=2; j; kð Þ ¼ Φ i; j; kð Þ � Φ i� 1; j; kð Þ
Δxi

This is similar to the evaluation of the currents at the center of the meshes:

ðð
∂Vij

Dgrad
��!

Φ
� �

� ~nd2r ¼
ðyjþ1

yj

D
∂Φ
∂x

iþ 1=2ð Þ � ∂Φ
∂x

i� 1=2ð Þ
� �

dy

þ
ðxiþ1

xi

D
∂Φ
∂y

jþ 1=2ð Þ � ∂Φ
∂y

j� 1=2ð Þ
� �

dx

with:

ðyjþ1

yj

D
∂Φ
∂x

iþ 1=2ð Þdy ¼ Φ iþ 1; jð Þ � Φ i; jð Þ
Δxiþ1

Diþ1, j

Δyj
2

þ Diþ1, jþ1

Δyjþ1

2

� 
ðxiþ1

xi

D
∂Φ
∂y

jþ 1=2ð Þdx ¼ Φ i; jþ 1ð Þ � Φ i; jð Þ
Δyjþ1

Di, jþ1

Δxi
2

þ Diþ1, jþ1

Δxiþ1

2

� 

8>>>>>>><>>>>>>>:
∂Vij being the outer surface of the control volume, which is the perimeter of the

shaded zone in Fig. 18.7. Thus, in 2D:

i+1,j

i+1,j+1

x

y

i-1,j-1

i,j

i,j

i-1,j

i,j+1

i,j+1

i-1,j+1

i+1,j+1

i,j-1

i+1,j-1

i+1,j

Fig. 18.7 Definition of control volume in 2D
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ðð
∂Vij

D ~∇ φ
� �

�~n d2r ¼ �
Xiþ1

i0¼i

Xjþ1

j0¼j

Di0, j0

2

Δyj0

Δxi0
þ Δxi0

Δyj0

 !0@ 1AΦ i; jð Þ

þ
Xiþ1

i0¼i�1

i0 6¼i

Xjþ1

j0¼j

Dmax i;i0ð Þ, j0

2

Δyj0

Δxmax i;i0ð Þ

0@ 1AΦ i0; jð Þ
24 35

þ
Xjþ1

j0¼j�1

j0 6¼j

Xiþ1

i0¼i

Di0,max j;j0ð Þ
2

Δxi0

Δymax j; j0ð Þ

 !
Φ i; j0ð Þ

" #

And by generalizing to 3D, the diffusion term is written as:ðð
∂Vijk

D ~∇ φ
� �

�~n d2r ¼ �
Xiþ1

i0¼i

Xjþ1

j0¼j

Xkþ1

k0¼k

Di0,j0,k0

4

Δyj0Δzk0

Δxi0
þΔxi0Δzk0

Δyj0
þΔxi0Δyj0

Δzk0

 !0@ 1AΦ i;j;kð Þ

þ
Xiþ1

i0¼i�1

i0 6¼i

Xjþ1

j0¼j

Xkþ1

k0¼k

Dmax i;i0ð Þ,j0,k0

4

Δyj0Δzk0

Δxmax i;i0ð Þ

0@ 1AΦ i0;j;kð Þ
24 35

þ
Xjþ1

j0¼j�1

j0 6¼j

Xiþ1

i0¼i

Xkþ1

k0¼k

Di0,max j; j0ð Þ,k0

4

Δxi0Δzk0

Δymax j; j0ð Þ

 !
Φ i; j0;kð Þ

" #

þ
Xkþ1

k0¼k�1

k0 6¼k

Xiþ1

i0¼i

Xjþ1

j0¼i

Di0, j0,max k;k0ð Þ
4

Δxi0Δyj0

Δzmax j; j0ð Þ

0@ 1AΦ i;j;k0ð Þ
24 35

In kinetics, the time derivative is discretized using a Taylor expansion at order 1:

∂Φ
∂t

tnþ1ð Þ � Φ tnþ1ð Þ � Φ tnð Þ
Δtn

The following volume integrals must thus be evaluated:
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ðð
Vij

1

v

Φ

Δtn
d3r ¼ Φ i; jð Þ

v i; jð ÞΔtn
Δxi þ Δxiþ1ð Þ Δyj þ Δyjþ1

� �
4

in 2D

ððð
Vijk

1

v

Φ

Δtn
d3r ¼ Φ i; j; kð Þ

v i; j; kð ÞΔtn
Δxi þ Δxiþ1ð Þ Δyj þ Δyjþ1

� �
Δzk þ Δzkþ1ð Þ

8
in 3D

8>>>>>>><>>>>>>>:

18.4.2 Boundary Conditions

The above expressions are valid for any position within the active core. For a

position (i, j, k) situated at the boundary, Robin boundary conditions are applied:

Φþ 3D λ
dΦ

dn
¼ 0

Here, n is the external normal worth x, y or z according to the position considered.

For example, integration over the Ox axis is carried out only on the range x
n�1=2

; xn�
h

,

since beyond this, the flux is assumed to be zero. This is equivalent to considering that

the cross sections in the reaction rates integrals are worth zero for meshes outside the

pattern. For the leakage term, the boundary condition is applied to the normal

derivative of the flux. For instance, in direction x, the following is obtained:

ðyjþ1

yj

D
∂Φ
∂x

x ¼ xnð Þdy ¼
ðyjþ1

yj

�Φ

3λ
x ¼ xnð Þdy ¼ Φ i; jð Þ Δyj

6λiþ1, j
þ Δyjþ1

6λiþ1, jþ1

� �

And likewise for the terms in the other directions. Therefore, in 2D:

ðð
∂Vij

D grad
��!

Φ
� �

� ~n d2r ¼ �
Xjþ1

j0¼j

Di, j0

2

Δyj0

Δxi
þ Δxi
Δyj0

 !
þ Δyj0

6λiþ1, j0

 !24 35 Φ i; jð Þ

þ
Xjþ1

j0¼j

Di, j0

2

Δyj0

Δxi

0@ 1A Φ i� 1; jð Þ

þ
Xjþ1

j0¼j�1

j0 6¼j

Di,max j; j0ð Þ
2

Δxi
Δymax j; j0ð Þ

 !
Φ i; j;0ð Þ

" #

and in 3D:
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ðð
∂Vijk

D grad
��!

Φ
� �

� ~n d2r ¼

�
Xjþ1

j0¼j

Xkþ1

k0¼k

Di, j0,k0

4

Δyj0Δzk0

Δxi
þ ΔxiΔzk0

Δyj0
þ ΔxiΔyj0

Δzk0

 !
þ Δyj0Δzk0

12λiþ1, j0,k0

" #0@ 1AΦ i; jð Þ

þ
Xjþ1

j0¼j

Xkþ1

k0¼k

Di, j0,k0

4

Δyj0Δzk0

Δxi

0@ 1A Φ i� 1; j; kð Þ

þ
Xjþ1

j0¼j�1

j0 6¼j

Xkþ1

k0¼k

Di,max j;j0ð Þ,k0

4

ΔxiΔzk0

Δymax j;j0ð Þ

 !
Φ i; j;0 ; kð Þ

" #

þ
Xkþ1

k0¼k�1

k0 6¼k

Xjþ1

j0¼i

Di, j0,max k;k0ð Þ
4

ΔxiΔyj0

Δzmax j;j0ð Þ

0@ 1A Φ i; j; k;0ð Þ
24 35

The term in time is discretized as:

ðð
Vij

1

v

Φ

Δtn
d2r ¼ Φ i; jð Þ

v i; jð ÞΔtn
Δxi Δyj þ Δyjþ1

� �
4

in 2D

ððð
Vijk

1

v

Φ

Δtn
d3r ¼ Φ i; j; kð Þ

v i; j; kð ÞΔtn
Δxi Δyj þ Δyjþ1

� �
Δzk þ Δzkþ1ð Þ

8
in 3D

8>>>>>>><>>>>>>>:
Similar expressions are obtained for the boundaries in y and z, as well as the

‘edges’ and the ‘corners’ of the domain (double and triple boundary conditions

respectively).

18.4.3 Matrix Form

After integration over the control volumes, the equations can be written in their

matrix form as shown earlier for the stationary equation (Clark and Hansen 1964,

p. 170). The two-group matrices A1 and A2 should then be inverted (A1

0
and A2

0
in

kinetics with A
0
g ¼ vgΔtg

� ��1
I � Ag for g ¼ 1 or 2). This can be done using an LU

factorization and a Jacobi method, combined with a Block Gauss-Seidel method

(Planchard 1995, p. 253; Varga 1962). Similarly, acceleration of the convergence

using a conjugate gradient method (Gastinel 1966, p. 181; Jacoby et al. 1972, p. 97)
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may be carried out in both stationary and kinetic cases. The terms on the RHS stem

either from the previous time iteration or from the previous outer iteration (coupling

iteration). In the kinetic case, these iterations are used to compute the precursor

concentrations, Ci, as a function of the fluxes just calculated. Spatial discretization

at each node of the mesh involves the six adjacent nodes (Fig. 18.8).

The square matrices of operators A1 and A2 are positive-definite and contain

7 non-zero diagonals. In 2D and 1D, these matrices have 5 and 3 non-zero diagonals

respectively. In the general 3D case, the non-zero diagonals are the principal PD,
the two adjacent diagonals (above and below DP) DX� and DX+ for the spatial

discretization in the Ox axis, the two diagonals DY� and DY+ located at the +nx and
�nx cells (where nx is the number of nodes in x) the discretization in the Oy axis,

and the two diagonalsDZ� andDZ+ located at +nx . ny and�nx . ny cells (where ny is
the number of nodes in y) for the terms in the Oz axis.

18.5 Nodal Methods

(Planchard 1995, p. 141; Stacey 1967; Stacey 2001, p. 545)

A large number of numerical methods may be classified as Nodal Methods (NM
also known as Nodal Expansion Methods ¼ NEM). The general principles of these

methods, which originated in the 1970s (from the works of Finneman, Henry,

PLAN 3PLAN 2PLAN 1

xn

nz = 3

ny = 4

Fig. 18.8 Shape of the

matrix: example with

3 planes and 4 nodes in

x and y
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Kord Smith,4 Koebke, etc.), consist in discretizing the reactor core in meshes of

relatively large size (nodes) with uniform medium where the fluxes are considered as

average values. The flux is assumed to have an intra-nodal form (polynomial or some

other function) and the coefficients are calculated whilst ensuring that the flux and

current verify the continuity equations. The method is called a summation method if
the flux is obtained by summing functions in the vector space. This technique allows

a high precision on the reconstruction of the intra-nodal fluxes,5,6 without being

costly as the Finite Difference method, which requires refined mesh for equivalent

precision. Other methods known as analytical methods also exist, and rather than the
flux, it is the RHS of the diffusion equation that is integrated along a direction (this is

called “transverse diffusion equation”).7 These methods are highly ingenious since

once the coefficients are known, the flux can be calculated at any point in the mesh.

This is particularly useful for determining the hot spot for instance. Further, nodal

methods have the same precision as finite difference methods with coarser meshes.

For example, one radial cell per assembly is sufficient in nodal methods whereas

16 would be required for the finite difference method, thereby explaining its relative

spread in the 1990s due to the gain in calculation times. Mathematical studies have

shown the nodal methods to be very close to finite element methods.

4Kord S. Smith: An analytic nodal method for solving the two-group, multidimensional, static
and transient neutron diffusion equations, Degree in Nuclear Engineering and Master of

Science, MIT (1979). After completing his PhD at MIT (Spatial homogenization methods
for light water reactor analysis, 1980), Kord Sterling Smith (1954–), developed several

efficient numerical methods for Studsvik Scandpower’s nodal code, SIMULATE. He is a

world-renowned expert on nodal methods.

(Courtesy Smith)
5For details, see José Félix Pérez Méndez-Castrillon: Reconstruction of Three-Dimensional flux
shapes from nodal solution, Master of Science at the MIT, June 1984.
6See also Ray G. Gamino: The development and application of Supernodal methods to PWR
analysis, PhD at the MIT, May 1986. A good review of models.
7The transverse integration procedure in Nodal Expansion Method is particularly well described

inBernard Ronald Bandini : A Three-Dimensional transient nuetronics routine for the TRAC-PF1
reactor thermalhydauli computer code, PhD at The Pennsylvania State University, 1990, p. 30.
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18.5.1 Nodal Method of Order 4

We will now illustrate the principles of the nodal methods with the order 4 of the

method as implemented in the EDF calculation scheme.8 Most nodal methods hinge

more or less on the same ideas. Let us examine a reactor meshed with cells indexed

by K in which neutron quantities are assumed constant. For practical purposes, the

center of the cell K is taken as the origin of the local frame of reference and hence

defines the cell with its dimensions:

K ¼ �hx
2
;þ hx

2

� 
	 �hy

2
;þ hy

2

� 
	 �hz

2
;þ hz

2

� 
The flux is defined in the cell for group g as Φg(x, y, z), along with the following

(Fig. 18.9):

8A fine summary of nodal methods (including the order-4 method) is set out in Slimane Noceir’s
PhD thesis: Sur les méthodes nodales appliquées aux calculs critiques des réacteurs en théorie de
la diffusion, [On nodal methods applied to critical reactor calculations in diffusion theory], Thesis,

University of Franche-Comté, 1993. After his thesis, S. Noceir was recruited by EDF R&D, where

he contributed to the development of the nodal method of order 4 in the COCCINELLE code. He

subsequently worked on the thermomechanical code CYRANO3 before contributing to a mixed

EDF/CEA project on thermomechanics.

(Courtesy Noceir)
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Φx xð Þ¼ 1

hy hz

ðþhy
2

�hy
2

ðþhz
2

�hz
2

Φ x;y;zð Þ dydz Transverse Flux along xð Þ

Φx
¼Φx 
hx
2

� �
Average Fluxat the interfaces along xð Þ

Φ¼ 1

hxhyhz

ðþhx
2

�hx
2

ðþhy
2

�hy
2

ðþhz
2

�hz
2

Φ x;y;zð Þdxdydz¼ 1

hx

ðþhx
2

�hx
2

Φx xð Þdx Average fluxonmeshK

Jx xð Þ¼�D
dΦx

dx
xð Þ¼� 1

hyhz

ðþhy
2

�hy
2

ðþhz
2

�hz
2

D
∂Φ
∂x

x;y;zð Þ dydz Transverse current here along xð Þ

Jx
¼Jx 
hx
2

� �
Average currentsat interfaces here along xð Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:
In 2D, the neutron balance equation per cell is obtained by integrating the

diffusion equation over cell K:

1

hx
Jxþ � Jx�f g þ 1

hy
Jyþ � Jy�
� �þ 1

hz
Jzþ � Jz�f g þ ΣΦ ¼ �S

with: �S ¼ 1
hx hy hz

Ð
K

S x; y; zð Þ dx dydz

This equation relates the average flux to the average currents at the interfaces. It

is a fundamental equation that must be verified whichever type of nodal method

used. It is also possible to integrate along the two directions (one in 2D). For
instance, integrating along y and z leads to the following equation:

Transverse equation :
d

dx
Jx xð Þ þ ΣΦx xð Þ ¼ Sx xð Þ � Fx xð Þ ð18:3Þ

−xΦ +xΦ
+xJ−xJ

Φ

+yJ

−yJ

yh

xh
xh

yh

zh
−zΦ

−yΦ

+yΦ

+zΦ

z
y

x

+yJ

+zJ

−zJ
−yJ

Fig. 18.9 Representation of discretization in2D and3D: definition of notations
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where Fx(x) and Sx(x) are the leakage and source terms, respectively, in the

x direction:

Fx xð Þ ¼ � 1

hy hz

ðþhy
2

�hy
2

ðþhz
2

�hz
2

D
∂2Φ

∂y2
x;y; zð Þ dydz� 1

hy hz

ðþhy
2

�hy
2

ðþhz
2

�hz
2

D
∂2Φ

∂z2
x;y; zð Þ dydz

Sx xð Þ ¼ � 1

hy hz

ðþhy
2

�hy
2

ðþhz
2

�hz
2

S x; y; zð Þ dydz

8>>>>>>>>>><>>>>>>>>>>:
Substituting the transverse current by its expression, this equation can also be

written as a second-order differential equation:

d

dx
D
dΦx xð Þ
dx

� �
þ ΣΦx xð Þ ¼ Sx xð Þ � Fx xð Þ

The transverse leakage values are given in terms of their average value and the

average currents on the interfaces of cell K:

1

hx

ðþhx
2

�hx
2

Fx xð Þdx ¼ �Fx ¼ 1

hy
Jyþ � Jy�
� �þ 1

hz
Jzþ � Jz�ð Þ

The development of nodal methods based on the solution of the transverse

equations in each direction is due to the simple fact that it is easier to solve an

equation in one dimension rather than one in two or three dimensions. This

approach is called the Transverse–Integrated Nodal Method (TINM) (Stacey

2001, p. 547). Nevertheless, it requires knowing the transverse leakages. The

information is obtained on mono-dimensional fluxes only and does not allow

rigorous calculation of the multi-dimensional value at any point in the domain. In

the case of an order-4 method, the flux is approximated by a polynomial without

crossed terms, with degree 4 in x and y, and degree 2 in z:

Φ x; y; zð Þ ¼ a0 þa1 f 1 xð Þ þ a2 f 2 xð Þ þ a3 f 3 xð Þ þ a4 f 4 xð Þ
þb1 f 1 yð Þ þ b2 f 2 yð Þ þ b3 f 3 yð Þ þ b4 f 4 yð Þ
þc1 f 1 zð Þ þ c2 f 2 zð Þ

where:

f 1 ξð Þ ¼ x

hx
¼ ξ f 3 ξð Þ ¼ ξ ξ2 � 1

4

� �
f 2 ξð Þ ¼ 3ξ2 � 1

4
f 4 ξð Þ ¼ ξ2 � 1

4

� �
ξ2 � 1

20

� �
8>><>>:
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Several studies have shown that degree 2 is sufficient given that the flux is less

perturbed in the axial direction than the radial one in PWR (except at the grids

which, however, have an influence on a small height, or due to the presence of rods

whose permanent insertion in the core is not recommended). The basis functions fi
are introduced to simplify the computations required for discretization. They are

chosen such that:

ð�hx
2

�hx
2

f i ξð Þdξ ¼ 0 8i and f i 
1

2

� �
¼ 0 for i ¼ 3 or 4

Which, by transverse integration, give:

Φx xð Þ ¼ a0þ a1 f 1 xð Þþ a2 f 2 xð Þþ a3 f 3 xð Þþ a4 f 4 xð Þ with
a0 ¼Φ
a1 ¼Φxþ �Φx�
a2 ¼Φxþ þΦx� � 2Φ

8<:
Coefficients a3 and a4 are determined by weighting the diffusion equation by

weight functions Q1 and Q2, which are function of x only:

Qi;�div Dgrad
��!

Φ
� �D E

þ Σ Qi;Φh i ¼ Qi; Sh i

where: Qi;Φh i ¼ 1
hx hy hz

Ð
K

QiΦ dxdydz for i¼ 1 , 2

If Q1¼ f1 and Q2¼ f2, for i¼ 1 , 2, the following is obtained:

f i;�div Dgrad
��!

Φ
� �D E

¼ 1

hx hy

ð
K

�div Dgrad
��!

Φ
� �

f i xð Þdxdy

¼� D

hx hy

ð
K

∂2Φ

∂x2
þ ∂2Φ

∂y2
þ ∂2Φ

∂z2

 !
f i xð Þdxdy

8<:
9=;

As Φ is polynomial with no crossed terms, then
∂2Φ

∂y2
and

∂2Φ

∂z2
are independent of

x and, thus:
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ð
K

∂2Φ

∂y2
f i xð Þ dx dydz ¼

ðþhy
2

�hy
2

ðþhz
2

�hz
2

∂2Φ

∂y2
dy dz

ðþhx
2

�hx
2

f i xð Þ dx

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0

¼ 0

ð
K

∂2Φ

∂z2
f i xð Þ dx dydz ¼

ðþhy
2

�hy
2

ðþhz
2

�hz
2

∂2Φ

∂z2
dydz

ðþhx
2

�hx
2

f i xð Þ dx

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0

¼ 0

:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
The only non-zero integral is computed as:

f 1;�div Dgrad
��!

Φ
� �D E

¼� D

hxhy

ð
K

∂2Φ

∂x2

 !
f 1 xð Þdxdy

8<:
9=;¼ 1

2hx
JxþþJx�ð ÞþD

h2x
Φxþ�Φx�ð Þ

f 2;�div Dgrad
��!

Φ
� �D E

¼� D

hxhy

ð
K

∂2Φ

∂x2

 !
f 2 xð Þdxdy

8<:
9=;¼ 1

2hx
Jxþ�Jx�ð Þþ3D

h2x
ΦxþþΦx��2Φ
� �

8>>>>>><>>>>>>:
Therefore, the weighted balance equations are:

1

2hx
Jxþ þ Jx�ð Þ þ D

h2x
Φxþ � Φx�ð Þ þ Σ f 1;Φh i|fflfflffl{zfflfflffl}

Φx1

¼ f 1; Sh i|fflfflffl{zfflfflffl}
�Sx1

1

2hx
Jxþ � Jx�ð Þ þ 3D

h2x
Φxþ þΦx� � 2Φ
� �þ Σ f 2;Φh i|fflfflffl{zfflfflffl}

Φx2

¼ f 2; Sh i|fflfflffl{zfflfflffl}
�Sx2

8>>>>><>>>>>:
Φx1 and Φx2are calculated by expanding the flux Φ in its polynomial form:

f i xð Þ;Φh i ¼
X4
j¼1

aj
hx hy

ð
K

f i xð Þ f j xð Þ dx dy

This expression is written with scalar products of the base functions:

ðþhx
2

�hx
2

f 1 xð Þf 1 xð Þdx¼hx
12

,

ðþhx
2

�hx
2

f 1 xð Þf 3 xð Þdx¼� hx
120

,

ðþhx
2

�hx
2

f 1 xð Þf j xð Þdx¼0 for j¼2 or 4

ðþhx
2

�hx
2

f 2 xð Þf 2 xð Þdx¼hx
20

,

ðþhx
2

�hx
2

f 2 xð Þf 3 xð Þdx¼0,

ðþhx
2

�hx
2

f 2 xð Þf 4 xð Þdx¼� hx

700

The following equations are obtained for the weighted flux:
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Φx1 ¼ 1

12
a1 � 1

120
a3

Φx2 ¼ 1

20
a2 � 1

700
a4

8><>:
Also by integration, the transverse currents are:

Jxþ ¼ �D

hx
a1 þ 3a2 þ 1

2
a3 þ 1

5
a4

� �
Jx� ¼ �D

hx
a1 � 3a2 þ 1

2
a3 � 1

5
a4

� �
8>><>>:

By substituting the coefficients ai by their expressions in terms of average flux at

the interface and the weighted flux, the following coupling of the currents and the

flux are obtained:

Jxþ ¼ �D

hx
16Φxþ þ 4Φx� � 60Φx1 � 140Φx2 � 20Φ
� �

Jx� ¼ �D

hx
�4Φxþ � 16Φx� � 60Φx1 þ 140Φx2 þ 20Φ
� �

8><>:
which is similar to:

Φxþ ¼ � hx
60D

4Jxþ þ Jx�f g þ Φþ 5Φx1 þ 7Φx2

Φx� ¼ þ hx
60D

Jxþ þ 4Jx�f g þ Φ� 5Φx1 þ 7Φx2

8><>:
Finally, the equations (in 2D) with the interface currents as unknowns are

obtained:

Neutron balance equation:

1

hx
Jxþ � Jx�f g þ 1

hy
Jyþ � Jy�
� �þ 1

hz
Jzþ � Jz�f g þ ΣΦ ¼ �S ð18:4Þ

Weighted balance equations:

5

12hx
Jxþ þ Jx�ð Þ þ 10D

h2x
þ Σ

� �
Φx1 ¼ �Sx1

7

20hx
Jxþ � Jx�ð Þ þ 42D

h2x
þ Σ

� �
Φx2 ¼ �Sx2

8>><>>:
ð18:5Þ

The coupling between cells is ensured via the flux continuity and the average

currents at the interface of cell K and its immediate neighbor K0:

Φxþ Kð Þ ¼ Φx� K
0� �

Jxþ Kð Þ ¼ Jx� K
0� �(
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It should, however, be noted that continuity is not guaranteed at all points at the

interface (only the average flux and currents are retained). At the boundaries, Robin

boundary conditions are applied. For the left boundary of the reactor, the following

is written:

Jx� ¼ þ hx
60D

Jxþ þ 4Jx�f g þΦ� 5Φx1 þ 7Φx2 ¼ �Φx�
3λ�

And similarly for the right boundary:

Jx� ¼ �D

hx
�4Φxþ � 16Φx� � 60Φx1 þ 140Φx2 þ 20Φ
� � ¼ þΦxþ

3λþ

where λ� and λ+ are the extrapolation lengths with regard to the left and right edges
respectively. When the previous equations are obtained for all the cells K in the

mesh, the different interfaces and the boundaries of the domain in all directions,

they form a linear system with as many equations as unknowns. This system is

written as AX¼B where X consists of the vectorsΦ, Jxþ, Φx1 and Φx2 along each

direction. The Jx� terms are replaced with those of the neighboring meshes by

continuity considerations (Fig. 18.10).

Matrix A is composed of elementary matrices of the following form:

0 0 0
1

hx

0
10D

h2x
þ Σ

� �
0

5

12hx

0 0
42D

h2x
þ Σ

� �
7

20hx

�1 �5 �7
hx
15D

þ hx0

15D
0

� �

0BBBBBBBBBB@

1CCCCCCCCCCA
In this expression, the properties of an adjacent cell are written using the prime

index (‘). The matrix obtained can be made symmetric but is not positive-definite,

which can be quite troublesome when seeking to ensure that the flux obtained is

Fig. 18.10 Nodal element

of degree 4 with interface

currents
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positive. An elimination method yields a system that is positive-definite. If

J represents the current vector (consisting of average interface currents along all

the directions), and Φ represents the flux vector comprising average and weighted

fluxes, for an interface current method, the final system can be written as:

M1 M2

Mt
2 M3

� �
J
Φ

� �
¼ 0

B

� �
If the flux is eliminated, the following sub-system is obtained:

~A J ¼ ~B
~A ¼ M1 �M2M

�1
3 Mt

2
~B ¼ �M2M

�1
3 B

�
The matrix of sub-system ~A is positive-definite. Indeed, since M1 derives from

the interface equations, it is a symmetric tri-diagonal matrix with a strictly positive

diagonal. Hence, it is positive-definite.M3 is written from the balance equations and

is thus a diagonal matrix with negative terms only. Therefore, matrix �M2M
�1
3 Mt

2

is symmetric and positive-definite. The sum of two symmetric positive-definite

matrices is also symmetric and positive-definite, as for ~A. The average flux values

are given by:

Φ ¼
�S

Σ
� 1

Σ hx
Jxþ � Jx�f g � 1

Σ hy
Jyþ � Jy�
� �� 1

Σ hz
Jzþ � Jz�f g

Φx1 ¼
�Sx1
Σx1

� 5

12 Σx1 hx
Jxþ þ Jx�ð Þ

Φx2 ¼
�Sx2
Σx2

� 7

20 Σx2 hx
Jxþ � Jx�ð Þ

8>><>>: where

Σx1 ¼ Σ þ 10D

h2x

Σx2 ¼ Σ þ 42D

h2x

8>><>>:
By inserting the expressions in the interface equations, after computation, the

following is obtained:

hx
60D

� 1

Σ hx
þ 25

12Σx1hx
� 49

20Σx2hx

� �
Jx�

þ hx
15D

þ 1

Σ hx
þ 25

12Σx1hx
þ 49

20Σx2hx
þ hx

0

15D
0 þ 1

Σ
0
hx

0 þ 25

12Σ0
x1hx

0 þ 49

20Σ0
x2hx

0

 !
Jxþ

þ hx
0

60D
0 � 1

Σ
0
hx

0 þ 25

12Σ0
x1hx

0 � 49

20Σ0
x2hx

0

 !
J0xþ

¼
�S

Σ
�

�S0

Σ
0 þ 5�Sx1

Σx1
þ 5�S

0
x1

Σx1
0 þ 7�Sx2

Σx2
� 7�S

0
x2

Σx2
0

� 1

Σ hy
Jyþ � Jy�
� �þ 1

Σ
0
hy

0 J0yþ � J0y�
� �

� 1

Σ hz
Jzþ � Jz�ð Þ þ 1

Σ
0
hz

0 J0zþ � J0z�
� �

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
Naturally, these calculations must also be carried out for the other components

(y and z). The resulting equations for y are similar to those obtained for x. For z on
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the other hand, some simplifications are possible (the z component being of degree

2 instead of 4). Finally, the following equation is obtained:

hz
6D

� 1

Σhz

� �
Jz�þ hz

3D
þ h0z
3D

0 þ 1

Σhz
þ 1

Σ
0
h0z

� �
Jzþþ h0z

6D
0 � 1

Σ 0h0z

� �
J0zþ

¼
�S

Σ
�
�S
0

Σ
0 � 1

Σhx
Jxþ�Jx�ð Þþ 1

Σ0h0x
J0xþ�J0x�
� �� 1

Σhy
Jyþ�Jy�
� �þ 1

Σ0h0y
J0yþ�J0y�
� �

These equations, written for all K cells, the different interfaces, on the bound-

aries of the domain and along all the directions, form two linear systems with as

many unknowns as there are equations. The first sub-system has the fluxes as

unknowns. The elimination method for fluxes leads to a positive-definite system

with half the number of unknowns, and a considerable gain in execution time. It

enables legitimate use of convergence theorems on iterative methods concerning

positive-definite matrices (Gauss-Seidel, etc.).

18.5.2 Quadratic Approximation of Transverse Leakage

The works of Slimane Noceir have shown the limits of convergence of the nodal

method of order 4. Increasing the degree of the polynomials in the basis does not

increase the order of convergence, which remains in O(h2). Moreover, with such

numerical schemes, transverse leakage (accounting for neutrons leaving the cell in

a transverse direction to that considered) across the face of the cells is approximated

by constants for each face of a given cell. In more recent schemes, this problem has

been solved by keeping the same unknowns, as previously seen, for each face, and

by improving the representation of transverse leakage with a quadratic approxima-

tion that links neighboring cells. This is now a standard method which improves the

approximation. In this approach, the balance equation (Eq. 18.4) is not modified.

Evaluation of the coefficients a0, a1, a2, b1 and b2 of the polynomial expansion of

the flux is carried out in the same manner. However, to determine coefficients a3,
a4, b3 and b4, the transverse equation (Eq. 18.3) is now weighted rather than the

balance equation:

�D
d2Φx

dx2
xð Þ, f i xð Þ

� �
þ ΣΦx xð Þ, f i xð Þh i ¼ Sx xð Þ, f i xð Þh i � Fx xð Þ, f i xð Þh i

After calculation, the following scalar products are obtained:

�D
d2Φx

dx2
, f 1

� �
¼ 1

2hx
Jxþ þ Jx�ð Þ þ D

h2x
Φxþ �Φx�ð Þ

�D
d2Φx

dx2
, f 2

� �
¼ 1

2hx
Jxþ � Jx�ð Þ þ 3D

h2x
Φxþ þ Φx� � 2Φ
� �

8>>><>>>:
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The weighted transverse equations are obtained:

1

2hx
Jxþ þ Jx�ð Þ þ D

h2x
Φxþ � Φx�ð Þ þ ΣΦx1 ¼ �Sx1 � �Fx1

1

2hx
Jxþ � Jx�ð Þ þ 3D

h2x
Φxþ þ Φx� � 2Φ
� �þ ΣΦx2 ¼ �Sx2 � �Fx2

8>><>>:
Therefore, the values of a3 and a4 (hence, b3 and b4) are given by:

Φx1 ¼ a1
12

� a3
120

Φx2 ¼ a2
20

� a4
700

8><>:
The interface currents and flux, which were obtained for the nodal method

without quadratic leakage, are still valid. Finally, the discretized equations form

the following system:

1

hx
Jxþ � Jx�ð Þ þ 1

hy
Jyþ � Jy�
� �þ ΣΦ ¼ �S

5

12hx

x Jxþ þ Jx�ð Þ þ 10D

h2x
þ Σ

� �
Φx1 ¼ �Sx1 � �Fx1

7

20hx
Jxþ � Jx�ð Þ þ 42D

h2x
þ Σ

� �
Φx2 ¼ �Sx2 � �Fx2

8>>>>>><>>>>>>:
To these equations are added the continuity equations, which are unchanged

with respect to the nodal methods without quadratic leakage. The differences

concern only the weighted balance equations with more terms requiring evaluation.

The supplementary coefficients can be expressed as a function of the unknowns of

the problem. They do not act as new degrees of freedom. The quadratic approxi-

mation of the leakage consists in expanding these quantities on a second-degree

polynomial, where the coefficients are expressed in terms of the unknowns of the

problem. There are several ways to determine the coefficients of this polynomial:

on one hand, by conservation of the average transverse leakage by integration on

the current cell for the three adjacent cells, or, on the other hand, by relating the

leakage terms to their first-order derivatives at the interface. This method requires

solving a tri-diagonal system and is more costly than the former. The average

leakage on the three neighboring cells is conserved to avoid worsening the effi-

ciency of the calculation. The polynomial expansion of the flux is written as (the

x direction is taken for example):

Formula for the quadratic leakages: Fx xð Þ ¼ �Fx þ F1 f 1 xð Þ þ F2 f 2 xð Þ ð18:6Þ

Where:
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�Fx ¼ 1

hx

ðhx2
�hx

2

Fx xð Þdx

corresponds to the average leakage, F1 andF2 are the coefficients to be determined

and fiare the functions of polynomial basis from the nodal method described

previously for the flux.

F1 and F2 are computed while ensuring that the average leakage of the cells

i� 1, i and 1+i are conserved (Fig. 18.11):

1

h�x

ð
h�x

Fx xð Þdx ¼ �F
�
x

1

hþx

ð
hþx

Fx xð Þdx ¼ �F
þ
x

8>>>>><>>>>>:
where: �F



x ¼ �Fx þ α
1 F1 þ α
2 F2 with: α
i ¼ 1

h
x

Ð
h
x

f i xð Þdx

The system to be solved is the following:

αþ1 F1 þ αþ2 F2 ¼ �F
þ
x � �Fx ¼ βþ

α�1 F1 þ α�2 F2 ¼ �F
�
x � �Fx ¼ β�

(

The solution is as follows:
F1 ¼ b�1 β

� þ bþ1 β
þ

F2 ¼ b�2 β
� þ bþ2 β

þ

�
with:

b�2 ¼ h2x
h�x þ hx
� �

hx þ h�x þ hþx
� � ; bþ2 ¼ h2x

hþx þ hx
� �

hx þ h�x þ hþx
� �

b�1 ¼ � 2hþx þ hx
hx

b�2 ; bþ1 ¼ 2h�x þ hx
hx

bþ2 :

8>><>>:

i i + 1i - 1

h

xF

h– h+

xF 
–

+

xF

)(xFx

Fig. 18.11 Conservation of

the average leakage over

3 adjacent cells. Definition

of notations
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Re-writing the weighting of the transverse leakage in terms of this expansion

leads to:

Fx i ¼ 1

hx

ðhx
2

�hx
2

f i xð Þ �Fx þ F1 f 1 xð Þ þ F2 f 2 xð Þ½ �dx hence:
Fx1 ¼ F1

12

Fx2 ¼ F2

20

8><>:

18.5.3 AFEN Method

The Analytic Function Expansion Nodal (AFEN)9,10 method is one of the various

methods which uses the eigenfunctions of the Laplace operator to build an intra-

nodal form of the flux. Given the flux vector with two energy groups Φ(x, y) for a
2D problem, a new quantity ξ(x, y) is defined such that:

Φ x; yð Þ � Φ1 x; yð Þ
Φ2 x; yð Þ

� �
�

Σa, 2 � λ1D2

Σs, 1!2

Σa, 2 � λ2D2

Σs, 1!2

1 1

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R

ξ1 x; yð Þ
ξ2 x; yð Þ

� �

The two-group diffusion equation without up-scattering in energy is written in

matrix form as:

� D1 0

0 D2

� �
ΔΦþ Σa, 1 þ Σs, 1!2 � νΣf , 1

keff
�νΣf , 1

keff
�Σs, 1!2 Σa, 2

0@ 1AΦ ¼ 0

The AFEN method consists in finding ξg(x, y) as:

ξg x; yð Þ ¼ Ag, 0 þ Ag, 1 sh κgx
� �þ Ag, 2 ch κgx

� �þ Ag, 3 sh κgy
� �þ Ag, 4 ch κgy

� �
þBg, 1 sh

κgffiffiffi
2

p x

� �
sh

κgffiffiffi
2

p y

� �
þ Bg, 2 sh

κgffiffiffi
2

p x

� �
ch

κgffiffiffi
2

p y

� �
þBg, 3 ch

κgffiffiffi
2

p x

� �
sh

κgffiffiffi
2

p y

� �
þ Bg, 4 ch

κgffiffiffi
2

p x

� �
ch

κgffiffiffi
2

p y

� �
where each term (save for the first) is solution of the following equation for each

computational cell:

9J.M. Noh, N.Z. Cho: A new approach of analytic basis function expansion to neutron diffusion
nodal calculations, Nuclear Science and Engineering, 116, 165 (1994).
10H.C. Lee, C.H. Kim: Unified nodal method formulation for analytic function expansion nodal
method solution to two-group diffusion equations in rectangular geometry, Nuclear Science and

Engineering, 140, 137–151 (2002).

18.5 Nodal Methods 1335



Δξg x; yð Þ � λgξg x; yð Þ ¼ 0 g ¼ 1 or 2

with κg ¼
ffiffiffiffiffi
λg

p
. The constant value Ag , 0 is introduced to ensure that the neutron

balance is guaranteed in each cell and disappears when the keff converges. The nine
coefficients for each cell are determined by expressing the average flux in the cell,

the interface flux and the four fluxes at the vertices of the cell. The coupling

between the cells is ensured via the neutron balance of the cell and the continuity

of the four interface currents and the flux at the four corners of the cell. With

currents on the left and right interfaces in x (Jg,x� , Jg,xþ) for surface Ax (resp. below

and above in y (Jg,y� , Jg,yþ) for Ay), the balance equation of the cell is written as:

J1,x� � J1,xþ

Ax
þ J1,y� � J1,yþ

Ay
þ Σa, 1 þ Σs, 1!2ð ÞΦ1 ¼ νΣf , 1Φ1 þ νΣf , 2Φ2

keff
J2,x� � J2,xþ

Ax
þ J2,y� � J2,yþ

Ay
þ Σa, 2Φ2 ¼ Σs, 1!2Φ1

8>><>>:

18.6 Finite Element Method

(Advances Nuclear Science and Technology Vol. 8, 1975, p. 173; Bathe 1982;

Grandini 1986; Huebner 1975, p. 253; Lewis and Ward 1991; Logan 1986; March-

uk and Agochkov 1985; Oden 1972; Strang and Fix 1973; Zienkiewicz 1973)

The Finite Elements Method (FEM) was first developed in structural mechanical

analysis. It is without doubt one of the numerical methods which has an extensive

literature. Nowadays, it is one of the methods most widely employed by physicists

of every branch. Reactor physics is no exception (Duderstadt and Hamilton 1976,

p. 563). The finite element method stems from aeronautics with A. Hrennikoff

(circa 1941) on the modeling of the rigidity of a structure of square cross section,

represented by a bundle of coupled elementary rods (Grandini 1986, p. 2; Logan

1986, p. 2). In 1943, the German mathematician David Courant proposed an

original numerical approach for the computation of mechanical stress using a

Rayleigh-Ritz variational method (Huebner 1975, p. 9). The term “finite element

method” was coined by R. W. Clough (1960).11 The goal of the finite element

method is to approximate the behavior of unknown functions by a projection on

known functions, then by integration over a mesh, to set up a linear system of

equations consisting of coefficients of the functions. This is very similar to the

nodal methods. The finite element methods are not restricted to the diffusion

equation and have been applied to transport methods [an application of finite

element methods to transport is given in (Mathematical aspects of FEM 1974,

11R.W. Clough: The Finite Element method in plane stress analysis, proceedings of the 2nd ASCE
conference on electronic computation, Pittsburgh Sept.8–9, USA, (1960).
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p. 89) and in),12 although it is in diffusion that it has been most prevalent. For

example, in 1D, on a segment of length ‘ where the flux is zero at the boundaries:

�DΔΦ xð Þ þ ΣaΦ xð Þ ¼ νΣf

keff
Φ xð Þ þ S xð Þ

For one energy group, the �DΔþ Σa � νΣf

keff

� �
½ � operator is self-adjoint. This is

no longer the case in multi-group. The flux is projected on a set of functions:

Φ xð Þ ¼Pn
j¼1

φj f j xð Þ where the fj(x) verify the boundary conditions of the reactor.

This expression is substituted in the diffusion equation and the following is

obtained:

�D
Xn
j¼1

φj

d2f j xð Þ
dx2

 !
þ Σa � νΣf

keff

� � Xn
j¼1

φj f j xð Þ
 !

¼ S xð Þ

The Galerkin method (Fletcher 1984; Lewis and Ward 1991, p. 15; Marchuk

and Agochkov 1985, p. 43; Grandini 1986, p. 315; Strang and Fix 1973, p. 116),

consists in projecting the differential equation on each functionfiwith a scalar

product defined as:

f i; f j

D E
�
ðx¼‘

x¼0

f i xð Þf j xð Þdx

This is equivalent to multiplying each term in the equation by fi(x) and integrat-

ing the resulting equations on[0, ‘]. The moment of the equations is obtained:

�D
Xn
j¼1

φj f i;
d2f j

dx2

* + !
þ Σa � νΣf

keff

� � Xn
j¼1

φj f i; f j

D E !
¼ f i; Sð Þ

In similar fashion to the principles explained in the spherical harmonics expan-

sion method for the transport equation, the functions fi(x) are chosen such that they

are orthogonal. This simplifies the equations:

�D
Pn
j¼1

φj f i;
d2f j
dx2

D E !
þ Σa�νΣf

keff

� �
φi¼ f i;Sh i 8i if: f i; f j

D E
� Ðx¼‘

x¼0

f i xð Þf j xð Þdx¼δij

A system consisting of n linear equations in the φicoefficients is obtained. The

system is expressed in matrix form as:

12J. Cartier, G. Samba:Mixed and hybrid finite element method for the transport equation, Nuclear
Science and Engineering, 154, pp. 28–47 (2006).
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�DΔi, jφj þ Σa � νΣf

keff

� �
Mi, jφj ¼ Si

with: φ ¼

φ1

⋮
φi

⋮
φn

0BBBB@
1CCCCA, S ¼

f 1; Sh i
⋮
f i; Sh i
⋮
f n; Sh i

0BBBB@
1CCCCA,

Δ¼

f 1;
d2f 1
dx2

� �
��� f 1;

d2f j

dx2

* +
��� f 1;

d2f n
dx2

� �
⋮

f i;
d2f 1
dx2

� �
��� f i;

d2f j

dx2

* +
��� f i;

d2f n
dx2

� �
⋮

f n;
d2f 1
dx2

� �
��� f n;

d2f j

dx2

* +
��� f n;

d2f n
dx2

� �

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
M¼

f 1, f 1h i ��� f 1, f j

D E
��� f 1, f nh i

⋮
f i, f 1h i ��� f i, f j

D E
��� f i, f nh i

⋮
f n, f 1h i ��� f n, f j

D E
��� f n, f nh i

0BBBBBB@

1CCCCCCA

If the functions are orthogonal, the matrix M simplifies into the identity matrix.

The matrices are calculated only once, and if they are well conditioned, an iterative

scheme can be used to solve the linear system. The existence of the Laplace

operator Δ assumes that the functions fj can be derived twice, thereby restricting

the choice of the functions to be used for the flux for strong variations. This problem

may be alleviated by using a variational method. In the example above, this can be

expressed by multiplying the diffusion equation by a function, and integrating over

the volume of the reactor:

�
ð‘
0

dx f xð ÞDΔΦ xð Þ þ
ð‘
0

dx f xð ÞΣaΦ xð Þ ¼
ð‘
0

dx f xð ÞνΣf

keff
Φ xð Þ þ

ð‘
0

dx f xð ÞS xð Þ

Integrating the first term by parts leads to:

ð‘
0

dx f xð ÞDΔΦ xð Þ ¼ f xð ÞDdΦ xð Þ
dx

�  ‘
0

�
ð‘
0

dx
df xð Þ
dx

D
dΦ xð Þ
dx

If a function f(x) is chosen such that the boundary conditions are verified (i.e., it

is worth zero at the limits of the reactor in our example), the first term of the

previous equation cancels out. Hence, the following is obtained:
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Weak formulation of the diffusion equation:

ð‘
0

dx
df xð Þ
dx

D
dΦ xð Þ
dx

þ
ð‘
0

dx f xð Þ Σa � νΣf

keff

� �
Φ xð Þ � df xð Þ

dx
;D

dΦ xð Þ
dx

� �

þ f xð Þ; Σa � νΣf

keff

� �
Φ xð Þ

� �
¼ f xð Þ; S xð Þh i ð18:7Þ

This expression is called the weak formulation of the diffusion equation. This is

because there exist functions that will verify the integral equation (known as the

functional, which was described in Chap. 9), but without verifying the boundary

conditions at all points of the interface. In multi-group, the group-by-group flux is

expanded on the same basis functions fj:

Φg xð Þ ¼
Xn
j¼1

φj,g f j xð Þ

The weak formulation is written for each group g and each index i:

XG
g0¼1

df i
dx

;Dg,g0
XG
j¼1

φj,g0
df j
dx

* +
þ f i; Σt,g,g0 � Σt,g,g0 �

χgνΣf ,g0

keff

� �Xn
j¼1

φj,g0 f j

* +( )
¼ f i; Sg xð Þ� �
Mathematically, it can be proven that a function Φ(x) verifying the boundary

conditions and the weak form of the equation for any function f(x) verifying the

boundary conditions (for which the integrals exist), is a solution of the problem.

The advantage of this variational method is that the functions f(x) need only be

differentiable once and not twice as for the initial approach. This extends the

domain of the projection functions to piecewise linear functions for example.

The numerical analysts developed myriads of finite elements more or less well-

suited to the type of problem at hand. Huebner (1975, p. 257) discusses the

Helmholtz equation with tetrahedral elements with four nodes while (Advances
Nuclear Science and Technology Vol. 8, 1975, p. 229) gives examples considering

control rods with bilinear elements that are rectangular or even triangular close to

the boundaries.
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18.7 Variational Methods

18.7.1 Principle

Variational methods were applied first in astrophysics thanks to the works of

V. Kourganoff13 in 1949, then in particle transport through the works of

V.S. Vladimirov14 who truly developed the theoretical background. They are very

similar to the finite element methods. In France, the initial works on this subject

date from the 1960s,15 under the guidance of J.L. Lions. The idea consists in

formulating a functional resulting from the integration of surface and volume

terms from the diffusion equation on a given volumeV¼ [Vi:

f Φ; ~J
� � �X

Vi2V

ð
Vi

D grad
��!

Φ
� �2

þ ΣaΦ
2 � 2ΦS

� �
dV þ 2

ð
∂Vi

Φ~J:~n dΓ

Since the flux verifies the diffusion equation with fission source S:

13V. Kourganoff, Annals of Astrophysics, No. 12, 169 (1949).
14Vassili S. Vladimirov (1923–), a member of the USSR Academy of Sciences, worked in several

domains in applied mathematics, such as linear systems theory and the generalization of the

Tauber theorem for multiple dimension functions. In the 1960s, his initial works were on the

mathematics of the neutron transport equation, which laid the foundations for the even-odd

formulation. Most of his works have been translated in French (Vladimirov 1967, 1979).

V.S. Vladimirov source: Teoreticheskaya i Matematicheskaya Physika 94, 1 (1993), photograph

unknown
15Hoan Nguyen-Ngoc: Résolution variationnelle des Equations de diffusion multigroupe indé
pendantes du temps [Variational resolution of time-independent multi-group diffusion equations],

thesis presented to the University of Paris (1965).
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�div Dgrad
��!

Φ
� �

þ ΣaΦ ¼ S

The goal is to obtain a positive functional to be minimized so as to be amenable

to the mathematical tools associated with such problems. Introducing the current as

a Lagrange multiplier in the surface term and expanding the flux and the current on

basis functions, we obtain variational nodal methods. The flux is expanded as:

Φ ~rð Þ ¼
X
l

φl f l ~rð Þ

Wheref l ~rð Þ are polynomials in the column vector f ~rð Þ that verifies the orthog-
onality condition:Ð

Vi

f ~rð Þ f T ~rð ÞdV ¼ ViI where I is the unit vector

The flux is thus expressed as Φ ~rð Þ ¼ f T ~rð Þ 	 φ where φ is the coefficient

column vector and 	 represents the matrix-vector products. Similarly, the follow-

ing relation can be written:~J ~rð Þ:~n ¼ hT ~rð Þ 	 j. Orthogonal polynomials are chosen

preferentially as a basis of trial functions h ~rð Þ such that:ð
∂V

h ~rð ÞhT ~rð ÞdΓ ¼ I

The flux can also be projected on this basis for points belonging to the surface

~rΓ 2∂V :

Φ ~rΓð Þ ¼ hT ~rΓð Þ 	 ψ

The coefficients j and ψ in the basis are given by:

j ¼ Ð
∂V

h ~rð Þ~J ~rð Þ:~ndΓ and ψ ¼ Ð
∂V

h ~rð ÞΦ ~rð ÞdΓ

Where, by substitution of Φ ~rð Þ in the equation for ψ leads to:

ψ ¼ MTφ with : MT ¼ Ð
∂V

f ~rð ÞhT ~rð ÞdΓ

Functions f are a complete basis of polynomials of order p (for instance, the first

p Legendre polynomials in 1D) if it is of dimension (p+ 1) (p+ 2)/2 in 2D Cartesian

geometry and 4p
0
+ 1for h to account for the four edges of the cell. If p¼ p

0
, an exact

projection of Φ ~rð Þ on the surfaces of the cell is obtained. The functional is

transformed to include j and ψ by substitution of the expansions of Φ ~rð Þ and ~J ~rð Þ:
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f φ; jð Þ ¼
X
Vi2V

φT
Vi
AVi

φVi
� 2φT

Vi

ð
Vi

fSdV þ 2φT
Vi
Mj

264
375

with: AVi
¼ Ð

Vi

D grad
��!

f
� �

grad
��!

f T
� �� �

dV þ ΣaViI. Modeling may be refined either

by increasing spatial discretization while keeping the same set of trial functions, or

by increasing the polynomial order of the trial functions.

18.7.2 Accounting for Boundary Conditions

Given that the boundary conditions of a cell with surface Γ¼Γn[Γr:

Φ ~rsð Þ ¼ 0 for ~rs 2Γn Zero� flux condition

D ~rsð Þ∂Φ
∂n

~rsð Þ þ γΦ ~rsð Þ ¼ 0 for ~rs 2Γr Robin condition

(

Starting from the Kourganoff functional, similar to that of Vladimirov:

f Φð Þ �
ð
V

divDgrad
��!

Φ� ΣaΦ
2 þ 2ΦS

� �
d3r

From the Ostrogradski theorem, the first term of the integral is written as:ð
V

divDgrad
��!

Φd3r ¼ �
ð
V

D grad
��!

Φ
� �2

d3r þ
ð
Γ

ΦD~n:grad
��!

Φd2r

¼ �
ð
V

D grad
��!

Φ
� �2

d3r þ
ð
Γn

ΦD~n:grad
��!

Φd2r

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

þ
ð
Γr

γΦ2 d2r

The flux that turns the system into a stationary one is next sought:

δf Φð Þ ¼
ð
V

�2divDgrad
��!

Φgrad
��!

δΦ� 2ΣaΦδΦþ 2δΦS
� �

d3r � 2

ð
Γr

γΦδΦd2r ¼ 0

For any function Ψ (Fig. 18.12):ð
V

divDgrad
��!

Φgrad
��!

Ψ þ ΣaΦΨ � 2Ψ S
� �

d3r þ
ð
Γr

γΦΨ d2r ¼ 0 ð18:8Þ
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which can be handled by means of a classical approach with finite elements,

using a parallelepiped with eight vertices as the basis element:

Φ x; y; zð Þ ¼
X8
i, j, k

φijk f ijk x; y; zð Þ

with: f ijk x; y; zð Þ ¼P2
l¼1

P2
m¼1

P2
n¼1

f ijklmnx
l�1ym�1zn�1where the coefficients f ijklmn are

calculated such that the function is worth 1 at the vertex i,j,k and 0 elsewhere.

The stationary side of the functional is expressed by projecting each term of

Equation (18.8) on the basis functions:

f ijk; S
D E

¼
X
i0, j0, k0

grad
��!

f ijk;Dgrad
��!

f i0j0k0
D E

� f ijk ,Σa f i0j0k0
D E

þ f ijk; γ f i0j0k0
D E

Γr

� 
φi0j0k0

where the scalar product is defined classically for an elementary volume Vi:

f ijk; g
D E

¼ Ð
Vi

f ijkg d
3r and f ijk; g

D E
Γr

¼ Ð
Γi\Γr

f ijkg d
2r

The linear system obtained is solved using classical matrix methods. The

problem is generalized to multi-group settings by iterating on the groups starting

from the group of fast-energy neutrons.

18.8 Calculation of Control Rods

(Meghreblian and Holmes 1960, p. 721) for the theoretical aspects

Most reactors have a reactivity control system based on the insertion of rods of

solid absorbers. These rods, of various shapes (cylindrical pins in PWR, cross-

shaped control rods in BWR, slabs in certain experimental reactors, etc.), are

xh

yh

zh

z
y

x

Fig. 18.12 Finite element

with eight vertices
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often—but not always—located above the core. This ensures that in emergency

situations the rods may be inserted by means of gravity. For PWR, they are placed

above the assemblies of the active core (Fig. 18.13). These rods result in marked

heterogeneity due to their radial position in the core, which breaks up the symmetry

of the core pattern, or to their axial insertion in the core, when their absorbing nature

disrupts the flux distribution.

18.8.1 Physical Effect of Rods

(Physics and Material Problems of Reactor Control Rods 1964)
A rod is composed of neutrons-absorbing materials (for example, steel or a

mixture of silver-indium-cadmium or boron carbide B4C), which exerts complex

effects on the flux (Fig. 18.14).

Perpendicular to the control rod, thermal flux tends practically to 0 (Glasstone

and Edlund 1972, p. 317; Lamarsh and Baratta p. 349; Glasstone and Sesonske
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Fig. 18.13 Control rod placement for a 900 MWe PWR
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1994, p. 304; Lewins 1978, p. 42). If flux is normalized such that the integral is

conserved (e.g. normalization to a given power), it tends to increase at the periphery

of the core, thereby increasing leakage. This effect also exists in the axial direction

(Stacey 2001, p. 80), and combination of these two phenomena (absorption and

leakage) contribute to the decrease in keff. Accurate determination of the rod worth

is a key element in reactor safety evaluation [anti-reactivity margins, (Kerkar and

Paulin 2008, p. 43)], which is further complicated by the fact that inserted rods

produce a shadowing effect, with all types of reactor. This shadowing effect results

in the rod worth of a group of rods being lower than the sum of the individual rod

worths.

18.8.2 Rod Worth: Perturbation Analysis

Historically, control rod calculation was formalized in France during the develop-

ment of the UNGG design at the end of the 1950s. Initially, a global perturbation

approach was considered since control rods exert long-range action in reactors with

graphite moderators due to the size of the migration area. Certain theoretical aspects

of perturbation theory will be recalled for the sake of our analysis (Duderstadt and

Hamilton 1976, p. 223). In one-group theory (Kahan and Gauzit 1957), the diffu-

sion equation describing the reactor is written as:

Flux equation of state:
1

v

∂Φ
∂t

¼ DΔΦþ k1 � 1ð ÞΣaΦ ð18:9Þ

in which we will include the H operator:
∂Φ
∂t

¼ H Φ½ �. The exponential matrix

approach, described in the reactor fuel cycle chapter, enables this differential

system to be solved (if in 3D):

Flux 
without 

rod

Flux 
with

rod

Infographie Marguet

Fig. 18.14 Effect of a rod on thermal flux

18.8 Calculation of Control Rods 1345



Φ tð Þ ¼ eHtΦ 0ð Þ

The vector Φ(0) may be expanded on the basis of eigenvectors of H:

Φ 0ð Þ ¼
XN
i¼0

φiΦi

This leads to: Φ tð Þ ¼PN
i¼0

eλi t φiΦi with H [Φi]¼ λiΦi

The eigenvalues are ordered such that the λ0 eigenvalue associated with the

fundamental mode, denoted as Φ0, is real and is larger than the real part of all the

other eigenvalues (Planchard 1995). Let H∗ be the adjoint matrix (the transpose of

the conjugate matrix). IfHhas real components,H∗¼Ht, and the eigenvalues ofH∗

are the same as those of H. Moreover, the eigenvectors of H and that of H∗ are

orthogonal two-by-two when the eigenvalue of the two vectors are different. If H∗

¼H, the matrix is self-adjoint (or Hermitian), which is the case in one-group

theory. In this particular situation, the eigenvalues are all real and the eigenvectors

are orthogonal, two at a time. If a perturbation ΔH is applied to the matrix, the flux

is perturbed and is worth Φ
0
0, which verifies the following:

H þ δHð Þ Φ
0
0

h i
¼ λ0 þ δλ0ð ÞΦ0

0

The adjoint flux verifies: H∗ Φ∗
0


 � ¼ λ0Φ∗
0 . Defining the < >operator as the

integration over the total volume of the reactor, the perturbed equation can be

written from the perturbed equation:

< Φ∗
0 H þ δHð Þ Φ0

0 >¼< Φ∗
0 λ0 þ δλ0ð ÞΦ0

0 >¼ λ0 þ δλ0ð Þ < Φ∗
0 Φ

0
0 >

Similarly, < Φ
0
0 H∗ð Þ Φ∗

0 >¼< Φ
0
0λ0Φ

∗
0 >¼ λ0 < Φ

0
0Φ

∗
0 >¼ λ0 < Φ∗

0 Φ
0
0 >

By expanding < Φ∗
0 H þ δHð Þ Φ0

0 >¼< Φ∗
0 HΦ

0
0 > þ < Φ∗

0 δHΦ
0
0 >

hence the importance of the results of the perturbation of the eigenvalue to the

first order:

δλ0 ¼ < Φ∗
0 δHΦ

0
0 >

< Φ∗
0 Φ

0
0 >

This result nevertheless requires knowledge of the perturbed fundamental mode

Φ
0
0, necessitating a critical calculation, which is of limited interest since the

calculation of Φ
0
0 gives λ

0
0 ¼ λ0 þ δλ0. Assuming that Φ

0
0 � Φ0, the equation may

be restricted to:
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δλ0 ¼ < Φ∗
0 δHΦ0 >

< Φ∗
0 Φ0 >

For one energy group in which Φ∗
0 ¼ Φ0 rigorously, the formula is obtained by

weighting by the squared value of the flux. Within Eq. (18.9), the perturbation of the

matrix by an absorber is expressed as:

δH ¼ vδ k1 � 1ð ÞΣa½ �

where: δλ0 ¼

Ð
V

vδ k1 � 1ð ÞΣa½ �Φ0 Φ
0
0 dVÐ

V

Φ0 Φ
0
0 dV

Starting from a critical state (λ0¼ 0), the reactivity of the perturbed state

ρ¼ δkeff/keff can be approximated by:

1

v

∂Φ
0

∂t
¼ λ

0
0

v
Φ

0 ¼ δλ0
v

Φ
0 ¼ DΔΦ

0 þ k
0
1 � 1

� �
ΣaΦ

0 ¼ �DB02Φ
0 þ k

0
1 � 1

� �
ΣaΦ

0

Hence: ρ ¼ δλ0
vk

0
1Σa

If a long-range absorber is inserted in aUNGG core, the following can be written

for the whole pile:

k
0
1 Σ

0
a � k1 Σa ¼ cst on the pile ) δ k1 Σað Þ ¼ 0

where:

Rod worth in one-group theory: ρ ¼ �

Ð
V

δΣa Φ0 Φ
0
0 dV

k1Σa

Ð
V

Φ0 Φ
0
0 dV

ð18:10Þ

The reader should note that this formula is valid only for one energy group,

which is an acceptable approximation for highly thermal reactors with graphite

moderator where the rods have a long-range effect. However, it is not suitable for

water reactors in which the influence of a rod is limited to two or three assemblies.

Further, the reactor must be close to critical state. Nevertheless, this formula

extends the application of using a flux-squared weight for more significant pertur-

bations. Experimental studies conducted during physics tests cycles of the EDF2
reactor in 1965 showed that the formula yielded more precise results for a rod at the

center of the core (compared with the flux-squared formula), and more particularly,

with a constant error. Allowance can be made for the eccentric position of a rod in

the core by slightly modifying the formula to include a non-constant k1 Σa over

the entire core:
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ρ ¼ �

Ð
V

δ k1 � 1ð ÞΣa½ � Φ0 Φ
0
0 dVÐ

V

k1ΣaΦ0 Φ
0
0 dV

18.8.3 Measuring Rod Efficiency in PWR

(Techniques de mesure des barres de commande (Measuring techniques for control
rods 1976; Murray 1954, p. 319)

As seen earlier, in diffusion theory, the interfaces are not correctly computed, all

the more so in the presence of highly absorbent materials. Since precise computa-

tion of rods is crucial for safety analysis it is of great interest. For each loading,

preliminary theoretical studies and a series of measurements are carried out at zero

power before the reactor start-up. These procedures are essential to validate the

conformity of the loading pattern with respect to both safety and design criteria.

Amongst other procedures, rod efficiency is measured and compared to the theo-

retical computed value, and the discrepancy between the two must not exceed 10%

in absolute value (this is a design criterion). This value is used to determine the anti-

reactivity available within rod banks for use in maneuvers during the reactor

operation such as load monitoring, or, in the event of an incident, an emergency

stop. The measuring procedure currently employed is the dilution-swapping

method, which comprises two steps:

• Determination of the worth of the reference rod bank (the power regulation

bank) by dilution: with core criticality being maintained, the rod bank is inserted

from the “all rods out” position to the lower position, and the boron concentra-

tion is diluted to compensate for this insertion. The variations in reactivity,

which depend on the position of the rod bank, are used to determine the

differential and integral efficiency of the rod bank.

• Determination of the worth of the other rod banks by swapping: the previous

bank is used as reference. The rod bank to be evaluated is inserted; core

criticality is maintained by simultaneously extracting the reference rod bank.

The position of the latter when the rod bank under measurement is completely

inserted provides the efficiency value via the previous measurement by dilution.

While this technique enables highly precise measurement of rod bank efficiency,

it is extremely time-consuming (completion of all measurements for a 900-MWe

reactor takes 12 to 14 h), generates boron effluents, and can be a problem for

effluent management. To overcome the various problems posed by the dilution-

swapping method, a new technique for measuring the integral efficiency of rod

banks was developed and successfully tested in the United States. The modus

operandi of this method, known as Direct Rod Worth Measurement, consists in

inserting the measured rod bank at maximum velocity from the higher to the lower
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position, from the reactor slightly over-critical, before returning it to the higher

position. This phase is repeated with the next rod bank. During insertion of the rod

bank, the flux variations in the core are measured and stored by the external power

chamber using a digital reactimeter. Using the post-processing program, the signal

is post-processed to obtain the static integral efficiency of the rod bank. As for

measurement by the dilution-swapping method, the general principles consist in

using inverse kinetics computation to deduce the reactivity from the signal regis-

tered by an external flux detector. However, the physical phenomena occurring

during the measurement are complex (flux redistribution, delayed-neutron effect).

Under such conditions, the spatial and dynamics effects are of two types:

– The static spatial effect due to the change in the core environment resulting from

insertion of the rod bank leads to immediate redistribution of prompt neutrons.

– The dynamic effect is due to changes in the spatial distribution of delayed

neutrons, which is out of phase with that of the prompt flux.

The advantage of this method is that it is far faster. For example, for a 900 MWe

reactor, the complete process takes less than 3 h. In addition, this method does not

generate any boron effluent, leading to significant time savings, and thus increases

the availability of the reactor. For fast neutron reactors, rod worths are measured in

a different manner since it is not possible to use the method involving dilution of

boron, which is absent from the primary circuit. The techniques can be classified

into three categories, employing:

– analysis of neutron noise based on signal processing (coherence method, etc.);
– kinetic techniques based on sub-critical flux behavior over time (reactimeter,

Carpenter method, etc.);

– statistical techniques based on sub-critical flux behavior (asymmetric source

method, source multiplication method,16 etc.)

18.8.4 Calculation of Rod Efficiency

Accounting for the rod effect in a diffusion calculation consists in meshing the core

such that one edge of the axial mesh is tangent to the edge of the rod. In this

configuration, the mesh cells contain homogeneous materials, either with rod or

without rod. This method is suitable only if the rod is fixed. In the case of motion of

the rod, cells must be created on-the-fly as a time function. This procedure has

numerical implications and can be costly if the core geometry is changed fre-

quently, leading to the definition of a homogenized cross section for Partially

16Christian Labbe: Etude de la mesure d’antiréactivité des barres de la filière �a neutrons rapides
par la méthode multiplication de source modifiée [Study of the measurement of anti-reactivity of

rods in fast-neutron reactor through multiplication of the modified source], PhD thesis, INSTN

Grenoble (1979).
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Rodded Medium (PRM). The basic technique to define this cross section, Σ PRM
α ,

consists in volume-weighting the absorption cross section (resp. fission) in the

presence of the media (Fig. 18.15) so as to conserve the reaction rates (Fig. 18.16):

A a

b k

k–1

k+1

B

Fig. 18.15 Rod inserted in

an axial cell

Fig. 18.16 Visualization of

an inserted rod
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Σ PRM
α ΦVtot ¼ Σ A

α ΦA VA þ Σ B
α ΦB VB

Assuming the neutron flux as being equal in both zones of the partially rodded

cell (given that there is only one calculation cell, the flux is a cell-averaged flux) and

noting that the right cross-section of the homogenized assembly is the same as that

of the homogenized rod, we have:

Σ PRM
α ¼ aΣ A

α þ bΣ B
α

aþ b

However, this type of weighting raises homogenization problems. Although the

cross sections of the cell are determined by an average weighted by the volume of

the inserted rod in the mesh, the multiplication factor appears to vary with a “wave-

like” structure when an absorbing rod is inserted in meshes with fixed cells. These

oscillations are especially visible on analysis of the differential efficiency of the rod
within the core, i.e. the derivative of the reactivity with respect to the axial position
of the rod (Fig. 18.17).

These oscillations constitute a troublesome numerical artifact (highly localized

increase in reactivity can occur on insertion of a rod) that worsens with coarser

meshes. This oscillation, also called rod cusping, is even more apparent in kinetic

cases in which a rod is inserted or removed, where all conditions conspire to cause

numerical oscillations since the tip of the rod moves through a cell. The direct

method for rod worth measurement, which uses pre-computed coefficients to post-

process measurements from external detectors, is sensitive to such oscillations due

to the very principle of the inverse kinetics method. Oscillation problems in fact

make up part of the wider field of methods associated with the homogenization

process: since flux does not vary linearly with respect to the cross sections, neither

does the homogenization process. The problem can be alleviated by using a

weighting method that involves conservation of the reaction:
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Fig. 18.17 Differential reactivity as a function of insertion step

18.8 Calculation of Control Rods 1351



Σ PRM
g ¼

a Φ
A
g Σ

A
αg
þ b Φ

B
g Σ

B
αg

aΦA
g þ bΦB

g

The mean flux Φ
B
g is approximated as the average flux in the non-rodded part of

cell k and cell k+ 1 (lower cell). The mean fluxΦ
A
g is approximated as the average of

the flux in the partially rodded cell k and cell k+ 1 (upper cell):

ΦA
g ¼ a Φ

kA

g þ hk�1Φk�1
g

aþ hk�1

and ΦB
g ¼ b Φ

kB

g þ hkþ1Φkþ1
g

bþ hkþ1

As with all weighting methods using the flux and volume, the problem consists

in determining the mean flux in all zones, both rodded and unrodded. For the sake of

simplicity, the flux in the rodded zone of the cell may be approximated by assuming

that it is equal to the flux in the upper cell, while the flux in the unrodded zone of the

cell is taken to be that of the lower cell. This “extrapolation” technique smoothens

the phenomenon without any physical background. Han-Sem Joo proposed17 that

the intra-nodal shape of the flux in the partially rodded cell be computed starting

from a reference situation in which the exact flux is determined by making the rod

extremity coincide with the cell edge (as close as possible to the configuration being

studied, Fig. 18.18). The intra-nodal form of the flux is considered accurate and is

applied to the partially rodded cell. This method shifts the shape of the flux obtained

in the reference case to the partially rodded case. This postulates that the physical

problem is not modified axially over a distance smaller than the cell height: it is

assumed that the axial shape of the flux does not vary significantly around the rod

a
b

a
bMesh

Reference Partially rodded mesh

Infographie Marguet

Fig. 18.18 Joo translation method: the intra-nodal form computed for a reference situation is

translated to the rodded problem

17Han-Sem Joo: Resolution of the control rod cusping problem for nodal methods, PhD at the

Massachusetts Institute of Technology (1984) under the direction of Allan F. Henry.
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tip. The flux in the partially rodded cell is thus known—at least approximately—

and the flux-volume weight can be applied to compute the homogenization of

neutron quantities. This approach is linked to nodal methods where the shape of

the flux is postulated, and is very costly given the need for calculation in the

reference situation, either on the fly or by adding a calculation step when the rod

moves through a cell edge in order to preserve the intra-nodal form.

The spectral index method is also based on cross-section homogenization by flux

and volume weighting. It seeks to determine the neutron flux in a rodded zone and

non-rodded zone using the spectral index, i.e. the ratio of the fast flux to the thermal

flux. The spectral index is known in advance since it is determined by the type of

fuel assembly in an infinite lattice for instance. The thermal flux can be deduced

from the fast flux throughout the whole core:

ΦTherm:A ¼ ΦAssemb:A
Therm

ΦAssemb:A
Fast

Φ
Fast
core and ΦTherm:B ¼ ΦAssemb:B

Therm

ΦAssemb:B
Fast

Φ
Fast
core

The spectral index of the assembly is first computed, then the partially rodded

cell is determined and the volume fraction calculated. The fast flux is determined by

a flux-volume approximation of some sort, and the thermal flux is then determined

using the above equations. Finally, the cross section is homogenized using a

classical flux-volume approach. This method is warranted since the fast flux in a

PWR core presents less significant local variation than the thermal flux, given that

the rod is generally a thermal absorber.

18.8.5 Analytical Decomposition of the Rodded Domain

Another approach consists in computing the average fast and thermal flux in the

rodded and unrodded zones of the cell by analytical solution of the diffusion

equation for two energy groups in the partially rodded cell. This method provides

an analytical means of dealing with domain decomposition since it can be gener-

alized by locally meshing the rodded cell and applying the boundary conditions at

the surface of the sub-domain. For the sake of simplicity, this analytical resolution

will be done in 1D. This approximation can be bypassed by applying the radial

leakage in the diffusion equation. Nonetheless, it is justified by the fact that the first-

order effect of the rod acts principally on the axial thermal flux. In the present case,

this equation is reduced to one dimension, and with an additional term for neutron

leakageΣleakage, and with Σt , 1¼Σa , 1 +Σr, it is written for zone A as follows:

�D1

∂²Φ1 zð Þ
∂z²

þ Σt, 1 þ Σleakage1

� �
Φ1 zð Þ ¼ 1

keff
νΣf1Φ1 zð Þ þ νΣf2Φ2 zð Þ� �

�D2

∂²Φ2 zð Þ
∂z²

þ Σt, 2 þ Σleakage2

� �
Φ2 zð Þ ¼ ΣrΦ1 zð Þ

8>><>>:
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The resolution of this equation, using techniques described in the chapter on the

homogeneous reactor, leads to a fourth-degree equation for each zone without

leakage:

ΔΔΦ2 xð Þ þ νΣf1

D1keff
� D1Σt, 2 þ D2Σt, 1

D1D2

� 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

b

ΔΦ2 xð Þ þ Σt, 1Σt, 2

D1D2

1� k1
keff

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

c

Φ2 xð Þ ¼ 0

The sign of coefficient c depends on the k1/keff ratio and coefficient b may be

either positive (for keff <
νΣf1

Σt, 1 þ D1

D2
Σt, 2

) or negative (for keff >
νΣf1

Σt, 1 þ D1

D2
Σt, 2

).

Let λ2 and μ2 be the roots of the fourth-degree equation valid for both zones:

x4 þ b:x2 þ c ¼ 0

Let:
λ2 ¼ �bþ ffiffiffiffi

Δ
p

2

μ2 ¼ �b� ffiffiffiffi
Δ

p

2

8>><>>: with Δ � b2 � 4c

For cases that follow the physics of the problem:D1� 2D2 and Σt , 2� 2Σt , 2. The

only case where Δ can be negative is that where keff is large (and larger than c), but

increasing keff leads to an increase in b2. Ultimately, the determinant remains

positive. The sign of λ2 is driven by the sign of c only if b is positive. The situation

may be summarized as follows:

if b > 0 and c > 0 ) λ2 < 0 and μ2 < 0

if b > 0 and c < 0 ) λ2 > 0 and μ2 < 0

if b < 0 and c > 0 ) λ2 > 0 and μ2 > 0

if b < 0 and c < 0 ) λ2 > 0 and μ2 < 0

8>><>>:
By means of reductio ad absurdum,18 it can be shown that the first solution is

physically impossible. Indeed, λ2< 0 if b> 0 and k1< keff, hence:

νΣf1Σt, 2 þ νΣf2Σr

Σt, 1Σt, 2
< keff

Let us further assume:
νΣf1

keff
þ νΣf2Σr

keffΣt, 2
< Σt, 1

Then:
νΣf1

keff
< Σt, 1 and

Σt, 1

D1

� νΣf1

keff D1

> 0

which means that b � νΣf1

D1keff
� D1Σt, 2 þ D2Σt, 1

D1D2

< 0

18Courtesy Marie Hypolite.
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This assertion is inconsistent with the initial hypothesis (Table 18.1).

The flux is written as:

Φ1 zð Þ ¼ α
Σt, 2 � D2λ

2
� �

Σr
f λ zð Þ þ β

Σt, 2 � D2λ
2

� �
Σr

f∗ λ zð Þþ

γ
Σt, 2 � D2μ2ð Þ

Σr
g μ zð Þ þ δ

Σt, 2 � D2μ2ð Þ
Σr

g∗ μ zð Þ
Φ2 zð Þ ¼ αf λzð Þ þ β f∗ λzð Þ þ γg μzð Þ þ δg∗ μ zð Þ

8>>>><>>>>:
In the presence of leakage, the total cross section Σt is only replaced by

(Σt+Σleakage) where Σleakage ¼ DB2
g. The situation where an unrodded medium

admits a flux solution as sh and ch is theoretically possible in the presence of

significant leakage, even though this would normally be expected with a rodded

medium. Finally, there are 8 unknowns to be computed (α , β , γ , δ for A and B) in
order to determine the analytical flux in the two zones. The boundary and edge

conditions for the partially rodded cell must still be determined in order to solve the

equations. The system can be solved either by imposing the currents at the edges of

the mesh or by imposing the flux. If the choice is to set the currents at the

boundaries, there are 4 equations for boundary conditions: 2 equations per group

and per zone. 4 further equations must be imposed. For this purpose, the 4 equations

corresponding to the flux and current continuity between the rodded and unrodded

media are written for each of the two energy groups. A linear system of 8 equations

with 8 unknowns is obtained. It can be solved using a numerical algorithm [e.g.

Gauss-Jordan for example, (Varga 1962; Gastinel 1966, p. 88)]. However, the

choice of the conditions to be applied is of crucial importance. In fact, the 4 equa-

tions with respect to the continuity of flux and current at the interface between the

two zones are fixed such that the physics of the problem is preserved at the rod/fuel

interface. The possible choice on the 4 remaining equations is made from the

8 possible boundary conditions (flux and current in zone A in the fast and thermal

groups, flux and current in zone B in the fast and thermal groups), i.e.C4
8 ¼ 70

possibilities. A single choice on the conditions set for the flux leads to an imposed

value of kcelleff , with the analytical flux consistent with the edges by construction, at

the expense of preservation of the flux shape in the cell. On the other hand, the

choice on the conditions set for the current leads to an inconsistent flux shape for the

Table 18.1 Eigenfunctions of intra-nodal fluxes

Configuration Eigenfunctions of the flux

λ2< 0 and μ2< 0, b> 0 and c> 0 ,

that is k1< keff
Physically impossible

f ¼ cos , f∗ ¼ sin

g ¼ cos , g∗ ¼ sin

�
λ2> 0 and μ2< 0, whatever the sign of b, c< 0,

that is k1> keff
f ¼ ch, f∗ ¼ sh
g ¼ cos , g∗ ¼ sin

�
λ2> 0 and μ2> 0, b< 0 and c> 0,

that is k1< keff
f ¼ ch, f∗ ¼ sh
g ¼ ch, g∗ ¼ sh

�
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same value of kcelleff . The addition of a ninth condition would allow the calculation of

a kcelleff value different from kcoreeff . The search for the roots19 of the critical 8 	 8

determinant corresponding to the boundary conditions enables determination of

kcoreeff for the fundamental mode, bound by the values of kA
1 and kB

1of the rodded and
unrodded media respectively.

kA
1 ¼ νΣ A

f1:Σ
A
a2 þ νΣ A

f2:Σ
A
r

Σ A
a2:Σ

A
t, 1

kB
1 ¼ νΣ B

f1:Σ
B
a2 þ νΣ B

f2:Σ
B
r

Σ B
a2:Σ

B
t, 1

Note that for geometries with high leakage, although it is not particularly

intuitive, kcoreeff is not bounded by the values kA
1 and kB

1. In a configuration with

two zones and low leakage, two roots are obtained, the smallest of which is retained

(in the example, 1.14844 and 1.48512, Fig. 18.19), since it corresponds to the

largest eigenvalue λ of the diffusion operator, ΔΦ¼ λ(νΣf�Σa)Φ/D. After analy-
sis, the most precise method consists in imposing the calculated kcoreeff on the whole

core. In an iterative approach to compute kcoreeff , the value from the previous iteration

is chosen. The analytical solutions are sought by imposing the fast flux and the fast

current on the edges of the meshes, which are influenced less by the presence of the

rod. Knowing the shape of the flux in the partially rodded cell leads to a homog-

enization process that significantly diminishes (50–80%) the oscillations, but with-

out completely removing them. In neutron kinetics, the analytical decomposition of

the flux for a rodded domain disregards the transient term; while this makes less

justifiable, it is acceptable for small cells, which is generally the case for industrial

core meshes. A domain decomposition technique would probably be more efficient

than over-meshing the rodded cell but would be more onerous in terms of calcula-

tion time, especially for kinetics.

BkAk

0
1 1.5

core
effk

Determinant 

max

effk
min

effk

∞∞

Fig. 18.19 Search for the

root of the critical

determinant (Texeraud-

Massaud calculations,

2008)

19For the search of the roots of a determinant, the reader is referred to (Traub 1964) or

(Durand 1960).
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18.9 Instrumentation Considerations

The historical internal instrumentation of PWR is based on the RIC system (Reactor

In-core Control), which consists of mobile fission chambers inserted from the

bottom of the reactor vessel. These chambers are stored outside the core, and are

placed in an immersion sleeve located in the central instrumentation tube of

17 	 17 assemblies of the core during monthly flux measurements (flux maps).

Once inserted into the core, the fission chambers measure the activity enabling

measurement to be made of the neutron flux after reconstruction.

18.9.1 Modeling with Trace Quantities

The response of the detector is computed with a calculation code and compared to

measurements. The simplest solution consists in introducing the notion of “trace

quantities” in the calculation of neutron libraries with the transport theory. A very

small amount of the isotope present in the detector is added to the moderator of the

guide tube (where it reacts with the flux) without modeling the detector itself or the

sleeve in which it is located. This very small quantity is warranted because of the need

to avoid permanent parasitical captures in the assembly, since the detector remains

inside for some ten hours. Formobile fission chambers (FC), the trace consists of a thin-

layer deposit of uranium 235, which by fission, generates fission products that ionize a

gas. The electrons produced by this ionization are measured. Hence, the detector is not

modeled explicitly with this trace technique. Moreover, the sleeve located within

the instrumentation tube is not modeled either. Non-instrumented assemblies do not

have a sleeve and their central instrumentation tube is filled with moderator.

Instrumented assemblies, however, have a sleeve throughout the entire cycle. Since

the sleeve takes the place of a given volume of moderator, there is a difference in

neutron behavior that is not detected by the trace quantity instrumentation.

18.9.2 Modeling of the EPR Instrumentation: The KTM

Model

The instrumentation of the new EPR (European Pressurized Reactor) has been

redesigned to provide greater reliability and speed during its use. To avoid pene-

tration from the bottom of the reactor vessel, the internal instrumentation is

designed to be inserted from the top of the reactor. In the interests of redundancy,

two new types of instrumentation have been introduced (Fig. 18.20):

• Aeroball sensors where the working principle consists in blowing in a column of

vanadium ball bearings in an instrumentation tube. The term aeroball sensor is
used. The vanadium is activated in the core. The column of ball bearings is removed
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to measure activity when outside the core. The advantage of this system is its speed

of use: eachmeasurement takes only a fewminutes vs. hours for FCmeasurements.

• Collectron canes comprising a cobalt or rhodium detector. The detection prin-

ciple is as for FC. Activation of the detector isotope is measured continuously.

This is the main improvement over FC: collectrons remain inside the core and

inside certain assemblies they are placed in a collectron cane with 6 axial

detectors at different heights.

As with the sleeves for the FC, the collectron canes and aeroball sensors occupy

the place of a small amount of moderator inside the instrumentation tube. More-

over, in an EPR assembly, there may be an additional fuel (265 vs. 264 for the other

reactors), since the canes are not placed in the central tube but in the guide tubes for

the rods (which implies that an instrumented assembly cannot be rodded).

During safety analysis of the instrumentation system, the question of the impact

of the instrumentation canes was posed in two parts:

– What is the cumulative impact of the presence of the instrumentation cane on the

assembly power, given that its position is not symmetric? It is logical to assume

Fig. 18.20 Example of an aeroball sensor (left) and a collectron (right)
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that an assembly with permanent instrumentation during an operation cycle will

have modified neutron behavior. This cumulative effect causes a deviation in

composition compared to a similar assembly without instrumentation. This is

called a historical effect and acts on the cross sections. Furthermore, if the

instrumentation is removed, the moderator that replaces the volume in the

instrumentation tube leads to a local overpower situation due to over-

moderation. This is an instantaneous effect on the cross sections. In the case of

collectron canes, axial absorption is affected according to the height considered

(six cables at the top, one at the bottom, see Fig. 18.21).

– What is the impact on the fine power structure for an assembly that has been

“decollectronized”, a neologism meaning that the collectron cane (or aeroball

sensor) has been removed for a new cycle? This question is all the more

disturbing since an overpower effect is anticipated due to the introduction of a

large volume of water on removal of the cane, resulting in local over-

moderation. As with cross sections, there is a historical and instantaneous effect

on the fine power structure.

To deal with this complex subject, in 2011, Denis Kerdraon,20 Jérôme

Texeraud21 and Serge Marguet22 proposed the KTM model (comprising the initials

Fig. 18.21 Example of the lower collectron (D1) and that directly above (D6) which is influenced

by the cables of the lower collectrons

20Denis Kerdraon (1972–). After a Master’s Degree in Physical Energetics at the Institut National

Polytechnique, Grenoble in 1998, he went on to obtain a PhD in the same field at Institut National

Polytechnique, Grenoble in 2001 on the physics of hybrid reactors (coupling of a neutron

accelerator and a sub-critical reactor) at the Institut des Sciences Nucléaires (IN2P3-ISN),

Grenoble. He joined EDF in 2001 and worked on safety studies of the ALCADE and PARITE

MOX fuel management systems for the EDF reactor fleet, and on experimental validation of the

core calculation chain at EDF/UNIE. In 2006 he joined the R&D department, where he is in charge

of development of the GAB application (Automatic Neutron Physics Library Generator) for the

CASSIOPEE chain and the future calculation chain, F3C.
21Jérôme Texeraud (1979–). After completing his studies in mechanics and applied mathematics at

the MATMECA engineering school in Bordeaux, he joined EDF/R&D in 2005, where he worked

on several models in the COCCINELLE diffusion code, which he managed until 2011.
22Serge Marguet (1964–). (It is not an easy task to write one’s own bibliographical notes, but let

me try anyway!) After his engineering studies in fluid mechanics (ENSHMG, Grenoble 1986),
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of their name as well as an allusion to the famous Austrian motorcycle brand). This

model is based on explicit representation of the instrumentation. The underlying

principle is to model the instrumentation as accurately as possible in the infinite

lattice calculation in transport theory. First, a depletion calculation of the assembly

is carried out without the instrumentation. At the same time, several other depletion

calculations are carried out for the various instrumented assembly configurations

(with aeroball sensor only, with collectron cane, and aeroball sensor). It should be

noted that a collectron cane alone is not possible: all assemblies with a collectron

cane also have an aeroball sensor. The numerical implementation in

COCCINELLE consists in defining these new media as “shades” of the reference

non-instrumented medium. When the non-instrumented assembly is loaded into the

code (these media are said to be “primary”), the shades, which will be required

according to the loading pattern and the current position of the instrumentations, are

automatically loaded. Hence, a “neutron shade” is a slight modification of the base

medium. Using a judicious naming convention for the neutron media, the shades

can be determined automatically (Fig. 18.22).

The core of the EPR reactor is constituted of assemblies without instrumenta-

tion, assemblies with an aeroball sensor and assemblies containing a double instru-

mentation system with collectron/aeroball sensors. Due to the fuel management by

third or quarter fractioning, an assembly may be instrumented or not according to

the different “scenarios”. For instance, the following is possible:

Cycle 1 Cycle 2 Cycle 3

A A A

C

“C” denotes Collectron, “A” denotes Aeroball and
0 0
denotes no instrumentation

Hence, by considering each slab within an independent assembly (composed of

four slabs), the instrumentation history of the slab can be created. For the scenario

in the above assembly:

then numerical analysis (ENSIMAG, Grenoble 1987), he was recruited for EDF/DER by

Jean-Pierre West in the neutron physics group. He contributed to the development of the 3D

diffusion code, COCCINELLE, and to the calculation chain over a number of years. After a second

period at CEA/Cadarache working on the fuel cycle code DARWIN, he returned to Clamart, where

he designed the STRAPONTIN residual power code. He was then promoted head of the Severe

Accidents project from 2000 to 2003, and is a designated European expert in this field. In 2007, he

resumed his work the COCCINELLE code, promoting the integration of parallelism in 2012 for

simulators and an online piloting tool. He teaches neutron physics at the Ecole Nationale

Supérieure de Risques Industriels in Bourges and is the author of two works in the nuclear field:

the present book on reactor physics of a popularizing work on severe accidents.
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– The upper left slab sees the following scenario (0A0,0A0,0A0):

A A A

– The upper right slab sees the scenario (0 0,0 0,0 0):

– The lower left slab sees the scenario (0 0,0 0,0 0):

– The lower right slab sees the scenario (0C0,0 0,0 0):

C

Fig. 18.22 Scheme of the instrumentation positions in the EPR
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The KTM model has two fundamental postulates: one concerning cross sections

and the other concerning fine power structures.

18.9.2.1 Cross Sections in the KTM Model

The KTMmodel assumes that the cross sections in a slab depend solely on the burn-

up level and the shade of the medium. This means that the historical aspect of the

slab is not explicitly taken into account. This historical effect is assumed to be

accounted for by the current burn-up level since any change in the instrumentation

of a slab will modify its burn-up. Let us take for example the upper left slab

described previously: τ1 is the burn-up level at the end of the first cycle, τ2 that of
the second cycle and τ3 that of current cycle (τ1< τ2< τ3):

Σ medium;0 A0; τ1;0 A0; τ2;0 A0; τ3ð Þ ¼ Σ medium; τ3;
0 A0ð Þ � ΣKTM shade0A0 ; τ3ð Þ

This means that the cross sections depend on the medium, the local burn-up τ3of
the slab, the current instrumentation (here Aeroball ¼ A) and also on the instru-

mentation history. In the example, the slab in the upper left sees Aeroball instru-

mentation in all cycles. More examples illustrating the method are given below. For

a slab with no instrumentation in the current cycle, the primary medium cross

sections are used (Fig. 18.23):

Σ medium; 0A0; τ1; 0A0; τ2; 0 0; τ3ð Þ ¼ Σ medium; τ3;
0 0ð Þ � ΣKTM medium; τ3ð Þ

Σ medium; 0A0; τ1; 0 0; τ2; 0C0; 0C0; τ3ð Þ ¼ Σ medium; τ3;
0C0ð Þ � ΣKTM shade0C0 ; τ3ð Þ

18.9.2.2 Fine Power Structures in the KTM Model

Fine power structures (FPS), erring on the side of conservatism, correspond to a

disadvantageous history (with respect to the hotspot). In fact, the aim of the KTM

model is to obtain a hotspot in the core that is at least equal to one obtained in

reality. Computation of all the historical effects for all possible instrumentation is

extremely costly in terms of calculation time and memory footprint. Assuming

4 cycles with 3 possible instrumentations (
0
A

0
,
0
C

0
,
0 0
), 34 ¼ 81 combinations are

obtained. This is multiplied by the number of branch calculations for the depletion.

The resulting neutron physics library would be huge and the calculation time of the

library would be incompatible with operational constraints.

The fine power structure depends on:
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– The moderation seen by a slab, according to the presence or absence of instru-

mentation. A slab without instrumentation is more moderated than an

instrumented one. This is the instantaneous effect.

– The isotopic composition of the pins in the slab. The isotopic composition

depends of the past history of the slab, especially its instrumentation state.

This historical effect is simply the integral of the instantaneous effect over time.

Fine calculations for scenarios show that the fine power structure depends more

or less on the instrumentation history of the previous cycles, especially if the history

is close (the immediately previous cycle is more influential than older cycles). This

effect is called a fade-out effect, which is one of the elements of the historical

effects. The FPS to be used for power factorization is present in the identifier of the

Shaded assembly with

collectron

Assembly in ‘non-

collectronized’ medium

Feedback grid for branches

End of ‘collectronized’ cycle 

End of cycle

( )tMWj /τ

( )tMWj /τ

Fig. 18.23 Principle of KTM for cross sections
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first cycle state with a branch calculation corresponding to the current state iden-

tifier and the extraction burn-up on transition between instrumented and

non-instrumented states (the “decollectronization” neologism is used to express

the removal of the cane). For instance, for a slab undergoing a second cycle and no

longer instrumented with an aeroball sensor as of 10,000 MWd/ton, the code uses

the FPS in an aeroball medium with a branch state corresponding to extraction at

10,000 MWd/ton. If this burn-up is not specifically present in the library (which is

tabulated for a few extraction burn-ups only), a linear interpolation is carried out

between the two available extraction burn-ups (Fig. 18.24).

Given that not all possible situations of change have been considered, a penal-

ized scenario is set up using the real history of the assembly slab. The library

generator manages only a single change for the scenarios of each slab. For example,

the FPS for 4-cycle scenarios (
0
A

0
,
0
A

0
,
0 0
,
0 0
) and (

0
C

0
,
0 0
,
0 0
,
0 0
) will be available in a library

while that of the scenarios (
0
A

0
,
0 0
,
0
C

0
,
0
C

0
) and (

0
A

0
,
0 0
,
0
A

0
,
0 0
) will not. It will thus be

0 MWd/t 80 000 MWd/t10000 MWd/t

decollectronization

t/dWM 00008t/dWM 0 20000 MWd/t

decollectronization

t/dWM 00008t/dWM 0 30000 MWd/t

decollectronization

Fig. 18.24 “Sliding”

decollectronization: branch
calculations are carried out

by varying the extraction

burn-up for

decollectronization
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necessary to substitute scenarios with more changes by those that are more disad-

vantageous with respect to the hotspot.

The various preliminary studies showed collectron instrumentation to be more

disadvantageous at slab level. Figure 18.25 shows the discrepancies between FPS

for a non-instrumented assembly and the same assembly instrumented at position

(14;4). There is a net power loss of�5%. This situation, cumulated over a complete

cycle, leads to under-irradiation of the pins surrounding the instrumentation in an

explicit representation calculation. When this instrumentation is removed, the

in-flow of moderator in place of the sleeve generates a local power surge since

the surrounding pins are less depleted. The collectron case is more disadvantageous

if the slab has seen a collectron cane during the previous cycles (historical effect).

From this observation, the disadvantageous scenarios are determined in the

following way

• If the slab has been through only one cycle, then the disadvantageous scenario is

the same as the real one;

π(medium,
0
A

0
, τ1)� πKTM(shade’A’, τ1)

• If the cycles of the slab have included no instances of instrumentation or only

one, then the disadvantageous scenario is the same as the real scenario;

π medium; 0A0; τ1; 0A0; τ2; 0A0; τ3;A0; τ4ð Þ ¼ π medium; 0A0; τ4ð Þ � πKTM shade0A0 ; τ4ð Þ
π medium; 0C0; τ1; 0C0; τ2; 0C0; τ3; 0C0; τ4ð Þ ¼ π medium; 0C0; τ4ð Þ � πKTM shade0C0 ; τ4ð Þ

• If all the cycles of the slab have been through only one change, the disadvanta-

geous scenario:

– is equal to the real scenario if it consists of an instrumented/non-instrumented

change;

π medium;0C0;τ1;0 0;τ2;0 0;τ3;0 0;τ4ð Þ¼π medium;0C0;τ1;0 0;τ4ð Þ�πKTM shade0C0 ;τ1;0 0;τ4ð Þ
π medium;0A0;τ1;0A0;τ2;0 0;τ3;0 0;τ4ð Þ¼π medium;0A0;τ2;0 0;τ4ð Þ�πKTM shade0A0 ;τ2; 00;τ4ð Þ

Fig. 18.25 Comparison of fine structures before and after instrumentation: aeroball (left), and
collectron (right). Power loss appears around 5% less with the collectron than with the aeroball
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– corresponds to the presence of a collectron at each cycle if the change is

between an aeroball and a collectron (the only change not computed by

GAB);

π medium; 0A0;τ1; 0A0;τ2; 0C0;τ3; 0C0;τ4ð Þ<π medium; 0C0;τ4ð Þ�πKTM shade0C0 ;τ4ð Þ
π medium; 0C0;τ1; 0C0;τ2; 0A0;τ3; 0A0;τ4ð Þ<π medium; 0C0;τ4ð Þ�πKTM shade0C0 ;τ4ð Þ

• if there has been more than one change between the different cycles, the more

disadvantageous instrumentation seen by the various cycles is determined and

the scenario is completed as follows:

– If the current cycle of the slab is not instrumented, then, from cycle 1 to the

last instrumented cycle, it is completed with the disadvantageous instrumen-

tation “seen” by the slab;

π medium; 0A0; τ1; 0C0; τ2; 0A0; τ3; 0 0; τ4ð Þ < π medium;
0
C

0
; τ3;0 0 ; τ4

� �
	 � πKTM shade0C0 ; τ3; 0 0; τ4ð Þπ medium; 0A0; τ1; 0 0; τ2; 0A0; τ3; 0 0; τ4ð Þ
	 < π medium; 0A0; τ3; 0 0; τ4ð Þ � πKTM shade0A0 ; τ3; 0 0; τ4ð Þ

– If the current cycle of the slab is instrumented, then the scenario is completed

from the first instrumented cycle to the last cycle by the most disadvantageous

instrumentation “seen” by the slab.

π medium; 0 0; τ1; 0C0; τ2; 0A0; τ3; 0A0; τ4ð Þ < π medium; 0 0; τ1; 0C0; τ4ð Þ
	 � πKTM medium; τ1; 0C0; τ4ð Þπ medium; 0 0; τ1; 0A0; τ2; 0 0; τ3; 0A0; τ4ð Þ
	 < π medium; 0 0; τ1; 0A0; τ4ð Þ � πKTM medium; τ1; 0A0; τ4ð Þ

In conclusion, a disadvantageous algorithm is available and guarantees that the

fine power structure applied to the homogeneous power of the assembly slab will

produce a hotspot factor higher than the actual scenario: the result is thus conser-

vative with respect to safety considerations. In practice, two “shaded” media which

see only one extraction or insertion of instrumentation need to be computed and two

burn-ups are thus required: the extraction/insertion burn-up and the current one.

The KTM model is one of the neutron physics models that take historical effects

into account.
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Conclusion

We have just reviewed the main theoretical models that allow us to grasp reactor

physics. I understand that it might be very frustrating to reach the end of a textbook

on reactor physics without ever having encountered a nice picture of a reactor.

However, the technological aspects are very significant in the nuclear reactor field

and deserve to be examined on more than just a page or two of general concepts—

concepts that can, today, be easily found on the internet in any case. This is why I

have deliberately omitted from this textbook any feature that is too technological to

only concentrate on the physics which is, in itself, a very wide subject. A future

textbook on the physics of nuclear accidents will be more appropriate for discussing

reactors and technology.

What can we conclude from roughly 70 years of reactor physics? As often, the

best comes with the worst. Some reactors have operated for 40 years without any

problems whereas, in its very first year of operation, an accident at the TMI-2

reactor caused damage beyond repair. Regardless of the ongoing technological

progress, our understanding of the underlying physics is improving: better knowl-

edge of cross sections and materials behaviour under irradiation, allowing for

probabilistic safety studies and human factors, and so on. Neutron physics is also

advancing, for example, in the field of analytical and numerical resolution of the

transport equation and more precise homogenization theories. I am also referring to

novel domain decomposition techniques, where each zone of the reactor can be

considered using a separate and suitable model, both in terms of meshing or

resolution method of the Boltzmann equation.1 The tens of scientific journals

devoted to nuclear engineering is a testament to the renewal of the field as well.

How far we have come since Fermi’s pile went critical in 1942! It is hard to imagine

how the theoretical physicists of the time managed to perform this feat so quickly

© Springer International Publishing AG 2017
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after the discovery of fission. Calculation codes have also progressed at a stupen-

dous pace as evidenced by the boxes of old punch cards still found sometimes in the

depths of archives.

Although they are not the perfect solution to the problems of a world which is

continuously more demanding in energy, fission reactors need to be placed amongst

the various energy production means, and there will probably be many more of

them in the next 50 years. The current problems of our time are appropriate: oil

becoming rarer, global warming . . . However, the task will not be very easy unless

reactor physicists continue to set higher safety standards. Other reactors will be

designed and built: breeder reactors to deal with the gradual use-up of natural fissile

material, and safer reactors such as those studied in the Generation IV studies for

innovative designs. The life of the current French fleet is coming to an end and the

situation is very much the same around the world. This will require an aggressive

building policy from operators in the future. The renewal of the French fleet by the

French-German EPR in France and Finland is a good illustration of that. The

position of the United States on the renewal of its fleet and that of emerging

countries on nuclear power will most definitely be instrumental in the short term.

What are the next challenges in reactor physics? We would suggest the resolu-

tion of a 3D core with fine deterministic transport, in “one go” killing the two-steps

procedure (spectral assembly codes followed by 3D-space-time reactor codes), the

Holy Grail of neutron transport—which may very well become possible sooner than

one might think, if the technology of massively parallel computing improves at the

same pace as information technology did during the past 40 years. Or we could say

depletion, or even kinetic, Monte Carlo calculations applied to exact geometries.

Furthermore, “on-line” codes continuously fed by experimental measurements,

which are already known to be faster than real-time processes, should also be

investigated, but for now, are still seldom employed by operators. These codes

could be used along with new data assimilation methods that can be essential for the

fitting phase. Also, a better operation of the instrumentation of present reactors or

future instrumentation could lead to a more insightful “view” of the behaviour of

the core. In the near future, it is likely that new computational schemes will

abandon the classical two energy-group diffusion calculation approach substituted

by methods using simplified transport but with multi-group. Multi-physics coupling

of specialized codes will become more prevalent so that the physical modelling of

phenomena becomes consistent, i.e., this means not having high-performing phys-

ics in one field being associated to too simplistic models in another—as for e.g. a

3D neutron-kinetic model coupled with 1D quasi-static thermal-mechanics.

Another field of study will probably be the development of adjoint codes with

high perturbation orders to finally obtain uncertainties not solely based on the

renowned but controversial “engineer’s judgment”.

. . .until the avail of fusion?

Reactor physics still has some good days ahead!

Serge Marguet
Clamart, September 17, 2009
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Annex: Reactor Physics and Neutronic Codes
at Electricité De France

The end of this book seems a fitting moment, to paraphrase Stephen Hawking, for a
brief history of reactor physics and neutronic codes at Electrcité De France. At
EDF, which was created by French nationalization legislation in 1946, a studies and
research department was set up immediately (Picard 1987).

© Springer International Publishing AG 2017
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(EDF)

One of the first reference works on physics archived at the Documents Department et the Research

and Studies Department (DER) in Clamart is this course report on Atomic Engineering compiled

(hand-written !) in 1955 by the EDF Atomic Engineering “commando” team, B. Saı̈tcevsky,

D. Gaussot et al: The design of an electricity-producing reactor using natural uranium with
zirconium cladding, cooled by pressurized heavy water.

Pierre Ailleret, who graduated from the French Polytechnique School in 1918,

was appointed as the first director (he remained with EDF until 1958), was

unanimously recognized as “the most learned electrical engineer amongst us”, in
the words of Pierre Massé, who himself became director of Equipment in 1946

(Picard et al. 1985, p. 92). EDF was then a company of electrical and hydraulic

engineers, and it was logical that the expertise of the newly formed R&D called
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DER should gravitate towards these two professional areas. Conventional thermal

engineering was something of a poor relation, and was abandoned without com-

punction to the Production Department. When the CEA developed piles G1, G2 and
G3 to produce plutonium for military uses (Bonnet 1980) p. 111, Pierre Ailleret,

who had been a member of the CEA scientific committee since 1950, while his own

brother, General Ailleret, was the deputy head of the Military Applications Depart-

ment of the CEA (he oversaw the French tests in the Sahara), kept a close eye on the

development of the industrial program, and took all necessary steps to ensure that

an electricity production system would be installed at the G1 pile in Marcoule

(agreement protocol of May 14, 1954).

Pierre Ailleret (1900–1996) is the craftsman of the development of the civil nuclear energy in

France (EDF)

Pierre Guillaumat, then head of the CEA, was in favor of “handing over” to EDF
management of the nuclear facilities, despite bitter grievances among certain CEA
members, led by Jules Horowitz, criticized what he saw as “nonsensical sharing”

(Picard et al. 1985, p. 188).

The first address of the DER in a well-off district of Paris (letterhead of the time)

In 1955 the “Sous-Région d’Equipement Nucléaire 1” (Nuclear Equipment
Sub-region 1) was set up under the direction of Jean-Pierre Roux (the term “sub-

region” in itself reflects the disdain for this business by the majority at EDF), which
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in 1957 became the “Région d’Equipement Thermique Nucléaire” or Nuclear
Equipment Region (RETN: viewpoints evolved rapidly!) in Clamart. Claude

Bienvenu, one of the rare thermal engineers at EDF, and who himself would

become director of the DER (R&D), was appointed head of the affair on the EDF
side.

(EDF)

Claude Bienvenu (1927–2011) will be the first ever nuclear engineer of EDF. Bienvenu is graduate

of the prestigious Polytechnique engineering school, engineer of Sup’ aero in 1949. He enters the

DER in 1951 when he is appointed head of the department studies in 1955. In 1960, he is named

assistant director of the region of thermal and nuclear equipment n�1, then will manage in 1963 the

RETN 2. He finishes his career as general inspector of EDF before retirement in 1992.

Following divergence in 1956, the demonstrator pile struggled to produce

5 MWe even though 6 MW were necessary to turn the cooling blowers injecting

air into the reactor, thus giving a negative energy balance. However, technical

feasibility was demonstrated and the construction of a power reactor in Chinon

(on the river Loire) was considered.

Jules Horowitz, Director of Piles at the CEA and one of France’s leading reactor
physicists of his time, was convinced that the CEA could manage such an industrial

program by itself, with EDF participation limited to steam production, since it was

a fact that the public company did not have a single neutron physicist on its payroll.
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(EDF)

REN1 was extremely proud of its three UNGG facilities, as this leaflet from May 1967 attests

However, EDF did not see things this way and in the mixed EDF-CEA teams,

the EDF turned their attentions primarily to the core, while the CEA engineers were

especially drawn to the steam generators! But EDF imposed its own viewpoints and
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the reactor in Chinon was dubbed EDF1 (60 MWe, divergence in 1962). It was

followed by EDF2 (1964) and EDF3 (1966). In 1962, RETN was split into

3 sections: REN1 (Clamart) which took up residence opposite the DER (it had

moved out of the Place des Etats-Unis in the 16th arrondissement of Paris, which

was now too small), REN2 (in Tours, under the direction of Bienvenu) and a

Department of General Nuclear Studies, which was a forerunner of the engineering

section of the Equipment Department (Torres and Lefebvre 1996, p. 238).The

Department was interested to Boris Saı̈tcevski (1926–), a researcher atDER-Chatou
who, having studied Atomic Engineering in 1955, was one of the very small group

of in-house reactor physicists. Indeed, few EDF engineers such as Denis Gaussot,

who would go on to become director of SEPTEN, had been asked to follow the

Atomic Engineering course in 1955. Saı̈tcevski was entrusted with all aspects of

reactors and became the single point of contact with the CEA. He later became

director of NERSA, the European company responsible for building and running the

Superphénix.

Boris Saı̈tcevski, circa 1960, EDF

Acquisition of knowledge in the field was haphazard: EDF engineers were

assigned to UNGG teams at the CEA to follow the experimental MARIUS and

CESAR programs. The “Documentation” Department in Chatou, like the US

Central Intelligence Agency, had Russian documents translated, including the

famous paper by Bondarenko method on cross sections (1964).
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(EDF)

Construction of the test buildings in Chatou on the “Ile des Impressionistes” in October 1949.

Chatou is one of the three historic R&D sites, together with Clamart, and later, Les Renardières.

Activities at the site today are concerned primarily with hydraulics and thermal hydraulics, with

neutron physics being concentrated in Clamart.

Regarding computer codes, David Feingold (1929–), after completing his studies in

mathematics at the Faculté des Sciences of Paris, was recruited in 1958 by the DER,

which was then still located at the Place des Etats-Unis. He joined up with Jean

Carteron, Jean Abadie and Gérard Deloux to carry out calculations on neutron

scattering. These computations were performed on a Gamma computer weighing

4 tonnes(!) built by the Bull company and installed at the Place des Etats-Unis,

pending the arrival of a future Gamma 60. This attempt to use French equipment by

Bull ended in failure and the DER next turned to IBM equipment. Shortly afterwards,

Feingold left for the United States where in 1959 he studied the emerging techniques

of scientific computing at Columbia University, returning to the US in 1962 for

6 months under Prof. Richard Steven Varga2 to study neutron transport codes along-

side Jean Abadie and computer specialist Philippe Larcher (1919–1986). Varga

worked from 1954 until 1960 at the Bettis Atomic Power Laboratory ofWestinghouse

in Pittsburgh, where he developed numerical methods suited to the question of

2Richard Steven Varga (1928–): American mathematician. After completing his graduate studies

at the Case Institute of Technology, he took her doctorate in mathematics at Harvard and received

his PhD in 1954 for work on the properties of certain integer functions. From 1954 to 1960, he

worked at the Bettis Atomic Power Laboratory, where the accent was on naval propulsion. He

focused on iterative methods for resolution of the Helmholtz equation and on the calculation of its

eigenvalues. From 1960, he taught mathematics at the Case Institute, then at the Kent State

University until 2006. In 1962, Prentice Hall published his classic text on the calculation of

eigenvalues: Matrix iterative analysis (Varga 1962). Through his teaching of a team of EDF

numerical nuclear physicists, he contributed to the development of the company’s codes.
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eigenvalue problems for reactor criticality. He then taught at the Case Institute in

Cleveland. In this way, it was in the United States that the first EDF 3D neutron

transport code for diffusion theory was created, based on the Westinghouse methods!

On his return, Feingold re-joined the Department of Mathematical Studies and New

Related Applications in Clamart, and was in fact one of the first people to actually

work at the site, which was still under construction. The first calculator installed at

Clamart was a 7094 devoted solely to neutron physics, but the subsequent creation of

the ERCA departments or the arrival of CDC 6600-6400, which were also used for

calculations concerning electrical networks. From October 1962, he worked on the

creation of a two-dimensional to group code with finite differences, incorporating

Chebyshev acceleration and block over-relaxation, using principles based on (Varga

1962), and he communicated regularly with Varga. Together with P. Larcher, he

finally produced the JANE code (3D diffusion code using the finite-differencemethod,

for four energy groups, 500 physical media cells, and 13,500 points in a square-lattice

mesh), an ancient ancestor of the COCCINELLE code. Feingold became director of

the Data Processing and Mathematical Studies Department, and he retired in 1990.

(Courtesy Feingold)

David Feingold, seen here in 1979, was a pioneer in neutronic codes at EDF. He oversaw the

incredible development of calculation power at the company’s Clamart site.

Richard Varga (Public domain)
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Thanks to this 1969 report, the main codes used at the time are remembered. The

main reactor physics codes were MUDE for multigroup diffusion equation (1D),

and ALCI and its derivative (MICALCI and MIALCI 3) for 2D multigroup

diffusion. The Russian 26-groups Bondarenko databank of cross sections was

also available.

Modifications of the main neutronic codes used at EDF by E. Charasse, J. Martin et J.P. Pasquet,

note EDF HZ0108 (1969). Every sketch was hand-made by the time! (The Marguet collection)
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gé
om

ét
ri
e
� a
un

e
di
m
en
si
on

et
ca
lc
ul
s
an

ne
xe
s[
So

lu
ti
on

to
th
e
D
if
fu
si
on

eq
ua

ti
o
n
in
1
D
-g
eo
m
et
ry

an
d
ca
lc
ul
a
ti
o
ns
]
b
y
C
la
u
d
e
B
o
re
,
Y
v
es

D
an
d
eu
,
C
h
an
ta
l
S
ai
n
t-
A
m
an
d
,
re
p
o
rt
C
E
A
-R

2
9
2
3
(1
9
6
5
)
an
d
th
e
co
d
e
A
L
C
I
Sp

éc
ifi
ca
ti
on

d
’u
n
co
de

d
e
d
if
fu
si
o
n
m
ul
ti
gr
o
up

e
� a
de
ux

d
im
en
si
o
ns

[S
pe
ci
fic
at
io
n
fo
r
a
2D

-m
ul
ti
gr
ou

p
di
ff
us
io
n
co
de
]
b
y
Je
an
-P
au
l
B
ay
ar
d
et
al
re
p
o
rt
C
E
A
-R

2
7
4
7
(1
9
6
5
),

T
h
es
e
tw
o
co
d
es

w
er
e
th
e
an
g
u
la
r
st
o
n
es

o
f
F
re
n
ch

re
ac
to
r
p
h
y
si
cs

in
th
e
si
x
ti
es
.
(T
h
e
M
ar
g
u
et

co
ll
ec
ti
o
n
)

1378 Annex: Reactor Physics and Neutronic Codes at Electricité De France



This poor quality A3 document is a rarity. It presents the manual chain of the codes of reactor

physics at the French CEA in 1965. Upper wright shows the batches of punch cards of each reactor

code. EDF could use them via an expensive computer link with the CISI Company, a division of

the CEA. (The Marguet collection)

In 1971, P. Roussel of the Data Processing and Mathematical Studies

(Traitement de l’Information et Etudes Mathématiques: TIEM) Department pro-

duced a multi-group 2D diffusion code with a triangular mesh for hexagonal fuel

assemblies (13, 000 points), based upon the initial work of Feingold, and which led

to the UNGG CHERBOURG code. This was followed by the following for UNGG
studies: LISON, LANGEAC, DIAMANT in 2D, then BIBENDUM in 3D.
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The Clamart site in May 1965, then known as the Laboratoires de recherches et stations d’essais
de Fontenay [Fontenay research laboratories and test stations]. In the top right-hand corner near

the water towers is the Reactor Physics Department building. (EDF)

There was also great interest in fast-neutron reactors. It must be remembered that

the first reactor in the world to produce electrical energy was the EBR1 fast reactor

located in Arco, Idaho (1951, using highly enriched uranium, cooled with a sodium-

potassium mixture, and producing 200 kWe for 1400 kWth). Jacques Montfort left

for 1 year (1964–1965) to work on the Enrico Fermi rapid reactor in the United

States, a metal uranium-based reactor with a power of 60 MWe which went critical

in 1963; other engineers were assigned to Cadarache, wherein 1962 the CEA built

RAPSODIE, which went critical in 1966 (20 MWth), and still others were associ-

ated with projects worldwide (Winfrith, ISPRA, GULF, etc.). One team specialised

in UNGG reactors (Bernard Noc, Matthieu Israël, Jean-Claude Chenal on thermal

hydraulics, and so on). M. Vastel specialised in the digital processing of nuclear

data.3 As attested by a publication in 1963 by Roger Pasquer, Estève Charrasse and

Jacques Montfort, the Department of Nucleus Studies in Chatou mastered the

analogue calculation of resonance parameters and inelastic cross sections.4

3M. Vastel: Spécifications de STADE, programme de standardisation des donnéessur la diffusion
élastique des neutrons [Specifications for STADE, the data standardization program for elastic
neutron scattering], note HX-1/1296 of the Department of Nuclear Studies (October 1966).
4R. Pasquer, E. Charrasse, J. Montfort: Calcul digital des sections efficacies inélastiques et calcul
analogique des paramètres de resonance [Digital calculation of inelastic cross sections and
analogue calculation of resonance parameters], Journal of the Research and Study Centre of

Chatou, No. 6 (1963). This dedicated know-how was handed over to the CEA in the PWR years.
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Although dependent on the Research and Development Centre in Chatou, the

neutron physicists were detached to the Clamart site, near the computers which

they filled up with impressive trays full of punch cards, for obvious practical

handling reasons. Intensive use was made at the time for the UNGG of the

CHERBOURG code (2D scattering, finite-difference 2-groups for triangular

meshes) and the BARACA code for control rods. Ultimately, however it was the

COREGRAF cell code at the CEA (Reuss et al) supplemented by the ALCI core

diffusion code, which became the key codes for UNGG facilities until these were

abandoned in 1969.

In the middle of the 1960s, EDF kept a very close eye on developments in fast

reactors, but also in the water-cooled technology. The director of the sub-region of

nuclear equipment, Jean-Pierre Roux, and his assistants, Claude Bienvenu and

Boris Saı̈tcevski, managed to persuade Robert Boudrant, Director of Equipment,

and Pierre Ailleret of the interest of ordering a reactor built using American

technology, which required the purchase of enriched uranium fuel from the Amer-

icans, since this product was not available in France at the time, to the great

displeasure of CEA, who saw it as a loss of national independence, while EDF
viewed it as an opportunity to vary its production modes (Floquet 1995, p. 28).

There was even talk of a warfare between the two technologies: EDF (pro-water)
and CEA (pro-graphite) were forced to publish their report separately in the spring

of 1967, since they could no longer harmonise their conclusion (Picard et al. 1985,

p. 197). On April 3, 1967 EDF commissioned the CHOOZ A reactor

(Westinghouse-type) 300 MWe, a protocol type like-water reactor built in an

artificial cave beneath a mountain on the Belgian border, and operating with an

unconventional fuel (15 � 15 rods with non-symmetrical cross control blades), for

which calculation turned out to be a tour de force using APOLLO1. The reactor was

built by the Equipment division, the engineering section of which was dubbed

SEPTEN from 1968. At the same time, a heavy-water reactor was built in collab-

oration with the CEA at the Monts d’Arrée: Brennilis aka EL4 (EL for Eau Lourde/
heavy water) with an electrical power rating of 70 MWe, following on from the EL2

and EL3 piles in Saclay. However, the affair was driven chiefly by the CEA and the

EDF teams comprised only 70 people (Larroque 1997, p. 279). The aim was to

acquire experience with an intermediate power reactor producing high quantities of

plutonium (because of its continual loading) using forced-march development

tactics for fast reactors in the event of problems with uranium supply. The reactor

worked extremely well until 1986 and is currently in the advanced stages of

dismantling. At the start of the 1970s, some were thinking of also introducing

boiling water reactors, which were studied at the Research and Development
Division, but the oil crisis of 1973 and the good performance of CHOOZ A finally

resulted in victory for the PWRs, which had a specific power six times greater than

that of the French CEA-standard UNGG and which posed fewer stability problems

than the high-power BWRs.
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Presentation of the JANE code, the first-ever reactor physics code developed at EDF (Feingold and

Larcher, circa 1963) (The Marguet collection)
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Francis Vitton’s thesis in experimental reactor physics (1967 on the CESAR (UNGG) tests) (The
Marguet collection)

The teams of EDF physicists were strengthened with the arrival in Equipment of

J. Ryckelynck (1937–) following his PhD in reactor physics in 1965, and who

became head of equipment at Fessenheim, and by the arrival in the Nuclear Studies

Department of the DER of Jean-Paul Pasquet in 1962, who was no longer kept busy

on code maintenance, and of Pierre François, Henri Mouney (1945–), Francis

Hourtoulle and Gérard Gambier (1943–) in 1968, who had penned a prestigious

state thesis on the progressive poisoning method as a perturbation method,
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following his 3-year secondment to Cadarache, and he later became the Head of

Department and EDF representative at EPRI.

(Courtesy Gambier)
Gérard Gambier’s work on the theory of perturbation benefited from a quality edition in the

collection of the internal notes of the DER. His work at Cadarache was considered so brilliant that

it was suggested him to make it more profitable in the form of a state thesis (PhD), an extremely

uncommon fact. Gérard Gambier assured the functions of Head of Reactors Physics Department

during the detachment of Michel Perrin in the United States
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This extremely praiseworthy popularizing book (1977) was written by Henri Mouney, former

assistant-director of the Reactor Physics Department. (The Marguet collection)

Mention should also be made of Jean-Pierre Perrutel (1942–),5 who had an

astonishing career (after entering the “École de Métiers” in Soissons in 1960,

where he first learned to scramble up electricity pylons, he entered the DER in

1970 finally to become an research engineer in neutron physics, an exemplary path

5Interestingly, Jean-Pierre was born on December 2, 1942, at the exact time of divergence of

Fermi’s first CP1 pile. The hand of destiny was doubtless involved!
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which would be inconceivable today!). In 1972, the Nuclear Studies Department of

DER/Clamart recovered the LEOPARD (1967) and FOG (1961) codes thanks to the

ISPRA programs library. LEOPARD, a lattice code for PWR developed by Wes-

tinghouse and used by its French licensed operator FRAMATOME, supposedly

provided a better representation of burnable poisons than its CEA counterpart,

EVEREST. FOG was a 1D four-group code providing an approach to the critical

parameters (critical boron, radiotherapy, etc.). C. Ribas loaded them into the CDC

6600 calculator at the Clamart computer centre and compared them with the CEA’s
EVEREST/EVOE scheme from the CHOOZ A studies. The Reactor Physics

Department then recruited Philippe Bioux (1948–), who was for a long time the

head of the neutron physics group, and Michel Soldevila (1952–), who was one of

the first people to study the neutron physics of PWRs at DER and who specialized in

plutonium recycling before joining the CEA. Furthermore, plutonium recycling in

MOX marked a high point for the DER, which had to convince the powerful and

rather reticent Fuels Department of the feasibility of the affair. The studies by DER,
in collaboration with the CEA (Paul Reuss), resulted in zoning of the MOX

assembly. At SEPTEN, development work was done particularly on the physics

of UNGG and then of PWR. We should mention above all Francis Vitton (1942–),

who was recruited after his experimental thesis in the physics of UNGG reactors

following his DEA in reactor physics in 1965, and of Jean-Claude Lefebvre (1939–),

the mind behind SEPTEN, and whom we have to thank for a great many of the

physical model described in this work. Lefebvre helped design the JANUS code

(1970) followed by JANUS 2 (1974) alongside G. Chevreau, a 2-energy group, 2D
diffusion code for square meshes in PWRs based on the American PDQ code

(1957). JANUS 2, then 3, was an important code in the history of reactor physics

at EDF. In 1978, the computer centre at Clamart ran it 700 times for fuel manage-

ment for the three power plants in Fessenheim, Bugey and Tihange for a total of

30 h of calculations! These extremely modest figures by our modern standards

nevertheless were of concern to the DER in 1979, who considered the code to be

“all engrossing” and imagined itself swamped by the arrival of the several tens of

new plants to come. I would also like to mention Serge Peytier, specialist in start-up

(Courtesy Jean-Pierre Perrutel)
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study procedures, Antonino Vassallo (JANUS, SEBIBLIO et pre-versions of

COCCINELLE) and Daniel Janvier, a great specialist in internal instrumentation.

Regarding numerical development, Françoise Blanchon6 (1941–) with TIEM,

joined the DER in 1964. She became the linchpin for the EDF neutronic codes,

on which she worked for the rest of her career. After first working on the UNGG
codes, in 1977 she developed the POSEIDON 2D code for PWR, in order to replace
the JANUS codes (2D homogeneous for assemblies); the JASON/JONAS code

(pin-by-pin, by J.M. Fabre of SEPTEN). COCCINELLE 3D, which she wrote

beginning in 1982, was a direct successor to the functions of POSEIDON and

handled the equation for diffusion for two energy groups and six delayed neutron

groups (for kinetics) on a finite-difference basis. Françoise, with her very strong

personality, was a major figure in the PWR years at Clamart, as was the discreet but

highly talented mathematician Jacques Planchard (1933–2009), whose multiple

theoretical works on the diffusion equation and eigenvalue problems led him to

write a reference textbook on the subject (Planchard 1995). In Reactor Physics, the

main CEA codes used are RIFIFI (1D, 2 groups, analytic), ALCI (2D multigroup,

finite difference), and HETAÏRE for fast reactors.

6Françoise Blanchon (1941–) graduated from the “Ecole Polytechnique Féminine” and

ENSEEIHT in Toulouse. In October 1964, she joined the DER in Clamart, where she would

later become the head of maintenance of the COCCINELLE code. Although the physics design of

the code was begun at SEPTEN based on the JANUS 2D code, development of numerical methods

and coding were the province of the IMA Department in Clamart. It was the Reactor Physics

Department of R&D which then took over physics development in place of SEPTEN, following an

agreement signed in 1981 between DER and SEPTEN, with code development responsibilities

being handed to R&D.

(Courtesy Blanchon)
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The original report of the RIFIFI II code: Résolution sur IBM 7090 des équations de diffusion en
théorie �a deux groupes d’énergie et une variable d’espace [Solutions to the Diffusion equation with
two energy groups and one space variable on IBM 7090] by Albert Amouyal, Marcel Bados,

Thérèse Léna et François-Louis Mengin, note CEA-N 518 (1965). (The Marguet collection)

Jean Vergnes (1944–2004) specialized in the economic problems of the different

plant designs (TIRELIRE code).
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(EDF)

Jean Vergnes (1944–2004) spent practically his entire career at EDF R&D, apart from a few years

in recruitment. He was the first to focus on fuel-cycle economy and developed the TIRELIRE

software for cycle management strategies, which is still used today. It was also he who promoted

within EDF the concept of the AMSTER molten-salt reactor. He was the first neutron physicist at

EDF to be named Senior Engineer, an honorary title very rarely bestowed. Despite his

incapacitating (and finally lost) struggle with Parkinson’s disease, he is remembered by all for

his infectious enthusiasm about nuclear physics and his goodwill towards his colleagues

At the end of the 1970s, the Nuclear Studies Department, which has now become

the Reactor Physics Department (PhR) in Clamart, devoted most of its efforts on the

one hand to HTRs (Gambier, ALCYON code, although this sector would be

abandoned following the setbacks with the 300 MWe American pilot reactor in

Fort St Vrain, Colorado), and on the other to fast reactors (Pierre Cachera in Chatou

from 1958, whose name would be given to the Cachera effect, that is ejection of

corium via a central hole in RNR fuel pellets in the event of core fusion). After a

career in Equipment, he joined the SOFRATOME company created by Marcel

Boiteux, director of EDF from 1979 to 1987, to help with the exportation of

FRAMATOME reactors abroad, and in fact comprising the Engineering division

of EDF).
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(EDF)

Pierre Charles Cachera (photograph circa 1962) gave his name to the physical effect of corium

ejection though the central hole of the pellets in fast reactors, in case of severe accidents. This

effect is believed to increase the safety as long as it mechanically extracts fissile material from the

active core. Cachera actually wrote the article on Boiling Water Reactors (BWRs) in the French

technical Encyclopaedia « Techniques de l’ingénieur », a subject of which he was one of rare

specialists in France to have followed the failed French project in 1975 in Fessenheim

We should also cite some RNR specialists with SEPTEN (particularly Guy

Vambenepe for fuel management). Diffusion codes were developed at the initiative

of Gérard Gambier (who wanted to get free from the CEA) such as

SUPERALCYON,7 CARDIFF (based on the English calculation kernel SNAP

recovered by the OCDE). Jean-Michel Gomit (1954–), who was hired after his

thesis on the release of fission products, became a recognised specialist in pertur-

bation theory, before going on to take charge of the CRISTAL criticality code

at IRSN.
In the 1970s and 1980s, the Physics of reactors department, aka PhR, was

involved in the proliferation of studies in all possible fields:UNGG, gas and sodium
RNR, HTR using the English WIMS code, the thorium cycle, the AMSTER concept

involving molten-salt reactors (Jean Vergnes), and then over-and under-moderated

PWRs, not to mention hollow needles and other variants. Philippe Tétart (1957–)

optimized the design of innovative reactors such as Under-Moderated Reactors and

Convertible Spectral Shift Reactors. As a result of this specialization in “exotic”

reactors, the interest of the Department ultimately shifted away from PWRs then
under construction. However, this was not the case with SEPTEN, which developed
diffusion codes for PWRs: LIBELLULE (1D diffusion, two groups) by Jacques

7SUPERALCYON was a modular chain devised by EDF using the CEA CODNUC modules with

special procedures. The modules created series of data used by the subsequent modules: geometry,

initial conditions, boundary conditions, effective cross sections, 1D and 2D diffusion modules,

hexagonal, transport... with elaborate output. It was necessary to use a CISI terminal located in

PhR and the annual bill for access to all of these codes and maintenance was extremely high! . . .
This led to the idea of developing in-house codes such as CARDIFF, based on free-access

modules, and then COCCINELLE, which was developed entirely by EDF.
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Fioroni8 (1951–), JANUS (2D diffusion, two groups) by Jean-Claude Lefebvre

(1939–2011), Philippe Lebigot, and Roger Seban (1949–), with a state doctorate in

Reactor Physics and then in Atomic Engineering in 1975, who went on to have a

brilliant career in China. All of these codes were fed by a SEBIBLIO libraries

generator using the CEA lattice code, APOLLO1.

8Jacques Fioroni (1951–). After his “License de Physique” at the University of Rouen in 1976,

Jacques Fioroni did several non-nuclear jobs until 1982 (chemist in a sugar refinery, teaching

physics in a high school. . .) Fioroni’s career at EDF/SEPTEN begins in September 1982. His job

was mainly devoted to calculation tools improving the conduct of nuclear power plant. His

masterpiece is the LIBELLULE code (Dragonfly in French), in a time where insect names (!)

were in favour for reactor physics codes in EDF. LIBELLULE, a 1D-neutronic fast and efficient

tool, happened to be the kernel of all real-time simulators and operator guiding system in EDF. The

emergence of the complex operating control-rods mode T (automatic convergence on Axial-

offset) on the European Pressurized Reactor, led LIBELLULE to its ultimate limit, leaving the

place for the 3D-neutronic COCCINELLE, thanks to intensive parallelization and faster com-

puters. Fioroni retired in 2017 with LIBELLULE still in use for the formation of operators

(SIROCCO full-scope simulator).

(Courtesy Fioroni)
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The state thesis of Gérard Gambier (1974) (The Marguet collection)
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The thesis of Michel Soldevila (1978) (The Marguet collection)

The 3D COCCINELLE code was used in a project piloted by SEPTEN, in which
only DER mathematicians were initially involved (mainly Françoise Blanchon,

who wrote the first theoretical note in May 1982 with Jacques Planchard regarding

the digital aspects).
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Cachera’s first patent (EDF) of December 1972: the idea was to drill a central hole in the fuel pin to

enhance corium flow. Simple perhaps, but someone had to think it up!

From mid-1987, the Reactor Physics Department changed tack completely.

Jean-Pierre West, brilliant graduate of the “Ecole Centrale” and Head of Depart-

ment at PhR,who had already been involved in the start-up of Superphénix, decided
to set up a neutron diffusion code unit for PWRs in a department which until then

had been concerned solely with fast reactors and the design of advanced reactors, or

PWR studies.
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(Courtesy West)

Jean-Pierre West, after the École Centrale of Paris (1981), began his career in the Reactor Physics

department (PhR) on the fast reactor fast SUPERPHENIX on the thorny problem of the calculation

of the control rods worth. From 1987, he was named head of the neutronic group, a team of

developers of PWRs codes. After a passage in the Division Nuclear Calculations, he returned as

Department Head of PhR. After several executive positions in various divisions (SEPTEN, CNET,

CNEN/SOFINEL), he was appointed Vice-president of the consortium UNISTAR created by EDF

and Constellation Energy Group, asked to promote the construction of an EPR to Calvert Cliffs. The

American energy context will become unfavourable to the project which did not succeed to this day.

He was finally appointed Vice-Director of EDF/R&D. We shall hold especially in this book its

determining action to promote the 3D-diffusion COCCINELLE code inside the official calculation

scheme of French PWRs. In a more personal way, he was the person who recruited me in 1987!

He recruited Danièle Verwaerde (1955–), an experienced engineer, from CEA/
DAM, who developed for COCCINELLE the conjugate gradient and pin-by-pin

calculation methods, and myself, for whom neutron physics was by the time

profoundly exotic!9 The new changes initially caused some upset at SEPTEN,
which felt that it had been unjustly deprived of its code, but things settled down

afterwards. Claude Garzenne (1956–) then developed the HOMERE transport/

diffusion equivalence, before being seconded to Cadarache on the important EPI-

CURE experiment in plutonium recycling, while Michel Lam-Hime (1952–), one

of the best neutron physicists at the Nuclear Calculations Division, created a chain

out of the different neutron transport codes in the official chain, an industrialization

process made necessary by the incredible complexity associated with the number of

codes to be chained, and the increasing number of plants (up to 58). In mid-1986, an

online monitoring code was created with recalibration, CAROLINE (Blanchon,

Esclangon, Gomit, etc.), based on the same ideas as the American BEACON code.

After several years of joint development atMMN and PhR, this would prove to be a

9A (very) minor historic detail: I attended an interview for a post in thermal hydraulics, which was

more consistent with my qualifications, but thanks to the infectious enthusiasm of J.P. West and

G. Gambier I accepted a post in neutron physics, based on the pure intellectual challenge. My

thanks go to them for their insistence!
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technical success (calculation time less than real-time), though ultimately a failure,

following abandonment of operational rollout for the French nuclear fleet, since the

solution was considered too complex by the operator.

Thesis of Jean-Michel Gomit (1980) on contamination of the primary circuit of PWRs (The

Marguet collection)
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Thesis of Michel Lam-Hime (1981) on the particularly difficult problem of transport/diffusion

homogenization (The Marguet collection)

In the 1990s, the most notable point was the development of nodal methods in

COCCINELLE [Slimane Noceir (1964–)], the EFLUVE code for fluence on the

reactor vessel, [Henri Schaeffer (1954–)] and the STRAPONTIN residual power

code (myself). François-David Rosset (1957–), one of the best specialists on fuel

loading, joined the Department.
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The reference Textbook by Jacques Planchard (1995), with a preface by Robert Dautray (The

Marguet collection)
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Thesis of Jean-Louis Vaudescal (1993), future head of the PhR Department. (The Marguet

collection)

In the numerical sphere, developments primarily concerned multi-group

approaches (thesis of Jean-Louis Vaudescal (1964–), who became head of the

PhR Department), as SEPTEN developed its expertise on accident methodologies
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(Jean-François Gy10 (1967–), after graduating from Ecole Polytechnique in 1987, a
major specialist in reactivity accidents) and on safety studies. Many EDF engineers

taught on courses such as Atomic Engineering, and especially Applied Reactor

Physics (of note is the extremely complete textbook by Nordine Kerkar (1967–) and

Philippe Paulin (1957–) on the operation of PWR cores). In the future, history may

be marked by the new COCAGNE code (3D, multigroup, multi-solver), the fruit of

an unfortunate collaboration with the CEA. While France’s best neutron physics

specialists have naturally gravitated together by definition at the CEA, EDF, being
an operator, has built up recognised know-how in reactor physics that is very

fortunately not limited strictly to the people cited.

10Jean-François Gy (1967–). After his studies to the Ecole polytechnique (class 1987), then his

training school (ENSTA-1992), he enters the SEPTEN in the Direction of the Equipment, where

he becomes the undisputed specialist of the neutronic kinetics and the accidents of reactivity,

subject which he teaches to the Institute of Technology Transfer of EDF. Within this problem, it is

especially the rod ejection, subject he masters in greatest detail, and on which he is naturally

brought to defend the calculation methodology with the French Safety Authorities. Alert and

curious spirit, he does not hesitate to share his passion thanks to didactic presentations of the best

scientific level.

(Courtesy Gy)
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(EDF Sciences)

The book Exploitation des cœurs REP (Operation of PWR cores) by Nordine Kerkar and Philippe
Paulin (2008), two of France’s foremost specialists on this subject
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Paris/Liège, 1945, 366 pages + exercises par J.M. Lejeune. This book depicts largely the

applications of X-rays, especially in fields other than medicine (chemical analysis,

non-destructive control, and crystallography).
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2-7272-0149-4 1989, 402 pages. The hard mathematical aspects are discussed and may be

quite difficult for the physicist. Transport and scattering are nevertheless explained.

B. Davison, avec la collaboration de J.B. Sykes, Neutron transport theory, Oxford University

Press, Grande-Bretagne, 1957. The second edition of 1958 was completed adnd contains

comments by A. Hassit. It is an important work of neutron transport and could not have been

forgotten.

Louis de Broglie, Les incertitudes d’Heisenberg et l’interprétation probabiliste de la mécanique
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Les génies de la science (revue), Planck : la révolution quantique, Les génies de la science, Pour la
science, Belin, 2006, 120 pages.

Les génies de la science (revue), Niels Bohr: A l’aune de la physique atomique, Les génies de la
science, Pour la science, Belin, 2008, 104 pages.

James E. Gentle, Random number generation and Monte-Carlo methods, Springer, USA, ISBN
0-387-21610-3, 2nd edition corrigée, 2005, 381 pages. The first two chapters on random

number generators are very informative on the subject matter. Monte Carlo users often employ

the random function of the coding language without knowing the theory behind. The problem

of a biased distribution is also discussed.

Samuel Glasstone, Milton C. Edlund, The elements of Nuclear reactor theory, Mac Millan, USA,

1972, 416 pages. It is the re-edition of the 1952 version published at Van Nostrand.

Samuel Glasstone, Alexander Sesonske, Nuclear reactor engineering tome 1 et 2, Chapman-Hall,

USA, ISBN 0-412-98521-7 et 0-412-98531-4, 1994, 841 pages in two parts, 4th edition. This

reference is essential for reactor physics and was successfully edited several times. Glasstone

published several work on the subject.

Bertrand Goldschmidt, Pionniers de l’atome [Atomic pioneers], Stock, Paris, 1987, 484 pages.

Goldschmidt has been the only French who worked for the Manhattan Project on plutonium

separation. He would become a very brilliant chemist at CEA and would propose the French

solution. The photographs are somewhat deceiving (usual photographs, only those of the

French coming to Canada are really interesting).

Herbert Goldstein, Fundamental aspects of reactor shielding, Addison-Wesley, Reading, USA,

1959, 416 pages. This reference book focuses on the theoretical considerations of radiation

transport calculation, rather than medical ones – a good reference for chapter 3.

S.H. Gould, Variational methods for eigenvalue problems, Oxford University Press, London,

United Kingdom, 1966, 275 pages. 2nd edition. Presents the Weinstein method and

Rayleigh-Ritz method for estimating eigenvalues. The applications are destined for mechanics

which is nevertheless an elliptic form equation similar to the diffusion equation.

Bibliography 1413



Hartley Grandini Jr, Fundamentals of the finite element method, Macmillan, USA, ISBN

0-02-345480-6, 1986, 528 pages. Especially for Galerkin method. Very oriented for engineer-

ing purposes.

Walter Greiner, Ludwig Neise, Horst St€ocker, Thermodynamique et mécanique statistique [Ther-
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and rebel], Seuil. Paris, 1975, 298 pages. Saying that Albert Einstein is the physicist of the 20th
century is obvious. This book puts back his work in their historical context. Numerous photos.

K.H. Hoffmann, M. Schreiber, Editors, Computational statistical physics: from billiards to Monte
Carlo, Springer, New-York, USA, ISBN 3-540-42160-2, 2002, 300 pages. It is a compilation

of articles on the various subjects that as chaos on a billiards game, financial analysis or chaos

in optical spectrum, with lots of Monte Carlo method: more for general knowledge in Monte

Carlo than actual use for work.

James G. Holbrook, Laplace transforms for electronic engineers, Pergamon Press, Oxford, United

Kingdom, Library of Congress Card Number 59-12607, 1969, 2nd edition, 347 pages. The

applications are mostly in the fields of electricity or networking. There is a very complete table

of transforms for real networks.

Homogenization methods in reactor physics, Proceedings of a specialists meeting on homogeni-

zation methods in reactor physics held in Lugano, Suisse, 13–15 November 1978. AIEA-

TECDOC-231. Vienne, 1980, 670 pages. It is a compilation of articles on homogenization and

equivalence methods for transport-diffusion calculations. Methods for reactors other than PWR
are also presented: BWR, etc.

Kenneth H. Huebner, The finite element method for engineers, John Wiley and sons, USA, ISBN

0-471-41950-8, 1975, 500 pages. The solution of the Helmholtz equation p253 is directly

transposable to diffusion.
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union de spécialistes [Measuring techniques for control – notes from a specialists meeting],
21–22 avril 1976, Cadarache, CEA, France, 1976. Proceedings. Session 2 was on theoretical

studies.

C.M. Nicholls (Editor), Technology, Engineering and Safety, Pergamon Press, London, United

Kingdom, 1964, 622 pages. Very oriented on reactor technology, the chapter Parametric
survey of critical sizes by W. H. Roach gives quantified elements on the effect of reflectors

on the critical mass.
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Poincaré, H., 19, 52
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